JP2008103648A - Apparatus for manufacturing semiconductor device, and method for manufacturing the semiconductor device - Google Patents

Apparatus for manufacturing semiconductor device, and method for manufacturing the semiconductor device Download PDF

Info

Publication number
JP2008103648A
JP2008103648A JP2006287045A JP2006287045A JP2008103648A JP 2008103648 A JP2008103648 A JP 2008103648A JP 2006287045 A JP2006287045 A JP 2006287045A JP 2006287045 A JP2006287045 A JP 2006287045A JP 2008103648 A JP2008103648 A JP 2008103648A
Authority
JP
Japan
Prior art keywords
semiconductor device
cutting
device assembly
substrate
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006287045A
Other languages
Japanese (ja)
Inventor
Yasuhide Hara
泰秀 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006287045A priority Critical patent/JP2008103648A/en
Publication of JP2008103648A publication Critical patent/JP2008103648A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Dicing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for manufacturing semiconductor device and a method for manufacturing semiconductor device, which can perform cutting of a semiconductor device assembly with stability, by applying pressure to the semiconductor device assembly that is to be an object of cutting, when the semiconductor device assembly, such as a sealed substrate 10, is cut for semiconductor devices to be produced. <P>SOLUTION: A plurality of semiconductor devices are produced together as the semiconductor device assembly 10. In the apparatus for manufacturing semiconductor device, a cutting jig 48 cuts the semiconductor device assembly into respective semiconductor devices with a holding jig 19 that applies negative pressure to the semiconductor device assembly from one surface side and holding the semiconductor device assembly. The apparatus for manufacturing semiconductor device comprises a sealed chamber 53 containing the holding jig 19, the cutting jig 48, and the semiconductor device assembly 10 as an object to be cut; a gas supply means 37 supplying a high pressure gas into the sealed chamber 53; and a control means for controlling the gas pressure in the sealed chamber 53 at a higher pressure than the atmospheric pressure, where a force that presses the semiconductor device assembly 10 to the holding jig 19 is increased by keeping the high pressure in the inside of the sealed chamber 53. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、複数の半導体装置が一括して製造された半導体装置集合体の切断工程で使用される半導体装置の製造装置および半導体装置の製造方法に関するものである。   The present invention relates to a semiconductor device manufacturing apparatus and a semiconductor device manufacturing method used in a cutting process of a semiconductor device assembly in which a plurality of semiconductor devices are manufactured collectively.

プリント基板やリードフレーム等の基板に装着された複数の半導体チップ(以下、チップという。)を同一ブロック内にマトリクス状に配置して一括樹脂封止して半導体装置集合体である封止済基板を形成し、この後、前記封止済基板を複数に切断することによって、チップを含む個片からなる半導体装置(いわゆるパッケージ)を形成することが、従来から行われている。   A plurality of semiconductor chips (hereinafter referred to as chips) mounted on a substrate such as a printed circuit board or a lead frame are arranged in a matrix in the same block, and are encapsulated with a resin to form a sealed substrate that is an assembly of semiconductor devices After that, a semiconductor device (so-called package) composed of individual pieces including chips is conventionally formed by cutting the sealed substrate into a plurality of pieces.

この封止済基板を切断する際には、封止済基板を保持用治具に固定する必要があり、従来は、封止済基板と保持用治具とを接着テープを介して固定する方法や、保持用治具に設けた吸着口により封止済基板を真空吸着する方法が使用されている。   When cutting this sealed substrate, it is necessary to fix the sealed substrate to a holding jig, and conventionally, a method of fixing the sealed substrate and the holding jig via an adhesive tape Alternatively, a method of vacuum-sucking a sealed substrate using a suction port provided in a holding jig is used.

近年、生産性向上、低コスト化を実現するため、半導体装置を小型化することでの取れ数増加の要請があり、また、携帯電話や携帯音楽プレーヤー、携帯情報端末等に使用する半導体装置は軽薄短小の要請があり、このように半導体装置は小型化、薄型化の傾向が一層強まっている。
特開2003−340787
In recent years, in order to realize productivity improvement and cost reduction, there has been a demand for an increase in the number of semiconductor devices that can be obtained by downsizing semiconductor devices, and semiconductor devices used for mobile phones, portable music players, portable information terminals, etc. There is a demand for lightness, thinness, and smallness. Thus, the tendency of semiconductor devices to become smaller and thinner is further increased.
JP 2003-340787 A

しかしながら、半導体装置の小型化に伴い、半導体装置の外形を形成する製造工程、具体的には封止済基板の切断時において、個々の半導体装置の保持力の低下を招いており、従来の真空吸着による固定方法では、4mm角(□4mm)以下の大きさの半導体装置の場合では保持が困難となってきている。より詳しく説明すると、封止済基板の切断にはダイアモンドを含有した樹脂もしくは金属の通称ダイシングブレードと呼ばれる円形の刃物(切断用治具)を20000〜40000回転/分で回転させて切断している。このときに発生する切断負荷以上の力で、封止済基板および個片化される半導体装置が、保持用治具に固定されなければならない。   However, with the miniaturization of semiconductor devices, the manufacturing process for forming the outer shape of the semiconductor device, specifically, when the sealed substrate is cut, has led to a decrease in the holding power of the individual semiconductor device. In the case of a semiconductor device having a size of 4 mm square (□ 4 mm) or less, it is difficult to hold by a fixing method by adsorption. More specifically, the sealed substrate is cut by rotating a circular blade (a cutting jig) called a diamond-containing resin or metal, commonly called a dicing blade, at 20000 to 40,000 revolutions / minute. . The sealed substrate and the semiconductor device to be separated must be fixed to the holding jig with a force greater than the cutting load generated at this time.

従来の上記切断工程における封止済基板の固定方法としては、粘着テープを使用した方法がある。粘着テープの固定力は高いため、小型の半導体装置に対応する封止済基板の切断には十分な固定力を有するが、切断時に接着テープも切断する必要があるため、一度の切断作業毎に接着テープが使い捨てとなり、コスト的に無駄な費用が発生する。また、切断工程の前に、粘着テープに貼り付ける工程、および切断後に粘着テープから各半導体装置を外すために、粘着テープに密着している半導体装置を針にて突き上げて分類する装置や工程が必要となり、生産性が低下するとともに、余分なコストが発生してコスト高となる。   As a method for fixing a sealed substrate in the conventional cutting step, there is a method using an adhesive tape. Since the adhesive tape has a high fixing force, it has sufficient fixing force for cutting a sealed substrate corresponding to a small semiconductor device, but it is necessary to cut the adhesive tape at the time of cutting. The adhesive tape becomes disposable, resulting in a wasteful cost. In addition, there are a step of attaching the adhesive tape to the adhesive tape before the cutting step, and a device and a process for classifying the semiconductor device in close contact with the adhesive tape with a needle in order to remove each semiconductor device from the adhesive tape after cutting. This is necessary, and productivity is lowered, and extra cost is generated and the cost is increased.

この接着テープを使用しない方法として、保持用治具に真空吸引で半導体装置を直接吸着する方法も提案されている。この真空吸着による封止済基板の固定では、真空と大気圧との差圧を利用しているため、半導体装置が小型化するにつれて大気圧を受ける面積が低下し、その結果、半導体装置の保持力が低下していく。現在、4mm角のサイズの半導体装置を切断するときに必要な真空圧はおよそ−70kMPaが限界である。これ以上真空度が低下した状態で封止済基板を切断すると、真空吸着による保持力が不足して、切断位置のずれによる、半導体装置の外形寸法精度の低下を生じてしまう。そして、最悪の場合には、切断負荷により半導体装置が飛ばされることがあり、この場合、切断装置のブレードの破損を生じることがある。またパッケージの薄型化に伴い、基板そのものの反りも増えているため、その反った基板を保持する押圧力も不足してきている。   As a method not using this adhesive tape, a method of directly adsorbing a semiconductor device by vacuum suction to a holding jig has been proposed. The fixation of the sealed substrate by vacuum suction uses a differential pressure between the vacuum and the atmospheric pressure, so that the area that receives the atmospheric pressure decreases as the semiconductor device is downsized, and as a result, the semiconductor device is held. The power goes down. At present, the limit of the vacuum pressure necessary for cutting a semiconductor device having a size of 4 mm square is about -70 kPa. If the sealed substrate is cut in a state where the degree of vacuum is further reduced, the holding force due to vacuum suction is insufficient, and the external dimension accuracy of the semiconductor device is reduced due to the shift of the cutting position. In the worst case, the semiconductor device may be blown by the cutting load. In this case, the blade of the cutting device may be damaged. Further, as the package becomes thinner, the warpage of the substrate itself has increased, and the pressing force for holding the warped substrate has become insufficient.

また、図15に示すように、特許文献1において、真空ポンプ105に接続した吸着部104により封止済基板100を吸着しながら、昇降自在の押さえ部材101にて封止済基板100を押さえて保持する方法も提案されている。しかし、本方法は、移動可能な押さえ部材101を、切断ブレード102を避けるように配置しながら封止済基板100を押さえ込む方法であるため、封止済基板100を切断する部位に封止済基板100を押さえ込む部位が干渉する毎に一度押圧を解除し、押さえる部位を移動して再度押し直す必要があり、その動作のための時間のロスが発生して、生産能率の低下を招いていた。   Further, as shown in FIG. 15, in Patent Document 1, while the sealed substrate 100 is sucked by the suction portion 104 connected to the vacuum pump 105, the sealed substrate 100 is pressed by a vertically movable pressing member 101. A method of holding is also proposed. However, since this method is a method of pressing the sealed substrate 100 while disposing the movable pressing member 101 so as to avoid the cutting blade 102, the sealed substrate 100 is cut at a site where the sealed substrate 100 is cut. It is necessary to release the press once every time the part that presses 100 interferes, move the part to be pressed, and press it again. This causes a loss of time for the operation, leading to a reduction in production efficiency.

また、切断部位を、押さえ部材101の平面状に形成されている部分(押さえ板部101aと称す)で押さえるため、特に半田ボール等を封止済基板100に実装した場合、半田ボールの高さばらつきの影響があり(半田ボールの基板100aからの高さは通常±0.03mm程度のばらつきがある)、平面状の押さえ板部101aでは封止済基板100全体を均一に押圧力を与えることはできない。このことで、半田ボールが搭載された封止済基板100においてはその効果が発揮できない場合が多発する。   In addition, since the cutting portion is pressed by a flat portion of the pressing member 101 (referred to as a pressing plate portion 101a), particularly when a solder ball or the like is mounted on the sealed substrate 100, the height of the solder ball There is an influence of the variation (the height of the solder ball from the substrate 100a is usually a variation of about ± 0.03 mm), and the flat pressing plate portion 101a applies a uniform pressing force to the entire sealed substrate 100. I can't. For this reason, there are many cases where the effect cannot be exhibited in the sealed substrate 100 on which the solder balls are mounted.

本発明は、上記課題を解決するためになされたものであり、封止済基板などの半導体装置集合体を切断して半導体装置を製造するに際し、その切断対象となる半導体装置集合体に対して良好に押圧力を与えて安定した状態で半導体装置集合体を切断できる半導体装置の製造装置および製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems. When a semiconductor device assembly such as a sealed substrate is cut to manufacture a semiconductor device, the semiconductor device assembly to be cut is used. An object of the present invention is to provide a semiconductor device manufacturing apparatus and a manufacturing method capable of cutting a semiconductor device assembly in a stable state by applying a good pressing force.

上述の技術的課題を解決するために、本発明の請求項1記載の発明は、複数の半導体装置が一括して製造された半導体装置集合体を、保持用治具により一方の面側から負圧により吸着して保持した状態で、切断用治具により切断して個々の半導体装置を製造する半導体装置の製造装置であって、前記保持用治具と切断用治具と切断対象の半導体装置集合体とを内包する密閉室と、この密閉室内に高圧気体を供給する気体供給手段と、密閉室内を大気圧よりも大きい圧力に制御する制御手段とを備えたことを特徴とする。また、この場合に、制御装置により、半導体装置集合体の切断対象部分の面積に対応させて、切断対象部分の面積が小さいほど密閉室内の圧力を高めるものである。   In order to solve the above-described technical problem, the invention according to claim 1 of the present invention is directed to a semiconductor device assembly in which a plurality of semiconductor devices are manufactured in a lump from one surface side by a holding jig. A semiconductor device manufacturing apparatus that manufactures individual semiconductor devices by cutting with a cutting jig while being adsorbed and held by pressure, the holding jig, the cutting jig, and the semiconductor device to be cut A sealed chamber containing the assembly, a gas supply means for supplying a high-pressure gas into the sealed chamber, and a control means for controlling the sealed chamber to a pressure higher than the atmospheric pressure are provided. Further, in this case, the control device increases the pressure in the sealed chamber as the area of the cutting target portion is reduced in correspondence with the area of the cutting target portion of the semiconductor device assembly.

また、本発明の請求項9記載の発明は、複数の半導体装置が一括して製造された半導体装置集合体を、保持用治具により一方の面側から負圧により吸着して保持した状態で、切断用治具により切断して個々の半導体装置を製造する半導体装置の製造方法であって、切断工程において、前記保持用治具と切断用治具と切断対象の半導体装置集合体とを密閉室内に配設し、前記密閉室内を大気圧よりも大きい圧力に制御して、前記密閉室内の圧力と前記負圧との差圧により大気圧の場合よりも大きい押圧力で半導体装置集合体を保持用治具に対して押圧しながら切断することを特徴とする。また、この場合に、半導体装置集合体の切断対象部分の面積に対応させて、切断対象部分の面積が小さいほど密閉空間内の圧力を高めると好適である。   In the invention according to claim 9 of the present invention, a semiconductor device assembly in which a plurality of semiconductor devices are manufactured in a lump is adsorbed and held by negative pressure from one surface side by a holding jig. A semiconductor device manufacturing method for manufacturing individual semiconductor devices by cutting with a cutting jig, wherein the holding jig, the cutting jig, and the semiconductor device assembly to be cut are hermetically sealed in the cutting step. The semiconductor device assembly is disposed in a room, and the inside of the sealed room is controlled to a pressure larger than atmospheric pressure, and the pressure difference in the sealed room and the negative pressure causes a pressure force larger than that in the case of atmospheric pressure. It cuts, pressing against a holding jig. Further, in this case, it is preferable to increase the pressure in the sealed space as the area of the cutting target portion is smaller in correspondence with the area of the cutting target portion of the semiconductor device assembly.

上記請求項1記載の半導体装置の製造装置、並びに請求項9記載の半導体装置の製造方法によれば、大気圧中において、保持用治具における半導体装置集合体を吸着させる箇所に負圧を作用させて、半導体装置集合体を保持用治具に吸着させた場合よりも、大きい押圧力で半導体装置集合体を保持用治具に対して押圧しながら切断することができ、安定した状態で半導体装置置集合体を切断できる。また、切断対象部分の面積が小さいほど密閉空間内の圧力を高めることで、切断対象部分が小さい面積の半導体装置集合体に対しても大きな力で良好に押圧できて、安定して切断することができる。   According to the semiconductor device manufacturing apparatus according to claim 1 and the semiconductor device manufacturing method according to claim 9, a negative pressure is applied to a portion where the semiconductor device assembly is adsorbed in the holding jig in the atmospheric pressure. The semiconductor device assembly can be cut while pressing the holding device against the holding jig with a larger pressing force than when the semiconductor device assembly is adsorbed to the holding jig. The device assembly can be cut. In addition, by increasing the pressure in the sealed space as the area of the cutting target portion is smaller, the cutting target portion can be pressed well against a semiconductor device assembly having a small area with a large force, and can be stably cut. Can do.

また、本発明の請求項3記載の発明は、複数の半導体装置が一括して製造された半導体装置集合体を、保持用治具により一方の面側から負圧により吸着して保持した状態で、切断用治具により切断して個々の半導体装置を製造する半導体装置の製造装置であって、保持用治具における半導体装置集合体を吸着させる吸着部における半導体装置集合体を受ける部分を弾性材で形成し、前記保持用治具と切断用治具と切断対象の半導体装置集合体とを内包する密閉室と、密閉室内に高圧気体を供給する気体供給手段と、切断用治具に対する切断対象となる半導体装置集合体の基板の、基板厚み方向に沿った位置を検知する基板位置検知センサと、密閉室内を大気圧よりも大きい圧力に制御する制御手段とを備えたことを特徴とする。また、この場合に、制御装置により、基板位置検知センサで検知した半導体装置集合体の基板の位置が略一定になるように密閉室内の圧力を調整することが好ましい。   In the invention according to claim 3 of the present invention, the semiconductor device assembly in which a plurality of semiconductor devices are manufactured in a lump is adsorbed and held from one side by a negative pressure by a holding jig. A semiconductor device manufacturing apparatus for manufacturing individual semiconductor devices by cutting with a cutting jig, wherein a portion for receiving a semiconductor device aggregate in an adsorption portion for adsorbing the semiconductor device aggregate in a holding jig is an elastic material A sealed chamber containing the holding jig, the cutting jig, and the semiconductor device assembly to be cut, a gas supply means for supplying high-pressure gas into the sealed chamber, and a cutting target for the cutting jig The semiconductor device assembly includes a substrate position detection sensor for detecting a position along the substrate thickness direction, and a control means for controlling the pressure in the sealed chamber to a pressure larger than the atmospheric pressure. In this case, it is preferable to adjust the pressure in the sealed chamber by the control device so that the position of the substrate of the semiconductor device assembly detected by the substrate position detection sensor becomes substantially constant.

また、本発明の請求項11記載の発明は、複数の半導体装置が一括して製造された半導体装置集合体を、保持用治具により一方の面側から負圧により吸着して保持した状態で、切断用治具により切断して個々の半導体装置を製造する半導体装置の製造方法であって、切断工程において、前記保持用治具と切断用治具と切断対象の半導体装置集合体とを密閉室内に配設し、切断用治具に対する切断対象となる半導体装置集合体の基板の、基板厚み方向に沿った位置を検知すると同時に、前記半導体装置集合体の基板の位置が略一定になるように、前記密閉室内を大気圧よりも大きい圧力で制御して、前記密閉室内の圧力と前記負圧との差圧により大気圧の場合よりも大きい押圧力で半導体装置集合体を保持用治具に対して押圧しながら切断することを特徴とする。   According to an eleventh aspect of the present invention, a semiconductor device assembly in which a plurality of semiconductor devices are manufactured in a lump is held in a state where it is adsorbed and held by negative pressure from one surface side by a holding jig. A semiconductor device manufacturing method for manufacturing individual semiconductor devices by cutting with a cutting jig, wherein the holding jig, the cutting jig, and the semiconductor device assembly to be cut are hermetically sealed in the cutting step. The position of the substrate of the semiconductor device assembly, which is disposed indoors and is to be cut with respect to the cutting jig, is detected along the substrate thickness direction, and at the same time, the position of the substrate of the semiconductor device assembly is substantially constant. Further, a jig for holding the semiconductor device assembly with a larger pressing force than that in the case of the atmospheric pressure due to a pressure difference between the pressure in the sealed chamber and the negative pressure by controlling the inside of the sealed chamber with a pressure larger than the atmospheric pressure. Cut while pressing against And wherein the door.

上記請求項3記載の半導体装置の製造装置、並びに請求項11記載の半導体装置の製造方法によれば、大気圧中において、保持用治具における半導体装置集合体を吸着させる箇所に負圧を作用させて、半導体装置集合体を保持用治具に吸着させた場合よりも、大きい押圧力で半導体装置集合体を保持用治具に対して押圧しながら切断することができ、安定した状態で半導体装置置集合体を切断できる。また、特に、切断用治具に対する切断対象となる半導体装置集合体の基板の、基板厚み方向に沿った位置を検知し、前記半導体装置集合体の基板の位置が略一定になるように、前記密閉室内を大気圧よりも大きい圧力で制御することで、切断対象部分を良好に吸着しながら、かつ、切断用治具での切断位置も一定に維持でき、極めて良好に切断することができる。また、半導体装置集合体やその基板の反りの影響を最小限に抑えることができ、切断精度を向上させることができる。   According to the semiconductor device manufacturing apparatus according to claim 3 and the semiconductor device manufacturing method according to claim 11, a negative pressure is applied to a portion where the semiconductor device assembly is adsorbed in the holding jig in the atmospheric pressure. The semiconductor device assembly can be cut while pressing the holding device against the holding jig with a larger pressing force than when the semiconductor device assembly is adsorbed to the holding jig. The device assembly can be cut. In particular, the position of the substrate of the semiconductor device assembly to be cut with respect to the cutting jig is detected along the thickness direction of the substrate, and the position of the substrate of the semiconductor device assembly is substantially constant. By controlling the inside of the sealed chamber with a pressure larger than atmospheric pressure, the cutting target portion can be adsorbed satisfactorily, and the cutting position with the cutting jig can be maintained constant, so that cutting can be performed very well. Further, the influence of the warp of the semiconductor device assembly and its substrate can be minimized, and the cutting accuracy can be improved.

また、本発明の請求項5記載の発明は、複数の半導体装置が一括して製造された半導体装置集合体を、保持用治具により一方の面側から負圧により吸着して保持した状態で、切断装置に設けた切断用治具により切断して個々の半導体装置を製造する半導体装置の製造装置であって、前記切断装置に、切断用治具と一体的に移動する揺動軸心を中心に、半導体装置集合体に対して接近離間する方向に揺動自在に配設された揺動アームとこの揺動アームの先端部に回転自在に取り付けられた弾性回転体と弾性回転体を半導体装置集合体の他方の面側から押圧する付勢手段とを有する押さえ部材を設け、この押さえ部材の弾性回転体により半導体装置集合体を保持用治具に押圧しながら切断するように構成したことを特徴とする。   The invention according to claim 5 of the present invention is a state in which a semiconductor device assembly in which a plurality of semiconductor devices are collectively manufactured is adsorbed and held by a holding jig from one side with a negative pressure. A semiconductor device manufacturing apparatus for manufacturing individual semiconductor devices by cutting with a cutting jig provided in the cutting apparatus, wherein the cutting apparatus has a swing axis that moves integrally with the cutting jig. In the center, a swing arm disposed so as to be swingable in a direction approaching and separating from the semiconductor device assembly, an elastic rotating body rotatably attached to a tip portion of the swing arm, and an elastic rotating body are provided as a semiconductor. A pressing member having an urging means for pressing from the other surface side of the device assembly is provided, and the semiconductor device assembly is cut while being pressed against the holding jig by the elastic rotating body of the pressing member. It is characterized by.

また、本発明の請求項12記載の発明は、複数の半導体装置が一括して製造された半導体装置集合体を、保持用治具により一方の面側から負圧により吸着して保持した状態で、切断装置に設けた切断用治具により切断して個々の半導体装置を製造する半導体装置の製造方法であって、前記切断装置に揺動自在に配設した揺動アームに弾性回転体が回転自在に取り付けられた押さえ部材により、半導体装置集合体を他方の面側から保持用治具に押圧しながら切断することを特徴とする。   According to a twelfth aspect of the present invention, a semiconductor device assembly in which a plurality of semiconductor devices are manufactured at once is adsorbed and held by negative pressure from one surface side by a holding jig. A method of manufacturing a semiconductor device in which an individual semiconductor device is manufactured by cutting with a cutting jig provided in the cutting device, wherein an elastic rotating body rotates on a swing arm that is swingably disposed on the cutting device. The semiconductor device assembly is cut while being pressed against the holding jig from the other surface side by a pressing member that is freely attached.

上記請求項5記載の半導体装置の製造装置、並びに請求項12記載の半導体装置の製造方法によれば、切断工程において、半導体装置集合体を保持用治具により一方の面側から負圧により吸着すると同時に、押さえ部材によって他方の面側から押圧力を与えながら半導体装置集合体を安定した状態で切断することができる。   According to the semiconductor device manufacturing apparatus according to claim 5 and the semiconductor device manufacturing method according to claim 12, in the cutting step, the semiconductor device aggregate is adsorbed by the holding jig with negative pressure from one surface side. At the same time, the semiconductor device assembly can be cut in a stable state while applying a pressing force from the other surface side by the pressing member.

また、本発明の請求項6記載の発明は、前記請求項5記載の半導体装置の製造装置において、半導体装置集合体の一方の面に半田ボールが所定方向に並べられた状態で形成され、隣り合う半田ボール間の隙間よりも、弾性回転体の幅が細く形成され、前記弾性回転体が半導体装置集合体の基板における半田ボールの間を通るように配設されたことを特徴とする。   According to a sixth aspect of the present invention, in the semiconductor device manufacturing apparatus according to the fifth aspect, the solder balls are formed in a state in which the solder balls are arranged in a predetermined direction on one surface of the semiconductor device assembly. The width of the elastic rotating body is narrower than the gap between the matching solder balls, and the elastic rotating body is disposed so as to pass between the solder balls on the substrate of the semiconductor device assembly.

この構成により、押さえ部材が半田ボールの凹凸の影響を受けることがなく基板の平面上を転がるため、上下振動のない安定した圧力変化の少ない押圧を与えることができる。
また、本発明の請求項7記載の発明は、複数の半導体装置が一括して製造された半導体装置集合体を、保持用治具により保持した状態で、切断用治具により切断して個々の半導体装置を製造する半導体装置の製造装置であって、半導体装置集合体の半導体装置に、磁性を有した金属板を内包させ、前記保持用治具に電磁石部を形成し、前記電磁石部に通電することで、前記保持用治具に半導体装置集合体を磁力により引き付けながら切断するように構成したことを特徴とする。
With this configuration, since the pressing member rolls on the plane of the substrate without being affected by the unevenness of the solder balls, it is possible to give a stable pressure with little pressure change without vertical vibration.
According to a seventh aspect of the present invention, a semiconductor device assembly in which a plurality of semiconductor devices are collectively manufactured is cut by a cutting jig while being held by a holding jig. A semiconductor device manufacturing apparatus for manufacturing a semiconductor device, wherein a metal plate having magnetism is included in a semiconductor device of a semiconductor device assembly, an electromagnet portion is formed in the holding jig, and the electromagnet portion is energized. Thus, the semiconductor device assembly is cut while being attracted to the holding jig by a magnetic force.

また、本発明の請求項13記載の発明は、複数の半導体装置が一括して製造された半導体装置集合体を、保持用治具により保持した状態で、切断用治具により切断して個々の半導体装置を製造する半導体装置の製造方法であって、半導体装置集合体の半導体装置に、磁性を有した金属板を内包させ、前記保持用治具に設けた電磁石部に通電することで、半導体装置集合体の半導体装置に内包された金属板を磁力により引き付けながら半導体装置集合体を切断することを特徴とする。   According to a thirteenth aspect of the present invention, a semiconductor device assembly in which a plurality of semiconductor devices are collectively manufactured is cut by a cutting jig while being held by a holding jig. A semiconductor device manufacturing method for manufacturing a semiconductor device, comprising: enclosing a magnetic metal plate in a semiconductor device of a semiconductor device assembly and energizing an electromagnet portion provided in the holding jig; The semiconductor device assembly is cut while attracting a metal plate included in the semiconductor device of the device assembly by a magnetic force.

上記請求項7記載の半導体装置の製造装置、並びに請求項13記載の半導体装置の製造方法によれば、切断工程において、半導体装置集合体を保持用治具により負圧により吸着すると同時に、前記電磁石部に通電することで前記保持用治具に半導体装置集合体を磁力により引き付けることができ、これにより、半導体装置集合体を安定した状態で切断することができる。   According to the semiconductor device manufacturing apparatus according to claim 7 and the semiconductor device manufacturing method according to claim 13, in the cutting step, the semiconductor device aggregate is adsorbed by a holding jig with negative pressure, and at the same time, the electromagnet By energizing the part, the semiconductor device assembly can be attracted to the holding jig by a magnetic force, whereby the semiconductor device assembly can be cut in a stable state.

また、本発明の請求項8記載の発明は、複数の半導体装置が一括して製造された半導体装置集合体を切断して個々の半導体装置を製造する半導体装置の製造装置であって、切断工程の際に半導体装置集合体を一方の面側から保持する保持用治具と、切断工程の際に半導体装置集合体の他方の面に垂直方向に水流を与えて半導体装置集合体を保持用治具に対して押圧する水流供給手段と、前記切断処理により生じた半導体装置集合体の隙間部を水流の供給部分が通過する際に、前記隙間部への水流の供給を停止させる制御手段とを備えたことを特徴とする。   According to an eighth aspect of the present invention, there is provided a semiconductor device manufacturing apparatus for manufacturing individual semiconductor devices by cutting a semiconductor device assembly in which a plurality of semiconductor devices are manufactured in a lump. A holding jig for holding the semiconductor device assembly from one surface side during the cutting process, and a holding jig for holding the semiconductor device assembly by applying a water flow in a vertical direction to the other surface of the semiconductor device assembly during the cutting process. Water flow supply means for pressing against the tool, and control means for stopping the supply of water flow to the gap portion when the water flow supply portion passes through the gap portion of the semiconductor device assembly generated by the cutting process. It is characterized by having.

また、本発明の請求項14記載の発明は、複数の半導体装置が一括して製造された半導体装置集合体を切断して個々の半導体装置を製造する半導体装置の製造方法であって、切断工程において、半導体装置集合体を保持用治具により一方の面側から保持し、半導体装置集合体の他方の面に垂直方向に水流を与えて半導体装置集合体を保持用治具に対して押圧しながら切断する一方で、前記切断処理により生じた半導体装置集合体の隙間部を水流の供給部が通過する際には、前記隙間部への水流の供給を停止することを特徴とする。   According to a fourteenth aspect of the present invention, there is provided a semiconductor device manufacturing method for manufacturing individual semiconductor devices by cutting a semiconductor device assembly in which a plurality of semiconductor devices are manufactured in a lump. The semiconductor device assembly is held from one surface side by a holding jig, and a water flow is applied to the other surface of the semiconductor device assembly in a vertical direction to press the semiconductor device assembly against the holding jig. On the other hand, when the water flow supply unit passes through the gap portion of the semiconductor device assembly generated by the cutting process, the supply of the water flow to the gap portion is stopped.

上記請求項8記載の半導体装置の製造装置、並びに請求項14記載の半導体装置の製造方法によれば、切断工程において、半導体装置集合体を保持用治具により一方の面側から負圧により吸着すると同時に、水流により他方の面側から半導体装置集合体を押し付けることができ、これにより、半導体装置集合体を安定した状態で切断することができる。また、この場合に、切断処理により生じた半導体装置集合体の隙間部を水流の供給部が通過する際には、前記隙間部への水流の供給を停止するので、切断処理により生じた半導体装置集合体の隙間部に不要な水流が入り込んでこの隙間部分を押し広げたりする影響がなくなり、基板の切断精度をより向上させることが可能となる。   According to the semiconductor device manufacturing apparatus according to claim 8 and the semiconductor device manufacturing method according to claim 14, in the cutting step, the semiconductor device assembly is adsorbed by the holding jig with negative pressure from one surface side. At the same time, the semiconductor device assembly can be pressed from the other surface side by the water flow, whereby the semiconductor device assembly can be cut in a stable state. Further, in this case, when the water flow supply unit passes through the gap portion of the semiconductor device assembly generated by the cutting process, the supply of the water flow to the gap portion is stopped, so that the semiconductor device generated by the cutting process This eliminates the influence of unnecessary water flow entering the gaps of the aggregate and pushing the gaps away, and the substrate cutting accuracy can be further improved.

上記のように、本発明によれば、保持されている半導体装置集合体に対して押圧力を増加することができる。特に従来の真空空着では困難であった4mm角(□4mm)以下の小サイズで半田ボールを搭載した半導体装置集合体の切断時の、半導体装置集合体の固定力を増加させることができ、つまり切断時に発生する切断負荷に耐え、安定した封止済基板などの半導体装置集合体の切断を実現し、半導体装置の外見寸法精度の低下を低減することができる半導体装置の製造装置及び製造方法を提供するという、優れた実用的な効果を奏するものである。   As described above, according to the present invention, the pressing force can be increased with respect to the held semiconductor device assembly. In particular, it is possible to increase the fixing force of the semiconductor device assembly when cutting the semiconductor device assembly on which solder balls are mounted in a small size of 4 mm square (□ 4 mm) or less, which was difficult with conventional vacuum emptying, In other words, a semiconductor device manufacturing apparatus and a manufacturing method capable of withstanding a cutting load generated during cutting, realizing stable cutting of a semiconductor device assembly such as a sealed substrate, and reducing reduction in appearance dimensional accuracy of the semiconductor device Providing an excellent practical effect.

以下、本発明の実施の形態を、図1〜図14に基づいて説明する。ここでは、複数の半導体装置が一括して製造された半導体装置集合体としての封止済基板を切断する際の、半導体装置集合体の固定手法に関する半導体装置の製造装置および製造方法について説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. Here, a semiconductor device manufacturing apparatus and a manufacturing method related to a fixing method of a semiconductor device assembly when cutting a sealed substrate as a semiconductor device assembly in which a plurality of semiconductor devices are manufactured collectively will be described.

図1は本発明の実施の形態1に係る半導体装置の製造装置および製造方法を簡略的に示す正面図、図2(a)および(b)は同半導体装置の製造装置および製造方法を示す要部側面図および要部正面図、図3(a)〜(c)は本発明の実施の形態に係る切断処理対象となる半導体装置集合体としての封止済基板の平面図、正面断面図、裏面から見た図、図4は封止済基板を切断して形成した半導体装置の断面図、図5は同半導体装置の製造方法における切断工程を概略的に示す斜視図、図6は、同半導体装置の製造方法における封止済基板、ステージおよび基板保持板を概略的に示す斜視図、図7(a)〜(c)はそれぞれ同半導体装置の製造方法における半導体装置集合体としての封止済基板を切断していく経過をそれぞれ示す平面図である。   FIG. 1 is a front view schematically showing a semiconductor device manufacturing apparatus and manufacturing method according to Embodiment 1 of the present invention, and FIGS. 2A and 2B are views showing the semiconductor device manufacturing apparatus and manufacturing method. FIG. 3A to FIG. 3C are a plan view, a front sectional view, and a front sectional view of a sealed substrate as a semiconductor device assembly to be cut according to the embodiment of the present invention. FIG. 4 is a cross-sectional view of a semiconductor device formed by cutting a sealed substrate, FIG. 5 is a perspective view schematically showing a cutting process in the method for manufacturing the semiconductor device, and FIG. 7 is a perspective view schematically showing a sealed substrate, a stage, and a substrate holding plate in a method for manufacturing a semiconductor device, and FIGS. 7A to 7C are sealed as a semiconductor device aggregate in the method for manufacturing the semiconductor device. It is a top view which shows each progress which cuts a finished substrate. .

まず、図3、図4を参照しながら、本発明の実施の形態に係る切断処理対象となる半導体装置集合体について説明する。
図3、図4に示すように、切断処理対象となる半導体装置集合体としての封止済基板10は、複数の半導体チップ11が接着剤12にて装着され、金線13等の導電性材料にて、半導体チップ11の電気配線端子15aと基板14の電気配線端子15bとが接続されており、また基板14は半導体チップ11を搭載している一方の面を封止樹脂からなる封止部49により封止された構成とされている。基板14の封止部49が形成されている面と反対側の他方の面には2次実装用の半田ボール16が設けられている(半田ボール16が設けられていないものもあるが、本発明においては何れにも対応可能である)。基板14には、後述する切断装置25による切断位置を示すダイシングライン17が設けられている。各ダイシングライン17によって囲まれた部分は、切断後における各半導体装置18の個片化される領域である。図4は、半導体装置集合体10が切断されて半導体装置18として個片化された状態を示す。なお、図3、図4における46はレジストである。
First, a semiconductor device assembly that is a cutting process target according to an embodiment of the present invention will be described with reference to FIGS. 3 and 4.
As shown in FIGS. 3 and 4, a sealed substrate 10 as a semiconductor device assembly to be cut is attached to a plurality of semiconductor chips 11 with an adhesive 12, and a conductive material such as a gold wire 13. The electrical wiring terminal 15a of the semiconductor chip 11 and the electrical wiring terminal 15b of the substrate 14 are connected to each other, and the substrate 14 has one surface on which the semiconductor chip 11 is mounted a sealing portion made of a sealing resin. 49 is sealed. A solder ball 16 for secondary mounting is provided on the other surface of the substrate 14 opposite to the surface on which the sealing portion 49 is formed (some solder balls 16 are not provided, In the invention, any of them can be handled). The substrate 14 is provided with a dicing line 17 indicating a cutting position by a cutting device 25 described later. A portion surrounded by each dicing line 17 is an area where each semiconductor device 18 is separated into pieces after cutting. FIG. 4 shows a state in which the semiconductor device assembly 10 is cut and separated into individual semiconductor devices 18. In FIGS. 3 and 4, 46 is a resist.

図5、図6における19は、半導体装置18を吸着して保持する保持用治具としての基板保持板であって、回動装置(図示せず)によりa方向に回動自在に設けられた四辺形のステージ29に固定されている。また、基板保持板19には、各半導体装置18を吸着して保持する吸着部20が、各半導体装置18に対応して設けられている。吸着部20は、負圧(吸着力)が作用する凹状の吸着口20aと、この吸着力により吸着された各半導体装置18を保持する凸状部20bとを有する。凸状部20bは、吸引による吸着性を向上させるため、ゴム等の弾性体を使用している。なお、吸着性が十分得られる場合は弾性体以外のものでもよく、金属、もしくはプラスチック等の硬度の高い材料を使用しても構わない。   Reference numeral 19 in FIGS. 5 and 6 denotes a substrate holding plate as a holding jig that sucks and holds the semiconductor device 18 and is provided so as to be rotatable in the a direction by a rotating device (not shown). It is fixed to a quadrilateral stage 29. Further, the substrate holding plate 19 is provided with a suction portion 20 that sucks and holds each semiconductor device 18 corresponding to each semiconductor device 18. The suction part 20 has a concave suction port 20a on which a negative pressure (suction force) acts, and a convex part 20b that holds each semiconductor device 18 sucked by this suction force. The convex portion 20b uses an elastic body such as rubber in order to improve the adsorptivity by suction. In addition, when sufficient adsorptivity is obtained, a material other than an elastic body may be used, and a material having high hardness such as metal or plastic may be used.

図2に示すように、この基板保持板19の吸着部20における凹状の吸着口20aの空間には、吸引用経路22を経由して真空ポンプ23がつなげられている。吸着部20同士の間には、溝状の間隙部24が設けられ、基板14の切断時に基板保持板19と切断装置25の切断用治具としてのブレード48とが接触しないようになっている。前記吸着部20間の間隙部24の幅はブレード幅より大きく、通常は0.1mm以上大きい寸法としている。   As shown in FIG. 2, a vacuum pump 23 is connected to the space of the concave suction port 20 a in the suction part 20 of the substrate holding plate 19 via a suction path 22. A groove-like gap portion 24 is provided between the suction portions 20 so that the substrate holding plate 19 and the blade 48 as a cutting jig of the cutting device 25 do not come into contact with each other when the substrate 14 is cut. . The width of the gap 24 between the adsorbing portions 20 is larger than the blade width and is usually larger than 0.1 mm.

図5、図2に示すように、封止済みの基板14を切断する切断装置25は、b方向に回転自在の基板切断用のブレード48と、このブレード48を回転軸26に固定するブレード固定板51と、回転軸26を介してこれらのブレード48とブレード固定板51とを回転するモータ等からなる回転駆動部30(図2(a)参照)とを備えている。切断装置25は、回転駆動部30を駆動させて、ブレード48を20000rpm〜40000rpmの回転速度で回転させる。また、切断装置25は、図示しないY軸駆動機構およびZ軸駆動機構によって、基板保持板19に吸着された封止済基板10に対して、図5において矢印で示す、Y軸方向並びにZ軸方向に移動自在に配置されている。また、ステージ29は、図示しないX軸駆動装置により、X軸方向に移動自在に配置されている。   As shown in FIGS. 5 and 2, the cutting device 25 that cuts the sealed substrate 14 includes a blade 48 for cutting the substrate that is rotatable in the b direction, and a blade fixing that fixes the blade 48 to the rotating shaft 26. A plate 51 and a rotation drive unit 30 (see FIG. 2A) including a motor or the like that rotates the blade 48 and the blade fixing plate 51 via the rotation shaft 26 are provided. The cutting device 25 drives the rotation drive unit 30 to rotate the blade 48 at a rotation speed of 20000 rpm to 40000 rpm. Further, the cutting device 25 applies the Y-axis direction and the Z-axis indicated by arrows in FIG. 5 to the sealed substrate 10 sucked by the substrate holding plate 19 by a Y-axis drive mechanism and a Z-axis drive mechanism (not shown). It is arranged to be movable in the direction. The stage 29 is arranged so as to be movable in the X-axis direction by an X-axis drive device (not shown).

ここで、半導体装置集合体としての封止済基板10の切断動作を説明する。まず、ステージ29に設置した基板保持板19の吸着部20上に封止済基板10を載置し、吸着部20、吸引用経路22を通じて接続されている真空ポンプ23にて封止済基板10を基板保持板19の吸着部20に真空吸引して負圧により吸着させる。   Here, the cutting operation of the sealed substrate 10 as the semiconductor device assembly will be described. First, the sealed substrate 10 is placed on the suction portion 20 of the substrate holding plate 19 placed on the stage 29, and the sealed substrate 10 is sealed by the vacuum pump 23 connected through the suction portion 20 and the suction path 22. Is sucked into the suction portion 20 of the substrate holding plate 19 and sucked by a negative pressure.

次に、基板14に設けられたダイシングライン17に沿って、高速回転したブレード48を封止済基板10に接触させて切断する。切断する順番に特に制約はないが、ここでは、まず先に、封止済基板10の長辺に対して分割する(封止済基板10の短辺方向に沿ったダイシングライン17(短辺のダイシングライン17と称す)に沿って分割する例を挙げて説明する。   Next, the blade 48 rotated at high speed is brought into contact with the sealed substrate 10 along the dicing line 17 provided on the substrate 14 and is cut. There is no particular restriction on the cutting order, but here, first, the long side of the sealed substrate 10 is divided (the dicing line 17 (short side of the short side along the short side direction of the sealed substrate 10). An example of dividing along a dicing line 17) will be described.

まず、基板保持板19に設置された封止済基板10は短辺のダイシングライン17の上方で、かつ切断開始箇所の直前にブレード48がくるようにステージ29のX軸駆動機構および切断装置25のY軸駆動機構を使用して各軸に沿って移動させる。次に、切断装置25のZ軸駆動機構を駆動し、ブレード48を切断高さに下げる。次に、ステージ29をブレード48に向かって移動させ、封止済基板10をブレード48に接触させて封止済基板10の切断行う。封止済基板10の最初のダイシングライン17の切断が完了すると、切断装置25をZ軸駆動機構により封止済基板10の上方に退避させる。次に、2本目の切断するダイシングライン17の上方に、ステージ29と切断装置25とを駆動させて移動させる。初回の切断と同様の動作をさせて、2本目の切断を実施する。以降の短辺のダイシングライン17のすべてを切断するまで上記の動作を順次繰り返す。次に、ステージ29の回動機構によりステージ29を90°回動させる。次に、短辺のダイシングライン17の切断と同様に、長辺の最初のダイシングライン17の上方にブレード48がくるように切断装置25をステージ29のX軸駆動機構および切断装置25のY軸駆動機構を使用して移動する。次に、切断装置25のZ軸駆動機構を駆動し、ブレード48を切断高さに下げる。次に、ステージ29をブレード48に向かって移動させ、封止済基板10をブレード48に接触させて封止済基板10の切断を行う。以降の切断はこのような動作を繰り返す。長辺のダイシングライン17の最終切断が終わると、封止済基板10は規定サイズに個片化されたことになり、つまり半導体装置18の形成が完了する。以上が本発明の基本的な封止済基板10を切断するときの動作である。   First, the sealed substrate 10 installed on the substrate holding plate 19 has an X-axis drive mechanism and a cutting device 25 of the stage 29 so that the blade 48 comes above the short-side dicing line 17 and immediately before the cutting start position. The Y axis drive mechanism is used to move along each axis. Next, the Z-axis drive mechanism of the cutting device 25 is driven to lower the blade 48 to the cutting height. Next, the stage 29 is moved toward the blade 48 and the sealed substrate 10 is brought into contact with the blade 48 to cut the sealed substrate 10. When the cutting of the first dicing line 17 of the sealed substrate 10 is completed, the cutting device 25 is retracted above the sealed substrate 10 by the Z-axis drive mechanism. Next, the stage 29 and the cutting device 25 are driven and moved above the second dicing line 17 for cutting. The second cutting is performed by performing the same operation as the first cutting. The above operations are sequentially repeated until all of the subsequent short-side dicing lines 17 are cut. Next, the stage 29 is rotated 90 ° by the rotation mechanism of the stage 29. Next, similarly to the cutting of the short-side dicing line 17, the cutting device 25 is moved to the X-axis drive mechanism of the stage 29 and the Y-axis of the cutting device 25 so that the blade 48 comes above the first dicing line 17 of the long side. Move using the drive mechanism. Next, the Z-axis drive mechanism of the cutting device 25 is driven to lower the blade 48 to the cutting height. Next, the stage 29 is moved toward the blade 48, the sealed substrate 10 is brought into contact with the blade 48, and the sealed substrate 10 is cut. Subsequent cutting repeats such an operation. When the final cutting of the long-side dicing line 17 is finished, the sealed substrate 10 is separated into a predetermined size, that is, the formation of the semiconductor device 18 is completed. The above is the operation for cutting the basic sealed substrate 10 of the present invention.

図7(a)〜(c)は封止済基板10を切断した場合の封止済基板10の状態を時系列で表したもので、図7(a)は短辺の2ライン目のダイシングライン17を切断した状態、図7(b)は短辺のダイシングライン17の5ライン目を切断した状態、図7(c)は長辺の最終のダイシングライン17の切断状態を示した図である。この図からもわかるように、切断時における切断対象の封止済基板10の面積の差異は図7(a)と図7(c)の最大基板面積と最小基板面積との差から12:1にも及ぶことがわかる。なお、図7(a)〜(c)における55は、ブレード48で切断した切断部を示す。   7A to 7C show the state of the sealed substrate 10 in a time series when the sealed substrate 10 is cut, and FIG. 7A shows the dicing of the second line on the short side. FIG. 7B shows a state in which the line 17 is cut, FIG. 7B shows a state in which the fifth line of the short side dicing line 17 is cut, and FIG. 7C shows a state in which the final dicing line 17 on the long side is cut. is there. As can be seen from this figure, the difference in the area of the sealed substrate 10 to be cut at the time of cutting is 12: 1 from the difference between the maximum substrate area and the minimum substrate area in FIGS. 7 (a) and 7 (c). It can be seen that Note that reference numeral 55 in FIGS. 7A to 7C denotes a cut portion cut by the blade 48.

次に、本発明の実施の形態に係る半導体装置の製造方法を、図1、図2などを参照して説明する。
図2に示すように、この実施の形態では、封止済基板10はその封止部49を、基板保持板19に設けた吸着部20上に載置している。本図では半田ボール16を有する封止済基板10を搭載した例で説明しているため、封止部49に載置した場合を示しているが、半田ボール16がない場合は、特に載置面を封止部49にする必要はなく、封止部49と反対側の基板面を基板保持板19に載置しても良い。
Next, a method for manufacturing a semiconductor device according to an embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 2, in this embodiment, the sealed substrate 10 has its sealing portion 49 placed on the suction portion 20 provided on the substrate holding plate 19. In this figure, since the example where the sealed substrate 10 having the solder balls 16 is mounted is described, the case where the solder balls 16 are placed is shown. The surface does not need to be the sealing portion 49, and the substrate surface opposite to the sealing portion 49 may be placed on the substrate holding plate 19.

封止済基板10は、吸着部20に設けた吸着口20a、および吸引用経路22を通じて接続されている真空ポンプ23の吸引力を利用して固定される。この状態で、ブレード48を20000rpm〜40000rpmの回転速度で回転(回転方向は基板14の切断部55を上方から下方へ押し下げるような方向の回転、通称ダウンカットと呼ばれている)させ、かつブレード48の切断高さ(Z軸方向に対する位置)を一定に保ち、ステージ29をブレード48が存在する方向へ進行させることで、封止済基板10の切断を行う。この切断時に、ブレード48から切断している半導体装置18にはZ軸方向の押し込み力とブレード回転方向への引き込み力とが発生し、特にブレード48の回転方向への引き込む力(半導体装置18を横方向へ引く力)に対向して半導体装置18を動かさずに固定しておく。しかしながら、このように、真空による吸引を利用した引き込みだけでは基板14の押圧力が不足する。   The sealed substrate 10 is fixed by using the suction force of the vacuum pump 23 connected through the suction port 20 a provided in the suction unit 20 and the suction path 22. In this state, the blade 48 is rotated at a rotation speed of 20000 rpm to 40000 rpm (the rotation direction is a rotation that pushes the cutting portion 55 of the substrate 14 downward from the upper side, commonly referred to as down cut), and the blade The sealed substrate 10 is cut by keeping the cutting height 48 (position with respect to the Z-axis direction) constant and moving the stage 29 in the direction in which the blade 48 exists. At the time of this cutting, the semiconductor device 18 cut from the blade 48 generates a pushing force in the Z-axis direction and a drawing force in the blade rotation direction. The semiconductor device 18 is fixed without moving in opposition to the force (lateral pulling force). However, the pressing force of the substrate 14 is insufficient only by pulling in using vacuum suction.

そこで、本発明の実施の形態1では、図1に示すように、内部が密閉空間とされる密閉室53が設けられ、この密閉室53内にステージ29や切断装置など25が配設されている。ステージ29には吸着部20を有する基板保持板19が設けられている。密閉室53には高圧エアーポンプ37より高圧エアーをレギュレータ38を介して高圧経路54より流入させており、これにより、密閉室53内の気圧を制御できるよう構成している。   Therefore, in the first embodiment of the present invention, as shown in FIG. 1, a sealed chamber 53 whose inside is a sealed space is provided, and a stage 29, a cutting device 25 and the like are arranged in the sealed chamber 53. Yes. The stage 29 is provided with a substrate holding plate 19 having a suction part 20. High-pressure air is allowed to flow into the sealed chamber 53 from the high-pressure air pump 37 via the regulator 38 through the high-pressure path 54, and thereby the pressure inside the sealed chamber 53 can be controlled.

従来は、単に真空ポンプのみを利用することで大気圧との差を利用して基板の押圧を得ていたが、一定の差圧以上を基板に対して与えることができなかった。そこで、本実施の形態1では、図1に示すように、切断装置25およびステージ29を密閉室53内に入れ、その密閉室53内に大気圧以上の高圧力を加えることで、封止済基板10に対して従来以上の任意の押圧を発生させることができるよう構成した。   Conventionally, the pressure of the substrate is obtained by utilizing only the vacuum pump and utilizing the difference from the atmospheric pressure, but it has not been possible to apply a pressure greater than a certain differential pressure to the substrate. Therefore, in the first embodiment, as shown in FIG. 1, the cutting device 25 and the stage 29 are placed in the sealed chamber 53, and a high pressure equal to or higher than the atmospheric pressure is applied to the sealed chamber 53, so that the sealing is completed. It was comprised so that arbitrary press more than before could be generated with respect to the board | substrate 10. FIG.

この圧力により反りの大きな封止済基板10に高圧を与えて強制的に平坦にすることも可能である。このように、基板保持板19と切断装置25と切断対象の封止済基板10とを内包する密閉室53内に高圧気体を供給して、密閉室53内を大気圧よりも大きい圧力に制御することにより、大気圧中において、基板保持板19における封止済基板10を吸着させる吸着部20に負圧を作用させて吸着させた場合よりも大きい押圧力で封止済基板10を基板保持板19に対して押圧しながら切断することができる。   It is also possible to forcibly flatten the sealed substrate 10 having a large warp by applying a high pressure. As described above, the high-pressure gas is supplied into the sealed chamber 53 containing the substrate holding plate 19, the cutting device 25, and the sealed substrate 10 to be cut, and the inside of the sealed chamber 53 is controlled to a pressure larger than the atmospheric pressure. As a result, the substrate 10 is held in the atmospheric pressure by holding the sealed substrate 10 with a larger pressing force than in the case where the suction portion 20 that sucks the sealed substrate 10 on the substrate holding plate 19 is made to act on the suction portion 20. Cutting can be performed while pressing against the plate 19.

ただし、図7に示すように、封止済基板10の切断はブレード48により1ラインずつ切断されるため、図7(a)に示す初期切断時の切断対象の封止済基板10の面積と、図7(c)に示す最終切断対象の封止済基板10の面積とには大きな差があり、本実施の形態では約1:12の比で発生している。従って同一圧力の高圧エアーの条件で切断した場合、封止済基板10の切断対象ブロックが大きいときと、切断時に必要な保持力は最小時に比べて12倍の差発生していることになる。この差は、切断する封止済基板10のサイズが小さくなるほど大きくなる。各部材が完全剛体であれば問題ないが、吸着部20の凸状部20bは弾性材料を使用し、封止済基板10も反りを持っており、また昨今の薄化傾向でのため、基板14の反りも増加傾向にある。したがって、切断対象の基板14が大きな面積のときに高圧を与えると、封止済基板10の剛性と、吸着部20の凸状部20bとの弾性変形により、封止済基板10に不規則な反りが発生しやすくなる。この反りは切断精度に対して影響を与え、かつブレード48に対する切断部55の高さが変化することで加工負荷が変動する可能性がある。   However, as shown in FIG. 7, since the sealed substrate 10 is cut line by line by the blade 48, the area of the sealed substrate 10 to be cut at the time of initial cutting shown in FIG. There is a large difference in the area of the sealed substrate 10 to be finally cut shown in FIG. 7 (c), which is generated at a ratio of about 1:12 in this embodiment. Accordingly, when cutting is performed under the condition of high-pressure air of the same pressure, the holding force necessary for cutting is larger by 12 times than when the block to be cut of the sealed substrate 10 is large and when it is cut. This difference increases as the size of the sealed substrate 10 to be cut decreases. If each member is a perfect rigid body, there is no problem, but the convex portion 20b of the adsorption portion 20 uses an elastic material, and the sealed substrate 10 also has a warp, and because of the recent thinning tendency, 14 warpage is also increasing. Therefore, if a high pressure is applied when the substrate 14 to be cut has a large area, the sealed substrate 10 becomes irregular due to the rigidity of the sealed substrate 10 and the elastic deformation of the convex portion 20b of the suction portion 20. Warpage is likely to occur. This warpage affects the cutting accuracy, and the processing load may fluctuate due to a change in the height of the cutting portion 55 relative to the blade 48.

そこで本発明の実施の形態では、封止済基板10の切断対象面積が小さくなるに比例して密閉室53内の圧力を上げるよう構成している。
つまり、各駆動軸の駆動制御を行う制御装置(図示なし)に連動して、レギュレータ制御装置60にてレギュレータ38の圧力制御を行う。具体的には、切断開始から最終までの切断対象となる基板の面積の変化に対応して、レギュレータ制御装置60によりレギュレータ38を制御して密閉室53内の圧力を調整することで、封止済基板10の切断に必要な押圧状態を一定に保つことができ、安定した状態で切断を実施することができる。
Therefore, in the embodiment of the present invention, the pressure in the sealed chamber 53 is increased in proportion to a decrease in the area to be cut of the sealed substrate 10.
That is, the regulator control device 60 controls the pressure of the regulator 38 in conjunction with a control device (not shown) that performs drive control of each drive shaft. Specifically, in accordance with the change in the area of the substrate to be cut from the start to the end of cutting, the regulator control device 60 controls the regulator 38 to adjust the pressure in the sealed chamber 53, thereby sealing. The pressing state necessary for cutting the finished substrate 10 can be kept constant, and the cutting can be performed in a stable state.

その際の、切断対象となる封止済基板10の面積(切断対象面積と称す)と、密閉室53内の圧力との関係を図8に示す。この図に示すように、切断対象面積が小さくなるに従い、レギュレータ制御装置60により密閉室53内の圧力をあげることで、切断対象の基板部分の押圧力が一定(すなわち、切断対象基板に発生する押圧力は、切断対象基板の面積と、密閉室53内の圧力との積に等しい)になる。また、切断開始から切断工程の最後までの密閉室53内の高圧エアーの変化量と変化タイミングとを決める方法としては、図8に示すような、封止済基板10の切断面積の変化に対応した圧力制御だけでなく、切断対象の封止済基板10の切断回数、または切断距離、または切断実行時間等の切断加工情報に基づいて、レギュレータ制御装置60により演算にて求めても良く、または切断開始から時系列で高圧エアーの変化パターンをレギュレータ制御装置60に登録し、そのパターン通りに制御してもよい。なお、切断時のステージ29および切断装置25の動作は上述した動作を行って、半導体装置18を形成する。   FIG. 8 shows the relationship between the area of the sealed substrate 10 to be cut (referred to as the cutting target area) and the pressure in the sealed chamber 53 at that time. As shown in this figure, as the area to be cut becomes smaller, the pressure in the sealed chamber 53 is raised by the regulator control device 60, so that the pressing force of the board portion to be cut is constant (that is, generated on the board to be cut). The pressing force is equal to the product of the area of the substrate to be cut and the pressure in the sealed chamber 53). Further, as a method of determining the amount and timing of change of the high-pressure air in the sealed chamber 53 from the start of cutting to the end of the cutting process, it corresponds to the change of the cutting area of the sealed substrate 10 as shown in FIG. May be calculated by the regulator control device 60 based on the cutting processing information such as the number of cuttings of the sealed substrate 10 to be cut, the cutting distance, or the cutting execution time, as well as the pressure control performed, or A change pattern of high-pressure air may be registered in the regulator control device 60 in time series from the start of cutting and controlled according to the pattern. The operation of the stage 29 and the cutting device 25 at the time of cutting performs the above-described operation to form the semiconductor device 18.

これにより、反りの大きな封止済基板10に高圧を与えて強制的に平坦にすることも可能となり、封止済基板10の切断対象部分を平坦化しながら、極めて良好に切断することができる。   As a result, it becomes possible to apply a high pressure to the sealed substrate 10 having a large warp to forcibly flatten it, and it is possible to cut very well while flattening the cutting target portion of the sealed substrate 10.

次に図9を参照しながら、本発明の実施の形態2について説明する。
図9に示すように、この実施の形態2でも、密閉室53が設けられ、この密閉室53内にステージ29および切断装置25が配設されている。密閉室53には高圧水流ポンプ31より高圧エアーをレギュレータ38を介して高圧経路54より流入させており、これにより、密閉室53内の気圧を制御できるよう構成している。また、ダイシングブレード48の先端には基板14の高さ(詳しくは封止済基板10の基板14の基板厚み方向(ダイシングブレード48の半径方向)に沿った位置であるが、この実施の形態では基板14の高さと称す)を測定する基板位置検知センサとしての基板高さ検出センサ39を設置している。この基板高さ検出センサ39は非接触のレーザーセンサ、超音波センサ、接触式のタッチセンサなどのブレード48を基準としたときの基板14の高さの検出ができるものであれば良い。
Next, a second embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 9, also in the second embodiment, a sealed chamber 53 is provided, and a stage 29 and a cutting device 25 are disposed in the sealed chamber 53. High-pressure air is fed from the high-pressure water pump 31 into the sealed chamber 53 via the regulator 38 through the high-pressure path 54, so that the air pressure in the sealed chamber 53 can be controlled. The tip of the dicing blade 48 is a position along the height of the substrate 14 (specifically, along the substrate thickness direction of the substrate 14 of the sealed substrate 10 (radial direction of the dicing blade 48). A substrate height detection sensor 39 is installed as a substrate position detection sensor for measuring the height of the substrate 14). The substrate height detection sensor 39 may be any sensor that can detect the height of the substrate 14 when the blade 48 is used as a reference, such as a non-contact laser sensor, an ultrasonic sensor, or a contact touch sensor.

従来技術では真空ポンプ23を利用することで大気圧との差を利用して封止済基板10の押圧力を得ていたが、この手法では、先の課題でも述べているように、一定の差圧以上の押圧力を得ることができない。そこで、本実施の形態でも、上記実施の形態1と同様に、切断装置25、ステージ29を密閉室53内に入れ、その密閉室53に大気圧以上の高圧力を加えることで、封止済基板10に対して従来以上の任意の押圧力を発生させることができる。   In the conventional technique, the pressing force of the sealed substrate 10 is obtained by utilizing the difference from the atmospheric pressure by using the vacuum pump 23. However, in this method, as described in the previous problem, a constant pressure is obtained. A pressing force greater than the differential pressure cannot be obtained. Therefore, in the present embodiment as well, in the same manner as in the first embodiment, the cutting device 25 and the stage 29 are placed in the sealed chamber 53, and a high pressure equal to or higher than atmospheric pressure is applied to the sealed chamber 53, so that the sealing is completed. Arbitrary pressing force more than conventional can be generated on the substrate 10.

また、図7に示すように、封止済基板10の切断はブレード48により1ラインずつ切断されるため、図7(a)に示すような初期切断時の切断対象の封止済基板10の面積と、図7(c)に示すような最終切断対象の封止済基板10の面積とには大きな差がある。本実施の形態では約1:12の比で発生している。従って同一圧力の高圧エアーの条件で切断した場合、切断時に必要な保持力は、切断対象面積が大きいときと最小時とは、12倍の差で発生していることになる。この差は、切断する封止済基板10のサイズが小さくなるほど大きくなる。各部材が完全剛体であれば問題ないが、固定する吸着部20の凸状部20bに弾性材料を使用し、封止済基板10の基板14も反りや昨今の薄化傾向であるため、高圧を与えると、封止済基板10の剛性、吸着部20の凸状部20bの弾性変形により、封止済基板10に不規則な反りが発生しやすくなる。この反りは切断精度に対して影響を与え、かつブレード48に対する切断部分の高さが変化することで加工負荷が変動する可能性がある。   Further, as shown in FIG. 7, since the sealed substrate 10 is cut line by line by the blade 48, the sealed substrate 10 to be cut at the time of initial cutting as shown in FIG. There is a large difference between the area and the area of the sealed substrate 10 to be finally cut as shown in FIG. In the present embodiment, it occurs at a ratio of about 1:12. Accordingly, when cutting is performed under the condition of high-pressure air of the same pressure, the holding force required at the time of cutting is generated with a difference of 12 times between when the area to be cut is large and when it is the minimum. This difference increases as the size of the sealed substrate 10 to be cut decreases. There is no problem if each member is a complete rigid body, but an elastic material is used for the convex portion 20b of the adsorbing portion 20 to be fixed, and the substrate 14 of the sealed substrate 10 is also warped and has a tendency to thin recently. Is given, irregular warping of the sealed substrate 10 is likely to occur due to the rigidity of the sealed substrate 10 and the elastic deformation of the convex portion 20b of the suction portion 20. This warpage affects the cutting accuracy, and the processing load may vary due to the change in the height of the cutting portion with respect to the blade 48.

そこで本実施の形態では、切断部55の位置(基板高さ)をダイシングブレード48の回転中心(回転軸26)からの距離を基準として測定し、その高さが一定の高さになるようにレギュレータ38にて圧力変更をする。図9を参照しながら説明すると、同図に示すように、切断用のブレード48が封止済基板10の基板14に接触する位置より前方の基板高さを基板高さ検出センサ39にて測定する。このとき、基板高さ検出センサ39により基板高さを測定する位置は、切断する部位より前であればよい。またこのときの距離測定方法に制約はなく、非接触方式の例えばレーザ式測定、近接センサ、または接触式の変移センサなどでも良い。   Therefore, in the present embodiment, the position (substrate height) of the cutting portion 55 is measured with reference to the distance from the rotation center (rotary shaft 26) of the dicing blade 48, and the height is set to a constant height. The pressure is changed by the regulator 38. Referring to FIG. 9, as shown in FIG. 9, the substrate height detection sensor 39 measures the substrate height ahead of the position where the cutting blade 48 contacts the substrate 14 of the sealed substrate 10. To do. At this time, the position at which the substrate height is measured by the substrate height detection sensor 39 may be before the part to be cut. The distance measurement method at this time is not limited, and may be a non-contact type, for example, a laser type measurement, a proximity sensor, or a contact type displacement sensor.

次に、この実施の形態の動作フローを説明する。
まず、ステージ29上の基板保持板19に封止済基板10を載置し、基板保持板19の吸着部20を、吸引用経路22を通じて接続されている真空ポンプ23にて真空吸引する。このとき、吸着部20の凸状部20bは、弾性体により構成されているため真空吸着時に、密閉室53内の気圧と真空側の気圧との差異にて差圧が発生し、その圧力で吸着部20の凸状部20bが弾性体塑性変形を起こしながら封止済基板10を吸着する。次に、封止済基板10に設けられたダイシングライン17に沿って、高速回転したブレード48を接触させて切断する。このとき切断する順番に特に制約はないが、ここでは、まず先に、封止済基板10の長辺に対して分割する、すなわち、基板14の短辺方向に沿ったダイシングライン17(短辺のダイシングライン17と称す)に沿って分割する例を挙げて、切断動作を説明する。
Next, the operation flow of this embodiment will be described.
First, the sealed substrate 10 is placed on the substrate holding plate 19 on the stage 29, and the suction portion 20 of the substrate holding plate 19 is vacuumed by a vacuum pump 23 connected through a suction path 22. At this time, since the convex portion 20b of the adsorption portion 20 is formed of an elastic body, a differential pressure is generated due to a difference between the atmospheric pressure in the sealed chamber 53 and the atmospheric pressure on the vacuum side during vacuum adsorption. The convex portion 20b of the suction portion 20 sucks the sealed substrate 10 while causing elastic plastic deformation. Next, the blade 48 rotated at high speed is brought into contact with the dicing line 17 provided on the sealed substrate 10 and cut. There is no particular restriction on the cutting order at this time, but here, first, the long side of the sealed substrate 10 is divided, that is, the dicing line 17 (short side along the short side direction of the substrate 14). The cutting operation will be described by giving an example of division along the dicing line 17).

まず、ステージ29上の基板保持板19に設置された封止済基板10は短辺のダイシングライン17の上方で、かつ切断開始箇所の手前で、かつ封止済基板10を最初に切断するダイシングライン17の上方にブレード48がくるようにステージ29のX軸駆動機構および切断装置25のY軸駆動機構を使用して移動させる。次に、切断装置25のZ軸駆動機構を駆動し、ブレード48を切断高さに下げる。このときブレード48の先端に設けた基板高さ検出センサ39にて封止済基板10の基板14の高さを測定し、測定結果を元に初期設定した封止済基板10の基板14の高さと比較し、密閉室53内へ供給する高圧エアーに設けたレギュレータ38を制御して封止済基板10の基板14の高さを一定にできるようにする。例えば基準位置より封止済基板10の基板14が低い位置にあるとき、密閉室53内の圧力をレギュレータ38にて供給高圧エアー圧力を低下させることで、初期圧力で塑性変形している弾性体により構成された吸着部20の凸状部20bの塑性変形量を少なくし、封止済基板10を持ち上げて一定の基板高さにする。   First, the sealed substrate 10 installed on the substrate holding plate 19 on the stage 29 is dicing which first cuts the sealed substrate 10 above the short-side dicing line 17 and before the cutting start position. The blade 48 is moved above the line 17 using the X-axis drive mechanism of the stage 29 and the Y-axis drive mechanism of the cutting device 25. Next, the Z-axis drive mechanism of the cutting device 25 is driven to lower the blade 48 to the cutting height. At this time, the height of the substrate 14 of the sealed substrate 10 is measured by the substrate height detection sensor 39 provided at the tip of the blade 48, and the height of the substrate 14 of the sealed substrate 10 which is initially set based on the measurement result. In contrast, the regulator 38 provided in the high-pressure air supplied into the sealed chamber 53 is controlled so that the height of the substrate 14 of the sealed substrate 10 can be made constant. For example, when the substrate 14 of the sealed substrate 10 is located at a position lower than the reference position, the pressure inside the sealed chamber 53 is supplied by the regulator 38 and the high pressure air pressure is lowered, so that the elastic body is plastically deformed at the initial pressure. The amount of plastic deformation of the convex portion 20b of the suction portion 20 constituted by the above is reduced, and the sealed substrate 10 is lifted to a constant substrate height.

次にステージ29をブレード48に向かって移動させ、封止済基板10をブレード48に接触させて切断を行う。このとき、ステージ29の移動に伴い、ブレード48に設けた基板高さ検出センサ39は逐次基板高さを検出し、その検出結果により密閉室53内の圧力をレギュレータ38を介して高圧エアー圧力の上げ下げを行い、封止済基板10の押圧力を調整する。封止済基板10の切断が順次進むことで、切断される封止済基板10の面積も順次小さくなり、このとき発生する封止済基板10の吸着部20における凸状部20bの弾性変形量の変化による基板14の高さの変化を一定に保つことができ、安定して封止済基板10の切断を行うことができる。封止済基板10の最初のダイシングライン17の切断が完了すると、Z軸駆動機構により切断装置25を上方に退避させる。次に、2本目の切断するダイシングライン17の上方にステージ29と切断装置25とを駆動させて移動する。このときも初回の切断と同様に基板高さの測定をしながら、2本目のダイシングライン17の切断を実施する。以降の短辺のダイシングライン17のすべてを切断するまで上記動作を順次繰り返す。次にステージ29の回動機構によりステージを90°回動させる。次に短辺の時と同様に、長辺の最初のダイシングライン17の上方にブレード48がくるように切断装置25をステージ29のX軸駆動機構および切断装置25のY軸駆動機構を使用して移動する。   Next, the stage 29 is moved toward the blade 48 and the sealed substrate 10 is brought into contact with the blade 48 to perform cutting. At this time, along with the movement of the stage 29, the substrate height detection sensor 39 provided on the blade 48 sequentially detects the substrate height, and the pressure in the sealed chamber 53 is adjusted to the high pressure air pressure via the regulator 38 based on the detection result. The pressing force of the sealed substrate 10 is adjusted by raising and lowering. As the cutting of the sealed substrate 10 proceeds in sequence, the area of the sealed substrate 10 to be cut also decreases sequentially, and the elastic deformation amount of the convex portion 20b in the suction portion 20 of the sealed substrate 10 that occurs at this time is generated. The change in the height of the substrate 14 due to this change can be kept constant, and the sealed substrate 10 can be cut stably. When the cutting of the first dicing line 17 of the sealed substrate 10 is completed, the cutting device 25 is retracted upward by the Z-axis drive mechanism. Next, the stage 29 and the cutting device 25 are driven and moved above the second dicing line 17 for cutting. At this time, the second dicing line 17 is cut while measuring the substrate height in the same manner as the first cutting. The above operations are sequentially repeated until all of the subsequent short-side dicing lines 17 are cut. Next, the stage is rotated 90 ° by the rotation mechanism of the stage 29. Next, as in the case of the short side, the cutting device 25 is used by using the X-axis driving mechanism of the stage 29 and the Y-axis driving mechanism of the cutting device 25 so that the blade 48 comes above the first dicing line 17 on the long side. Move.

次に切断装置25のZ軸駆動機構を駆動して、ブレード48を切断高さに下げる。そして、ステージ29をブレード48に向かって移動させ、短辺のダイシングライン17の切断の時と同様に基板高さを基板高さ検出センサ39にて測定し、その検出結果により密閉室53内の圧力をレギュレータ38を介して高圧エアー圧力の上げ下げを行うことにより基板14の押圧量を調整して(このとき既に前記短辺切断にて封止済基板10の半導体装置18間に切断境界が発生しており、基板高さ検出センサ39がその切断境界を検出してしまうが、このときは基板高さの範囲に一定の許容値を設け、一定の値以上の変化を除去、もしくはステージ29および切断装置25の座標から一定の範囲の高さ検出結果を除去することで影響を受けないようにする)封止済基板10をブレード48に接触させて封止済基板10の切断行う。以降の切断は動作を繰り返す。長辺のダイシングライン17の最終切断が終わると、封止済基板10は規定サイズに個片化されたことになり、つまり半導体装置18の形成が完了する。   Next, the Z-axis drive mechanism of the cutting device 25 is driven to lower the blade 48 to the cutting height. Then, the stage 29 is moved toward the blade 48, and the substrate height is measured by the substrate height detection sensor 39 in the same manner as when the short-side dicing line 17 is cut. The pressure of the substrate 14 is adjusted by raising and lowering the high-pressure air pressure through the regulator 38 (at this time, a cutting boundary has already occurred between the semiconductor devices 18 of the sealed substrate 10 by the short-side cutting). Then, the substrate height detection sensor 39 detects the cutting boundary. At this time, a certain allowable value is provided in the range of the substrate height, and a change exceeding a certain value is removed, or the stage 29 and The sealed substrate 10 is brought into contact with the blade 48 to cut the sealed substrate 10 so as not to be affected by removing a certain range of height detection results from the coordinates of the cutting device 25. Subsequent cuts repeat the operation. When the final cutting of the long-side dicing line 17 is finished, the sealed substrate 10 is separated into a predetermined size, that is, the formation of the semiconductor device 18 is completed.

これにより、高圧エアーによる封止済基板10への押圧の増加による4mm角(□4mm)以下の小サイズの半導体装置18の切断時の固定力の増加ができ、安定した切断を実施できると同時に封止済基板10の反りが大きい場合、その反りを緩和し一定の基板高さに制御することで安定した半導体装置18の切断を行うことができる。   As a result, the fixing force at the time of cutting the small-sized semiconductor device 18 of 4 mm square (□ 4 mm) or less can be increased by increasing the pressure on the sealed substrate 10 by high-pressure air, and stable cutting can be performed at the same time. When the warpage of the sealed substrate 10 is large, the semiconductor device 18 can be stably cut by reducing the warpage and controlling the warp to a constant substrate height.

次に図10により、本発明の実施の形態3について説明する。
図10(a)〜(c)は本発明の実施の形態3に係る半導体装置の製造方法を示す側面図、正面図、平面図である。
Next, Embodiment 3 of the present invention will be described with reference to FIG.
10A to 10C are a side view, a front view, and a plan view showing a method for manufacturing a semiconductor device according to the third embodiment of the present invention.

図10に示すように、この実施の形態では、封止済基板10はその樹脂封止面を、ステージ29に設けた吸着部20上に載置している。本図では半田ボール16を有する封止済基板10を搭載した例で説明しているため、樹脂封止面(封止部49)を吸着部20に載置した場合を示しているが、半田ボール16がない場合は、特に載置面を樹脂封止面(封止部49)にする必要はなく、封止部49と反対の基板面をステージ29に載置しても良い。   As shown in FIG. 10, in this embodiment, the sealed substrate 10 has its resin sealing surface placed on the suction portion 20 provided on the stage 29. In this figure, since the example where the sealed substrate 10 having the solder balls 16 is mounted is described, the case where the resin sealing surface (sealing portion 49) is placed on the suction portion 20 is shown. When there is no ball 16, the mounting surface is not particularly required to be a resin sealing surface (sealing portion 49), and a substrate surface opposite to the sealing portion 49 may be mounted on the stage 29.

封止済基板10は、吸着部20に設けた吸着口20a、および吸引用経路22を通じて接続されている真空ポンプ23の吸引力(大気圧)を利用して固定されている。この状態で、ブレード48を20000rpm〜40000rpmの回転速度で回転(回転方向は封止済基板10の切断部55を上方から下方へ押し下げるような方向の回転、通称ダウンカットと呼ばれている)させ、かつブレード48の切断高さ(Z軸)を一定に保ち、ステージ29をブレード48が存在する方向へ進行させることで、封止済基板10の切断を行っている。この切断時に、ブレード48から切断している封止済基板10にはZ軸方向の押し込み力とブレード回転方向への引き込み力とが発生し、特にブレード48の回転方向への引き込む力(封止済基板10を横方向へ引く力)に対向して封止済基板10を動かさずに固定しておくためには、真空による吸引を利用した引き込みだけでは不足する。   The sealed substrate 10 is fixed by using the suction force (atmospheric pressure) of the vacuum pump 23 connected through the suction port 20 a provided in the suction unit 20 and the suction path 22. In this state, the blade 48 is rotated at a rotation speed of 20000 rpm to 40000 rpm (the rotation direction is a rotation in such a direction as to push the cutting portion 55 of the sealed substrate 10 downward from the top, commonly referred to as a down cut). Further, the sealed substrate 10 is cut by keeping the cutting height (Z axis) of the blade 48 constant and moving the stage 29 in the direction in which the blade 48 exists. At the time of this cutting, a pressing force in the Z-axis direction and a pulling force in the blade rotating direction are generated in the sealed substrate 10 cut from the blade 48, and in particular, a pulling force in the rotating direction of the blade 48 (sealing) In order to fix the sealed substrate 10 without moving it in opposition to the force that pulls the finished substrate 10 in the horizontal direction), it is not sufficient to pull in using vacuum suction.

そこで、本発明の実施の形態3では、図10に示すように、切断装置25におけるブレード48の外側(図10に示すように両側にあることが望ましい)に、ブレード48の上下、左右の移動に連動し、かつ独立して一定の範囲で遥動軸を中心に上下に遥動自在の押さえ部材43が配設されている。この押さえ部材43は、一定の押さえ圧がばね40等により発生され、かつ回転軸26を持ち、その回転軸26の外周に弾性回転体42を設けている。そして、この弾性回転体42の押圧力にて封止済基板10に押圧力を加えながら封止済基板10の切断を行うことができるよう構成されている。   Therefore, in the third embodiment of the present invention, as shown in FIG. 10, the blade 48 is moved up and down, left and right on the outside of the blade 48 in the cutting device 25 (preferably on both sides as shown in FIG. 10). In addition, a pressing member 43 that can be freely moved up and down around a swing axis within a certain range is provided. The pressing member 43 has a constant pressing pressure generated by a spring 40 and the like, has a rotating shaft 26, and an elastic rotating body 42 is provided on the outer periphery of the rotating shaft 26. The sealed substrate 10 can be cut while applying a pressing force to the sealed substrate 10 by the pressing force of the elastic rotating body 42.

これにより、従来の真空と大気圧の差圧にて発生する押圧に押さえ部材43による押圧を加えることができ、従来の課題であった4mm角以下の封止済基板10でも十分な押圧力を加えることができる。なお、本発明で使用する弾性回転体42は、半田ボール16の硬度より小さければよく、このような硬度とすることで弾性回転体42が半田ボール16と接触した場合でも、半田ボール16に傷をつけることはない。また、回転軸26の外周に設けた弾性回転体42の外形は、半田ボール16の高さを乗り越えて回転していく必要があるため、その外形寸法は封止済基板10の基板面から半田ボール16の頂上までの高さの4倍以上の直径が望ましく、弾性回転体42の幅は半田ボール16の封止済基板10に対する投影されるときの最大外形直径と同等かそれ以上の幅であればよい。また弾性回転体42に対して押圧力を発生する加圧源は、本実施の形態ではばね圧を利用しているが、加圧力を得ることができるのであれば磁力や空圧、水圧を利用してもよく特に特定するものではない。   As a result, the pressure generated by the pressure difference between the conventional vacuum and the atmospheric pressure can be applied by the pressing member 43, and sufficient pressure can be applied even to the sealed substrate 10 of 4 mm square or less, which was a conventional problem. Can be added. The elastic rotating body 42 used in the present invention only needs to be smaller than the hardness of the solder ball 16, and even if the elastic rotating body 42 comes into contact with the solder ball 16 with such hardness, the solder ball 16 is not damaged. Never put on. Further, since the outer shape of the elastic rotator 42 provided on the outer periphery of the rotating shaft 26 needs to rotate over the height of the solder ball 16, the outer dimension is determined from the substrate surface of the sealed substrate 10. The diameter is preferably at least four times the height to the top of the ball 16, and the width of the elastic rotating body 42 is equal to or larger than the maximum outer diameter of the solder ball 16 when projected onto the sealed substrate 10. I just need it. Further, in the present embodiment, the pressure source that generates the pressing force against the elastic rotating body 42 uses spring pressure. However, if pressure can be obtained, magnetic force, air pressure, or water pressure is used. However, it is not particularly specified.

動作を説明すると、まず、ステージ29(基板保持板19の吸着部20)上に封止済基板10を載置し、吸着部20、吸引用経路22を通じて接続されている真空ポンプ23にて封止済基板10を真空吸引する。   The operation will be described. First, the sealed substrate 10 is placed on the stage 29 (the suction portion 20 of the substrate holding plate 19) and sealed by the vacuum pump 23 connected through the suction portion 20 and the suction path 22. The stopped substrate 10 is vacuumed.

次に、封止済基板10に設けられたダイシングライン17に沿って、高速回転したブレード48を封止済基板10に接触させて切断する。切断する順番に特に制約はないが、ここでは、まず先に、封止済基板10の長辺に対して分割する(封止済基板10の短辺方向に沿ったダイシングライン17(短辺のダイシングライン17と称す)に沿って分割する)例を挙げて説明する。   Next, the blade 48 rotated at high speed is brought into contact with the sealed substrate 10 along the dicing line 17 provided on the sealed substrate 10 and is cut. There is no particular restriction on the cutting order, but here, first, the long side of the sealed substrate 10 is divided (the dicing line 17 (short side of the short side along the short side direction of the sealed substrate 10). A description will be given with an example of dividing along a dicing line 17).

まず、吸着部20に設置された封止済基板10は短辺のダイシングライン17の上方で、かつ切断開始箇所の直前にブレード48がくるようにステージ29のX軸駆動機構および切断装置25のY軸駆動機構を使用して各軸に沿って移動させる。次に、切断装置25のZ軸駆動機構を駆動し、ブレード48を切断高さに下げる。このとき、切断装置25のZ軸駆動機構によって切断のために下げる位置は、押さえ部材43が封止済基板10の端部を押圧できる位置とする。この位置は、封止済基板10の基板14に半田ボール16が搭載されている、いないの違いの影響は受けない。なぜなら、この押さえ部材43の基板14との接触部位は弾性回転体42であり、この弾性回転体42は半田ボール16に対して傷をつけない硬度であるためである。   First, the sealed substrate 10 installed in the suction unit 20 is placed on the X axis drive mechanism of the stage 29 and the cutting device 25 so that the blade 48 comes above the dicing line 17 on the short side and immediately before the cutting start position. Use the Y-axis drive mechanism to move along each axis. Next, the Z-axis drive mechanism of the cutting device 25 is driven to lower the blade 48 to the cutting height. At this time, the position lowered for cutting by the Z-axis drive mechanism of the cutting device 25 is a position where the pressing member 43 can press the end of the sealed substrate 10. This position is not affected by the difference in whether or not the solder balls 16 are mounted on the substrate 14 of the sealed substrate 10. This is because the contact portion of the pressing member 43 with the substrate 14 is an elastic rotating body 42, and the elastic rotating body 42 has a hardness that does not damage the solder balls 16.

次に、ステージ29をブレード48に向かって移動させる。このとき、押さえ部材43は封止済基板10の基板14に沿って基板14上を回転しながら押圧するので、切断対象である封止済基板10の固定力を高めて、安定して封止済基板10の切断を行うことができる。また、押さえ部材43は独立しており、例えば、図10に示すように、片方に半田ボール16があり、もう片方には半田ボール16のない状態が発生しても、互いに回転軸26を中心として上下遥動するため、双方に対して独立した一定の押圧力を与えることができる。このように押さえ部材43にて封止済基板10を押さえながら切断し、最初のダイシングライン17の切断が完了すると、切断装置25はZ軸駆動機構により封止済基板10の上方に退避する。この場合に、押さえ部材43は切断装置25に固定されているため、切断装置25と同時に封止済基板10の上方へ退避する。   Next, the stage 29 is moved toward the blade 48. At this time, since the pressing member 43 presses while rotating on the substrate 14 along the substrate 14 of the sealed substrate 10, the fixing force of the sealed substrate 10 to be cut is increased, and the sealing is stably performed. The finished substrate 10 can be cut. Further, the pressing member 43 is independent. For example, as shown in FIG. 10, even if the solder ball 16 is present on one side and the solder ball 16 is not present on the other side, the rotating shaft 26 is centered on each other. Therefore, independent and constant pressing force can be applied to both. When the sealed substrate 10 is cut while being pressed by the pressing member 43 in this way and the first cutting of the dicing line 17 is completed, the cutting device 25 is retracted above the sealed substrate 10 by the Z-axis drive mechanism. In this case, since the pressing member 43 is fixed to the cutting device 25, it is retracted above the sealed substrate 10 simultaneously with the cutting device 25.

次に、2本目の切断するダイシングライン17の上方にステージ29と切断装置25とを駆動させて移動させる。初回の切断と同様に、押さえ部材43が封止済基板10を押さえることができる位置に切断装置25のZ軸駆動機構により下降され、2本目の切断を実施する。以降の短辺のダイシングライン17をすべて切断するまで上記動作を順次繰り返す。   Next, the stage 29 and the cutting device 25 are driven and moved above the second dicing line 17 to be cut. Similarly to the first cutting, the pressing member 43 is lowered by the Z-axis drive mechanism of the cutting device 25 to a position where the sealed substrate 10 can be pressed, and the second cutting is performed. The above operations are sequentially repeated until all the subsequent short-side dicing lines 17 are cut.

次にステージ29の回動機構によりステージ29を90°回動させる。次に短辺のダイシングライン17の時と同様に、長辺の最初のダイシングライン17の上方にブレード48がくるように切断装置25をステージ29のX軸駆動機構および切断装置25のY軸駆動機構を使用して移動する。次に、切断装置25のZ軸駆動機構を駆動して、押さえ部材43が封止済基板10を押さえることのできる位置までブレード48を切断高さに下げる。次に、ステージ29をブレード48に向かって移動させ、封止済基板10をブレード48に接触させて封止済基板10の切断行う。以降の切断は、同様の動作を繰り返す。長辺の最終切断が終わると、封止済基板10は規定サイズに個片化されたことになり、つまり半導体装置18の形成作業が完了する。   Next, the stage 29 is rotated 90 ° by the rotation mechanism of the stage 29. Next, as in the case of the short-side dicing line 17, the cutting device 25 is moved to the X-axis drive mechanism of the stage 29 and the Y-axis drive of the cutting device 25 so that the blade 48 comes above the first dicing line 17 on the long side. Move using the mechanism. Next, the Z-axis drive mechanism of the cutting device 25 is driven to lower the blade 48 to a cutting height to a position where the pressing member 43 can press the sealed substrate 10. Next, the stage 29 is moved toward the blade 48 and the sealed substrate 10 is brought into contact with the blade 48 to cut the sealed substrate 10. Subsequent cutting repeats the same operation. When the final cutting of the long side is finished, the sealed substrate 10 is separated into a predetermined size, that is, the forming operation of the semiconductor device 18 is completed.

次に図11により、本発明の実施の形態4について説明する。
図11に示すように、この実施の形態4では、前記実施の形態3における押さえ部材43の封止済基板10を押さえる弾性回転体42の形状を、半田ボール16間の隙間よりも小さくしたことを特徴としており、切断時に半田ボール16間を弾性回転体42がころがるような位置へブレード48に対して取り付けられている。
Next, a fourth embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 11, in the fourth embodiment, the shape of the elastic rotating body 42 that holds the sealed substrate 10 of the pressing member 43 in the third embodiment is made smaller than the gap between the solder balls 16. And is attached to the blade 48 at such a position that the elastic rotor 42 rolls between the solder balls 16 during cutting.

この構成によれば、押さえ部材43は半田ボール16等の凹凸の影響を受けることがないため、弾性回転体42が半田ボール16の有無により上下振動することもなく、封止済基板10の基板14の平面上を転がるために限りなく上下振動のない安定した圧力変化の少ない押圧を与えることができることができる。なお、この弾性回転体42を使用した基本的動作は実施の形態3と同じであるため詳細な動作説明は省略する。   According to this configuration, since the pressing member 43 is not affected by the unevenness of the solder ball 16 or the like, the elastic rotating body 42 does not vibrate up and down depending on the presence or absence of the solder ball 16, and the substrate of the sealed substrate 10. In order to roll on the 14 planes, it is possible to give a stable pressure with little change in pressure without any vertical vibration. Note that the basic operation using the elastic rotating body 42 is the same as that of the third embodiment, and thus detailed description of the operation is omitted.

次に、図12、図13により、本発明の実施の形態5について説明する。
図12に示すように、この実施の形態5では、封止済基板10並びに半導体装置18の中に磁性を有した金属板58を内包している。
Next, a fifth embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 12, in the fifth embodiment, a metal plate 58 having magnetism is included in the sealed substrate 10 and the semiconductor device 18.

また、図13に示すように、ステージ29内に電磁石45を内包しており、このステージ29の電磁石45により、外部から磁力によっても封止済基板10を固定するよう構成されている。なお、図13(a)は封止済基板10内に磁性金属板を内蔵した状態を示しており、図13(b)は封止部49の表面を一枚の金属板にて一括封止している封止済基板10を吸着している図である。   Further, as shown in FIG. 13, an electromagnet 45 is included in the stage 29, and the sealed substrate 10 is fixed by the electromagnet 45 of the stage 29 by a magnetic force from the outside. FIG. 13A shows a state in which a magnetic metal plate is built in the sealed substrate 10, and FIG. 13B shows that the surface of the sealing portion 49 is collectively sealed with a single metal plate. It is the figure which is adsorbing the sealed substrate 10 being performed.

ここで、通常の封止済基板10の基板14としては有機基板もしくはリードフレームが用いられており、有機基板はいうまでもなく、またリードフレームは通常非磁性体である銅を主とするものが多い。したがって外部から磁力にて固定しようとした場合に磁力にて固定することが困難な基板14が多い。   Here, an organic substrate or a lead frame is used as the substrate 14 of the normal sealed substrate 10, not to mention the organic substrate, and the lead frame is mainly made of copper which is usually a non-magnetic material. There are many. Therefore, there are many substrates 14 that are difficult to fix with magnetic force when trying to fix with external magnetic force.

そこで、本実施の形態では、封止済基板10の中に磁性特性を有する、例えばFeを主成分とする薄板からなる金属板58を内包させることを特徴としている。この内包する金属板58の位置は外部より磁力にて固定できる位置が好ましく、例えば図12(a)に示すように、封止面の最外部に露出しておいてもよく、または樹脂封止最外部から0.1mm程度内側でもよい。また図12(b)に示すように半導体チップ11と基板14との間に挟みこんでもよい。このとき磁性を有する金属板58は、接着剤12にて基板14および半導体装置18に接着されている。また、磁性を有する金属板58は外部より磁力にて引き付けた場合、その引力として1N以上の引力が得ることができるなら特にその位置、および薄板の幅、大きな、厚さに制約は無い。また本発明としては、有機基板、リードフレームだけでなく、例えばシリコンウエーハ上に配線と突起状電極とを形成した基板14内に磁性薄板を内包し、樹脂封止されたものにも有効である。   Therefore, the present embodiment is characterized in that a metal plate 58 having a magnetic characteristic, for example, a thin plate mainly composed of Fe, is included in the sealed substrate 10. The position of the encapsulating metal plate 58 is preferably a position that can be fixed by a magnetic force from the outside. For example, as shown in FIG. 12A, the metal plate 58 may be exposed at the outermost part of the sealing surface, or may be resin-sealed. The inside may be about 0.1 mm from the outermost part. Further, as shown in FIG. 12B, the semiconductor chip 11 and the substrate 14 may be sandwiched. At this time, the magnetic metal plate 58 is bonded to the substrate 14 and the semiconductor device 18 with the adhesive 12. In addition, when the magnetic metal plate 58 is attracted by a magnetic force from the outside, there is no restriction on the position, the width, and the thickness of the thin plate as long as an attractive force of 1 N or more can be obtained. Further, the present invention is effective not only for organic substrates and lead frames, but also for those in which a magnetic thin plate is encapsulated in a substrate 14 in which wiring and protruding electrodes are formed on a silicon wafer and sealed with a resin, for example. .

図13に示すように、この実施の形態では、封止済基板10はその樹脂封止面を、ステージ29に設けた吸着部20上に載置している。本図では半田ボール16を有する封止済基板10を搭載した例で説明しているため、樹脂封止面を吸着部20に載置した場合を示しているが、半田ボール16がない場合は、特に載置面を樹脂封止面にする必要はなく、基板面をステージ29に載置しても良い。   As shown in FIG. 13, in this embodiment, the sealed substrate 10 has its resin sealing surface placed on the suction portion 20 provided on the stage 29. In this figure, since the example in which the sealed substrate 10 having the solder balls 16 is mounted is described, the case where the resin sealing surface is placed on the suction portion 20 is shown. In particular, the mounting surface does not have to be a resin sealing surface, and the substrate surface may be mounted on the stage 29.

また、本実施の形態では磁力にてステージ29に封止済基板10を固定するため、上記実施の形態のように、真空経路および真空ポンプを設けて、真空ポンプによる真空で吸引する必要は無いが、これに限るものではなく、真空経路および真空ポンプを設けて、組み合わせても良い。   Further, in this embodiment, since the sealed substrate 10 is fixed to the stage 29 by magnetic force, it is not necessary to provide a vacuum path and a vacuum pump as in the above-described embodiment and perform suction with a vacuum by a vacuum pump. However, the present invention is not limited to this, and a vacuum path and a vacuum pump may be provided and combined.

この実施の形態の動作の説明をする。上記構成において、切断装置25の回転駆動機構を駆動させて、ブレードを20000rpm〜40000rpmの回転速度で回転(回転方向は封止済基板10の基板14の切断部55を上方から下方へ押し下げるような方向の回転、通称ダウンカットと呼ばれている)させ、かつブレード48の切断高さ(Z軸方向)を一定に保ち、ステージ29をブレード48が存在する方向へ進行させることで、封止済基板10の切断を行う。   The operation of this embodiment will be described. In the above configuration, the rotational drive mechanism of the cutting device 25 is driven to rotate the blade at a rotational speed of 20000 rpm to 40000 rpm (the rotational direction is such that the cutting portion 55 of the substrate 14 of the sealed substrate 10 is pushed down from above. Rotation of the direction, commonly referred to as down cut), and the cutting height (Z-axis direction) of the blade 48 is kept constant, and the stage 29 is advanced in the direction in which the blade 48 is present. The substrate 10 is cut.

この切断時に、ブレード48から切断している半導体装置18にはZ軸方向の押し込み力とブレード回転方向への引き込み力とが発生し、特にブレード48の回転方向への引き込む力(封止済基板10を横方向へ引く力)に対向して封止済基板10を動かさずに固定しておくため、従来の真空による引き込みだけでは半導体装置18が小さくなるとその固定力は不足し、特に4mm角(□4mm)以下で困難であった。   At the time of this cutting, the semiconductor device 18 cut from the blade 48 generates a pushing force in the Z-axis direction and a drawing force in the blade rotation direction, and particularly a drawing force in the rotation direction of the blade 48 (sealed substrate). Since the sealed substrate 10 is fixed without moving in opposition to the force that pulls 10 in the lateral direction), the fixing force is insufficient when the semiconductor device 18 becomes small by only pulling in with a conventional vacuum. (□ 4 mm) or less was difficult.

しかし、本発明では切断対象の封止済基板10に内包した金属板58に対して電磁石45の磁力を利用して固定する。これにより、仮に4mm角以下の小さな封止済基板10の切断であっても、電磁石45に流す電力量、もしくは電磁石45のコイル(図示なし)数を増加することにより、封止済基板10のサイズに合わせて磁力によるステージ29に対する固定力を変化することが可能となる。なお、実際の切断工程は冒頭で説明した実施の形態1に順ずるため詳細の切断動作は省略する。本発明を使用して各封止済基板10の半導体装置18を個片分割した後は、電磁石45の電流を切って磁性をなくすことで、ステージ29より半導体装置18をピックアップすることが可能となる。以上の構成により、半導体装置18のサイズが小さくなるに伴って切断時の保持力が低下することも無くなり、安定した基板14の切断を実施することができる。   However, in this invention, it fixes using the magnetic force of the electromagnet 45 with respect to the metal plate 58 included in the sealed board | substrate 10 to be cut | disconnected. As a result, even when cutting a small sealed substrate 10 of 4 mm square or less, by increasing the amount of electric power flowing to the electromagnet 45 or the number of coils (not shown) of the electromagnet 45, The fixing force with respect to the stage 29 by the magnetic force can be changed according to the size. Since the actual cutting process is in accordance with the first embodiment described at the beginning, detailed cutting operation is omitted. After the semiconductor device 18 of each sealed substrate 10 is divided into pieces using the present invention, it is possible to pick up the semiconductor device 18 from the stage 29 by cutting off the current of the electromagnet 45 to eliminate magnetism. Become. With the above configuration, the holding force at the time of cutting does not decrease as the size of the semiconductor device 18 decreases, and the substrate 14 can be stably cut.

次に図14により、本発明の実施の形態6について説明する。
本発明の実施の形態6では、図14に示すように、ブレード48の両側に、ブレード48を回転させる回転駆動部30とともに一体的に移動されるノズルユニット27を設けるとともに、このノズルユニット27に、高圧水流ポンプ31から高圧水管33を通って送られる高圧水を放出するノズル32を複数設け、かつノズル32から放出される水流34が切断対象の基板14に対して垂直にあたるような角度でノズル32を配置している。そして、ノズル32から放出される高圧の水流34が、封止済基板10や切断後の半導体装置18に垂直にあたることで基板保持板19やステージ29に対して押圧力が発生するように構成している。
Next, a sixth embodiment of the present invention will be described with reference to FIG.
In the sixth embodiment of the present invention, as shown in FIG. 14, nozzle units 27 that are integrally moved together with the rotation drive unit 30 that rotates the blades 48 are provided on both sides of the blades 48. A plurality of nozzles 32 for discharging high-pressure water sent from the high-pressure water flow pump 31 through the high-pressure water pipe 33 are provided, and the water flow 34 discharged from the nozzle 32 is at an angle so as to be perpendicular to the substrate 14 to be cut. 32 is arranged. The high-pressure water flow 34 discharged from the nozzle 32 is configured to generate a pressing force on the substrate holding plate 19 and the stage 29 by being perpendicular to the sealed substrate 10 and the semiconductor device 18 after cutting. ing.

またさらに、水流制御装置36が設けられており、この水流制御装置36は、各ノズル32から水流34を個別に止めたり、出したりする例えば電磁弁のような機能が付加され、この水流制御装置36により各ノズル32からの水流34の放出タイミングを制御可能に構成されている。さらに、封止済基板10の切断を行ってノズル32から基板14に向けて水流34を放出する際に、既に切断している切断部55では水流34の放出を停止し、切断部55を通過した後に再び水流34を放出し、その動作を繰り返して行うよう構成されている。   Furthermore, a water flow control device 36 is provided, and this water flow control device 36 is provided with a function such as an electromagnetic valve for individually stopping and discharging the water flow 34 from each nozzle 32. 36, the discharge timing of the water flow 34 from each nozzle 32 can be controlled. Furthermore, when the sealed substrate 10 is cut and the water flow 34 is discharged from the nozzle 32 toward the substrate 14, the cutting portion 55 that has already been cut stops discharging the water flow 34 and passes through the cutting portion 55. After that, the water flow 34 is discharged again and the operation is repeated.

ここで、このノズル32から放出する水流34の停止タイミングは、切断対象の封止済基板10のダイシングライン17の配設位置情報から水流制御装置36が演算により求める。この水流制御装置36は各軸の駆動を制御する制御装置(図示なし)と連動しており、事前に封止済基板10の切断寸法、切断順序を登録することで、各軸の動作と連動し、上記水流34の放出、停止の制御を実施することができるよう構成されている。このように、この水流制御装置36により、ノズル32から放出される水流34が既に切断された封止済基板10の切断部55に放出され、その水流34で封止済基板10の固定位置がずれて、切断精度が低下することを防ぐようになっている。   Here, the stop timing of the water flow 34 discharged from the nozzle 32 is calculated by the water flow control device 36 from the arrangement position information of the dicing line 17 of the sealed substrate 10 to be cut. This water flow control device 36 is linked with a control device (not shown) for controlling the driving of each axis, and linked with the operation of each axis by registering the cutting dimensions and cutting order of the sealed substrate 10 in advance. In addition, the discharge and stop of the water flow 34 can be controlled. Thus, the water flow control device 36 discharges the water flow 34 discharged from the nozzle 32 to the cut portion 55 of the already sealed substrate 10, and the fixed position of the sealed substrate 10 is fixed by the water flow 34. This prevents the cutting accuracy from being lowered.

この動作を図14にて説明すると、図14(b)に示す状態では、既に切断されている領域である切断部55上に、水流34を放出するノズル32A〜32Dが位置していないため、ノズル32A、32B、32C、32Dの全てより水流34を放出しているが、ステージ29が進行し、図14(a)に示す状態になると、ノズル32B,32Dは既に切断された切断部55上に位置しているため水流34の放出を停止している。このときノズル32A,32Cは切断した切断部55上にはないため、水流34の放出は続けている。この後、切断が進行して、また、図14(b)に示す状態と同様の状態になると、またすべてのノズル32A、32B、32C、32Dが切断部55上に位置しないため、全ノズル32A〜32Dより水流34を放出している。   When this operation is described with reference to FIG. 14, in the state shown in FIG. 14B, the nozzles 32 </ b> A to 32 </ b> D that discharge the water flow 34 are not located on the cutting portion 55 that is an already cut region. Although the water flow 34 is discharged from all of the nozzles 32A, 32B, 32C, and 32D, when the stage 29 advances and enters the state shown in FIG. 14A, the nozzles 32B and 32D are on the cut portion 55 that has already been cut. Therefore, the discharge of the water flow 34 is stopped. At this time, since the nozzles 32A and 32C are not on the cut portion 55 that has been cut, the discharge of the water flow 34 continues. Thereafter, when the cutting progresses and becomes the same state as shown in FIG. 14B, all the nozzles 32A, 32B, 32C, 32D are not positioned on the cutting portion 55, so that all the nozzles 32A. The water stream 34 is discharged from ~ 32D.

これにより、従来の真空と大気圧の差圧にて発生する押圧に、ノズル32から放出される水流34の押圧を加えることができ、課題であった4mm角(□4mm)以下の封止済基板10および半導体装置18でも十分な押圧力を加えることができる。また、このときのノズル32の数は切断対象となる半導体集合体としての封止済基板10および半導体装置18に対して、少なくとも一箇所以上の水流34が当たればよく、また水流34の排出水量、ノズル径について制約はなく、封止済基板10および半導体装置18が切断時にその切断負荷でズレ、もしくは飛び出しがない状態の押圧を得ればよい。   As a result, the pressure of the water flow 34 discharged from the nozzle 32 can be added to the pressure generated by the differential pressure between the conventional vacuum and the atmospheric pressure, and the problem has been sealed in 4 mm square (□ 4 mm) or less. A sufficient pressing force can also be applied to the substrate 10 and the semiconductor device 18. Further, at this time, the number of nozzles 32 may be such that at least one water flow 34 hits the sealed substrate 10 and the semiconductor device 18 as the semiconductor aggregate to be cut, and the amount of water discharged from the water flow 34 There is no restriction on the nozzle diameter, and it is only necessary to obtain a pressure in which the sealed substrate 10 and the semiconductor device 18 do not shift or pop out due to the cutting load at the time of cutting.

また、水流34とその排出タイミングとを制御することにより、封止済基板10は一定の水流を絶えず受けるためステージ29に対する押圧が発生し、かつ切断部55に不要な水流34が入り込んで切断部55を押し広げたりする影響がなくなり、封止済基板10の切断精度をより向上させることが可能となる。なお、切断時のステージ29および切断装置25の動作は上記実施の形態1〜5に述べた動作に準じて行い、半導体装置18を形成する。   Further, by controlling the water flow 34 and its discharge timing, the sealed substrate 10 constantly receives a constant water flow, so that the stage 29 is pressed, and the unnecessary water flow 34 enters the cutting part 55 and the cutting part 55 The influence of pushing and spreading 55 is eliminated, and the cutting accuracy of the sealed substrate 10 can be further improved. The operation of the stage 29 and the cutting device 25 at the time of cutting is performed in accordance with the operation described in the first to fifth embodiments, so that the semiconductor device 18 is formed.

本発明は、半導体装置集合体を切断することで個々の半導体装置に分割する半導体装置の製造方法内の、特に切断工程における切断精度の向上および生産コストの低下に寄与できる。   INDUSTRIAL APPLICABILITY The present invention can contribute to an improvement in cutting accuracy and a reduction in production cost, particularly in a cutting process, in a manufacturing method of a semiconductor device that is divided into individual semiconductor devices by cutting a semiconductor device assembly.

本発明の実施の形態1に係る半導体装置の製造装置および製造方法における切断工程を簡略的に示す正面図Front view which shows simply the cutting process in the manufacturing apparatus and manufacturing method of a semiconductor device concerning Embodiment 1 of the present invention. (a)および(b)は同実施の形態1に係る半導体装置の製造装置および製造方法を示す要部側面図および要部正面図(A) And (b) is a principal part side view and principal part front view which show the manufacturing apparatus and manufacturing method of the semiconductor device which concern on the same Embodiment 1. FIG. (a)〜(c)は本発明の実施の形態に係る切断処理対象となる半導体装置集合体としての封止済基板の平面図、正面断面図、裏面から見た図(A)-(c) is the top view of the sealed board | substrate as a semiconductor device aggregate | assembly used as the cutting process object which concerns on embodiment of this invention, front sectional drawing, the figure seen from the back surface 封止済基板を切断して形成した半導体装置の断面図Sectional view of a semiconductor device formed by cutting a sealed substrate 本発明の実施の形態に係る半導体装置の製造方法における切断工程を概略的に示す斜視図The perspective view which shows schematically the cutting process in the manufacturing method of the semiconductor device which concerns on embodiment of this invention 同半導体装置の製造方法における封止済基板、ステージおよび基板保持板を概略的に示す斜視図The perspective view which shows roughly the sealed board | substrate in the manufacturing method of the same semiconductor device, a stage, and a board | substrate holding plate (a)〜(c)はそれぞれ同半導体装置の製造方法における半導体装置集合体としての封止済基板を切断していく経過をそれぞれ示す平面図(A)-(c) is a top view which respectively shows progress which cuts the board | substrate already sealed as a semiconductor device aggregate | assembly in the manufacturing method of the same semiconductor device. 同半導体装置の製造方法における、切断対象となる封止済基板の面積と、密閉室内の圧力との関係を示す図The figure which shows the relationship between the area of the sealed board | substrate used as the cutting | disconnection object, and the pressure in a sealed chamber in the manufacturing method of the same semiconductor device (a)および(b)は本発明の実施の形態2に係る半導体装置の製造方法を示す側面図および正面図(A) And (b) is the side view and front view which show the manufacturing method of the semiconductor device which concerns on Embodiment 2 of this invention. (a)、(b)および(c)は本発明の実施の形態3に係る半導体装置の製造方法を示す側面図、正面図および平面図(A), (b) and (c) are the side view, front view, and top view which show the manufacturing method of the semiconductor device which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る半導体装置の製造方法を示す側面図The side view which shows the manufacturing method of the semiconductor device which concerns on Embodiment 4 of this invention. (a)および(b)はそれぞれ本発明の実施の形態5に係る半導体装置の断面図(A) And (b) is sectional drawing of the semiconductor device based on Embodiment 5 of this invention, respectively. (a)および(b)はそれぞれ本発明の実施の形態5に係る封止済基板、ステージおよび基板保持板を概略的に示す断面図(A) And (b) is sectional drawing which shows schematically the sealed board | substrate, stage, and board | substrate holding plate which concern on Embodiment 5 of this invention, respectively. (a)は本発明の実施の形態6に係る半導体装置の製造方法における切断工程を示す側面図、(b)および(c)はそれぞれ、同切断工程を示す正面図(A) is a side view which shows the cutting process in the manufacturing method of the semiconductor device which concerns on Embodiment 6 of this invention, (b) and (c) are front views which respectively show the same cutting process 従来の半導体装置の製造装置の断面図Sectional view of conventional semiconductor device manufacturing equipment

符号の説明Explanation of symbols

10 封止済基板(半導体装置集合体)
14 基板
16 半田ボール
17 ダイシングライン
18 半導体装置
19 基板保持板(保持用治具)
20 吸着部
23 真空ポンプ
25 切断装置
26 回転軸
29 ステージ
30 回転駆動部
31 高圧水流ポンプ
32 ノズル
34 水流
36 水流制御装置
37 高圧空気用ポンプ
39 基板高さ検出センサ(基板位置検知センサ)
43 押さえ部材
45 電磁石
48 ブレード
49 封止部
53 密閉室
55 切断部
58 金属板
10 Encapsulated substrate (Semiconductor device assembly)
14 Substrate 16 Solder ball 17 Dicing line 18 Semiconductor device 19 Substrate holding plate (holding jig)
DESCRIPTION OF SYMBOLS 20 Adsorption part 23 Vacuum pump 25 Cutting device 26 Rotating shaft 29 Stage 30 Rotation drive part 31 High pressure water flow pump 32 Nozzle 34 Water flow 36 Water flow control device 37 High pressure air pump 39 Substrate height detection sensor (substrate position detection sensor)
43 Holding member 45 Electromagnet 48 Blade 49 Sealing part 53 Sealing chamber 55 Cutting part 58 Metal plate

Claims (14)

複数の半導体装置が一括して製造された半導体装置集合体を、保持用治具により一方の面側から負圧により吸着して保持した状態で、切断用治具により切断して個々の半導体装置を製造する半導体装置の製造装置であって、前記保持用治具と切断用治具と切断対象の半導体装置集合体とを内包する密閉室と、この密閉室内に高圧気体を供給する気体供給手段と、密閉室内を大気圧よりも大きい圧力に制御する制御手段とを備えたことを特徴とする半導体装置の製造装置。   A semiconductor device assembly in which a plurality of semiconductor devices are collectively manufactured is cut by a cutting jig while being held by being sucked and held from one side by a holding jig with a negative pressure. And a gas supply means for supplying a high-pressure gas into the sealed chamber. The sealed chamber includes the holding jig, the cutting jig, and the semiconductor device assembly to be cut. And a control device for controlling the inside of the sealed chamber to a pressure larger than atmospheric pressure. 制御装置は、半導体装置集合体の切断対象部分の面積に対応させて、切断対象部分の面積が小さいほど密閉室内の圧力を高めることを特徴とする請求項1記載の半導体装置の製造装置。   The apparatus for manufacturing a semiconductor device according to claim 1, wherein the control device increases the pressure in the sealed chamber as the area of the cutting target portion is smaller in correspondence with the area of the cutting target portion of the semiconductor device assembly. 複数の半導体装置が一括して製造された半導体装置集合体を、保持用治具により一方の面側から負圧により吸着して保持した状態で、切断用治具により切断して個々の半導体装置を製造する半導体装置の製造装置であって、保持用治具における半導体装置集合体を吸着させる吸着部における半導体装置集合体を受ける部分を弾性材で形成し、前記保持用治具と切断用治具と切断対象の半導体装置集合体とを内包する密閉室と、密閉室内に高圧気体を供給する気体供給手段と、切断用治具に対する切断対象となる半導体装置集合体の基板の、基板厚み方向に沿った位置を検知する基板位置検知センサと、密閉室内を大気圧よりも大きい圧力に制御する制御手段とを備えたことを特徴とする半導体装置の製造装置。   A semiconductor device assembly in which a plurality of semiconductor devices are collectively manufactured is cut by a cutting jig while being held by being sucked and held from one side by a holding jig with a negative pressure. A semiconductor device manufacturing apparatus for manufacturing a semiconductor device, wherein a portion for receiving the semiconductor device aggregate in an adsorption portion for adsorbing the semiconductor device aggregate in the holding jig is formed of an elastic material, and the holding jig and the cutting jig are formed. A sealing chamber containing the tool and the semiconductor device assembly to be cut, a gas supply means for supplying high-pressure gas into the sealing chamber, and a substrate thickness direction of the substrate of the semiconductor device assembly to be cut with respect to the cutting jig An apparatus for manufacturing a semiconductor device, comprising: a substrate position detection sensor for detecting a position along the line; and a control means for controlling the inside of the sealed chamber to a pressure greater than atmospheric pressure. 制御装置は、基板位置検知センサで検知した半導体装置集合体の基板の位置が略一定になるように密閉室内の圧力を調整することを特徴とする請求項3記載の半導体装置の製造装置。   4. The semiconductor device manufacturing apparatus according to claim 3, wherein the control device adjusts the pressure in the sealed chamber so that the position of the substrate of the semiconductor device assembly detected by the substrate position detection sensor becomes substantially constant. 複数の半導体装置が一括して製造された半導体装置集合体を、保持用治具により一方の面側から負圧により吸着して保持した状態で、切断装置に設けた切断用治具により切断して個々の半導体装置を製造する半導体装置の製造装置であって、前記切断装置に、切断用治具と一体的に移動する揺動軸心を中心に、半導体装置集合体に対して接近離間する方向に揺動自在に配設された揺動アームとこの揺動アームの先端部に回転自在に取り付けられた弾性回転体と弾性回転体を半導体装置集合体の他方の面側から押圧する付勢手段とを有する押さえ部材を設け、この押さえ部材の弾性回転体により半導体装置集合体を保持用治具に押圧しながら切断するように構成したことを特徴とする半導体装置の製造装置。   A semiconductor device assembly in which a plurality of semiconductor devices are collectively manufactured is cut with a cutting jig provided in the cutting apparatus in a state in which the semiconductor device assembly is sucked and held from one side by a holding jig with a negative pressure. A semiconductor device manufacturing apparatus for manufacturing individual semiconductor devices, wherein the cutting device is moved closer to and away from the semiconductor device assembly around an oscillation axis that moves integrally with a cutting jig. Oscillating arm that is swayable in the direction, an elastic rotator that is rotatably attached to the tip of the oscillating arm, and an urging force that presses the elastic rotator from the other surface side of the semiconductor device assembly An apparatus for manufacturing a semiconductor device, comprising: a pressing member having a means; and a structure in which the semiconductor device assembly is cut while being pressed against a holding jig by an elastic rotating body of the pressing member. 半導体装置集合体の一方の面に半田ボールが所定方向に並べられた状態で形成され、隣り合う半田ボール間の隙間よりも、弾性回転体の幅が細く形成され、前記弾性回転体が半導体装置集合体の基板における半田ボールの間を通るように配設されたことを特徴とする請求項5記載の半導体装置の製造装置。   The solder balls are formed on one surface of the semiconductor device assembly in a state in which the solder balls are arranged in a predetermined direction, and the width of the elastic rotator is narrower than the gap between adjacent solder balls. 6. The semiconductor device manufacturing apparatus according to claim 5, wherein the semiconductor device manufacturing apparatus is disposed so as to pass between the solder balls on the substrate of the assembly. 複数の半導体装置が一括して製造された半導体装置集合体を、保持用治具により保持した状態で、切断用治具により切断して個々の半導体装置を製造する半導体装置の製造装置であって、半導体装置集合体の半導体装置に、磁性を有した金属板を内包させ、前記保持用治具に電磁石部を形成し、前記電磁石部に通電することで、前記保持用治具に半導体装置集合体を磁力により引き付けながら切断するように構成したことを特徴とする半導体装置の製造装置。   A semiconductor device manufacturing apparatus for manufacturing individual semiconductor devices by cutting a semiconductor device assembly in which a plurality of semiconductor devices are manufactured at once with a holding jig while being held by a holding jig. The semiconductor device assembly includes a metal plate having magnetism, an electromagnet portion is formed in the holding jig, and the electromagnet portion is energized, whereby the semiconductor device assembly is placed in the holding jig. An apparatus for manufacturing a semiconductor device, wherein the body is cut while being attracted by a magnetic force. 複数の半導体装置が一括して製造された半導体装置集合体を切断して個々の半導体装置を製造する半導体装置の製造装置であって、切断工程の際に半導体装置集合体を一方の面側から保持する保持用治具と、切断工程の際に半導体装置集合体の他方の面に垂直方向に水流を与えて半導体装置集合体を保持用治具に対して押圧する水流供給手段と、前記切断処理により生じた半導体装置集合体の隙間部を水流の供給部分が通過する際に、前記隙間部への水流の供給を停止させる制御手段とを備えたことを特徴とする半導体装置の製造装置。   A semiconductor device manufacturing apparatus that manufactures individual semiconductor devices by cutting a semiconductor device assembly in which a plurality of semiconductor devices are manufactured in a lump, and the semiconductor device assembly is removed from one side during a cutting process. A holding jig for holding, a water flow supplying means for pressing the semiconductor device assembly against the holding jig by applying a water flow perpendicularly to the other surface of the semiconductor device assembly during the cutting step, and the cutting An apparatus for manufacturing a semiconductor device, comprising: control means for stopping supply of water flow to the gap portion when the water flow supply portion passes through the gap portion of the semiconductor device assembly generated by the processing. 複数の半導体装置が一括して製造された半導体装置集合体を、保持用治具により一方の面側から負圧により吸着して保持した状態で、切断用治具により切断して個々の半導体装置を製造する半導体装置の製造方法であって、切断工程において、前記保持用治具と切断用治具と切断対象の半導体装置集合体とを密閉室内に配設し、前記密閉室内を大気圧よりも大きい圧力に制御して、前記密閉室内の圧力と前記負圧との差圧により大気圧の場合よりも大きい押圧力で半導体装置集合体を保持用治具に対して押圧しながら切断することを特徴とする半導体装置の製造方法。   A semiconductor device assembly in which a plurality of semiconductor devices are collectively manufactured is cut by a cutting jig while being held by being sucked and held from one side by a holding jig with a negative pressure. In the cutting process, the holding jig, the cutting jig, and the semiconductor device assembly to be cut are disposed in a sealed chamber, and the sealed chamber is subjected to atmospheric pressure. And the semiconductor device assembly is cut while pressing the holding device against the holding jig with a larger pressing force than in the case of atmospheric pressure due to the pressure difference between the pressure in the sealed chamber and the negative pressure. A method of manufacturing a semiconductor device. 半導体装置集合体の切断対象部分の面積に対応させて、切断対象部分の面積が小さいほど密閉空間内の圧力を高めることを特徴とする請求項9記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 9, wherein the pressure in the sealed space is increased as the area of the part to be cut is smaller in correspondence with the area of the part to be cut of the semiconductor device assembly. 複数の半導体装置が一括して製造された半導体装置集合体を、保持用治具により一方の面側から負圧により吸着して保持した状態で、切断用治具により切断して個々の半導体装置を製造する半導体装置の製造方法であって、切断工程において、前記保持用治具と切断用治具と切断対象の半導体装置集合体とを密閉室内に配設し、切断用治具に対する切断対象となる半導体装置集合体の基板の、基板厚み方向に沿った位置を検知すると同時に、前記半導体装置集合体の基板の位置が略一定になるように、前記密閉室内を大気圧よりも大きい圧力で制御して、前記密閉室内の圧力と前記負圧との差圧により大気圧の場合よりも大きい押圧力で半導体装置集合体を保持用治具に対して押圧しながら切断することを特徴とする半導体装置の製造方法。   A semiconductor device assembly in which a plurality of semiconductor devices are collectively manufactured is cut by a cutting jig while being held by being sucked and held from one side by a holding jig with a negative pressure. In the cutting process, the holding jig, the cutting jig, and the semiconductor device assembly to be cut are disposed in a sealed chamber, and the cutting target is cut with respect to the cutting jig. At the same time as detecting the position of the substrate of the semiconductor device assembly in the substrate thickness direction, the position of the substrate of the semiconductor device assembly is kept substantially constant at a pressure greater than atmospheric pressure so that the position of the substrate is substantially constant. The semiconductor device assembly is cut while being pressed against the holding jig with a larger pressing force than in the case of atmospheric pressure due to a differential pressure between the pressure in the sealed chamber and the negative pressure. A method for manufacturing a semiconductor device. 複数の半導体装置が一括して製造された半導体装置集合体を、保持用治具により一方の面側から負圧により吸着して保持した状態で、切断装置に設けた切断用治具により切断して個々の半導体装置を製造する半導体装置の製造方法であって、前記切断装置に揺動自在に配設した揺動アームに弾性回転体が回転自在に取り付けられた押さえ部材により、半導体装置集合体を他方の面側から保持用治具に押圧しながら切断することを特徴とする半導体装置の製造方法。   A semiconductor device assembly in which a plurality of semiconductor devices are collectively manufactured is cut with a cutting jig provided in the cutting apparatus in a state in which the semiconductor device assembly is sucked and held from one side by a holding jig with a negative pressure. A semiconductor device manufacturing method for manufacturing individual semiconductor devices, wherein a semiconductor device assembly is formed by a pressing member in which an elastic rotator is rotatably attached to a swing arm that is swingably disposed on the cutting device. Is cut from the other surface side while being pressed against the holding jig. 複数の半導体装置が一括して製造された半導体装置集合体を、保持用治具により保持した状態で、切断用治具により切断して個々の半導体装置を製造する半導体装置の製造方法であって、半導体装置集合体の半導体装置に、磁性を有した金属板を内包させ、前記保持用治具に設けた電磁石部に通電することで、半導体装置集合体の半導体装置に内包された金属板を磁力により引き付けながら半導体装置集合体を切断することを特徴とする半導体装置の製造方法。   A semiconductor device manufacturing method for manufacturing individual semiconductor devices by cutting a semiconductor device assembly in which a plurality of semiconductor devices are collectively manufactured by a cutting jig while being held by a holding jig. The semiconductor device of the semiconductor device assembly includes a metal plate having magnetism, and energizes the electromagnet portion provided in the holding jig to thereby enclose the metal plate included in the semiconductor device of the semiconductor device assembly. A method of manufacturing a semiconductor device, wherein the semiconductor device assembly is cut while being attracted by a magnetic force. 複数の半導体装置が一括して製造された半導体装置集合体を切断して個々の半導体装置を製造する半導体装置の製造方法であって、切断工程において、半導体装置集合体を保持用治具により一方の面側から保持し、半導体装置集合体の他方の面に垂直方向に水流を与えて半導体装置集合体を保持用治具に対して押圧しながら切断する一方で、前記切断処理により生じた半導体装置集合体の隙間部を水流の供給部が通過する際には、前記隙間部への水流の供給を停止することを特徴とする半導体装置の製造方法。   A semiconductor device manufacturing method for manufacturing individual semiconductor devices by cutting a semiconductor device assembly in which a plurality of semiconductor devices are manufactured in a batch, wherein the semiconductor device assembly is held by a holding jig in the cutting step. The semiconductor produced by the cutting process while holding the semiconductor device assembly while pressing the semiconductor device assembly against the holding jig by applying a water flow in the vertical direction to the other surface of the semiconductor device assembly. A method of manufacturing a semiconductor device, comprising: stopping supply of water flow to the gap when the water supply portion passes through the gap of the device assembly.
JP2006287045A 2006-10-23 2006-10-23 Apparatus for manufacturing semiconductor device, and method for manufacturing the semiconductor device Pending JP2008103648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006287045A JP2008103648A (en) 2006-10-23 2006-10-23 Apparatus for manufacturing semiconductor device, and method for manufacturing the semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006287045A JP2008103648A (en) 2006-10-23 2006-10-23 Apparatus for manufacturing semiconductor device, and method for manufacturing the semiconductor device

Publications (1)

Publication Number Publication Date
JP2008103648A true JP2008103648A (en) 2008-05-01

Family

ID=39437728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006287045A Pending JP2008103648A (en) 2006-10-23 2006-10-23 Apparatus for manufacturing semiconductor device, and method for manufacturing the semiconductor device

Country Status (1)

Country Link
JP (1) JP2008103648A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013086288A (en) * 2011-10-14 2013-05-13 Mitsuboshi Diamond Industrial Co Ltd Substrate top-surface detection method and scribing device
JP2014216597A (en) * 2013-04-30 2014-11-17 三星ダイヤモンド工業株式会社 Jig for break
JP2015002236A (en) * 2013-06-14 2015-01-05 株式会社ディスコ Cutting method
JP2015133439A (en) * 2014-01-15 2015-07-23 株式会社ディスコ Processing device
JP2016209980A (en) * 2015-05-13 2016-12-15 Towa株式会社 Cutting device and cutting method
JP2017098471A (en) * 2015-11-27 2017-06-01 株式会社ディスコ Processing device
JP2018037689A (en) * 2012-09-28 2018-03-08 プラズマ − サーム、エルエルシー Method for dicing substrate including back metal
CN110137101A (en) * 2018-02-08 2019-08-16 东和株式会社 Disconnecting device and the manufacturing method for cutting off product
JP2022057676A (en) * 2020-09-30 2022-04-11 キヤノントッキ株式会社 Film deposition device, adjusting method, and electronic device manufacturing method
JP2022079910A (en) * 2020-11-17 2022-05-27 Towa株式会社 Cutting device and manufacturing method of cut article

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013086288A (en) * 2011-10-14 2013-05-13 Mitsuboshi Diamond Industrial Co Ltd Substrate top-surface detection method and scribing device
JP2018037689A (en) * 2012-09-28 2018-03-08 プラズマ − サーム、エルエルシー Method for dicing substrate including back metal
JP2014216597A (en) * 2013-04-30 2014-11-17 三星ダイヤモンド工業株式会社 Jig for break
JP2015002236A (en) * 2013-06-14 2015-01-05 株式会社ディスコ Cutting method
JP2015133439A (en) * 2014-01-15 2015-07-23 株式会社ディスコ Processing device
JP2016209980A (en) * 2015-05-13 2016-12-15 Towa株式会社 Cutting device and cutting method
TWI708657B (en) * 2015-11-27 2020-11-01 日商迪思科股份有限公司 Processing device
KR20170062377A (en) * 2015-11-27 2017-06-07 가부시기가이샤 디스코 Machining apparatus
JP2017098471A (en) * 2015-11-27 2017-06-01 株式会社ディスコ Processing device
CN107068606B (en) * 2015-11-27 2022-02-18 株式会社迪思科 Processing device
CN107068606A (en) * 2015-11-27 2017-08-18 株式会社迪思科 Processing unit (plant)
KR102486302B1 (en) * 2015-11-27 2023-01-06 가부시기가이샤 디스코 Machining apparatus
JP7102157B2 (en) 2018-02-08 2022-07-19 Towa株式会社 Cutting device and manufacturing method of cut products
CN110137101A (en) * 2018-02-08 2019-08-16 东和株式会社 Disconnecting device and the manufacturing method for cutting off product
KR20190096266A (en) * 2018-02-08 2019-08-19 토와 가부시기가이샤 Cutting apparatus and manufacturing method of cut product
JP2019136810A (en) * 2018-02-08 2019-08-22 Towa株式会社 Cutting device and cut product manufacturing method
KR102210994B1 (en) * 2018-02-08 2021-02-01 토와 가부시기가이샤 Cutting apparatus and manufacturing method of cut product
CN110137101B (en) * 2018-02-08 2023-03-10 东和株式会社 Cutting device and method for manufacturing cut product
JP2022057676A (en) * 2020-09-30 2022-04-11 キヤノントッキ株式会社 Film deposition device, adjusting method, and electronic device manufacturing method
JP7185674B2 (en) 2020-09-30 2022-12-07 キヤノントッキ株式会社 Film forming apparatus, adjustment method, and electronic device manufacturing method
JP7121788B2 (en) 2020-11-17 2022-08-18 Towa株式会社 CUTTING DEVICE AND METHOD FOR MANUFACTURING CUTTING GOODS
WO2022107455A1 (en) * 2020-11-17 2022-05-27 Towa株式会社 Cutting device, and method for manufacturing cut product
JP2022079910A (en) * 2020-11-17 2022-05-27 Towa株式会社 Cutting device and manufacturing method of cut article
TWI802063B (en) * 2020-11-17 2023-05-11 日商Towa股份有限公司 Cutting device, and method of manufacturing cut product

Similar Documents

Publication Publication Date Title
JP2008103648A (en) Apparatus for manufacturing semiconductor device, and method for manufacturing the semiconductor device
JP4624813B2 (en) Semiconductor device manufacturing method and semiconductor manufacturing apparatus
JP4769048B2 (en) Substrate processing method
JP4634949B2 (en) Wafer holding pad
TWI427687B (en) Wafer processing method
JP4875532B2 (en) Cutting device
KR20150136996A (en) Grinding apparatus and method for grinding rectangular substrate
JP5959188B2 (en) Wafer processing method
US20080248207A1 (en) Liquid resin coating method and apparatus
CN102403196B (en) Sheet adhering apparatus and method of attaching
JP2007059524A (en) Substrate cutting method and substrate cutting apparatus
JP2011009324A (en) Dress board holding table and cutting device
KR20200038852A (en) Method for grinding rectangular substrate
JP4476866B2 (en) Wafer holding method
JP5572241B2 (en) Semiconductor device manufacturing method and semiconductor manufacturing apparatus
JP2008300437A (en) Pick-up apparatus and pick-up method
JP5271972B2 (en) Semiconductor device manufacturing method and semiconductor manufacturing apparatus
KR100809275B1 (en) Alignment zone for wafer mount machine
KR101971059B1 (en) Semiconductor package sliming apparatus and method of the same
JP2004349697A (en) Apparatus for mounting semiconductor
JP2003340787A (en) Board fixing device and method
KR100277312B1 (en) Rotary Tilting Solder Ball Feeder
KR20130107026A (en) Semiconductor package sliming apparatus and method of the same
JP2002137185A (en) Installation head for electronic parts mounted device
JP5208634B2 (en) Grinding equipment

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430