JP2008094896A - Resin composition for sealing semiconductor and semiconductor device - Google Patents
Resin composition for sealing semiconductor and semiconductor device Download PDFInfo
- Publication number
- JP2008094896A JP2008094896A JP2006275805A JP2006275805A JP2008094896A JP 2008094896 A JP2008094896 A JP 2008094896A JP 2006275805 A JP2006275805 A JP 2006275805A JP 2006275805 A JP2006275805 A JP 2006275805A JP 2008094896 A JP2008094896 A JP 2008094896A
- Authority
- JP
- Japan
- Prior art keywords
- resin composition
- group
- semiconductor
- general formula
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 0 C*(*)c(c(*)c(c(*)c1*)O)c1O Chemical compound C*(*)c(c(*)c(c(*)c1*)O)c1O 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/4501—Shape
- H01L2224/45012—Cross-sectional shape
- H01L2224/45015—Cross-sectional shape being circular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4801—Structure
- H01L2224/48011—Length
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/48227—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/852—Applying energy for connecting
- H01L2224/85201—Compression bonding
- H01L2224/85205—Ultrasonic bonding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/73—Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/102—Material of the semiconductor or solid state bodies
- H01L2924/1025—Semiconducting materials
- H01L2924/10251—Elemental semiconductors, i.e. Group IV
- H01L2924/10253—Silicon [Si]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1301—Thyristor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15311—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Abstract
Description
本発明は、半導体封止用樹脂組成物及び半導体装置に関するものである。 The present invention relates to a semiconductor sealing resin composition and a semiconductor device.
近年の電子機器の小型化、軽量化、高性能化の市場動向において、半導体素子(以下、「素子」、「チップ」ともいう。)の高集積化が年々進み、また半導体装置(以下、「パッケージ」ともいう。)の表面実装化が促進されるなかで、半導体封止用樹脂組成物(以下、「封止材」又は「封止材料」ともいう。)への要求は益々厳しいものとなってきている。特に半導体装置の表面実装化が一般的になってきている現状では、吸湿した半導体装置が半田処理時に高温にさらされ、気化した水蒸気の爆発的応力により半導体装置にクラックが発生したり、或いは半導体素子やリードフレームと半導体封止用樹脂組成物の硬化物との界面に剥離が発生したりすることにより、半導体装置の電気的信頼性を大きく損なう不良が生じ、これらの不良の防止、即ち耐半田性の向上が大きな課題となっている。さらに鉛の使用撤廃の機運から、従来よりも融点の高い無鉛半田の使用が高まってきている。この無鉛半田の適用により実装温度を従来に比べ約20℃高くする必要があり、実装後の半導体装置の信頼性が現状に比べ著しく低下する不具合が生じてきている。また、環境問題からBr化合物や酸化アンチモン等の難燃剤を使わずに耐燃性を付与する要求も増えてきている。耐半田性、耐燃性向上については、無機充填剤を高充填化することにより、前者は低吸水化、後者は燃えやすい樹脂分の低減ができ、両方の改良手法としては有効とされている。このような背景から、最近の半導体封止用樹脂組成物の動向は、成形時に低粘度で高流動性を維持するために、より低粘度の結晶性エポキシ樹脂を適用し、より多くの無機充填剤を配合する傾向が強くなっている(例えば、特許文献1参照。)。 In recent years, electronic devices have become more and more compact in size, light weight, and high in performance, and semiconductor elements (hereinafter referred to as “elements” and “chips”) have been increasingly integrated, and semiconductor devices (hereinafter “ The demand for a resin composition for encapsulating a semiconductor (hereinafter also referred to as “encapsulant” or “encapsulant”) is becoming increasingly severe as surface mounting of a package is also promoted. It has become to. In particular, surface mounting of semiconductor devices has become common, and moisture-absorbed semiconductor devices are exposed to high temperatures during soldering, and cracks are generated in the semiconductor devices due to the explosive stress of vaporized water vapor, or semiconductors Delamination occurs at the interface between the element or lead frame and the cured resin composition for semiconductor encapsulation, resulting in defects that greatly impair the electrical reliability of the semiconductor device. Improvement of solderability is a major issue. Furthermore, the use of lead-free solder, which has a higher melting point than before, has been increasing due to the abolition of the use of lead. By using this lead-free solder, it is necessary to increase the mounting temperature by about 20 ° C. compared to the conventional case, and there has been a problem that the reliability of the semiconductor device after mounting is significantly reduced compared to the current situation. Moreover, the request | requirement which provides flame resistance, without using flame retardants, such as a Br compound and antimony oxide, from the environmental problem is also increasing. For improving solder resistance and flame resistance, the former can reduce water absorption and the latter can reduce flammable resin by increasing the filling of the inorganic filler, which is effective as an improved technique for both. Against this background, the recent trend of resin compositions for semiconductor encapsulation is to apply low-viscosity crystalline epoxy resin and maintain more inorganic filling in order to maintain low viscosity and high fluidity during molding. The tendency to mix | blend an agent has become strong (for example, refer patent document 1).
一方、半導体装置は自動車等屋外使用機器においても多数搭載されるようになってきており、屋内機器で用いられた場合よりも一層厳しい環境に耐える信頼性を要求される様になっている。高温又は多湿下では、エポキシ樹脂に含まれる塩素イオン等のイオン性不純物が動きやすくなるため、半導体素子上のアルミ配線の腐食が進み易く、従来の半導体封止用樹脂組成物では、車載用途での必須要求項目である耐湿信頼性に難点があった。耐湿信頼性の不良原因となるエポキシ樹脂に含まれる塩素イオン等のイオン性不純物は、エポキシ樹脂の製造工程におけるフェノールのエピハロヒドリンによるグリシジルエーテル化に起因する。従来のクレゾールノボラック型エポキシ樹脂では溶剤への溶解性が高いため、水洗が可能となり、より低塩素な(高純度な)エポキシ樹脂を得ることができるが、無機充填剤の高充填化のために用いられる低粘度結晶性エポキシ樹脂は溶剤への溶解性が悪いことから、高純度なエポキシ樹脂を得ることが難しい(例えば、特許文献2参照。)。 On the other hand, a large number of semiconductor devices are installed in outdoor equipment such as automobiles, and reliability that can withstand a severer environment than that used in indoor equipment is required. Under high temperature or high humidity, ionic impurities such as chlorine ions contained in the epoxy resin are likely to move. Therefore, corrosion of aluminum wiring on the semiconductor element is likely to proceed. There was a difficulty in moisture resistance reliability which is an essential requirement item. Ionic impurities such as chlorine ions contained in the epoxy resin that cause poor moisture resistance reliability are attributed to glycidyl etherification of phenol with epihalohydrin in the epoxy resin production process. The conventional cresol novolac type epoxy resin has high solubility in a solvent, so that it can be washed with water, and a lower chlorine (high purity) epoxy resin can be obtained. Since the low-viscosity crystalline epoxy resin used has poor solubility in a solvent, it is difficult to obtain a high-purity epoxy resin (see, for example, Patent Document 2).
耐湿信頼性の不良原因となる半導体封止用樹脂組成物に含まれるイオン性不純物を捕捉するために、Bi系無機化合物を含んだイオン捕捉剤やハイドロタルサイト類化合物を用いて陰イオン性不純物を捕捉する提案がなされているが(例えば、特許文献3、4、5参照。)、十分な耐湿信頼性向上の効果が得られていなかった。
以上から、リードフレームパッケージにおいては、無機充填剤を高充填化しても、流動性、ひいては耐半田性、耐燃性を損なうことなく、耐湿信頼性の要求を満たすことができる技術が求められていた。
In order to capture the ionic impurities contained in the resin composition for encapsulating semiconductors, which causes poor moisture resistance reliability, an anionic impurity using an ion scavenger or hydrotalcite compound containing a Bi-based inorganic compound Has been proposed (see, for example,
As described above, in the lead frame package, there has been a demand for a technology capable of satisfying the requirement of moisture resistance reliability without impairing fluidity, and consequently solder resistance and flame resistance, even when the inorganic filler is highly filled. .
さらに電子機器の小型化、軽量化、高機能化の市場動向において、半導体の高集積化が年々進み、また、半導体パッケージの表面実装化が促進されるなかで、新規にエリア表面実装のパッケージが開発され、従来構造のパッケージから移行し始めている。
エリア表面実装型半導体パッケージとしてはボール・グリッド・アレイ(以下、「BGA」という。)、あるいは更に小型化を追求したチップ・サイズ・パッケージ(以下、「CSP」という。)が代表的であるが、これらは従来のクワッド・フラット・パッケージ(以下、「QFP」という。)、スモール・アウトライン・パッケージ(以下、「SOP」という。)に代表される表面実装パッケージでは限界に近づいている多ピン化・高速化への要求に対応するために開発されたものである。構造としては、ビスマレイミド・トリアジン(以下、「BT」という。)樹脂/銅箔回路基板に代表される硬質回路基板、あるいはポリイミド樹脂フィルム/銅箔回路基板に代表されるフレキシブル回路基板の片面上に半導体素子を搭載し、その素子搭載面、即ち基板の片面のみが半導体封止用樹脂組成物などで成形・封止されている。また基板の素子搭載面の反対面には半田ボールを格子状に並列して形成し、パッケージを表面実装するセカンドボードとの接合を行う特徴を有している。更に、素子を搭載する基板としては、上記有機回路基板以外にもリードフレーム等の金属基板を用いる構造も考案されている。
Furthermore, in the market trend of downsizing, weight reduction, and high functionality of electronic devices, semiconductors have been increasingly integrated and the surface mounting of semiconductor packages has been promoted. Developed and starting to migrate from traditionally structured packages.
The area surface mount type semiconductor package is typically a ball grid array (hereinafter referred to as “BGA”) or a chip size package (hereinafter referred to as “CSP”) in pursuit of further miniaturization. These are high-pin counts that are approaching the limit in conventional surface mount packages such as quad flat packages (hereinafter referred to as “QFP”) and small outline packages (hereinafter referred to as “SOP”).・ It was developed to meet the demand for higher speed. The structure is one side of a rigid circuit board typified by bismaleimide triazine (hereinafter referred to as “BT”) resin / copper foil circuit board or a flexible circuit board typified by polyimide resin film / copper foil circuit board. A semiconductor element is mounted on the element, and only the element mounting surface, that is, one side of the substrate is molded and sealed with a resin composition for semiconductor sealing. In addition, solder balls are formed in parallel in a lattice pattern on the surface opposite to the element mounting surface of the substrate, and the package is bonded to a second board for surface mounting. Furthermore, a structure using a metal substrate such as a lead frame in addition to the organic circuit substrate has been devised as a substrate on which elements are mounted.
これらエリア表面実装型半導体パッケージの構造は基板の素子搭載面のみを半導体封止用樹脂組成物で封止し、半田ボール形成面側は封止しないという片面封止の形態をとっている。ごく希に、素子を搭載する基板としてリードフレーム等の金属基板を用いる場合などでは、半田ボール形成面にも数十μm程度の封止樹脂層が存在することもあるが、素子搭載面では数百μmから数mm程度の封止樹脂層が形成されるため、実質的に片面封止となっている。このため、有機基板や金属基板と半導体封止用樹脂組成物の硬化物との間での熱膨張・熱収縮の不整合、あるいは半導体封止用樹脂組成物の成形・硬化時の硬化収縮による影響により、エリア表面実装型半導体パッケージでは成形直後から反りが発生しやすい。また、エリア表面実装型半導体パッケージを実装するセカンドボード上に半田接合を行う場合、200℃以上の加熱工程を経るが、この際にパッケージの反りが発生し、多数の半田ボールが平坦とならず、パッケージを実装するセカンドボードから浮き上がってしまい、電気的接合信頼性が低下する不具合が起こる場合もある。 The structure of these area surface mount type semiconductor packages is in the form of single-side sealing in which only the element mounting surface of the substrate is sealed with a resin composition for semiconductor sealing, and the solder ball forming surface side is not sealed. In rare cases, when a metal substrate such as a lead frame is used as a substrate on which an element is mounted, a sealing resin layer of about several tens of μm may exist on the solder ball formation surface, but on the element mounting surface, Since a sealing resin layer of about 100 μm to several mm is formed, it is substantially single-side sealed. For this reason, due to mismatch of thermal expansion / shrinkage between the organic substrate or metal substrate and the cured resin composition for semiconductor encapsulation, or due to curing shrinkage during molding / curing of the semiconductor encapsulation resin composition. Due to the influence, the area surface mount type semiconductor package is likely to warp immediately after molding. In addition, when solder bonding is performed on a second board for mounting an area surface mount type semiconductor package, a heating process of 200 ° C. or higher is performed, but at this time, warpage of the package occurs, and a large number of solder balls do not become flat. In some cases, the second board on which the package is mounted floats up and the reliability of electrical connection decreases.
前記エリア表面実装型半導体パッケージのような基板上の実質的に片面のみを半導体封止用樹脂組成物で封止したパッケージにおいて、反りを低減するには、半導体封止用樹脂組成物の硬化収縮を小さくすること、及び基板の線膨張係数と半導体封止用樹脂組成物の硬化物の線膨張係数を近づける2つの方法が重要である。
有機基板では、BT樹脂やポリイミド樹脂のような高いガラス転移温度の樹脂が広く用いられており、これらは半導体封止用樹脂組成物の成形温度である170℃近辺よりも高いTgを有する。従って、これらの有機基板は、半導体封止用樹脂組成物の成形温度から室温までの冷却過程では有機基板の線膨張係数がα1の領域のみで熱収縮する。従って、半導体封止用樹脂組成物もその硬化物のTgが高く、且つその硬化物のα1が回路基板と同程度であり、更にその硬化収縮がゼロであればパッケージの反りはほぼゼロになると考えられる。このため、トリフェノールメタン型エポキシ樹脂とトリフェノールメタン型フェノール樹脂との組合せによりTgを高くし、半導体封止用樹脂組成物の硬化収縮を小さくする手法が提案されている(例えば、特許文献6参照。)。一方、溶融粘度の低い樹脂を用いて無機充填剤の配合量を高めることにより、α1を基板に合わせる手法が提案されている(例えば、特許文献7参照。)。しかしながら、これらの半導体封止用樹脂組成物では反りは生じ難いものの、硬化物の吸水率が高いため、半田処理時にクラックが生じ易かったり、耐燃性も難燃剤を用いないと実用には耐えられない場合があった。
以上から、エリア表面実装型半導体パッケージにおいても、無機充填剤を高充填化しても、流動性、ひいては耐半田性、耐燃性を損なうことなく、低反り性の要求を満たすことができる技術が求められていた。
以上のように、リードフレームパッケージ、エリア表面実装型半導体パッケージの両方において、要求される高いレベルの耐半田性、耐燃性を満足するとともに、高い流動性、耐湿信頼性、低反り性が得られる封止材の開発が望まれていた。
In a package in which only one surface on a substrate such as the area surface mount semiconductor package is sealed with a resin composition for semiconductor encapsulation, the shrinkage of the resin composition for semiconductor encapsulation is reduced in order to reduce warpage. Two methods for reducing the linear expansion coefficient of the substrate and the linear expansion coefficient of the cured resin composition for semiconductor encapsulation are important.
In the organic substrate, resins having a high glass transition temperature such as BT resin and polyimide resin are widely used, and these have a Tg higher than around 170 ° C. which is the molding temperature of the resin composition for semiconductor encapsulation. Accordingly, these organic substrates thermally shrink only in the region where the linear expansion coefficient of the organic substrate is α1 during the cooling process from the molding temperature of the resin composition for semiconductor encapsulation to room temperature. Therefore, if the Tg of the cured product of the resin composition for semiconductor encapsulation is high, the α1 of the cured product is about the same as that of the circuit board, and the cure shrinkage is zero, the warping of the package becomes almost zero. Conceivable. For this reason, a technique has been proposed in which Tg is increased by a combination of a triphenolmethane type epoxy resin and a triphenolmethane type phenol resin, and the curing shrinkage of the resin composition for semiconductor encapsulation is reduced (for example, Patent Document 6). reference.). On the other hand, a method of matching α1 with a substrate by increasing the blending amount of the inorganic filler using a resin having a low melt viscosity has been proposed (see, for example, Patent Document 7). However, although these semiconductor sealing resin compositions are unlikely to warp, the cured product has a high water absorption rate, so that cracks are likely to occur during solder processing, and the flame resistance is also practical without using a flame retardant. There was no case.
Based on the above, there is a need for a technology that can meet the requirements for low warpage in area surface-mount semiconductor packages without sacrificing fluidity, and consequently solder resistance and flame resistance, even if the inorganic filler is highly filled. It was done.
As described above, both the lead frame package and the area surface mount type semiconductor package satisfy the required high level of solder resistance and flame resistance, as well as high fluidity, moisture resistance reliability, and low warpage. Development of a sealing material has been desired.
本発明は、耐半田性、耐燃性、流動性に優れ、かつ耐湿信頼性、又は低反り性にも優れた半導体封止用樹脂組成物およびそれを用いた半導体装置を提供するものである。 The present invention provides a resin composition for encapsulating a semiconductor excellent in solder resistance, flame resistance and fluidity, and excellent in moisture resistance reliability or low warpage, and a semiconductor device using the same.
本発明は、
[1] 下記一般式(1)で表されるエポキシ樹脂(A)と、フェノール性水酸基を2個以上含む化合物(B)と、無機充填剤(C)と、硬化促進剤(D)と、を含むことを特徴とする半導体封止用樹脂組成物、
The present invention
[1] An epoxy resin (A) represented by the following general formula (1), a compound (B) containing two or more phenolic hydroxyl groups, an inorganic filler (C), a curing accelerator (D), A resin composition for semiconductor encapsulation, comprising:
[2] 前記第[1]項に記載の半導体封止用樹脂組成物において、一般式(1)で表されるエポキシ樹脂(A)のR2がメチル基であることを特徴とする半導体封止用樹脂組成物、
[3] 前記第[1]項又は第[2]項に記載の半導体封止用樹脂組成物において、一般式(1)で表されるエポキシ樹脂(A)中に含まれる全塩素量が300ppm以下であることを特徴とする半導体封止用樹脂組成物、
[2] The semiconductor sealing resin composition according to [1], wherein R2 of the epoxy resin (A) represented by the general formula (1) is a methyl group. Resin composition,
[3] In the resin composition for encapsulating a semiconductor according to [1] or [2], the total chlorine content in the epoxy resin (A) represented by the general formula (1) is 300 ppm. A resin composition for semiconductor encapsulation, characterized by:
[4] 前記第[1]項ないし第[3]項のいずれかに記載の半導体封止用樹脂組成物において、フェノール性水酸基を2個以上含む化合物(B)が下記一般式(2)で表される化合物を含むことを特徴とする半導体封止用樹脂組成物、
[5] 前記第[1]項ないし第[4]項のいずれかに記載の半導体封止用樹脂組成物において、フェノール性水酸基を2個以上含む化合物(B)が下記一般式(3)で表される化合物を含むことを特徴とする半導体封止用樹脂組成物、 [5] In the resin composition for semiconductor encapsulation according to any one of [1] to [4], the compound (B) containing two or more phenolic hydroxyl groups is represented by the following general formula (3). A resin composition for encapsulating a semiconductor, comprising a compound represented by:
[6] 前記第[1]項ないし第[4]項のいずれかに記載の半導体封止用樹脂組成物において、フェノール性水酸基を2個以上含む化合物(B)が下記一般式(4)で表される化合物を含むことを特徴とする半導体封止用樹脂組成物、 [6] In the resin composition for semiconductor encapsulation according to any one of [1] to [4], the compound (B) containing two or more phenolic hydroxyl groups is represented by the following general formula (4). A resin composition for encapsulating a semiconductor, comprising a compound represented by:
[7] 前記第[1]項ないし第[6]項のいずれかに記載の半導体封止用樹脂組成物において、前記硬化促進剤(D)が、下記一般式(5)で表される化合物、下記一般式(6)で表される化合物、下記一般式(7)で表される化合物及び下記一般式(8)で表される化合物から選ばれる少なくとも1つであることを特徴とする半導体封止用樹脂組成物、 [7] In the resin composition for semiconductor encapsulation according to any one of [1] to [6], the curing accelerator (D) is a compound represented by the following general formula (5): A semiconductor represented by the following general formula (6), a compound represented by the following general formula (7), and a compound represented by the following general formula (8): Sealing resin composition,
[8] 前記第[1]項ないし第[7]項のいずれかに記載の半導体封止用樹脂組成物において、更にシランカップリング剤(E)と、芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(F)を含むことを特徴とする半導体封止用樹脂組成物、
[9] 前記第[8]項に記載の半導体封止用樹脂組成物において、前記化合物(F)は、芳香環を構成する2個の隣接する炭素原子にそれぞれ水酸基が結合した化合物であることを特徴とする半導体封止用樹脂組成物、
[10] 前記第[8]項に記載の半導体封止用樹脂組成物において、前記化合物(F)は、ナフタレン環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物であることを特徴とする半導体封止用樹脂組成物、
[11] 前記第[8]項に記載の半導体封止用樹脂組成物において、前記化合物(F)は、ナフタレン環を構成する2個の隣接する炭素原子にそれぞれ水酸基が結合した化合物であることを特徴とする半導体封止用樹脂組成物、
[12] 前記第[8]項ないし第[11]項のいずれかに記載の半導体封止用樹脂組成物において、前記化合物(F)を当該樹脂組成物全体の0.01重量%以上、1重量%以下含むことを特徴とする半導体封止用樹脂組成物、
[13] 前記第[8]項ないし第[12]項のいずれかに記載の半導体封止用樹脂組成物において、前記シランカップリング剤(E)を当該樹脂組成物全体の0.01重量%以上、1重量%以下含むことを特徴とする半導体封止用樹脂組成物、
[14] 前記第[1]項ないし第[13]項のいずれかに記載の半導体封止用樹脂組成物において、前記無機充填剤(C)を当該樹脂組成物全体の80重量%以上、92重量%以下含むことを特徴とする半導体封止用樹脂組成物、
[15] 前記第[1]項ないし第[14]項のいずれかに記載の半導体封止用樹脂組成物の硬化物により半導体素子を封止してなることを特徴とする半導体装置、
[16] 温度80ないし150℃、相対湿度80ないし100%の高温多湿下での耐湿信頼性が要求される電子部品に使用される半導体装置であって、前記第[5]項に記載の半導体封止用樹脂組成物の硬化物により半導体素子を封止してなることを特徴とする半導体装置、
[17] 基板の片面に半導体素子が搭載され、該半導体素子が搭載された基板面側の実質的に片面のみが前記第[6]に記載の半導体封止用樹脂組成物の硬化物により封止されてなることを特徴とするエリア表面実装型半導体装置、
である。
[8] In the resin composition for encapsulating a semiconductor according to any one of [1] to [7], the silane coupling agent (E) and two or more adjacent members constituting an aromatic ring A resin composition for encapsulating a semiconductor, comprising a compound (F) in which a hydroxyl group is bonded to each carbon atom,
[9] In the resin composition for encapsulating a semiconductor according to [8], the compound (F) is a compound in which a hydroxyl group is bonded to each of two adjacent carbon atoms constituting an aromatic ring. A resin composition for encapsulating a semiconductor,
[10] In the semiconductor sealing resin composition described in [8], the compound (F) is a compound in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting a naphthalene ring. A resin composition for encapsulating a semiconductor,
[11] In the resin composition for encapsulating a semiconductor according to [8], the compound (F) is a compound in which a hydroxyl group is bonded to each of two adjacent carbon atoms constituting a naphthalene ring. A resin composition for encapsulating a semiconductor,
[12] In the resin composition for encapsulating a semiconductor according to any one of [8] to [11], the compound (F) is contained in an amount of 0.01% by weight or more based on the total amount of the resin composition. A resin composition for encapsulating a semiconductor, comprising:
[13] In the resin composition for semiconductor encapsulation according to any one of [8] to [12], the silane coupling agent (E) is 0.01% by weight of the resin composition as a whole. Or more, 1 wt% or less, a semiconductor sealing resin composition,
[14] In the resin composition for semiconductor encapsulation according to any one of [1] to [13], the inorganic filler (C) is 80% by weight or more of the total resin composition, 92 A resin composition for encapsulating a semiconductor, comprising:
[15] A semiconductor device comprising a semiconductor element sealed with a cured product of the semiconductor sealing resin composition according to any one of [1] to [14].
[16] A semiconductor device used for an electronic component that is required to have moisture resistance reliability under high temperature and high humidity at a temperature of 80 to 150 ° C. and a relative humidity of 80 to 100%. A semiconductor device characterized by sealing a semiconductor element with a cured product of a sealing resin composition;
[17] A semiconductor element is mounted on one side of the substrate, and substantially only one side of the substrate side on which the semiconductor element is mounted is sealed with a cured product of the resin composition for semiconductor sealing described in the above [6]. Area surface mount semiconductor device characterized by being stopped,
It is.
本発明に従うと、耐半田性、耐燃性、流動性に優れ、かつ耐湿信頼性、又は低反り性にも優れた半導体封止用樹脂組成物を得ることができる。 According to the present invention, it is possible to obtain a resin composition for encapsulating a semiconductor which is excellent in solder resistance, flame resistance and fluidity, and also excellent in moisture resistance reliability and low warpage.
本発明は、一般式(1)で表されるエポキシ樹脂(A)と、フェノール性水酸基を2個以上含む化合物(B)と、無機充填剤(C)と、硬化促進剤(D)と、を含むことにより、高い耐半田性、耐燃性、流動性に優れ、かつ耐湿信頼性又は低反り性にも優れた半導体封止用樹脂組成物が得られるものである。
以下、各成分について詳細に説明する。
The present invention relates to an epoxy resin (A) represented by the general formula (1), a compound (B) containing two or more phenolic hydroxyl groups, an inorganic filler (C), a curing accelerator (D), Thus, a resin composition for encapsulating a semiconductor excellent in high solder resistance, flame resistance and fluidity, and excellent in moisture resistance reliability or low warpage can be obtained.
Hereinafter, each component will be described in detail.
本発明で用いられる下記一般式(1)で表されるエポキシ樹脂(A)は、分子内にナフタレン骨格を含有することにより、これを用いた半導体封止用樹脂組成物の硬化物の線膨張係数が小さくなり、低反り性に優れるエリア表面実装型半導体装置が得られる効果を有する。また、下記一般式(1)で表されるエポキシ樹脂(A)中に含まれるナフタレン骨格は耐熱安定性にも優れるため、これを用いた半導体封止用樹脂組成物の硬化物の耐燃性を向上させる効果も有する。下記一般式(1)で表されるエポキシ樹脂(A)において、−O−のナフタレン環への結合位置は2位と7位であるが、これにより、従来のナフタレン型エポキシ樹脂である、−O−のナフタレン環への結合位置が1位と6位であるエポキシ樹脂、例えば、1,6−ジグリシジルエーテルナフタレン(大日本インキ化学工業株式会社製、HP−4032)等と比較して、結晶化が可能となり、室温でのハンドリング性に優れるという点で優れている。 The epoxy resin (A) represented by the following general formula (1) used in the present invention contains a naphthalene skeleton in the molecule, so that the linear expansion of a cured product of the resin composition for semiconductor encapsulation using the epoxy resin (A) There is an effect that an area surface mount type semiconductor device having a small coefficient and excellent in low warpage can be obtained. Moreover, since the naphthalene skeleton contained in the epoxy resin (A) represented by the following general formula (1) is also excellent in heat stability, the flame resistance of the cured product of the resin composition for semiconductor encapsulation using the same It also has the effect of improving. In the epoxy resin (A) represented by the following general formula (1), the bonding positions of —O— to the naphthalene ring are the 2nd and 7th positions, which is a conventional naphthalene type epoxy resin. Compared with the epoxy resin in which the bonding position of O- to the naphthalene ring is 1-position and 6-position, for example, 1,6-diglycidyl ether naphthalene (manufactured by Dainippon Ink & Chemicals, Inc., HP-4032), It is excellent in that it can be crystallized and has excellent handling properties at room temperature.
下記一般式(1)で表されるエポキシ樹脂(A)のn1は、0ないし5の整数である化合物の混合物であり、好ましくはn1の値が0である化合物が主成分である混合物であることが望ましい。n1の値が0である化合物が主成分である場合には、該エポキシ樹脂は従来のビフェニル型エポキシ樹脂と同等程度の低分子量となり、かなりの低粘度性を示すこととなるため、無機充填剤を高充填化させても成形時の半導体封止用樹脂組成物に高い流動性を付与することができる。これにより、半導体封止用樹脂組成物の硬化物の吸湿率を低下させることができる。また、n1の値が0である化合物が主成分である場合には、n1の値が0である化合物が2官能性エポキシ樹脂であることから、半導体封止用樹脂組成物の硬化物の弾性率を低くすることができる。上記のとおり、n1の値が0である化合物が主成分である場合には、該エポキシ樹脂を用いた半導体封止用樹脂組成物はその硬化物の吸湿性を低下させることができ、また、その硬化物の弾性率を低下させることができるため、耐半田性に優れた半導体装置を得ることができる。また、n1の値が0である化合物が主成分である場合には、該エポキシ樹脂の低粘度化により半導体封止用樹脂組成物において無機充填剤を高充填化させることができるため、半導体封止用樹脂組成物の硬化物の線膨張係数を低下させることができ、更に低反り性に優れた半導体装置を得ることができる。 In the epoxy resin (A) represented by the following general formula (1), n1 is a mixture of compounds having an integer of 0 to 5, preferably a mixture in which a compound having a value of n1 of 0 is a main component. It is desirable. When the compound whose n1 value is 0 is the main component, the epoxy resin has a low molecular weight comparable to that of the conventional biphenyl type epoxy resin, and exhibits a considerably low viscosity. High fluidity can be imparted to the resin composition for semiconductor encapsulation at the time of molding even if the amount is made high. Thereby, the moisture absorption rate of the hardened | cured material of the resin composition for semiconductor sealing can be reduced. Moreover, when the compound whose n1 value is 0 is the main component, since the compound whose n1 value is 0 is a bifunctional epoxy resin, the elasticity of the cured product of the resin composition for semiconductor encapsulation The rate can be lowered. As described above, when the compound whose n1 value is 0 is the main component, the resin composition for semiconductor encapsulation using the epoxy resin can reduce the hygroscopicity of the cured product, Since the elastic modulus of the cured product can be reduced, a semiconductor device having excellent solder resistance can be obtained. In addition, when the compound whose n1 value is 0 is the main component, the inorganic filler can be highly filled in the resin composition for semiconductor encapsulation by reducing the viscosity of the epoxy resin. The linear expansion coefficient of the cured product of the stopping resin composition can be reduced, and a semiconductor device excellent in low warpage can be obtained.
下記一般式(1)中のR1は炭素数1ないし20の炭化水素基であり、アルキル基、芳香族基を含む炭化水素基が好ましく、互いに同じであっても異なっていても良いが、芳香族基を含む炭化水素基であることが好ましい。それにより、ナフタレン骨格に加え、さらに芳香族炭素が多くなり、これを用いた半導体封止用樹脂組成物の硬化物は特に耐燃性に優れるという効果を有する。また、下記一般式(1)中のR2は、炭素数1ないし4のアルキル基であることが好ましく、メチル基であることがより好ましい。従来のように、通常のエピクロルヒドリンによってジヒドロキシナフタレンをグリシジルエーテル化すると、低分子量で高反応性となり、感作性や変異原性を引き起こす可能性のあるエポキシ樹脂となるところを、エポキシ基にメチル基等の低級アルキル基を導入することにより、得られるエポキシ樹脂の反応性を適度に抑制し、上記のような不具合を従来のエポキシ樹脂よりも改善することができる。以上のとおり、R2が炭素数1ないし4の低級アルキル基である一般式(1)で表されるエポキシ樹脂(A)は、半導体封止用樹脂組成物の低粘度化を実現することができる、工業的に有用なエポキシ樹脂である。 R1 in the following general formula (1) is a hydrocarbon group having 1 to 20 carbon atoms and is preferably a hydrocarbon group containing an alkyl group or an aromatic group, which may be the same or different from each other. It is preferably a hydrocarbon group containing a group. Thereby, in addition to the naphthalene skeleton, aromatic carbon is further increased, and the cured product of the resin composition for semiconductor encapsulation using this has an effect of being particularly excellent in flame resistance. R2 in the following general formula (1) is preferably an alkyl group having 1 to 4 carbon atoms, and more preferably a methyl group. As in the past, when dihydroxynaphthalene is converted to glycidyl ether with normal epichlorohydrin, it becomes highly reactive at low molecular weight, and it becomes an epoxy resin that can cause sensitization and mutagenicity. By introducing a lower alkyl group such as the above, the reactivity of the resulting epoxy resin can be moderately suppressed, and the above-mentioned problems can be improved as compared with conventional epoxy resins. As described above, the epoxy resin (A) represented by the general formula (1) in which R2 is a lower alkyl group having 1 to 4 carbon atoms can realize a low viscosity of the resin composition for semiconductor encapsulation. It is an industrially useful epoxy resin.
また、下記一般式(1)で表されるエポキシ樹脂(A)は、高いレベルの低塩素樹脂であるため、耐湿信頼性にも非常に優れる。下記一般式(1)で表されるエポキシ樹脂(A)に含まれる全塩素量としては、300ppm以下であることが好ましく、200ppm以下であることがより好ましい。含まれる全塩素量が上記範囲内であると、半導体装置の耐湿信頼性を向上させる効果を有する。尚、エポキシ樹脂(A)に含まれる塩素量の測定方法については、特に限定するものではないが、例えば、JIS K 7243−3などに準じて測定することができる。 Moreover, since the epoxy resin (A) represented by the following general formula (1) is a high-level low-chlorine resin, it is extremely excellent in moisture resistance reliability. The total amount of chlorine contained in the epoxy resin (A) represented by the following general formula (1) is preferably 300 ppm or less, and more preferably 200 ppm or less. If the total chlorine content is within the above range, the moisture resistance reliability of the semiconductor device is improved. In addition, although it does not specifically limit about the measuring method of the chlorine content contained in an epoxy resin (A), For example, it can measure according to JISK7243-3.
本発明で用いられる下記一般式(1)で表されるエポキシ樹脂(A)としては、例えば、下記式(9)で表される化合物等が挙げられるが、式(1)の構造であれば特に限定するものではない。また、本発明で用いられる下記一般式(1)で表されるエポキシ樹脂(A)の製法については、特に限定するものではないが、例えば、原料フェノール化合物としては2,7−ジヒドロキシナフタレンを用い、β−メチルエピクロルヒドリン等をエポキシ化剤として用いて、公知のエポキシ化製法に従って合成する方法などにより得ることができる。 Examples of the epoxy resin (A) represented by the following general formula (1) used in the present invention include a compound represented by the following formula (9). There is no particular limitation. Moreover, although it does not specifically limit about the manufacturing method of the epoxy resin (A) represented by following General formula (1) used by this invention, For example, 2, 7- dihydroxy naphthalene is used as a raw material phenol compound. , Β-methylepichlorohydrin or the like as an epoxidizing agent can be obtained by a method of synthesis according to a known epoxidation process.
本発明では、前記一般式(1)で表されるエポキシ樹脂(A)を用いることによる効果が損なわれない範囲で、他のエポキシ樹脂を併用することができる。併用できるエポキシ樹脂としては、例えばビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、ジヒドロアントラヒドロキノンのグリシジルエーテル化エポキシ樹脂等が挙げられる。半導体封止用樹脂組成物としての耐湿信頼性を考慮すると、イオン性不純物であるNaイオンやClイオンが極力少ない方が好ましく、硬化性の点からエポキシ当量としては100g/eq以上500g/eq以下のものが好ましい。
併用する場合における前記一般式(1)で表されるエポキシ樹脂(A)の配合割合としては、全エポキシ樹脂に対して、好ましくは10重量%以上であり、更に好ましくは30重量%以上、特に好ましくは50重量%以上である。エポキシ樹脂(A)の配合割合が上記範囲内であると、耐湿信頼性、低反り性向上効果を得ることができる。
In this invention, another epoxy resin can be used together in the range by which the effect by using the epoxy resin (A) represented by the said General formula (1) is not impaired. Examples of epoxy resins that can be used in combination include biphenyl type epoxy resins, bisphenol type epoxy resins, stilbene type epoxy resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins, triphenolmethane type epoxy resins, and phenol aralkyl type epoxy resins having a phenylene skeleton. Resin, phenol aralkyl type epoxy resin having biphenylene skeleton, naphthol type epoxy resin, alkyl modified triphenol methane type epoxy resin, triazine nucleus-containing epoxy resin, dicyclopentadiene modified phenol type epoxy resin, dihydroanthrahydroquinone glycidyl etherified epoxy resin Etc. In consideration of moisture resistance reliability as a resin composition for semiconductor encapsulation, it is preferable that Na ions and Cl ions, which are ionic impurities, be as small as possible. From the viewpoint of curability, the epoxy equivalent is 100 g / eq or more and 500 g / eq or less. Are preferred.
The blending ratio of the epoxy resin (A) represented by the general formula (1) when used in combination is preferably 10% by weight or more, more preferably 30% by weight or more, particularly with respect to the total epoxy resin. Preferably it is 50 weight% or more. When the blending ratio of the epoxy resin (A) is within the above range, the moisture resistance reliability and the low warpage improving effect can be obtained.
本発明では、硬化剤として、耐燃性、耐湿性、電気特性、硬化性、保存安定性等の点からフェノール性水酸基を2個以上含む化合物(B)を用いる。このフェノール性水酸基を2個以上含む化合物(B)は、1分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定するものではないが、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、トリフェノールメタン型フェノール樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、フェニレン骨格及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン及び/又はビフェニレン骨格を有するナフトールアラルキル樹脂、ビスフェノール化合物、等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。これらのうち、硬化性の点から水酸基当量は90g/eq以上、300g/eq以下のものが好ましい。 In the present invention, a compound (B) containing two or more phenolic hydroxyl groups is used as a curing agent from the viewpoints of flame resistance, moisture resistance, electrical properties, curability, storage stability, and the like. The compound (B) containing two or more phenolic hydroxyl groups is a monomer, oligomer or polymer in general having two or more phenolic hydroxyl groups in one molecule, and its molecular weight and molecular structure are not particularly limited. For example, phenol novolak resin, cresol novolak resin, triphenolmethane type phenol resin, terpene modified phenol resin, dicyclopentadiene modified phenol resin, phenol aralkyl resin having phenylene skeleton and / or biphenylene skeleton, phenylene and / or biphenylene skeleton A naphthol aralkyl resin, a bisphenol compound, etc. are mentioned, These may be used individually by 1 type, or may use 2 or more types together. Among these, the hydroxyl equivalent is preferably 90 g / eq or more and 300 g / eq or less from the viewpoint of curability.
また、本発明では、フェノール性水酸基を2個以上含む化合物(B)として下記一般式(2)で表される化合物を含むことが好ましい。下記一般式(2)で表される化合物は、フェニレン、ビフェニレン、ナフチレン骨格を含むアラルキル基(−CH2−R3−CH2−)を有することから、ノボラック型フェノール樹脂と比べて架橋点間距離が長いため、これらを用いた半導体封止用樹脂組成物の硬化物は高温下において低弾性率化され、且つフェノール性水酸基の含有割合が少ないことから、これらを用いた半導体封止用樹脂組成物の硬化物の低吸水化も実現することができる。これらの特性の発現により、耐半田性向上に寄与することができる。さらにナフチレン骨格を含有する化合物においては、ナフタレン環に起因する剛直性によるTgの上昇や、その平面構造に起因する分子間相互作用による線膨張係数の低下により、エリア表面実装型半導体パッケージにおける低反り性を向上させることができる。また、下記一般式(2)で表される化合物において、フェノール性水酸基を含有する芳香族基(−R4(OH)−)としては、ヒドロキシフェニレン基又は1−ヒドロキシナフチレン基、2−ヒドロキシナフチレン基のいずれでもよいが、特にヒドロキシナフチレン基である場合は、前述のナフチレン骨格を含有する化合物と同様に、これを用いた半導体封止用樹脂組成物の硬化物におけるTgの上昇や線膨張係数の低下により、低反り性を向上させる効果が得られ、さらに芳香族炭素を多く有することから、これを用いた半導体封止用樹脂組成物の硬化物における耐燃性の向上も実現することができる。
本発明で用いられる下記一般式(2)で表される化合物としては、例えば、フェニレン骨格を含有するフェノールアラルキル樹脂、下記一般式(3)で表されるビフェニレン骨格を含有するフェノールアラルキル樹脂、ナフチレン骨格を含有するフェノールアラルキル樹脂、下記一般式(4)で表されるフェニレン骨格を含有するナフトールアラルキル樹脂が挙げられるが、下記一般式(2)の構造であれば特に限定するものではない。
Moreover, in this invention, it is preferable that the compound represented by following General formula (2) is included as a compound (B) containing two or more phenolic hydroxyl groups. Since the compound represented by the following general formula (2) has an aralkyl group (—CH 2 —R 3 —CH 2 —) containing a phenylene, biphenylene, or naphthylene skeleton, the distance between cross-linking points as compared with a novolak type phenol resin. Therefore, since the cured product of the resin composition for semiconductor encapsulation using these has a low elastic modulus at high temperature and the content of phenolic hydroxyl groups is small, the resin composition for semiconductor encapsulation using these is used. The water absorption of the cured product can also be reduced. The manifestation of these characteristics can contribute to the improvement of solder resistance. Further, in a compound containing a naphthylene skeleton, low warpage in an area surface mount type semiconductor package due to an increase in Tg due to rigidity due to the naphthalene ring and a decrease in linear expansion coefficient due to intermolecular interaction due to its planar structure. Can be improved. In the compound represented by the following general formula (2), the aromatic group (-R4 (OH)-) containing a phenolic hydroxyl group may be a hydroxyphenylene group, 1-hydroxynaphthylene group, 2-hydroxynaphthylene. Any of the ren groups may be used, but particularly in the case of a hydroxy naphthylene group, similarly to the compound containing a naphthylene skeleton, an increase in Tg or a line in a cured product of a resin composition for semiconductor encapsulation using the naphthylene skeleton is used. By reducing the expansion coefficient, the effect of improving the low warpage is obtained, and since it has a lot of aromatic carbon, the improvement of the flame resistance in the cured product of the resin composition for semiconductor encapsulation using the same is also realized. Can do.
Examples of the compound represented by the following general formula (2) used in the present invention include a phenol aralkyl resin containing a phenylene skeleton, a phenol aralkyl resin containing a biphenylene skeleton represented by the following general formula (3), and naphthylene. Examples thereof include a phenol aralkyl resin containing a skeleton and a naphthol aralkyl resin containing a phenylene skeleton represented by the following general formula (4). However, the structure is not particularly limited as long as the structure is the following general formula (2).
本発明において、前記一般式(2)で表される化合物の配合割合としては、特に限定するものではないが、フェノール性水酸基を2個以上含む化合物(B)の全量に対して、好ましくは10重量%以上であり、更に好ましくは30重量%以上、特に好ましくは50重量%以上である。一般式(2)で表される化合物の配合割合が上記範囲内であると、耐燃性向上効果を得ることができる。 In the present invention, the mixing ratio of the compound represented by the general formula (2) is not particularly limited, but is preferably 10 with respect to the total amount of the compound (B) containing two or more phenolic hydroxyl groups. % By weight or more, more preferably 30% by weight or more, and particularly preferably 50% by weight or more. When the compounding ratio of the compound represented by the general formula (2) is within the above range, an effect of improving the flame resistance can be obtained.
本発明で用いられるエポキシ樹脂の全量とフェノール性水酸基を2個以上含む化合物(B)の全量との配合割合は、エポキシ樹脂のエポキシ基数(EP)とフェノール性水酸基を2個以上含む化合物のフェノール性水酸基数(OH)との比(EP/OH)が、0.6以上、1.5以下であることが好ましく、0.8以上、1.3以下であることがより好ましい。当量比が上記範囲内であると、半導体封止用樹脂組成物の硬化性の低下が生じる可能性が少ない。また、当量比が上記範囲内であると、半導体封止用樹脂組成物の硬化物において、ガラス転移温度の低下や耐湿信頼性の低下等を引き起こす恐れが少ない。 The blending ratio of the total amount of the epoxy resin used in the present invention and the total amount of the compound (B) containing two or more phenolic hydroxyl groups is the phenol of the compound containing the number of epoxy groups (EP) of the epoxy resin and two or more phenolic hydroxyl groups. The ratio (EP / OH) to the number of functional hydroxyl groups (OH) is preferably 0.6 or more and 1.5 or less, and more preferably 0.8 or more and 1.3 or less. When the equivalent ratio is within the above range, there is little possibility that the curability of the resin composition for semiconductor encapsulation is lowered. Further, when the equivalent ratio is within the above range, the cured product of the resin composition for encapsulating a semiconductor is less likely to cause a decrease in glass transition temperature, a decrease in moisture resistance reliability, and the like.
本発明に用いられる無機充填剤(C)としては、一般に半導体封止用樹脂組成物に用いられているものを使用することができ、例えば、溶融シリカ、球状シリカ、結晶シリカ、アルミナ、窒化珪素、窒化アルミ等が挙げられる。無機充填剤(C)の粒径としては、金型への充填性を考慮すると0.01μm以上、150μm以下であることが望ましい。また、無機充填剤(C)の含有量としては、半導体封止用樹脂組成物全体の80重量%以上、92重量%以下が好ましく、より好ましくは82重量%以上、91重量%以上、特に好ましくは84重量%以上、90重量%以上である。無機充填剤(C)の含有量が上記範囲内であると、半導体封止用樹脂組成物の硬化物の吸水量が増加して強度が低下することによる耐半田性の低下を引き起こす恐れが少ない。また、無機充填剤(C)の含有量が上記範囲内であると、流動性が損なわれることによる成形面での不具合の発生を引き起こす恐れが少ない。 As the inorganic filler (C) used in the present invention, those generally used in a resin composition for semiconductor encapsulation can be used. For example, fused silica, spherical silica, crystalline silica, alumina, silicon nitride And aluminum nitride. The particle size of the inorganic filler (C) is preferably 0.01 μm or more and 150 μm or less in consideration of the filling property to the mold. In addition, the content of the inorganic filler (C) is preferably 80% by weight or more and 92% by weight or less, more preferably 82% by weight or more and 91% by weight or more, particularly preferably, based on the entire resin composition for semiconductor encapsulation. Is 84% by weight or more and 90% by weight or more. When the content of the inorganic filler (C) is within the above range, there is little risk of causing a decrease in solder resistance due to an increase in water absorption of the cured product of the resin composition for semiconductor encapsulation and a decrease in strength. . Further, when the content of the inorganic filler (C) is within the above range, there is little possibility of causing defects on the molding surface due to the loss of fluidity.
本発明に用いられる硬化促進剤(D)は、エポキシ樹脂のエポキシ基とフェノール性水酸基を2個以上含む化合物(B)のフェノール性水酸基との反応を促進するものであればよく、一般の半導体封止用樹脂組成物に使用されているものを利用することができる。具体例としては、有機ホスフィン、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物等のリン原子含有化合物、1,8−ジアザビシクロ(5,4,0)ウンデセン−7、ベンジルジメチルアミン、2−メチルイミダゾール等の窒素原子含有化合物が挙げられる。これらのうち、リン原子含有化合物が好ましく、特に流動性という点を考慮するとテトラ置換ホスホニウム化合物が好ましく、また半導体封止用樹脂組成物の硬化物熱時低弾性率という点を考慮するとホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物が好ましく、また潜伏的硬化性という点を考慮すると、ホスホニウム化合物とシラン化合物との付加物が好ましい。 The curing accelerator (D) used in the present invention is not limited as long as it accelerates the reaction between the epoxy group of the epoxy resin and the phenolic hydroxyl group of the compound (B) containing two or more phenolic hydroxyl groups. What is used for the resin composition for sealing can be utilized. Specific examples include organic phosphines, tetra-substituted phosphonium compounds, phosphobetaine compounds, adducts of phosphine compounds and quinone compounds, phosphorus atom-containing compounds such as phosphonium compounds and silane compounds, 1,8-diazabicyclo (5,4,0 ) Nitrogen-containing compounds such as undecene-7, benzyldimethylamine, 2-methylimidazole and the like. Among these, a phosphorus atom-containing compound is preferable, and a tetra-substituted phosphonium compound is particularly preferable in consideration of fluidity, and a phosphobetaine compound in consideration of a low elastic modulus at the time of heat of a cured resin composition for semiconductor encapsulation. An adduct of a phosphine compound and a quinone compound is preferable, and an adduct of a phosphonium compound and a silane compound is preferable in consideration of latent curing properties.
前記有機ホスフィンとしては、例えばエチルホスフィン、フェニルホスフィン等の第1ホスフィン、ジメチルホスフィン、ジフェニルホスフィン等の第2ホスフィン、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン等の第3ホスフィンが挙げられる。 Examples of the organic phosphine include a first phosphine such as ethylphosphine and phenylphosphine, a second phosphine such as dimethylphosphine and diphenylphosphine, and a third phosphine such as trimethylphosphine, triethylphosphine, tributylphosphine, and triphenylphosphine.
前記テトラ置換ホスホニウム化合物としては、下記一般式(5)で表される化合物等が挙げられる。 Examples of the tetra-substituted phosphonium compound include compounds represented by the following general formula (5).
前記一般式(5)で表される化合物は、例えば以下のようにして得られるがこれに限定されるものではない。まず、テトラ置換ホスホニウムハライドと芳香族有機酸と塩基を有機溶剤に混ぜ均一に混合し、その溶液系内に芳香族有機酸アニオンを発生させる。次いで水を加えると、前記一般式(5)で表される化合物を沈殿させることができる。前記一般式(5)で表される化合物において、リン原子に結合するR7、R8、R9及びR10がフェニル基であり、かつAHはヒドロキシル基を芳香環に有する化合物、すなわちフェノール類であり、かつAは該フェノール類のアニオンであるのが好ましい。 The compound represented by the general formula (5) is obtained as follows, for example, but is not limited thereto. First, a tetra-substituted phosphonium halide, an aromatic organic acid and a base are mixed in an organic solvent and mixed uniformly to generate an aromatic organic acid anion in the solution system. Subsequently, when water is added, the compound represented by the general formula (5) can be precipitated. In the compound represented by the general formula (5), R7, R8, R9 and R10 bonded to the phosphorus atom are phenyl groups, and AH is a compound having a hydroxyl group in an aromatic ring, that is, phenols, and A is preferably an anion of the phenol.
前記ホスホベタイン化合物としては、下記一般式(6)で表される化合物等が挙げられる。
前記一般式(6)で表される化合物は、例えば以下のようにして得られる。まず、第三ホスフィンであるトリ芳香族置換ホスフィンとジアゾニウム塩とを接触させ、前記トリ芳香族置換ホスフィンと前記ジアゾニウム塩が有するジアゾニウム基とを置換させる工程を経て得られる。しかしこれに限定されるものではない。 The compound represented by the general formula (6) is obtained, for example, as follows. First, it is obtained through a step of bringing a triaromatic substituted phosphine, which is a third phosphine, into contact with a diazonium salt and replacing the triaromatic substituted phosphine with a diazonium group of the diazonium salt. However, the present invention is not limited to this.
前記ホスフィン化合物とキノン化合物との付加物としては、下記一般式(7)で表される化合物等が挙げられる。
前記ホスフィン化合物とキノン化合物との付加物に用いるホスフィン化合物としては、トリフェニルホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリナフチルホスフィン、トリス(ベンジル)ホスフィン等の芳香環に無置換あるいはアルキル基、アルコキシル基等の置換基が存在するものが好ましく、アルキル基、アルコキシル基の有機基としては1ないし6の炭素数を有するものが挙げられる。入手しやすさの観点からはトリフェニルホスフィンが好ましい。
また前記ホスフィン化合物とキノン化合物との付加物に用いるキノン化合物としては、o−ベンゾキノン、p−ベンゾキノン、アントラキノン類が挙げられ、中でもp−ベンゾキノンが保存安定性の点から好ましい。
前記ホスフィン化合物とキノン化合物との付加物の製造方法としては、有機第三ホスフィンとベンゾキノン類の両者が溶解することができる溶媒中で接触、混合させることにより付加物を得ることができる。溶媒としてはアセトンやメチルエチルケトン等のケトン類で付加物への溶解性が低いものがよい。しかしこれに限定されるものではない。
前記一般式(5)で表される化合物において、リン原子に結合するR11、R12及びR13がフェニル基であり、かつR14、R15及びR16が水素原子である化合物、すなわち1,4−ベンゾキノンとトリフェニルホスフィンを付加させた化合物が半導体封止用樹脂組成物の硬化物熱時弾性率を低下させる点で好ましい。
Examples of the phosphine compound used for the adduct of the phosphine compound and the quinone compound include triphenylphosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, trinaphthylphosphine, and tris (benzyl) phosphine. Those having a substituent or a substituent such as an alkyl group or an alkoxyl group are preferred, and examples of the organic group of the alkyl group and the alkoxyl group include those having 1 to 6 carbon atoms. From the viewpoint of availability, triphenylphosphine is preferable.
Examples of the quinone compound used for the adduct of the phosphine compound and the quinone compound include o-benzoquinone, p-benzoquinone, and anthraquinones. Among them, p-benzoquinone is preferable from the viewpoint of storage stability.
As a method for producing the adduct of the phosphine compound and the quinone compound, the adduct can be obtained by contacting and mixing in a solvent in which both the organic tertiary phosphine and the benzoquinone can be dissolved. The solvent is preferably a ketone such as acetone or methyl ethyl ketone, which has low solubility in the adduct. However, the present invention is not limited to this.
In the compound represented by the general formula (5), R11, R12 and R13 bonded to the phosphorus atom are phenyl groups, and R14, R15 and R16 are hydrogen atoms, that is, 1,4-benzoquinone and tri A compound to which phenylphosphine has been added is preferable in that it reduces the thermal modulus of the cured resin thermal composition.
前記ホスホニウム化合物とシラン化合物との付加物としては、下記一般式(8)で表される化合物等が挙げられる。
前記一般式(8)において、R17、R18、R19及びR20としては、例えば、フェニル基、メチルフェニル基、メトキシフェニル基、ヒドロキシフェニル基、ナフチル基、ヒドロキシナフチル基、ベンジル基、メチル基、エチル基、n−ブチル基、n−オクチル基及びシクロヘキシル基等が挙げられ、これらの中でも、フェニル基、メチルフェニル基、メトキシフェニル基、ヒドロキシフェニル基、ヒドロキシナフチル基等の置換基を有する芳香族基もしくは無置換の芳香族基がより好ましい。
また、前記一般式(8)において、X2は、Y2及びY3と結合する有機基である。同様に、X3は、基Y4及びY5と結合する有機基である。Y2及びY3はプロトン供与性置換基がプロトンを放出してなる基であり、同一分子内の基Y2及びY3が珪素原子と結合してキレート構造を形成するものである。同様にY4及びY5はプロトン供与性置換基がプロトンを放出してなる基であり、同一分子内の基Y4及びY5が珪素原子と結合してキレート構造を形成するものである。基Y2及びY3は互いに同一でも異なっていてもよく、基Y2、Y3、Y4、及びY5は互いに同一であっても異なっていてもよい。
このような一般式(8)中の−Y2−X2−Y3−、及び−Y4−X3−Y5−で表される基は、2価以上のプロトン供与体が、プロトンを2個放出してなる基で構成されるものであり、2価以上のプロトン供与体としては、例えば、カテコール、ピロガロール、1,2−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン、2,2’−ビフェノール、1,1’−ビ−2−ナフトール、サリチル酸、1−ヒドロキシ−2−ナフトエ酸、3−ヒドロキシ−2−ナフトエ酸、クロラニル酸、タンニン酸、2−ヒドロキシベンジルアルコール、1,2−シクロヘキサンジオール、1,2−プロパンジオール及びグリセリン等が挙げられるが、これらの中でも、カテコール、1,2−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレンがより好ましい。
In the general formula (8), examples of R17, R18, R19, and R20 include phenyl group, methylphenyl group, methoxyphenyl group, hydroxyphenyl group, naphthyl group, hydroxynaphthyl group, benzyl group, methyl group, and ethyl group. , N-butyl group, n-octyl group, cyclohexyl group and the like, among these, an aromatic group having a substituent such as phenyl group, methylphenyl group, methoxyphenyl group, hydroxyphenyl group, hydroxynaphthyl group, or the like An unsubstituted aromatic group is more preferable.
Moreover, in the said General formula (8), X2 is an organic group couple | bonded with Y2 and Y3. Similarly, X3 is an organic group bonded to the groups Y4 and Y5. Y2 and Y3 are groups formed by proton-donating substituents releasing protons, and groups Y2 and Y3 in the same molecule are bonded to a silicon atom to form a chelate structure. Similarly, Y4 and Y5 are groups formed by proton-donating substituents releasing protons, and groups Y4 and Y5 in the same molecule are combined with a silicon atom to form a chelate structure. The groups Y2 and Y3 may be the same or different from each other, and the groups Y2, Y3, Y4, and Y5 may be the same or different from each other.
The groups represented by -Y2-X2-Y3- and -Y4-X3-Y5- in general formula (8) are formed by releasing two protons from a bivalent or higher proton donor. Examples of divalent or higher proton donors include catechol, pyrogallol, 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,2′-biphenol, 1,1 ′. -Bi-2-naphthol, salicylic acid, 1-hydroxy-2-naphthoic acid, 3-hydroxy-2-naphthoic acid, chloranilic acid, tannic acid, 2-hydroxybenzyl alcohol, 1,2-cyclohexanediol, 1,2- Propanediol, glycerin, etc. are mentioned, among these, catechol, 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene More preferable.
また、一般式(8)中のZ1は、芳香環または複素環を有する有機基または脂肪族基を表し、これらの具体的な例としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基およびオクチル基等の脂肪族炭化水素基や、フェニル基、ベンジル基、ナフチル基およびビフェニル基等の芳香族炭化水素基、グリシジルオキシプロピル基、メルカプトプロピル基、アミノプロピル基およびビニル基等の反応性置換基などが挙げられるが、これらの中でも、メチル基、エチル基、フェニル基、ナフチル基およびビフェニル基が熱安定性の面からより好ましい。 Z1 in the general formula (8) represents an organic group or an aliphatic group having an aromatic ring or a heterocyclic ring. Specific examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, and a hexyl group. Reactions of aliphatic hydrocarbon groups such as octyl and octyl groups, aromatic hydrocarbon groups such as phenyl, benzyl, naphthyl and biphenyl, glycidyloxypropyl, mercaptopropyl, aminopropyl and vinyl Among them, a methyl group, an ethyl group, a phenyl group, a naphthyl group, and a biphenyl group are more preferable from the viewpoint of thermal stability.
前記ホスホニウム化合物とシラン化合物との付加物の製造方法としては、メタノールを入れたフラスコに、フェニルトリメトキシシラン等のシラン化合物、2,3−ジヒドロキシナフタレン等の2価以上のプロトン供与体を加えて溶かし、次に室温攪拌下ナトリウムメトキシド−メタノール溶液を滴下する。さらにそこへ予め用意したテトラフェニルホスホニウムブロマイド等のテトラ置換ホスホニウムハライドをメタノールに溶かした溶液を室温攪拌下滴下すると結晶が析出する。析出した結晶を濾過、水洗、真空乾燥すると、ホスホニウム化合物とシラン化合物との付加物が得られる。しかし、これに限定されるものではない。 As a method for producing an adduct of the phosphonium compound and the silane compound, a silane compound such as phenyltrimethoxysilane and a bivalent or higher proton donor such as 2,3-dihydroxynaphthalene are added to a flask containing methanol. Then, sodium methoxide-methanol solution is added dropwise with stirring at room temperature. Furthermore, when a solution prepared by dissolving a tetra-substituted phosphonium halide such as tetraphenylphosphonium bromide in methanol in methanol is added dropwise with stirring at room temperature, crystals are precipitated. The precipitated crystals are filtered, washed with water, and vacuum dried to obtain an adduct of a phosphonium compound and a silane compound. However, it is not limited to this.
本発明に用いられる硬化促進剤(D)の配合量は、全半導体封止用樹脂組成物中0.1重量%以上、1重量%以下が好ましい。硬化促進剤(D)の配合量が上記範囲内であると、硬化性の低下を引き起こす恐れが少ない。また、硬化促進剤(D)の配合量が上記範囲内であると、流動性の低下を引き起こす恐れが少ない。 As for the compounding quantity of the hardening accelerator (D) used for this invention, 0.1 to 1 weight% is preferable in the resin composition for whole semiconductor sealing. There is little possibility of causing curability fall that the compounding quantity of a hardening accelerator (D) exists in the said range. Moreover, there is little possibility of causing a fluid fall as the compounding quantity of a hardening accelerator (D) exists in the said range.
本発明に用いることができるシランカップリング剤(E)は、エポキシシラン、アミノシラン、ウレイドシラン、メルカプトシラン等が好ましいが、特にこれらに限定されず、エポキシ樹脂と無機充填剤との間で反応し、エポキシ樹脂と無機充填剤の界面強度を向上させるものであればよい。また、後述する芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(F)(以下、「化合物(F)」とも称する。)は、当該シランカップリング剤(E)との相乗効果により、半導体封止用樹脂組成物の粘度を下げ、流動性を向上させる効果を有するため、シランカップリング剤(E)は化合物(F)の効果を充分に得るためにも有効である。エポキシシランとしては、例えば、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、β−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられ、アミノシランとしては、例えば、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−フェニルγ−アミノプロピルトリエトキシシラン、N−フェニルγ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリエトキシシラン、N−6−(アミノヘキシル)3−アミノプロピルトリメトキシシラン、N−(3−(トリメトキシシリルプロピル)−1,3−ベンゼンジメタナン等が挙げられ、ウレイドシランとしては、例えば、γ−ウレイドプロピルトリエトキシシラン、ヘキサメチルジシラザン等が挙げられ、メルカプトシランとしては、例えば、γ−メルカプトプロピルトリメトキシシラン等が挙げられる。これらのシランカップリング剤(E)は1種類を単独で用いても2種類以上を併用してもよい。本発明に用いることができるシランカップリング剤(E)の配合量は、全半導体封止用樹脂組成物中0.01重量%以上、1重量%以下が好ましく、より好ましくは0.05重量%以上、0.8重量%以下、特に好ましくは0.1重量%以上、0.6重量%以下である。シランカップリング剤(E)の配合量が上記範囲内であると、化合物(F)との相乗効果により、半導体封止用樹脂組成物の充分な低粘度化と流動性向上効果を得ることができる。また、シランカップリング剤(E)の配合量が上記範囲内であれば、エポキシ樹脂と無機充填剤との界面強度が低下することによる半導体装置における耐半田性の低下を引き起こす恐れが少ない。また、シランカップリング剤(E)の配合量が上記範囲内であれば、半導体封止用樹脂組成物の硬化物の吸水性が増大することによる耐半田性の低下も引き起こす恐れが少ない。 The silane coupling agent (E) that can be used in the present invention is preferably epoxy silane, amino silane, ureido silane, mercapto silane, etc., but is not particularly limited thereto, and reacts between the epoxy resin and the inorganic filler. Any material that improves the interface strength between the epoxy resin and the inorganic filler may be used. Further, the compound (F) (hereinafter also referred to as “compound (F)”) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting an aromatic ring described later is the silane coupling agent (E). The silane coupling agent (E) is also effective for obtaining the effect of the compound (F) sufficiently because it has the effect of lowering the viscosity of the resin composition for encapsulating semiconductors and improving the fluidity. It is. Examples of the epoxy silane include γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, β- (3,4 epoxycyclohexyl) ethyltrimethoxysilane. Examples of aminosilanes include γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, and N-β (aminoethyl) γ. -Aminopropylmethyldimethoxysilane, N-phenylγ-aminopropyltriethoxysilane, N-phenylγ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltriethoxysilane, N-6- (amino (Hexyl) 3-aminopropyl Examples include trimethoxysilane and N- (3- (trimethoxysilylpropyl) -1,3-benzenedimethanane. Examples of ureidosilane include γ-ureidopropyltriethoxysilane and hexamethyldisilazane. Examples of the mercaptosilane include γ-mercaptopropyltrimethoxysilane, etc. These silane coupling agents (E) may be used alone or in combination of two or more. The amount of the silane coupling agent (E) that can be used in the present invention is preferably 0.01% by weight or more and 1% by weight or less, more preferably 0.05% by weight, based on the resin composition for encapsulating all semiconductors. The content of the silane coupling agent (E) is 0.8% by weight or less, particularly preferably 0.1% by weight or more and 0.6% by weight or less. Within the range, due to the synergistic effect with the compound (F), it is possible to obtain a sufficient viscosity reduction and fluidity improving effect of the resin composition for semiconductor encapsulation, and the silane coupling agent (E). If the blending amount is within the above range, there is little risk of causing a decrease in solder resistance in the semiconductor device due to a decrease in the interface strength between the epoxy resin and the inorganic filler. If the amount is within the above range, there is little fear of causing a decrease in solder resistance due to an increase in water absorption of the cured product of the semiconductor sealing resin composition.
本発明に用いることができる芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(F)(以下、「化合物(F)」とも称する。)は、これを用いることにより、半導体封止用樹脂組成物の溶融粘度を下げ、流動性を向上させる効果を有するものである。化合物(F)としては、下記一般式(10)で表される単環式化合物又は下記一般式(11)で表される多環式化合物等を用いることができ、これらの化合物は水酸基以外の置換基を有していてもよい。 A compound (F) (hereinafter also referred to as “compound (F)”) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting an aromatic ring that can be used in the present invention is used. The resin composition for semiconductor encapsulation has the effect of lowering the melt viscosity and improving fluidity. As the compound (F), a monocyclic compound represented by the following general formula (10) or a polycyclic compound represented by the following general formula (11) can be used. It may have a substituent.
前記一般式(10)で表される単環式化合物の具体例として、例えば、カテコール、ピロガロール、没食子酸、没食子酸エステル又はこれらの誘導体が挙げられる。また、前記一般式(11)で表される多環式化合物の具体例として、例えば、1,2−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン及びこれらの誘導体が挙げられる。これらのうち、流動性と硬化性の制御のしやすさから、芳香環を構成する2個の隣接する炭素原子にそれぞれ水酸基が結合した化合物が好ましい。また、混練工程での揮発を考慮した場合、母核は低揮発性で秤量安定性の高いナフタレン環である化合物とすることがより好ましい。この場合、化合物(F)を、具体的には、例えば、1,2−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン及びその誘導体等のナフタレン環を有する化合物とすることができる。これらの化合物(F)は1種類を単独で用いても2種以上を併用してもよい。 Specific examples of the monocyclic compound represented by the general formula (10) include catechol, pyrogallol, gallic acid, gallic acid ester, and derivatives thereof. Specific examples of the polycyclic compound represented by the general formula (11) include 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, and derivatives thereof. Among these, a compound in which a hydroxyl group is bonded to each of two adjacent carbon atoms constituting an aromatic ring is preferable because of easy control of fluidity and curability. In consideration of volatilization in the kneading step, it is more preferable that the mother nucleus is a compound having a low volatility and a highly stable weighing naphthalene ring. In this case, specifically, the compound (F) can be a compound having a naphthalene ring such as 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene and derivatives thereof. These compounds (F) may be used individually by 1 type, or may use 2 or more types together.
かかる化合物(F)の配合量は、全半導体封止用樹脂組成物中に0.01重量%以上、1重量%以下であることが好ましく、より好ましくは0.03重量%以上、0.8重量%以下、特に好ましくは0.05重量%以上、0.5重量%以下である。化合物(F)の配合量が上記範囲内であると、シランカップリング剤(E)との相乗効果により、半導体封止用樹脂組成物の充分な低粘度化と流動性向上効果を得ることができる。また、化合物(F)の配合量が上記範囲内であると、半導体封止用樹脂組成物の硬化性の低下や硬化物物性の低下を引き起こす恐れが少ない。 The compounding amount of the compound (F) is preferably 0.01% by weight or more and 1% by weight or less, more preferably 0.03% by weight or more, 0.8% in the total semiconductor sealing resin composition. % By weight or less, particularly preferably 0.05% by weight or more and 0.5% by weight or less. When the compounding amount of the compound (F) is within the above range, a sufficient viscosity reduction and fluidity improvement effect of the resin composition for semiconductor encapsulation can be obtained by a synergistic effect with the silane coupling agent (E). it can. Moreover, when the compounding quantity of a compound (F) exists in the said range, there is little possibility of causing the fall of sclerosis | hardenability of a resin composition for semiconductor sealing, and the fall of cured | curing material property.
本発明の半導体封止用樹脂組成物は、(A)ないし(F)成分を主成分とするが、更にこれ以外に必要に応じて、カルナバワックス等の天然ワックス、ポリエチレンワックス等の合成ワックス、ステアリン酸やステアリン酸亜鉛等の高級脂肪酸及びその金属塩類若しくはパラフィン等の離型剤;カーボンブラック、ベンガラ等の着色剤;シリコーンオイル、シリコーンゴム等の低応力添加剤;酸化ビスマス水和物等の無機イオン交換体;水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物、硼酸亜鉛、モリブデン酸亜鉛、フォスファゼン等の難燃剤;等の添加剤を適宜配合してもよい。 The resin composition for encapsulating a semiconductor of the present invention contains the components (A) to (F) as main components, but in addition to this, if necessary, natural wax such as carnauba wax, synthetic wax such as polyethylene wax, Mold release agents such as higher fatty acids such as stearic acid and zinc stearate and metal salts thereof or paraffin; colorants such as carbon black and bengara; low-stress additives such as silicone oil and silicone rubber; bismuth oxide hydrate, etc. Additives such as inorganic ion exchangers; metal hydroxides such as aluminum hydroxide and magnesium hydroxide, flame retardants such as zinc borate, zinc molybdate, and phosphazene;
本発明の半導体封止用樹脂組成物は、(A)ないし(F)成分及びその他の添加剤等を、例えば、ミキサー等を用いて常温で均一に混合したもの、更にその後、加熱ロール、ニーダー又は押出機等の混練機を用いて溶融混練し、続いて冷却、粉砕したものなど、必要に応じて適宜分散度や流動性等を調整したものを用いることができる。 The resin composition for semiconductor encapsulation of the present invention is obtained by mixing the components (A) to (F) and other additives uniformly at room temperature using, for example, a mixer, and then heating roll, kneader Or what knead | mixed and kneaded using kneading machines, such as an extruder, and cooled and grind | pulverized subsequently, etc., what adjusted dispersion degree, fluidity | liquidity, etc. suitably can be used as needed.
本発明の半導体封止用樹脂組成物の硬化物により半導体素子を封止し半導体装置を製造するには、例えば、該半導体素子を搭載したリードフレーム等を金型キャビティ内に設置した後、該エポキシ樹脂組成物をトランスファーモールド、コンプレッションモールド、インジェクションモールド等の成形方法で成形硬化すればよい。 To manufacture a semiconductor device by sealing a semiconductor element with a cured product of the resin composition for semiconductor encapsulation of the present invention, for example, after installing a lead frame or the like on which the semiconductor element is mounted in a mold cavity, The epoxy resin composition may be molded and cured by a molding method such as a transfer mold, a compression mold, or an injection mold.
本発明で封止を行う半導体素子としては、特に限定されるものではなく、例えば、集積回路、大規模集積回路、トランジスタ、サイリスタ、ダイオード、固体撮像素子等が挙げられる。
本発明の半導体装置の形態としては、特に限定されないが、例えば、デュアル・インライン・パッケージ(DIP)、プラスチック・リード付きチップ・キャリヤ(PLCC)、クワッド・フラット・パッケージ(QFP)、スモール・アウトライン・パッケージ(SOP)、スモール・アウトライン・Jリード・パッケージ(SOJ)、薄型スモール・アウトライン・パッケージ(TSOP)、薄型クワッド・フラット・パッケージ(TQFP)、テープ・キャリア・パッケージ(TCP)、ボール・グリッド・アレイ(BGA)、チップ・サイズ・パッケージ(CSP)等が挙げられる。
上記トランスファーモールドなどの成形方法で封止された半導体装置は、そのまま、或いは120℃から200℃程度の温度で、10分から10時間程度の時間をかけて完全硬化させた後、電子機器等に搭載される。
The semiconductor element that performs sealing in the present invention is not particularly limited, and examples thereof include an integrated circuit, a large-scale integrated circuit, a transistor, a thyristor, a diode, and a solid-state imaging element.
The form of the semiconductor device of the present invention is not particularly limited. For example, the dual in-line package (DIP), the plastic lead chip carrier (PLCC), the quad flat package (QFP), the small outline, and the like. Package (SOP), Small Outline J Lead Package (SOJ), Thin Small Outline Package (TSOP), Thin Quad Flat Package (TQFP), Tape Carrier Package (TCP), Ball Grid Examples include an array (BGA), a chip size package (CSP), and the like.
A semiconductor device sealed by a molding method such as the above transfer mold is completely cured at a temperature of about 120 ° C. to 200 ° C. for about 10 minutes to 10 hours, and then mounted on an electronic device or the like. Is done.
図1は、本発明に係る半導体封止用樹脂組成物を用いた半導体装置の一例について、断面構造を示した図である。ダイパッド3上に、ダイボンド材硬化体2を介して半導体素子1が固定されている。半導体素子1の電極パッドとリードフレーム5との間は金線4によって接続されている。半導体素子1は、封止用樹脂組成物の硬化体6によって封止されている。
FIG. 1 is a view showing a cross-sectional structure of an example of a semiconductor device using the resin composition for encapsulating a semiconductor according to the present invention. The semiconductor element 1 is fixed on the die pad 3 via the die bond material cured body 2. The electrode pad of the semiconductor element 1 and the lead frame 5 are connected by a
図2は、本発明に係る半導体封止用樹脂組成物を用いた片面封止型の半導体装置の一例について、断面構造を示した図である。基板8上にダイボンド材硬化体2を介して半導体素子1が固定されている。半導体素子1の電極パッドと基板8上の電極パッドとの間は金線4によって接続されている。封止用樹脂組成物の硬化体6によって、基板8の半導体素子1が搭載された片面側のみが封止されている。基板8上の電極パッドは基板8上の非封止面側の半田ボール9と内部で接合されている。
FIG. 2 is a view showing a cross-sectional structure of an example of a single-sided sealing type semiconductor device using the semiconductor sealing resin composition according to the present invention. The semiconductor element 1 is fixed on the substrate 8 through the die bond material cured body 2. The electrode pad of the semiconductor element 1 and the electrode pad on the substrate 8 are connected by a
以下、本発明を実施例にて具体的に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。配合割合は重量部とする。
<リードフレーム用封止材の評価>
実施例1
EXAMPLES Hereinafter, although this invention is demonstrated concretely in an Example, this invention is not limited at all by these Examples. The blending ratio is parts by weight.
<Evaluation of encapsulant for lead frame>
Example 1
エポキシ樹脂1:下記式(9)で表されるエポキシ樹脂(前述の方法により作成した一般式(1)で表されるエポキシ樹脂。エポキシ当量169、融点103℃。下記式(9)においてn9は0ないし5の整数で、その平均値は0.2。JIS K 7243−3に基づき測定した塩素含有量は150ppm。) 5.82重量部
硬化剤1:下記式(12)で表される化合物1(明和化成株式会社製、MEH−7851SS。水酸基当量203、軟化点66℃。一般式(2)において−R3−:ビフェニレン基、−R4(OH)−:ヒドロキシフェニレン基、k2:0、m2:0である化合物。下記式(12)におけるn12の平均値:1.5。) 6.98重量部
硬化促進剤1:トリフェニルホスフィン 0.20重量部
シランカップリング剤1:γ−グリシドキシプロピルトリメトキシシラン
0.30重量部
2,3−ジヒドロキシナフタレン 0.20重量部
カルナバワックス 0.20重量部
カーボンブラック 0.30重量部
をミキサーにて常温混合し、80℃以上、100℃以下の加熱ロールで溶融混練し、冷却後粉砕し、エポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を用いて以下の方法で評価した。評価結果を表1に示す。
Curing agent 1: Compound 1 represented by the following formula (12) (Maywa Kasei Co., Ltd., MEH-7851SS. Hydroxyl equivalent: 203, softening point: 66 ° C. In general formula (2) -R3-: biphenylene group, -R4 (OH)-: a hydroxyphenylene group, a compound having k2: 0 and m2: 0, an average value of n12 in the following formula (12): 1.5.) 6.98 parts by weight
0.30 parts by weight 2,3-dihydroxynaphthalene 0.20 parts by weight Carnauba wax 0.20 parts by weight Carbon black 0.30 parts by weight is mixed at room temperature with a mixer and melted with a heating roll at 80 ° C. or higher and 100 ° C. or lower. The mixture was kneaded, cooled and pulverized to obtain an epoxy resin composition. It evaluated by the following method using the obtained epoxy resin composition. The evaluation results are shown in Table 1.
・スパイラルフロー:低圧トランスファー成形機(コータキ精機株式会社製、KTS−15)を用いて、EMMI−1−66に準じたスパイラルフロー測定用金型に、金型温度175℃、注入圧力6.9MPa、保圧時間120秒の条件で、エポキシ樹脂組成物を注入し、流動長を測定した。スパイラルフローは、流動性のパラメータであり、数値が大きい方が、流動性が良好である。単位はcm。 -Spiral flow: Using a low-pressure transfer molding machine (KTS-15, manufactured by Kotaki Seiki Co., Ltd.), a mold for spiral flow measurement conforming to EMMI-1-66, mold temperature 175 ° C, injection pressure 6.9 MPa The epoxy resin composition was injected under the condition of a holding time of 120 seconds, and the flow length was measured. The spiral flow is a fluidity parameter, and the larger the value, the better the fluidity. The unit is cm.
・吸湿率:低圧トランスファー成形機(コータキ精機株式会社製、KTS−30)を用いて、金型温度175℃、注入圧力7.4MPa、硬化時間120秒の条件で、エポキシ樹脂組成物を注入成形して直径50mm、厚さ3mmの試験片を作製し、175℃、8時間で後硬化した。その後、得られた試験片を85℃、相対湿度85%の環境下で168時間加湿処理し、加湿処理前後の重量変化を測定し吸湿率を求めた。単位は重量%。 -Moisture absorption rate: An epoxy resin composition is injection-molded using a low-pressure transfer molding machine (KTS-30, manufactured by Kotaki Seiki Co., Ltd.) at a mold temperature of 175 ° C, an injection pressure of 7.4 MPa, and a curing time of 120 seconds. A test piece having a diameter of 50 mm and a thickness of 3 mm was prepared and post-cured at 175 ° C. for 8 hours. Thereafter, the obtained test piece was humidified for 168 hours in an environment of 85 ° C. and 85% relative humidity, and the weight change before and after the humidification treatment was measured to obtain the moisture absorption rate. The unit is% by weight.
・耐燃性:低圧トランスファー成形機(コータキ精機株式会社製、KTS−30)を用いて、金型温度175℃、注入圧力9.8MPa、注入時間15秒、硬化時間120秒の条件で、エポキシ樹脂組成物を注入成形して3.2mm厚の耐燃試験片を作製した。作製した試験片を用いて、UL94垂直法の規格に則り耐燃試験を行い、耐燃性を判断した。表には、判定後の耐燃ランクを示した Flame resistance: Epoxy resin using a low-pressure transfer molding machine (KTS-30, KTS-30) under conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, an injection time of 15 seconds, and a curing time of 120 seconds. The composition was injection molded to produce a 3.2 mm thick flame resistant test piece. Using the prepared test piece, a flame resistance test was performed in accordance with the standard of the UL94 vertical method to determine the flame resistance. The table shows the fire resistance rank after judgment.
・耐半田性1:低圧トランスファー成形機(第一精工株式会社製、GP−ELF)を用いて、金型温度180℃、注入圧力7.4MPa、硬化時間120秒の条件で、エポキシ樹脂組成物を注入してシリコンチップが搭載されたリードフレーム等を封止成形し、80ピンのクワッド・フラット・パッケージ(80pQFP;Cu製リードフレーム、パッケージサイズは14×20mm×厚さ2.00mm、シリコンチップサイズは7×7mm×厚さ0.35mm、チップと回路基板のボンディングパッドとは25μm径の金線でボンディングされている。)を作製した。ポストキュアとして175℃で4時間加熱処理したパッケージ6個を、85℃、相対湿度60%で168時間加湿処理した後、IRリフロー処理(260℃、JEDEC・Le1el2条件に従う)を行った。処理後のパッケージ内部の剥離、及びクラックの有無を超音波傷機(日立建機ファインテック製、mi−scope10)で観察し、剥離又はクラックのいずれか一方でも発生したものを不良とした。不良パッケージの個数がn個であるとき、n/6と表示した。 Solder resistance 1: Epoxy resin composition using a low-pressure transfer molding machine (Daiichi Seiko Co., Ltd., GP-ELF) under conditions of a mold temperature of 180 ° C., an injection pressure of 7.4 MPa, and a curing time of 120 seconds. The lead frame on which the silicon chip is mounted is sealed and molded, and an 80-pin quad flat package (80 pQFP; Cu lead frame, package size is 14 x 20 mm x thickness 2.00 mm, silicon chip The size is 7 × 7 mm × thickness 0.35 mm, and the bonding pad of the chip and the circuit board is bonded with a gold wire with a diameter of 25 μm). Six packages heat treated at 175 ° C. for 4 hours as post-cure were humidified for 168 hours at 85 ° C. and 60% relative humidity, and then IR reflow treatment (260 ° C., according to JEDEC / Le1el2 conditions) was performed. The inside of the package after the treatment and the presence or absence of cracks were observed with an ultrasonic scratcher (manufactured by Hitachi Construction Machinery Finetech, mi-scope 10), and any one of the peeling or cracking was regarded as defective. When the number of defective packages is n, n / 6 is displayed.
・耐湿信頼性:アルミニウム回路を形成したTEGチップ(3.5mm×3.5mm×厚さ350μm、アルミ回路は保護膜なしの剥き出し)を16pSOPフレーム42アロイ製に接着し、アルミニウムパッドとリードフレームをワイヤボンディングした。これを低圧トランスファー成形機(コータキ精機株式会社製、KTS−125)を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間120秒の条件で、16ピンのスモール・アウトライン・パッケージ(16pSOP;パッケージサイズ11.2mm×7.2mm×厚さ1.8mm)を成形し、ポストキュアとして175℃で8時間加熱処理した後、IEC68−6−2に準拠しHAST試験(高加速高温高湿試験)を行った。試験条件は130℃、85%RH、20V印加で回路の断線不良有無を測定した。1パッケージあたり4端子を持ち1端子でも回路が断線したら不良とした。15個のパッケージ中の不良個数を示す。 ・ Moisture resistance reliability: TEG chip (3.5mm x 3.5mm x 350μm thickness, exposed aluminum circuit without protective film) bonded to 16pSOP frame 42 alloy, and aluminum pad and lead frame are bonded. Wire bonded. Using a low-pressure transfer molding machine (KTS-125, manufactured by Kotaki Seiki Co., Ltd.), with a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 120 seconds, a 16-pin small outline package ( 16pSOP; package size 11.2mm x 7.2mm x thickness 1.8mm), heat treated at 175 ° C for 8 hours as post cure, then HAST test (high acceleration high temperature high compliant with IEC68-6-2) Wet test). Test conditions were 130 ° C., 85% RH, and application of 20 V to measure the presence or absence of circuit disconnection failure. If there are 4 terminals per package and the circuit breaks even with 1 terminal, it was considered defective. The number of defects in 15 packages is shown.
実施例2ないし17、比較例1ないし3
表1、2の配合に従い、実施例1と同様にしてエポキシ樹脂組成物を製造し、実施例1と同様にして評価した。評価結果を表1、2に示す。
実施例1以外で用いた成分について、以下に示す。
エポキシ樹脂2:ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂(日本化薬(株)製、NC−3000。エポキシ当量274、軟化点58℃。)
エポキシ樹脂3:クレゾールノボラック型エポキシ樹脂(大日本インキ化学工業株式会社製、エピクロンN660。エポキシ当量196、軟化点60℃。)
エポキシ樹脂4:ビフェニル型結晶性エポキシ樹脂(ジャパンエポキシレジン(株)製、YX4000K。エポキシ当量185、融点105℃。)
硬化剤3:フェニレン骨格を有するフェノールアラルキル樹脂(三井化学株式会社製、XLC−4L。水酸基当量165、軟化点65℃。一般式(2)において−R3−:フェニレン基、−R4(OH)−:ヒドロキシフェニレン基、k2:0、m2:0、n2の平均値:3.5。)
硬化剤4:フェノールノボラック樹脂(住友ベークライト製、PR−HF−3。水酸基当量104、軟化点80℃。)
硬化促進剤2:1,8−ジアザビシクロ(5,4,0)ウンデセン−7
硬化促進剤3:下記式(13)で表される硬化促進剤
Examples 2 to 17, Comparative Examples 1 to 3
According to the composition of Tables 1 and 2, an epoxy resin composition was produced in the same manner as in Example 1, and evaluated in the same manner as in Example 1. The evaluation results are shown in Tables 1 and 2.
Components used in Examples other than Example 1 are shown below.
Epoxy resin 2: phenol aralkyl type epoxy resin having a biphenylene skeleton (manufactured by Nippon Kayaku Co., Ltd., NC-3000, epoxy equivalent 274, softening point 58 ° C.)
Epoxy resin 3: Cresol novolac type epoxy resin (Dainippon Ink & Chemicals, Inc., Epicron N660. Epoxy equivalent 196, softening point 60 ° C.)
Epoxy resin 4: Biphenyl type crystalline epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., YX4000K. Epoxy equivalent 185, melting point 105 ° C.)
Curing agent 3: Phenol aralkyl resin having a phenylene skeleton (Mitsui Chemical Co., Ltd., XLC-4L. Hydroxyl equivalent 165, softening point 65 ° C. In the general formula (2), -R3-: phenylene group, -R4 (OH)- : Hydroxyphenylene group, k2: 0, m2: 0, average value of n2: 3.5.)
Curing agent 4: Phenol novolac resin (manufactured by Sumitomo Bakelite, PR-HF-3, hydroxyl equivalent 104, softening point 80 ° C.)
Curing accelerator 2: 1,8-diazabicyclo (5,4,0) undecene-7
Curing accelerator 3: Curing accelerator represented by the following formula (13)
硬化促進剤6:下記式(16)で表される硬化促進剤
シランカップリング剤2:γ−メルカプトプロピルトリメトキシシラン
1,2−ジヒドロキシナフタレン
カテコール
ピロガロール
Silane coupling agent 2: γ-mercaptopropyltrimethoxysilane 1,2-dihydroxynaphthalene catechol pyrogallol
実施例1ないし17は、エポキシ樹脂として一般式(1)で表されるエポキシ樹脂(A)を用いたものであり、エポキシ樹脂(A)の配合割合、フェノール性水酸基を2個以上含む化合物(B)の種類と配合割合、無機充填剤(C)の配合割合、硬化促進剤(D)の種類、シランカップリング剤(E)の種類と配合割合、並びに芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(F)の種類と配合割合を変えたものを含むものであるが、いずれも、良好な低吸湿性、耐燃性及び耐半田性を示し、かつ高い流動性(スパイラルフロー)、良好な耐湿信頼性が得られた。 In Examples 1 to 17, the epoxy resin (A) represented by the general formula (1) is used as an epoxy resin, the compounding ratio of the epoxy resin (A), a compound containing two or more phenolic hydroxyl groups ( B) type and mixing ratio, inorganic filler (C) mixing ratio, curing accelerator (D) type, silane coupling agent (E) type and mixing ratio, and two or more constituting the aromatic ring These include compounds with different types and blending ratios of compounds (F) in which hydroxyl groups are bonded to adjacent carbon atoms, all of which exhibit good low moisture absorption, flame resistance and solder resistance, and high fluidity. (Spiral flow), good moisture resistance reliability was obtained.
一方、エポキシ樹脂としてクレゾールノボラック型エポキシ樹脂を用い、フェノール性水酸基を2個以上含む化合物(B)としてフェノールノボラック樹脂を用いた比較例1では、良好な耐湿信頼性は得られたものの、吸湿率が高く、流動性、耐燃性及び耐半田性が劣る結果となった。また、エポキシ樹脂としてビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂を用いた点のみが実施例17と異なる比較例2は、低吸湿性、耐燃性、耐半田性、耐湿信頼性という点では良好な結果が得られたものの、実施例17に比べ流動性が著しく劣る結果となった。さらに、エポキシ樹脂として低粘度な結晶性ビフェニル型エポキシ樹脂を用い、フェノール性水酸基を2個以上含む化合物(B)としてフェノールアラルキル樹脂を用いた比較例3では、半導体封止用樹脂組成物が低粘度であるため無機充填剤を多く配合することが可能で、それ故吸湿率は低いが、耐湿信頼性、耐燃性及び耐半田性は劣る結果となった。
以上の結果から、実施例1ないし17は、低吸湿性、耐燃性、耐半田性に優れ、かつ高い流動性を有し、耐湿信頼性も良好となることが分かった。
On the other hand, in Comparative Example 1 in which a cresol novolac type epoxy resin was used as the epoxy resin and a phenol novolac resin was used as the compound (B) containing two or more phenolic hydroxyl groups, good moisture resistance reliability was obtained. As a result, the fluidity, flame resistance and solder resistance were poor. Further, Comparative Example 2 which is different from Example 17 only in that a phenol aralkyl type epoxy resin having a biphenylene skeleton is used as an epoxy resin has good results in terms of low hygroscopicity, flame resistance, solder resistance and moisture resistance reliability. However, the fluidity was remarkably inferior to that of Example 17. Furthermore, in Comparative Example 3 using a low-viscosity crystalline biphenyl type epoxy resin as an epoxy resin and a phenol aralkyl resin as a compound (B) containing two or more phenolic hydroxyl groups, the resin composition for semiconductor encapsulation is low. Since it is a viscosity, it is possible to mix a large amount of an inorganic filler, and therefore the moisture absorption rate is low, but the moisture resistance reliability, flame resistance and solder resistance are inferior.
From the above results, it was found that Examples 1 to 17 were excellent in low moisture absorption, flame resistance, solder resistance, high fluidity, and good moisture resistance reliability.
<BGA用封止材の評価>
実施例18
エポキシ樹脂1:下記式(9)で表されるエポキシ樹脂(前述の方法により作成した一般式(1)で表されるエポキシ樹脂。エポキシ当量169、融点103℃。下記式(9)においてn9は0ないし5の整数で、その平均値は0.2。JIS K 7243−3に基づき測定した塩素含有量は150ppm。) 4.82重量部
Example 18
Epoxy resin 1: an epoxy resin represented by the following formula (9) (an epoxy resin represented by the general formula (1) prepared by the method described above. Epoxy equivalent 169, melting point 103 ° C. n9 in the following formula (9) An integer of 0 to 5, the average value is 0.2, the chlorine content measured according to JIS K 7243-3 is 150 ppm.) 4.82 parts by weight
硬化剤2:下記式(17)で表される化合物2(新日鐵化学株式会社製、SN−485。水酸基当量210、軟化点85℃。一般式(2)において−R3−:フェニレン基、−R4(OH)−:2−ヒドロキシナフチレン基、k2:0、m2:0。下記式(17)におけるn17の平均値:1.5。) 5.98重量部
溶融球状シリカ(平均粒径30μm) 88.00重量部
硬化促進剤1:トリフェニルホスフィン 0.20重量部
シランカップリング剤1:γ−グリシドキシプロピルトリメトキシシラン
0.30重量部
2,3−ジヒドロキシナフタレン 0.20重量部
カルナバワックス 0.20重量部
カーボンブラック 0.30重量部
をミキサーにて常温混合し、80℃以上、100℃以下の加熱ロールで溶融混練し、冷却後粉砕し、半導体封止用樹脂組成物を得た。評価結果を表3に示す。
Fused spherical silica (average particle size 30 μm) 88.00 parts by weight Curing accelerator 1: 0.20 parts by weight of triphenylphosphine Silane coupling agent 1: γ-glycidoxypropyltrimethoxysilane
0.30 parts by weight 2,3-dihydroxynaphthalene 0.20 parts by weight Carnauba wax 0.20 parts by weight Carbon black 0.30 parts by weight is mixed at room temperature with a mixer and melted with a heating roll at 80 ° C. or higher and 100 ° C. or lower. The mixture was kneaded, cooled and pulverized to obtain a semiconductor sealing resin composition. The evaluation results are shown in Table 3.
・スパイラルフロー:低圧トランスファー成形機(コータキ精機株式会社製、KTS−15)を用いて、EMMI−1−66に準じたスパイラルフロー測定用金型に、金型温度175℃、注入圧力6.9MPa、保圧時間120秒の条件で、エポキシ樹脂組成物を注入し、流動長を測定した。スパイラルフローは、流動性のパラメータであり、数値が大きい方が、流動性が良好である。単位はcm。 -Spiral flow: Using a low-pressure transfer molding machine (KTS-15, manufactured by Kotaki Seiki Co., Ltd.), a mold for spiral flow measurement conforming to EMMI-1-66, mold temperature 175 ° C, injection pressure 6.9 MPa The epoxy resin composition was injected under the condition of a holding time of 120 seconds, and the flow length was measured. The spiral flow is a fluidity parameter, and the larger the value, the better the fluidity. The unit is cm.
・吸湿率:低圧トランスファー成形機(コータキ精機株式会社製、KTS−30)を用いて、金型温度175℃、注入圧力7.4MPa、硬化時間120秒の条件で、エポキシ樹脂組成物を注入成形して直径50mm、厚さ3mmの試験片を作製し、175℃、8時間で後硬化した。その後、得られた試験片を85℃、相対湿度85%の環境下で168時間加湿処理し、加湿処理前後の重量変化を測定し吸湿率を求めた。単位は重量%。 -Moisture absorption rate: An epoxy resin composition is injection-molded using a low-pressure transfer molding machine (KTS-30, manufactured by Kotaki Seiki Co., Ltd.) at a mold temperature of 175 ° C, an injection pressure of 7.4 MPa, and a curing time of 120 seconds. A test piece having a diameter of 50 mm and a thickness of 3 mm was prepared and post-cured at 175 ° C. for 8 hours. Thereafter, the obtained test piece was humidified for 168 hours in an environment of 85 ° C. and 85% relative humidity, and the weight change before and after the humidification treatment was measured to obtain the moisture absorption rate. The unit is% by weight.
・耐燃性:低圧トランスファー成形機(コータキ精機株式会社製、KTS−30)を用いて、金型温度175℃、注入圧力9.8MPa、注入時間15秒、硬化時間120秒の条件で、エポキシ樹脂組成物を注入成形して3.2mm厚の耐燃試験片を作製した。作製した試験片を用いて、UL94垂直法の規格に則り耐燃試験を行い、耐燃性を判断した。表には、判定後の耐燃ランクを示した Flame resistance: Epoxy resin using a low-pressure transfer molding machine (KTS-30, KTS-30) under conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, an injection time of 15 seconds, and a curing time of 120 seconds. The composition was injection molded to produce a 3.2 mm thick flame resistant test piece. Using the prepared test piece, a flame resistance test was performed in accordance with the standard of the UL94 vertical method to determine the flame resistance. The table shows the fire resistance rank after judgment.
・耐半田性2:低圧トランスファー成形機(TOWA製、Yシリーズ)を用いて、金型温度180℃、注入圧力7.4MPa、硬化時間120秒の条件で、エポキシ樹脂組成物を注入してシリコンチップが搭載された回路基板等を封止成形し、225ピンのボール・グリッド・アレイ(225pBGA;基板は厚さ0.36mm、ビスマレイミド・トリアジン/ガラスクロス基板、パッケージサイズは24×24mm、厚さ1.17mm、シリコンチップはサイズ9×9mm、厚さ0.35mm、チップと回路基板のボンディングパッドとを25μm径の金線でボンディングしている。平均金線長は5mm。)を作製した。ポストキュアとして175℃で8時間加熱処理したパッケージ8個を、85℃、相対湿度60%で168時間加湿処理した後、IRリフロー処理(260℃、JEDEC・Level2条件に従う)を行った。処理後のパッケージ内部の剥離、及びクラックの有無を超音波傷機(日立建機ファインテック製、mi−scope10)で観察し、剥離又はクラックのいずれか一方でも発生したものを不良とした。不良パッケージの個数がn個であるとき、n/8と表示した。 Solder resistance 2: Silicone is injected by injecting an epoxy resin composition using a low-pressure transfer molding machine (manufactured by TOWA, Y series) under conditions of a mold temperature of 180 ° C., an injection pressure of 7.4 MPa, and a curing time of 120 seconds. A circuit board on which the chip is mounted is encapsulated, and a 225-pin ball grid array (225pBGA; board is 0.36mm thick, bismaleimide triazine / glass cloth board, package size is 24x24mm, thick The silicon chip is 9 × 9 mm in size, the thickness is 0.35 mm, and the chip and the bonding pad of the circuit board are bonded with a gold wire with a diameter of 25 μm. The average gold wire length is 5 mm. . Eight packages heat treated at 175 ° C. for 8 hours as post-cure were humidified for 168 hours at 85 ° C. and 60% relative humidity, and then IR reflow treatment (260 ° C., according to JEDEC Level 2 conditions) was performed. The inside of the package after the treatment and the presence or absence of cracks were observed with an ultrasonic scratcher (manufactured by Hitachi Construction Machinery Finetech, mi-scope 10), and any one of the peeling or cracking was regarded as defective. When the number of defective packages is n, n / 8 is displayed.
・熱膨張量:低圧トランスファー成形機(コータキ精機株式会社製、KTS−30)を用いて、金型温度175℃、注入圧力7.5MPa、硬化時間120秒の条件で、エポキシ樹脂組成物を注入成形して試験片(4mm×5mm×15mm)を作製した。得られた試験片を熱機械分析装置(セイコー電子工業(株)製、TMA100)を用いて、測定温度範囲0℃から320℃、昇温速度5℃/分で測定したときのチャートより、30℃から175℃の範囲における熱膨張量を算出した。単位は%。 -Thermal expansion amount: An epoxy resin composition was injected using a low-pressure transfer molding machine (KTS-30, manufactured by Kotaki Seiki Co., Ltd.) under conditions of a mold temperature of 175 ° C, an injection pressure of 7.5 MPa, and a curing time of 120 seconds. Molded to prepare a test piece (4 mm × 5 mm × 15 mm). From the chart when the obtained test piece was measured at a measurement temperature range of 0 ° C. to 320 ° C. and a temperature increase rate of 5 ° C./min using a thermomechanical analyzer (manufactured by Seiko Denshi Kogyo Co., Ltd., TMA100), 30 The amount of thermal expansion in the range from ℃ to 175 ℃ was calculated. Units%.
・パッケージ反り量:低圧トランスファー成形機(TOWA製、Yシリーズ)を用いて、金型温度180℃、注入圧力7.4MPa、硬化時間120秒の条件で、エポキシ樹脂組成物によりシリコンチップを搭載した回路基板等を封止成形して、225ピンのボール・グリッド・アレイ(225pBGA;基板は厚さ0.36mm、ビスマレイミド・トリアジン/ガラスクロス基板、パッケージサイズは24×24mm、厚さ1.17mm、シリコンチップはサイズ9×9mm、厚さ0.35mm、チップと回路基板のボンディングパッドとを25μm径の金線でボンディングしている。)を作製した。得られたパッケージを更にポストキュアとして175℃で8時間加熱処理した。室温に冷却後パッケージのゲートから対角線方向に、表面粗さ計を用いて高さ方向の変位を測定し、変位差の最も大きい値を反り量とした。単位はμm。 Package warpage amount: Using a low-pressure transfer molding machine (manufactured by TOWA, Y series), a silicon chip was mounted with an epoxy resin composition under conditions of a mold temperature of 180 ° C., an injection pressure of 7.4 MPa, and a curing time of 120 seconds. Circuit board, etc. is sealed and molded, and 225-pin ball grid array (225pBGA; board is 0.36mm thick, bismaleimide triazine / glass cloth board, package size is 24x24mm, thickness is 1.17mm The silicon chip was 9 × 9 mm in size and 0.35 mm in thickness, and the chip and the bonding pad of the circuit board were bonded with a 25 μm diameter gold wire. The obtained package was further heat treated at 175 ° C. for 8 hours as a post cure. After cooling to room temperature, the displacement in the height direction was measured using a surface roughness meter in the diagonal direction from the gate of the package, and the value with the largest displacement difference was taken as the amount of warpage. The unit is μm.
実施例19ないし34、比較例4、5
実施例18と同様にして表3、表4の配合に従い、半導体封止用樹脂組成物を製造し、実施例18と同様にして評価した。評価結果を表3、表4に示す。
実施例18以外で用いた成分について、以下に示す。
エポキシ樹脂4:ビフェニル型結晶性エポキシ樹脂(ジャパンエポキシレジン(株)製、YX−4000K。エポキシ当量185、融点105℃。)
エポキシ樹脂5:トリフェノールメタン型エポキシ樹脂(ジャパンエポキシレジン(株)製、E−1032H60。エポキシ当量171、軟化点60℃。)
硬化剤4:フェノールノボラック樹脂(住友ベークライト製、PR−HF−3。水酸基当量104、軟化点80℃。)
硬化剤5:トリフェノールメタン型フェノール樹脂(明和化成(株)製、MEH−7500。水酸基当量97、軟化点110℃。)
硬化促進剤2:1,8−ジアザビシクロ(5,4,0)ウンデセン−7
硬化促進剤3:下記式(13)で表される硬化促進剤
Examples 19 to 34, Comparative Examples 4 and 5
The resin composition for semiconductor encapsulation was produced in the same manner as in Example 18 according to the formulations in Tables 3 and 4, and evaluated in the same manner as in Example 18. The evaluation results are shown in Tables 3 and 4.
Components used in Examples other than Example 18 are shown below.
Epoxy resin 4: Biphenyl type crystalline epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., YX-4000K. Epoxy equivalent 185, melting point 105 ° C.)
Epoxy resin 5: Triphenolmethane type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., E-1032H60. Epoxy equivalent 171, softening point 60 ° C.)
Curing agent 4: Phenol novolac resin (manufactured by Sumitomo Bakelite, PR-HF-3, hydroxyl equivalent 104, softening point 80 ° C.)
Curing agent 5: Triphenolmethane type phenol resin (Maywa Kasei Co., Ltd., MEH-7500. Hydroxyl equivalent 97, softening point 110 ° C.)
Curing accelerator 2: 1,8-diazabicyclo (5,4,0) undecene-7
Curing accelerator 3: Curing accelerator represented by the following formula (13)
硬化促進剤6:下記式(16)で表される硬化促進剤
シランカップリング剤2:γ−メルカプトプロピルトリメトキシシラン
1,2−ジヒドロキシナフタレン
カテコール
ピロガロール
Silane coupling agent 2: γ-mercaptopropyltrimethoxysilane 1,2-dihydroxynaphthalene catechol pyrogallol
実施例18ないし34は、エポキシ樹脂として一般式(1)で表されるエポキシ樹脂(A)を用いたものであり、エポキシ樹脂(A)の配合割合、フェノール性水酸基を2個以上含む化合物(B)の種類と配合割合、無機充填剤(C)の配合割合、硬化促進剤(D)の種類、シランカップリング剤(E)の種類と配合割合、並びに芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(F)の種類と配合割合を変えたものを含むものであるが、いずれも、良好な流動性(スパイラルフロー)、低吸湿性、耐燃性及び耐半田性を示し、かつ熱膨張量、パッケージ反り量が低いという良好な結果が得られた。 In Examples 18 to 34, the epoxy resin (A) represented by the general formula (1) was used as an epoxy resin, and the compounding ratio of the epoxy resin (A) and a compound containing two or more phenolic hydroxyl groups ( B) type and mixing ratio, inorganic filler (C) mixing ratio, curing accelerator (D) type, silane coupling agent (E) type and mixing ratio, and two or more constituting the aromatic ring These include compounds with different types and blending ratios of compounds (F) in which hydroxyl groups are bonded to adjacent carbon atoms, all of which have good fluidity (spiral flow), low moisture absorption, flame resistance and solder resistance. In addition, good results were obtained that the thermal expansion amount and the package warpage amount were low.
一方、エポキシ樹脂として低粘度な結晶性ビフェニル型エポキシ樹脂を用いた点のみが実施例34と異なる比較例4では、熱膨張量、パッケージ反り量は小さく良好であったものの、耐燃性及び耐半田性の点で結果となった。エポキシ樹脂としてトリフェノールメタン型エポキシ樹脂を用い、フェノール性水酸基を2個以上含む化合物(B)としてトリフェノールメタン型フェノール樹脂を用いた比較例5では、熱膨張量、パッケージ反り量は小さく良好であったものの、吸湿率が高く、流動性、耐燃性、及び耐半田性の点でも劣る結果となった。
以上の結果から、実施例18ないし34は、流動性、低吸湿性、耐燃性及び耐半田性に優れ、かつ低い熱膨張量で、パッケージ反り量も良好となることが分かった。
On the other hand, in Comparative Example 4, which differs from Example 34 only in that a low-viscosity crystalline biphenyl type epoxy resin was used as the epoxy resin, the thermal expansion amount and package warpage amount were small and good, but flame resistance and solder resistance The result was in terms of sex. In Comparative Example 5 in which a triphenolmethane type epoxy resin was used as the epoxy resin and a triphenolmethane type phenol resin was used as the compound (B) containing two or more phenolic hydroxyl groups, the thermal expansion amount and the package warpage amount were small and good. However, the moisture absorption rate was high, and the fluidity, flame resistance, and solder resistance were poor.
From the above results, it was found that Examples 18 to 34 were excellent in fluidity, low moisture absorption, flame resistance and solder resistance, had a low thermal expansion amount, and had a good package warpage.
本発明に従うと、耐半田性、耐燃性、流動性に優れ、かつ耐湿信頼性又は低反り性にも優れた半導体封止用樹脂組成物を得ることができるため、表面実装型半導体装置用として好適である。低反り性に優れるという点からは、エリア実装型の半導体装置パッケージ用としても好適である。 According to the present invention, it is possible to obtain a resin composition for encapsulating a semiconductor that is excellent in solder resistance, flame resistance, and fluidity, and excellent in moisture resistance reliability or low warpage. Is preferred. From the viewpoint of excellent low warpage, it is also suitable for an area mounting type semiconductor device package.
1 半導体素子
2 ダイボンド材硬化体
3 ダイパッド
4 金線
5 リードフレーム
6 封止用樹脂組成物の硬化体
7 レジスト
8 基板
9 半田ボール
DESCRIPTION OF SYMBOLS 1 Semiconductor element 2 Die-bonding material hardening body 3
Claims (17)
フェノール性水酸基を2個以上含む化合物(B)と、
無機充填剤(C)と、
硬化促進剤(D)と、
を含むことを特徴とする半導体封止用樹脂組成物。
A compound (B) containing two or more phenolic hydroxyl groups;
An inorganic filler (C);
A curing accelerator (D);
A resin composition for encapsulating a semiconductor, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006275805A JP2008094896A (en) | 2006-10-06 | 2006-10-06 | Resin composition for sealing semiconductor and semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006275805A JP2008094896A (en) | 2006-10-06 | 2006-10-06 | Resin composition for sealing semiconductor and semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008094896A true JP2008094896A (en) | 2008-04-24 |
Family
ID=39378092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006275805A Pending JP2008094896A (en) | 2006-10-06 | 2006-10-06 | Resin composition for sealing semiconductor and semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008094896A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012070387A1 (en) * | 2010-11-25 | 2012-05-31 | 旭化成イーマテリアルズ株式会社 | Epoxy resin and resin composition |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08283379A (en) * | 1995-04-17 | 1996-10-29 | Dainippon Ink & Chem Inc | Semiconductor sealing material |
WO2006009147A1 (en) * | 2004-07-22 | 2006-01-26 | Sumitomo Bakelite Company, Ltd. | Resin composition for semiconductor sealing and semiconductor device |
JP2006124643A (en) * | 2004-09-30 | 2006-05-18 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
JP2006137825A (en) * | 2004-11-11 | 2006-06-01 | Dainippon Ink & Chem Inc | One pack-type epoxy resin composition and its hardened article |
JP2007269979A (en) * | 2006-03-31 | 2007-10-18 | Dainippon Ink & Chem Inc | Epoxy resin composition, its cured product, semiconductor sealing material and semiconductor device |
-
2006
- 2006-10-06 JP JP2006275805A patent/JP2008094896A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08283379A (en) * | 1995-04-17 | 1996-10-29 | Dainippon Ink & Chem Inc | Semiconductor sealing material |
WO2006009147A1 (en) * | 2004-07-22 | 2006-01-26 | Sumitomo Bakelite Company, Ltd. | Resin composition for semiconductor sealing and semiconductor device |
JP2006124643A (en) * | 2004-09-30 | 2006-05-18 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
JP2006137825A (en) * | 2004-11-11 | 2006-06-01 | Dainippon Ink & Chem Inc | One pack-type epoxy resin composition and its hardened article |
JP2007269979A (en) * | 2006-03-31 | 2007-10-18 | Dainippon Ink & Chem Inc | Epoxy resin composition, its cured product, semiconductor sealing material and semiconductor device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012070387A1 (en) * | 2010-11-25 | 2012-05-31 | 旭化成イーマテリアルズ株式会社 | Epoxy resin and resin composition |
JPWO2012070387A1 (en) * | 2010-11-25 | 2014-05-19 | 旭化成イーマテリアルズ株式会社 | Epoxy resin and resin composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4946440B2 (en) | Semiconductor sealing resin composition and semiconductor device | |
JP5321057B2 (en) | Semiconductor sealing resin composition and semiconductor device | |
JP5028756B2 (en) | Semiconductor sealing resin composition and semiconductor device | |
JP5692070B2 (en) | Semiconductor sealing resin composition and semiconductor device | |
US8138266B2 (en) | Semiconductor-encapsulating resin composition and semiconductor device | |
JP5332094B2 (en) | Semiconductor sealing resin composition and semiconductor device | |
JP5228496B2 (en) | Epoxy resin composition for semiconductor encapsulation and semiconductor device | |
JP4569137B2 (en) | Semiconductor sealing resin composition and semiconductor device | |
JP5386836B2 (en) | Semiconductor sealing resin composition and semiconductor device | |
JP2012074613A (en) | Semiconductor device and manufacturing method thereof | |
JP5126045B2 (en) | Semiconductor sealing resin composition and semiconductor device | |
JP5386837B2 (en) | Semiconductor sealing resin composition and semiconductor device | |
JP2012007086A (en) | Resin composition for sealing and electronic part device | |
JP5272973B2 (en) | Epoxy resin composition and semiconductor device | |
JP2007270126A (en) | Resin composition for semiconductor sealing use and semiconductor device | |
JP2011094106A (en) | Resin composition for sealing semiconductor, and semiconductor device | |
JP2008094896A (en) | Resin composition for sealing semiconductor and semiconductor device | |
JP4973177B2 (en) | Semiconductor sealing resin composition and semiconductor device | |
JP5316282B2 (en) | Epoxy resin composition for semiconductor encapsulation and semiconductor device | |
JP2011094105A (en) | Resin composition for sealing semiconductor, and semiconductor device | |
JP5092676B2 (en) | Epoxy resin composition and semiconductor device | |
JP4973444B2 (en) | Semiconductor sealing resin composition and semiconductor device | |
JP5092675B2 (en) | Epoxy resin composition and semiconductor device | |
JP5211737B2 (en) | Epoxy resin composition for semiconductor encapsulation and semiconductor device | |
JP2008024834A (en) | Semiconductor-sealing epoxy resin composition and semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090430 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110617 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110621 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20111025 |