JP2008103263A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2008103263A
JP2008103263A JP2006286435A JP2006286435A JP2008103263A JP 2008103263 A JP2008103263 A JP 2008103263A JP 2006286435 A JP2006286435 A JP 2006286435A JP 2006286435 A JP2006286435 A JP 2006286435A JP 2008103263 A JP2008103263 A JP 2008103263A
Authority
JP
Japan
Prior art keywords
fuel cell
water supply
water
supply pipe
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006286435A
Other languages
English (en)
Inventor
Yuichi Sakagami
祐一 坂上
Hidetsugu Izuhara
英嗣 伊豆原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006286435A priority Critical patent/JP2008103263A/ja
Publication of JP2008103263A publication Critical patent/JP2008103263A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】燃料電池から排出される水分に含まれるイオンを低減する。
【解決手段】燃料電池1から排出される酸化剤ガスあるいは燃料ガスの少なくとも一方の排出経路11、21に設けられ、酸化剤ガスあるいは燃料ガスに含まれる水分を分離する気液分離手段26と、気液分離手段26により分離された水を燃料電池1に供給するための水供給配管30とを備える燃料電池システムにおいて、水供給配管30の内壁の少なくとも一部にイオン吸着剤33を設ける。気液分離手段26により分離される水に含まれるイオンを、水供給配管30の内壁に設けられたイオン吸着剤33により吸着させるため、燃料電池1から排出される水分に含まれるイオンを減少させることができる。
【選択図】図1

Description

本発明は、水素と酸素との化学反応により電気エネルギを発生させる燃料電池を備える燃料電池システムに関するもので、車両、船舶及びポータブル発電器等の移動体に適用して有効である。
燃料電池システムでは、発電に伴い水が生成され、生成水は配管を介して外部に排出される。
この生成水には燃料電池内のMEA(Membrane Electrode Assembly:膜電極複合体)や配管から溶出したイオンが含まれることがあり、生成水の導電率が高いことがある。一般的に、ポンプや凝縮器などはボデーにアースされているため、導電率が高い生成水を通じて、燃料電池の電気的な絶縁抵抗が低下する恐れがあった。そのため、生成水を回収するタンク内にイオン吸着装置を設けてイオンを吸着することにより、生成水に含まれるイオンを低減する構成が提案されている(例えば、特許文献1)。
また、燃料電池からの排出空気に含まれる水を凝縮回収し、回収された水を燃料電池に供給して潜熱冷却を行う燃料電池システムが知られている(例えば、特許文献2)。
特開2005−174608号公報 特開平11−317235号公報
しかしながら、特許文献1に記載の燃料電池システムでは、生成水を回収するタンク内にイオン吸着装置を設置しているのでタンクより下流側の、配管から溶出したイオンを吸着できない問題がある。
また、特許文献2に記載の潜熱冷却を行う燃料電池システムでは、回収された生成水は短時間で燃料電池に供給されるため、特許文献1のように生成水を貯蔵するタンク内にイオン吸着装置を設置したとしても充分にイオンが吸着できずに燃料電池の電気的な絶縁抵抗値の低下が起こる問題がある。
本発明は上記点に鑑み、簡素な構成で、充分なイオン吸着性能を有し、燃料電池から排出される水分に含まれるイオンを低減することを目的とする。
上記目的を達成するため、本発明は、酸化剤ガスと燃料ガスとを電気化学反応させて電力を得る燃料電池(1)と、燃料電池(1)から排出される酸化剤ガスあるいは燃料ガスの少なくとも一方の排出経路(11、21)に設けられ、酸化剤ガスあるいは燃料ガスに含まれる水分を分離する気液分離手段(26)と、気液分離手段(26)により分離された水を燃料電池(1)に供給するための水供給配管(30)とを備え、水供給配管(30)の内壁の少なくとも一部にはイオン吸着剤(33)が設けられていることを特徴とする。
これにより、気液分離手段(26)で分離される水に含まれるイオンを、水供給配管(30)の内壁に設けられたイオン吸着剤(33)により吸着させることができ、簡素な構成で燃料電池(1)から排出される水分に含まれるイオンを減少させることができる。
ここで、水供給配管(30)は充分な長さを有しているため、水供給配管(30)にイオン吸着剤(33)を設けることで、イオンの吸着面積を確保することができるため、気液分離手段(26)により分離された水を燃料電池(1)に供給する場合であっても、充分なイオンの吸着性能を有することができる。
また、水供給配管(30)の内壁にイオン吸着剤(33)を塗布した場合には、イオン吸着剤(33)を膜状にすることができ、イオン吸着剤(33)の量を低減することができる。
また、イオン吸着剤(33)は粒子状であり、水供給配管(30)の内部には、水供給配管(30)より径が小さくかつイオン吸着剤(33)より小さい網目を有するメッシュ状配管(34)が配置されており、水供給配管(30)とメッシュ状配管(34)のすきまにイオン吸着剤(33)を設けた場合には、イオン吸着剤(33)の量の調整を容易に行うことができる。
また、水供給配管(30)の少なくとも一部を、イオン吸着剤(33)から構成する場合には、水供給配管(30)とイオン吸着剤(33)とを単一材料から構成することができ、簡素な構成で充分なイオン吸着性能を有することができる。
また、イオン吸着剤(33)が、陽イオン交換樹脂と陰イオン交換樹脂から構成されている場合には、陽イオンおよび陰イオンの両方を吸着することができる。
また、燃料電池(1)は、水供給配管(30)を介して供給された水が蒸発する際の潜熱により冷却される場合には、水供給配管(30)を介して供給された水に含まれるイオンを低減させることができる。そのため、導電率の低い水により潜熱冷却を行うことができ、燃料電池(1)の電気的な絶縁抵抗の低下を抑制することができる。
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
(第1実施形態)
以下、本発明の第1実施形態に係る燃料電池システムについて図1〜図2に基づいて説明する。本第1実施形態は、燃料電池システムを、燃料電池1を電源として走行する電気自動車(燃料電池車両)に適用したものである。
図1は、第1実施形態に係る燃料電池システムの概念図である。図1に示すように、燃料電池システムは、水素と酸素との電気化学反応を利用して電力を発生する燃料電池1を備えている。ここで、水素が本発明の燃料ガスに相当し、酸素を含んだ空気が本発明の酸化剤ガスに相当する。
本第1実施形態では燃料電池1として固体高分子電解質型燃料電池を用いており、電解質膜の両側面に電極が接合されたMEAと、MEAを挟持する一対のセパレータから構成されるセルが複数個積層され、かつ電気的に直列接続されている。燃料電池1では、以下の水素と酸素の電気化学反応が起こり電気エネルギが発生する。
(水素極側)H→2H+2e
(酸素極側)2H+1/2O+2e→H
燃料電池システムには、燃料電池1の水素極に供給される水素が通過する水素供給経路10と、燃料電池1の水素極から排出される水素極側排ガスが通過する水素排出経路11が設けられている。水素供給経路10の最上流部には、燃料電池1の水素極に水素を供給するための水素供給装置12が設けられている。本第1実施形態では、水素供給装置12として、高圧の水素が充填された水素タンクを用いている。
水素供給経路10には、上流側から順に第1シャット弁13、調圧弁14、第2シャット弁15が設けられている。燃料電池1に水素を供給する際には、第1シャット弁13と第2シャット弁15を開き、調圧弁14によって所望の水素圧力にして燃料電池1に供給する。車両停止時には、安全のため第1シャット弁13、第2シャット弁15は閉められる。
水素排出経路11には、第3シャット弁16が設けられている。必要に応じて第3シャット弁16を開くことで、燃料電池1の水素極側から水素排出経路11を介して、未反応水素、蒸気(あるいは水)および空気極側から電解質膜を通過して水素極側に混入した窒素、酸素などの不純物が排出される。
燃料電池システムには、燃料電池1の空気極(酸素極)に供給される空気が通過する空気供給経路20と、燃料電池1の空気極から排出される空気極側排出ガスが通過する空気排出経路21が設けられている。空気供給経路20には、空気を供給するための空気供給装置22が設けられている。本第1実施形態では、空気供給装置22として空気圧縮機を用いている。空気供給装置22は圧縮機用モータと機械的に接続されている。空気排出経路21には、所望の圧力になるよう空気の排気圧力を調整する調圧弁23が設けられている。
燃料電池1は発電の際、上記電気化学反応により熱が発生する発熱体である。燃料電池1は発電効率確保のために運転中一定温度(例えば70℃程度)に維持する必要がある。また、燃料電池1内部の電解質膜は、所定の許容上限温度を超えると、高温により破壊されるため、燃料電池1の温度を許容温度以下に保持する必要がある。
そのため、燃料電池システムには、燃料電池1を冷却するための冷却システムが設けられている。冷却システムには、燃料電池1に冷却水(熱媒体)を循環させる冷却水経路40、冷却水を循環させるウォータポンプ43、ファン42を備えたラジエータ41(放熱器)が設けられている。
冷却水経路40には、冷却水をラジエータ41をバイパスさせるためのバイパス経路44が設けられている。冷却水経路40とバイパス経路44との合流点には、バイパス経路44に流れる冷却水流量を調整するための流路切替弁45が設けられている。
さらに、燃料電池システムには、燃料電池1を冷却するために潜熱冷却システムが設けられている。潜熱冷却システムには、空気排出経路21を通過する空気(空気極側排出ガス)に含まれる水分を凝縮させる凝縮器24、凝縮器24により凝縮された水を分離する気液分離器26(気液分離手段)が設けられている。ここで、凝縮器24には、ファン25が設けられている。また、潜熱冷却システムには、気液分離器26により分離された水を貯蔵するタンク31、タンク31に貯蔵された水を燃料電池1に供給するための水供給配管30、水供給配管30を通過する水を供給させる水供給ポンプ32が設けられている。


水供給ポンプ32は、図示しない水供給ポンプ用モータを回転させることにより水供給ポンプ32を回転させて水供給配管30を介して燃料電池1にタンク31内の水を供給する。供給された水が、蒸発する際の潜熱により冷却されることで燃料電池1の潜熱冷却を行う。ここで、水供給ポンプ32は、燃料電池1に供給させる水は多くないため小型のポンプを用いることができる。
水供給配管30の内壁には、水供給配管30を通過する水に含まれるイオンを吸着するためのイオン吸着剤33が設けられている。なお、イオン吸着剤33は、水供給配管30の一部に設けてもよく、全体に設けてもよい。本第1実施形態では、イオン吸着剤33としてイオン交換樹脂を用いており、イオン交換樹脂は、陽イオン交換樹脂と陰イオン交換樹脂の両方で構成されている。
次に、イオン吸着剤33の具体的な構成について、図2を用いて説明する。図2(a)から図2(c)は、水供給配管30におけるイオン吸着剤33が設けられた部位の断面図である。図2(a)に示すように、水供給配管30の内壁は、膜状のイオン交換樹脂が塗布されている構成とすることができる。あるいは、図2(b)に示すように、水供給配管30の内部に、メッシュ状配管34を配置し、水供給配管30とメッシュ状配管34のすきまに粒子状のイオン交換樹脂を設ける構成とすることができる。ここで、水供給配管30とメッシュ状配管34との間で、イオン交換樹脂を保持するため、メッシュ状配管34の径は、水供給配管30の径よりも小さくかつメッシュ状配管34の網目の大きさはイオン交換樹脂の径よりも小さくする必要がある。あるいは、図2(c)に示すように、水供給配管30自体の少なくとも一部をイオン交換樹脂から構成することで、水供給配管30にイオン吸着剤33を設けることができる。



燃料電池システムには、各種制御を行う制御手段としての制御部100(ECU)が設けられている。制御部100は、CPU、ROM、RAM、I/Oなどを備えた周知のマイクロコンピュータによって構成され、ROMなどに記憶されたプログラムに従って各種演算などの処理を実行する。
上記構成の燃料電池システムでは、空気供給経路20および水素供給経路10から燃料電池1に空気および水素が供給されることで、燃料電池1では発電が行われる。燃料電池1の発電に伴い燃料電池1の空気極側では生成水が発生し、この生成水は、空気極側排出ガスに含まれる状態で燃料電池1から排出される。空気(空気極側排出ガス)に含まれる水分は、空気排出経路21に設けられた凝縮器24で凝縮され液滴となる。凝縮器24によって凝縮された液滴は、気液分離器26で空気から分離され、空気は空気排出経路21を介して外部に排出され、水はタンク31に貯蔵される。
燃料電池1から排出される生成水には、燃料電池1内のMEAや配管からイオンが溶出している場合がある。燃料電池1の発電に伴い発生した水に溶出するイオンとしては、鉄イオン(Fe3+)、アルミイオン(Al3+)、フッ素イオン(F)、亜硫酸イオン(SO 2−)などの陽イオンおよび陰イオンがある。
タンク31に貯蔵された水は、水供給ポンプ32により水供給配管30を介して燃料電池1に供給される。そして、タンク31に貯蔵された水が水供給配管30を介して供給される際に、水供給配管30を通過する水に含まれるイオンは、水供給配管30の内壁に設けられたイオン吸着剤33にて吸着される。
したがって、水供給配管30から燃料電池1に供給される水に含まれるイオンを減少させることができる。これにより、燃料電池1の電気的な絶縁抵抗値の低下を抑制することができる。ここで、イオン吸着剤33としてのイオン交換樹脂は、陽イオン交換樹脂と陰イオン交換樹脂の両方から構成されているため、燃料電池1に供給される水に含まれる陽イオンおよび陰イオンの両方を吸着することができる。
なお、イオン吸着剤33が、水供給配管30の内壁に塗布された構成の場合(図2(a))は、イオン吸着剤33を膜状にすることができ、イオン吸着剤33の量を低減することができる。さらに、イオン吸着剤33が、水供給配管30の内壁とメッシュ状配管34のすきまに設けた場合(図2(b))には、イオン吸着剤33の量の調整を容易に行うことができる。さらにまた、水供給配管30が、イオン交換樹脂で形成する場合(図2(c))には、水供給配管30とイオン交換樹脂を単一材料から構成することができ、簡素な構成で充分なイオン吸着性能を有することができる。

なお、図2(a)から図2(c)に示すように、イオン吸着剤33を水供給配管30の一部に設ける構成によれば、水供給配管30は、充分な長さを有しているため、水供給配管30から燃料電池1に供給される水に含まれるイオンの吸着時間、吸着面積を確保することができる。これにより、充分なイオンの吸着性能を有することができる。
また、燃料電池システムに、別体でイオン吸着装置を設ける必要はなく、イオン吸着剤33の性能が劣化した場合は、水供給配管30を交換すればよいため、燃料電池システムの構成を簡素にすることができる。
(第2実施形態)
次に、本発明の第2実施形態について図3に基づいて説明する。本第2実施形態では、上記第1実施形態と異なる部分についてのみ説明する。
燃料電池1からの空気極側排出ガスに含まれる水が凝縮して液滴状態となり、その水が空気排出経路21の内壁で連続的に繋がった状態となった場合、イオンを含んだ水により電気的な経路ができるので、燃料電池1外部に対する電気的な絶縁抵抗が低下することがある。
図3は、空気排出経路21の断面図である。図3に示す矢印は、空気(空気極側排出ガス)および空気に含まれる水の流れ方向を示している。図3に示すように、空気排出経路21は、絶縁性材料である樹脂製で形成されている。
また、図3に示すように、空気排出経路21において空気に含まれる水が連続的に繋がった状態とならないようにするために、空気排出経路21の内壁は、撥水処理された突出部50が設けられている。突出部50は、空気排出経路21の内壁に環状に設けられている。
突出部50は、空気排出経路21の内壁に対して鈍角をなし、下流側に向かって徐々に径方向内側に突出する第1面と、空気排出経路21の内壁に対して直角な第2面とから構成されている。第1面は、下流側に行くに従って、傾斜角度が大きくなる湾曲面となっている。第2面は、空気排出経路21の内壁に対して直交する面となっている。2つの面の間の突出部50先端は、鋭角となるように形成されている。
突出部50の表面部分(図中の太線部)は、撥水処理としてフッ素コーティングがなされている。
上記構成において、空気に含まれる水は、空気排出経路21に流入する。空気排出経路21は、絶縁性材料である樹脂製で形成されているため、空気排出経路21内壁に連続的に繋がる状態の水分を電気的に接続することを防止することができる。空気排出経路21内壁の突出部50になされた撥水処理により、空気に含まれる水は、空気排出経路21の内壁から剥離しやすい状態となる。また、空気に含まれる水は、突出部50先端部分で空気排出経路21の内壁から剥離する。そのため、空気に含まれる水は、空気排出経路21の内壁で連続的に繋がる状態とならない。図3に示すように、突出部50により液滴が水供給配管30の内壁から剥離される突出部50下流の所定区間が、剥離区間となっている。
したがって、空気に含まれる水は、空気排出経路21の内壁において連続的に繋がる状態とならないため、燃料電池システムの絶縁抵抗低下を抑制することができる。なお、本第2実施形態の構成の場合、燃料電池システムの絶縁性低下の抑制を簡素な構成で実現することができる。また、空気排出経路21の全体を樹脂製としているが、少なくとも突出部50下流の所定の剥離区間について樹脂製とする構成としてもよい。
(他の実施形態)
なお、上記各実施形態では、
燃料電池1の空気排出経路21側のみに、イオン吸着剤33を備える潜熱冷却システムを設けたが、水素排出経路11側に上記各実施形態と同様のイオン吸着剤33を備える潜熱冷却システムを設ける構成としてもよい。水素排出経路11側にも空気極側から電解質膜を通過して水素極側に生成水が混入し、拡散してきた水にはイオンが含まれる場合があるため、水素排出経路11側にイオン吸着剤33を備える潜熱冷却システムを設けることで、その水に含まれるイオンを減少させることができる。
また、上記各実施形態では、気液分離器26により分離された水を燃料電池1に供給し潜熱冷却を行ったが、これに限らず、気液分離器26により分離された水を燃料電池1の電解質膜を加湿するために利用してもよい。


また、第2実施形態の構成において、空気排出経路21が水平に設置される場合には、液滴が下方にのみ存在することになるので、空気排出経路21の鉛直方向の下側にのみ突出部50を設けてもよい。
また、第2実施形態では、空気排出経路21の内壁に撥水処理された突出部50が設けられているが、突出部50を設けず空気排出経路21の内壁の少なくとも一部に撥水処理を施しただけの構成としてもよい。このような構成によっても、空気に含まれる水は、空気排出経路21の内壁において連続的に繋がる状態となること回避することができ、燃料電池システムの絶縁抵抗低下を抑制することができる。
また、第2実施形態では、空気排出経路21の内壁の表面部分には、撥水処理としてフッ素コーティングがなされているが、空気排出経路21の内壁の表面を微細な凹凸構造の撥水処理を形成してもよい。
上記第1実施形態の燃料電池システムの全体構成を示す概念図である。 水供給配管におけるイオン吸着剤が設けられた部位の断面図である。 上記第2実施形態における空気排出経路の断面図である。
符号の説明
1…燃料電池、10…水素供給経路、11…水素排出経路、20…空気供給経路、21…空気排出経路、24…凝縮器、25…ファン、26…気液分離器、30…水供給配管、31…タンク、32…水供給ポンプ、33…イオン吸着剤、34…メッシュ状配管、50…突出部。

Claims (6)

  1. 酸化剤ガスと燃料ガスとを電気化学反応させて電力を得る燃料電池(1)と、
    前記燃料電池(1)から排出される酸化剤ガスあるいは燃料ガスの少なくとも一方の排出経路(11、21)に設けられ、
    前記酸化剤ガスあるいは前記燃料ガスに含まれる水分を分離する気液分離手段(26)と、
    前記気液分離手段(26)により分離された水を前記燃料電池(1)に供給するための水供給配管(30)とを備え、
    前記水供給配管(30)の内壁の少なくとも一部にはイオン吸着剤(33)が設けられていることを特徴とする燃料電池システム。
  2. 前記イオン吸着剤(33)は前記水供給配管(30)の内壁に塗布されていることを特徴とする請求項1に記載の燃料電池システム。
  3. 前記イオン吸着剤(33)は粒子状であり、
    前記水供給配管(30)の内部には、前記水供給配管(30)より径が小さくかつ前記イオン吸着剤(33)より小さい網目を有するメッシュ状配管(34)が配置されており、
    前記イオン吸着剤(33)は、前記水供給配管(30)と前記メッシュ状配管(34)のすきまに設けられていることを特徴とする請求項1に記載の燃料電池システム。
  4. 前記水供給配管(30)の少なくとも一部は、前記イオン吸着剤(33)から構成されていることを特徴とする請求項1に記載の燃料電池システム。
  5. 前記イオン吸着剤(33)が、陽イオン交換樹脂と陰イオン交換樹脂から構成されていることを特徴とする請求項1ないし請求項4のいずれか1つに記載の燃料電池システム。
  6. 前記燃料電池(1)は、前記水供給配管(30)を介して供給された水が蒸発する際の潜熱により冷却されることを特徴とする請求項1ないし請求項5のいずれか1つに記載の燃料電池システム。
JP2006286435A 2006-10-20 2006-10-20 燃料電池システム Pending JP2008103263A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006286435A JP2008103263A (ja) 2006-10-20 2006-10-20 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006286435A JP2008103263A (ja) 2006-10-20 2006-10-20 燃料電池システム

Publications (1)

Publication Number Publication Date
JP2008103263A true JP2008103263A (ja) 2008-05-01

Family

ID=39437429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006286435A Pending JP2008103263A (ja) 2006-10-20 2006-10-20 燃料電池システム

Country Status (1)

Country Link
JP (1) JP2008103263A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010073A (ja) * 2008-06-30 2010-01-14 Honda Motor Co Ltd 燃料電池スタック
JP2012018859A (ja) * 2010-07-09 2012-01-26 Honda Motor Co Ltd 燃料電池スタック
JP2012038467A (ja) * 2010-08-04 2012-02-23 Honda Motor Co Ltd 燃料電池スタック
US9099698B2 (en) 2009-10-19 2015-08-04 Toyota Jidosha Kabushiki Kaisha Fuel cell system having a water flow disruption portion
JP2016024850A (ja) * 2014-07-16 2016-02-08 本田技研工業株式会社 燃料電池スタック
JP2017027816A (ja) * 2015-07-23 2017-02-02 トヨタ紡織株式会社 燃料電池用イオン交換器
CN111048805A (zh) * 2019-12-05 2020-04-21 同济大学 一种燃料电池发动机氢水分离装置总成
CN113707907A (zh) * 2021-08-25 2021-11-26 中国第一汽车股份有限公司 一种集成式燃料电池系统和燃料电池汽车

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0311497U (ja) * 1989-06-15 1991-02-05
JP2000243422A (ja) * 1999-02-23 2000-09-08 Toyota Motor Corp 燃料電池システムおよび燃料電池の冷却方法
JP2005072216A (ja) * 2003-08-25 2005-03-17 Hitachi Ltd 液冷システムおよびこれを用いた電子機器
JP2005166267A (ja) * 2003-11-28 2005-06-23 Nissan Motor Co Ltd イオン交換フィルタ
JP2005339814A (ja) * 2004-05-24 2005-12-08 Toyota Motor Corp 燃料電池システムおよびイオン交換器
JP2006120598A (ja) * 2004-09-21 2006-05-11 Toshiba Corp 燃料電池システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0311497U (ja) * 1989-06-15 1991-02-05
JP2000243422A (ja) * 1999-02-23 2000-09-08 Toyota Motor Corp 燃料電池システムおよび燃料電池の冷却方法
JP2005072216A (ja) * 2003-08-25 2005-03-17 Hitachi Ltd 液冷システムおよびこれを用いた電子機器
JP2005166267A (ja) * 2003-11-28 2005-06-23 Nissan Motor Co Ltd イオン交換フィルタ
JP2005339814A (ja) * 2004-05-24 2005-12-08 Toyota Motor Corp 燃料電池システムおよびイオン交換器
JP2006120598A (ja) * 2004-09-21 2006-05-11 Toshiba Corp 燃料電池システム

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010073A (ja) * 2008-06-30 2010-01-14 Honda Motor Co Ltd 燃料電池スタック
US9099698B2 (en) 2009-10-19 2015-08-04 Toyota Jidosha Kabushiki Kaisha Fuel cell system having a water flow disruption portion
JP2012018859A (ja) * 2010-07-09 2012-01-26 Honda Motor Co Ltd 燃料電池スタック
JP2012038467A (ja) * 2010-08-04 2012-02-23 Honda Motor Co Ltd 燃料電池スタック
JP2016024850A (ja) * 2014-07-16 2016-02-08 本田技研工業株式会社 燃料電池スタック
JP2017027816A (ja) * 2015-07-23 2017-02-02 トヨタ紡織株式会社 燃料電池用イオン交換器
CN111048805A (zh) * 2019-12-05 2020-04-21 同济大学 一种燃料电池发动机氢水分离装置总成
CN111048805B (zh) * 2019-12-05 2023-02-28 同济大学 一种燃料电池发动机氢水分离装置总成
CN113707907A (zh) * 2021-08-25 2021-11-26 中国第一汽车股份有限公司 一种集成式燃料电池系统和燃料电池汽车

Similar Documents

Publication Publication Date Title
JP2008103263A (ja) 燃料電池システム
US6045934A (en) Solid polymer electrolyte fuel cell
JP6129806B2 (ja) プロトン交換膜燃料電池
US11018354B2 (en) Fuel cell system
US6428916B1 (en) Coolant treatment system for a direct antifreeze cooled fuel cell assembly
JP4877711B2 (ja) 燃料電池システム
JP3706937B2 (ja) 燃料電池システム
US11018356B2 (en) Humidifying and cooling apparatus for fuel cell
JP2003346866A (ja) 燃料電池スタック
JP4959902B2 (ja) 燃料電池電力設備用の周囲下圧力冷媒ループ
JP2015535131A (ja) 燃料電池の加湿を管理する方法およびシステム
JP2002015759A (ja) リン酸型燃料電池の運転方法
JP2007078294A (ja) ガス加湿装置および燃料電池システム
JP2009152013A (ja) 燃料電池システム
JP2008146938A (ja) 燃料電池システム
JP2008053168A (ja) 燃料電池の運転方法及び燃料電池システム
JP7120983B2 (ja) 燃料電池システム
JP5439737B2 (ja) 燃料電池
WO2009040649A1 (en) Fuel cell system and fuel cell system control method
JP2011150940A (ja) 燃料電池システム
WO2003032422A1 (fr) Systeme de pile a combustible et procede de generation d'energie au moyen d'une pile a combustible
JP2008130484A (ja) 燃料電池システム
JP4095569B2 (ja) 燃料電池装置
JP2004119139A (ja) 燃料電池システム
JP2008097891A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403