WO2012070387A1 - Epoxy resin and resin composition - Google Patents

Epoxy resin and resin composition Download PDF

Info

Publication number
WO2012070387A1
WO2012070387A1 PCT/JP2011/075864 JP2011075864W WO2012070387A1 WO 2012070387 A1 WO2012070387 A1 WO 2012070387A1 JP 2011075864 W JP2011075864 W JP 2011075864W WO 2012070387 A1 WO2012070387 A1 WO 2012070387A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
resin
mass
ppm
Prior art date
Application number
PCT/JP2011/075864
Other languages
French (fr)
Japanese (ja)
Inventor
建樹 清水
下田 晃義
弘樹 谷口
雄史 新井
賢三 鬼塚
Original Assignee
旭化成イーマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成イーマテリアルズ株式会社 filed Critical 旭化成イーマテリアルズ株式会社
Priority to JP2012545675A priority Critical patent/JPWO2012070387A1/en
Publication of WO2012070387A1 publication Critical patent/WO2012070387A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an epoxy resin and a resin composition.
  • Epoxy resins are used as binders for various purposes because they are solvent-soluble and have excellent mechanical properties. Epoxy resins are usually obtained by reacting phenolic compounds with epichlorohydrin, and therefore contain a large amount of chlorine such as hydrolyzable chlorine and organic bondable chlorine. When an epoxy resin containing a chlorine content is used for an electronic material, it causes corrosion of wiring and the like, and thus an epoxy resin with a reduced chlorine content is required.
  • a resin composition in which naphthalene epoxy is added to a phenoxy resin solution is disclosed as a low chlorinated epoxy resin composition (see, for example, Patent Document 2).
  • Epoxy resins generally tend to crystallize when the chlorine content is reduced. This tendency is particularly strong in resins such as aromatic epoxy resins that have a strong intermolecular force and are easy to work. The crystallized epoxy resin is unsuitable for so-called sealing applications from the viewpoint of handleability.
  • Patent Document 2 Although the method described in Patent Document 2 can uniformly disperse or dissolve naphthalene epoxy in a solvent, the resulting epoxy resin composition may not be suitable for sealing applications because the solvent needs to be removed. .
  • Patent Document 3 does not require solvent removal, the heat resistance of the resulting cured product tends to be significantly reduced.
  • the present invention has been made in view of such points, and has an epoxy resin and a resin composition that have low viscosity, good storage stability, and can exhibit excellent heat resistance when used as a cured product.
  • the purpose is to provide.
  • the present invention is as follows.
  • the resin (B) is at least one selected from the group consisting of epoxy resins, phenoxy resins, phenol novolacs, polyamic acids, polyimides, polybenzoxazoles and (meth) acrylate resins, [1] to [8]
  • the resin composition in any one.
  • the proportion of the epoxy resin (A) is 20% by mass or more and 90% by mass or less, and the proportion of the resin (B) is 10% by mass or more and 80% by mass or less.
  • the total concentration of the compounds represented by the following general formulas (9) to (11) contained in the total resin composition and the chlorine concentration derived from the alkali metal chloride is 0.01 ppm or more and 1000 ppm or less.
  • Resin composition In the formulas (1) to (3), R 1 to R 6 each independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, and x, y, and z represent 0 to 10 Represents an integer.)
  • R 8, R 9 , R 11 and R 12 each independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, and R 7 and R 10 Each independently represents a divalent organic group having 1 to 10 carbon atoms.
  • R 1 to R 6 each independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, and x, y, and z are 0 to 10 Rx and Ry each independently represents any structure
  • the resin (B) is at least one selected from the group consisting of the general formulas (4) and (5),
  • the sum total of the concentration of the compound represented by the general formulas (9) and (10) contained in the total resin composition and the chlorine concentration derived from the alkali metal chloride is 0.01 ppm or more and 1000 ppm or less.
  • the epoxy resin (A) is a resin represented by the general formula (1)
  • the resin (B) is a resin represented by the general formula (4)
  • the total of the concentration of the compound represented by the general formula (9) and the chlorine concentration derived from sodium chloride and potassium chloride contained in the entire resin composition is 0.01 ppm or more and 1000 ppm or less
  • the epoxy resin (A) is represented by the following general formula (1):
  • the compound (C) having the dioxane structure is the following general formula (12), Hardened
  • R 1 represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, and x represents an integer of 0 to 5)
  • each R 1 independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, and x represents an integer of 0 to 10.
  • the epoxy resin (A) is represented by the following general formula (2):
  • the compound (C) having the dioxane structure is the following general formula (13), Hardened
  • R 2 represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, and y represents an integer of 0 to 5)
  • each R 2 independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, and y represents an integer of 0 to 10.
  • each R 1 independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms
  • x represents an integer of 0 or more and 5 or less
  • An epoxy resin represented by the general formula (2) The epoxy resin whose total chlorine amount contained in the said epoxy resin is 0.01 ppm or more and 1000 ppm or less.
  • R 2 each independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms
  • y represents an integer of 0 or more and 5 or less
  • An underfill material comprising the resin composition according to any one of [1] to [15] or the curable resin composition according to any one of [21] to [26].
  • a die attach material comprising the resin composition according to any one of [1] to [15] or the curable resin composition according to any one of [21] to [26].
  • a liquid sealing material comprising the resin composition according to any one of [1] to [15] or the curable resin composition according to any one of [21] to [26].
  • An electronic component comprising at least one selected from the group consisting of an underfill material according to [27], a die attach material according to [28], and a liquid sealing material according to [29].
  • the viscosity is low, the storage stability is good, and when the resin composition is used, excellent heat resistance can be realized.
  • the present embodiment a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail.
  • the following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents.
  • the present invention can be implemented with appropriate modifications within the scope of the gist thereof.
  • the resin composition according to the present embodiment contains an epoxy resin (A) having a total chlorine content of 0.01 ppm to 1000 ppm and a resin (B) having a melting point or a softening point of 50 ° C. or higher, Inside, content of resin (A) is 20 mass% or more and 90 mass% or less.
  • the low chlorine epoxy resin (A) having a total chlorine content of 0.01 ppm to 1000 ppm is generally solid, and the resin (B) having a melting point or softening point of 50 ° C. or higher is also solid. And it is very difficult to mix resin of solids,
  • the resin composition concerning this embodiment is a liquid state of low viscosity by adjusting content of resin (A) to said range. While maintaining the above, the cured product can exhibit high heat resistance. Generally, when mixing resins between solids, it is known to melt by heating or the like to form a liquid, but when this is returned to room temperature, the obtained liquid resin composition It is common for things to return to a solid state again.
  • the resin composition according to the present embodiment can maintain a low-viscosity liquid state even when the temperature is returned to room temperature.
  • the reason for this is not clear, but since the amount of chlorine in the epoxy resin (A) is low, impurities in the resin composition are reduced and the interaction with the resin (B) is strengthened.
  • B) It is presumed that each intermolecular force has decreased and it has become easier to maintain a liquid state.
  • a plurality of resins are melt-mixed, it is necessary to heat them to the melting point or more of each resin. And in the case of the heating, the hydroxyl group contained in a hydrolyzable chlorine content etc.
  • the epoxy resin (A) used in the present embodiment is a low chlorine epoxy resin having a total chlorine content of 0.01 ppm to 1000 ppm.
  • the epoxy resin (A) is not particularly limited as long as the total chlorine amount is in the above range.
  • total chlorine amount means the total amount of chlorine contained in the epoxy resin, and indicates the total amount of organic bondable chlorine, hydrolyzable chlorine, and inorganic chlorine. Unless otherwise specified, ppm, which is the unit of total chlorine, is based on mass.
  • the total chlorine amount was determined by adding a potassium hydroxide solution to an epoxy resin, heating and refluxing, and then adding acetic acid, and using a potentiometric titrator (manufactured by Kyoto Electronics Co., Ltd., automatic potentiometric titrator “AT-510”). It can be measured by precipitation titration.
  • the total chlorine content in the epoxy resin (A) is 0.01 ppm or more, crystallization of the epoxy resin can be suppressed, so that a low viscosity can be maintained. High heat resistance (glass transition temperature) can be achieved.
  • the total chlorine content in the epoxy resin (A) is preferably 0.1 ppm or more and 1000 ppm from the viewpoint of further suppressing crystallization and maintaining low viscosity, and has a glass transition temperature (hereinafter also referred to as “Tg”) of the cured product. From the viewpoint, 1 ppm to 650 ppm is more preferable, and from the viewpoint of a balance between the viscosity of the resin composition and the heat resistance of the cured product, 1 ppm to 200 ppm is particularly preferable.
  • the content of the epoxy resin (A) is 20% by mass or more and 90% by mass or less. If the content of the epoxy resin (A) is 20% by mass or more, the viscosity of the resin composition tends to be sufficiently low, and if it is 90% by mass or less, the heat resistance of the cured product is good.
  • the content of the epoxy resin (A) is preferably 30% by mass or more and 90% by mass or less from the viewpoint of low viscosity of the resin composition, and 30% by mass or more and 85% by mass or less from the viewpoint of heat resistance when a cured product is obtained. From the viewpoint of storage stability, 50% by mass or more and 85% by mass or less is particularly preferable.
  • the epoxy resin (A) preferably has a melting point or softening point of 30 ° C or higher. If the melting point or softening point of the epoxy resin (A) is 30 ° C. or higher, the heat resistance when cured is likely to be good.
  • the melting point or softening point of the epoxy resin (A) is more preferably 30 to 80 ° C., further preferably 30 to 50 ° C. In the present embodiment, the melting point and the softening point can be measured with a differential scanning calorimeter or the like.
  • the structure of the epoxy resin (A) is not particularly limited, and examples of such an epoxy resin (A) include an aromatic epoxy resin, an aliphatic epoxy resin, and an alicyclic epoxy resin.
  • an aromatic epoxy resin is preferable from a compatible viewpoint with resin (B).
  • the aromatic epoxy resin contains an aromatic in the epoxy resin skeleton, it becomes easy to interact with the resin (B), the compatibility is improved, and the resin composition tends to have a low viscosity.
  • the aromatic epoxy resin is not limited as long as it has an aromatic structure and an epoxy group.
  • aromatic epoxy resins include resins having an aromatic glycidyl ether structure, an aromatic glycidyl ester structure, and an aromatic glycidyl amine structure.
  • a resin having an aromatic glycidyl ether structure and an aromatic glycidyl ester structure is preferable from the viewpoint of low viscosity of the resin composition, and a resin having an aromatic glycidyl ether structure from the viewpoint of heat resistance of the cured product. More preferred is a resin having an aromatic diglycidyl ether structure.
  • the resin having an aromatic glycidyl ether structure (aromatic glycidyl ether compound) used in the present embodiment is preferably at least one selected from the group consisting of the following general formulas (1) to (3).
  • R 1 to R 6 each independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, and x, y, and z are integers of 0 to 10 Represents.
  • R 1 in the general formula (1) are each independently a monovalent organic group hydrogen atom or a C 1-10.
  • the monovalent organic group having 1 to 10 carbon atoms include hydrocarbon groups such as a methyl group and an ethyl group.
  • the hydrocarbon group may be substituted with a heteroatom such as a nitrogen atom, an oxygen atom, a sulfur atom, or a phosphorus atom, or may be unsubstituted.
  • R 1 in the general formula (1) is independently preferably a hydrogen atom or a methyl group, more preferably a hydrogen atom, from the viewpoint of heat resistance when a cured product is obtained.
  • X in the general formula (1) represents an integer of 0 to 10.
  • x is preferably 0 to 5 from the viewpoint of low viscosity of the epoxy resin.
  • the bonding position of the glycidyl ether group in the general formula (1) is not particularly limited, but the meta position and the para position are preferable from the viewpoint of heat resistance when the cured product is formed, and the meta position is more preferable from the viewpoint of the viscosity of the epoxy resin. .
  • x in the general formula (1) represents an integer of 0 to 10, but may be in a state where compounds having different numerical values of x are mixed.
  • R 2 in the general formula (2) is each independently a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms.
  • the monovalent organic group having 1 to 10 carbon atoms include hydrocarbon groups such as a methyl group and an ethyl group.
  • the hydrocarbon group may be substituted with a heteroatom such as a nitrogen atom, an oxygen atom, a sulfur atom, or a phosphorus atom, or may be unsubstituted.
  • R 2 in the general formula (2) is preferably independently a hydrogen atom or a methyl group, more preferably a hydrogen atom, from the viewpoint of heat resistance when a cured product is used.
  • Y in the general formula (2) represents an integer of 0 to 10.
  • y is preferably 0 to 5 from the viewpoint of low viscosity of the epoxy resin.
  • the bonding position of the glycidyl ether group in the general formula (2) is not particularly limited, but from the viewpoint of heat resistance when a cured product is obtained, the 1,5-position, 1,6-position, 1,7-position, 1,8-position 2,6 and 2,7 are preferable, and the 1,6th and 1,7th positions are more preferable from the viewpoint of the low viscosity of the epoxy resin.
  • y in the general formula (2) represents an integer of 0 to 10, but may be a state in which compounds having different y values are mixed.
  • R 3 and R 4 in the general formula (3) are each independently a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms.
  • the monovalent organic group having 1 to 10 carbon atoms include hydrocarbon groups such as a methyl group and an ethyl group.
  • the hydrocarbon group may be substituted with a heteroatom such as a nitrogen atom, an oxygen atom, a sulfur atom, or a phosphorus atom, or may be unsubstituted.
  • R 5 and R 6 in the general formula (3) are each independently a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms.
  • the monovalent organic group having 1 to 10 carbon atoms include hydrocarbon groups such as a methyl group and an ethyl group.
  • the hydrocarbon group may be substituted with a heteroatom such as a nitrogen atom, an oxygen atom, a sulfur atom, or a phosphorus atom, or may be unsubstituted.
  • R 5 and R 6 in the general formula (3) are preferably each independently a hydrogen atom or a methyl group from the viewpoint of heat resistance of the obtained cured product, and further R 5 and R 6.
  • R 5 and R 6 in the general formula (3) are preferably each independently a hydrogen atom or a methyl group from the viewpoint of heat resistance of the obtained cured product, and further R 5 and R 6.
  • Z in the general formula (3) represents an integer of 0 to 10.
  • z is preferably 0 to 5 from the viewpoint of the low viscosity of the epoxy resin.
  • the bonding position of the glycidyl ether group in the general formula (3) is not particularly limited, but a meta position and a para position are preferable from the viewpoint of heat resistance when a cured product is used.
  • z in the general formula (3) represents an integer of 0 to 10, but may be in a state where compounds having different numerical values of z are mixed.
  • the numerical values of x, y and z in the general formulas (1) to (3) and the content of the compound in which x, y and z in the epoxy resin are 0 are as described in Examples described later. It can be measured by a method by liquid chromatography. Moreover, when a high molecular weight body is included in an epoxy resin, it can measure by the method by a gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the epoxy resin (A) is represented by the general formula (1) or the general formula (2) from the viewpoint of the balance between the viscosity of the resin composition and the heat resistance of the cured product. It is preferable that it is, and more preferably, it is general formula (1).
  • An epoxy resin (A) may be used individually by 1 type, and may be used together 2 or more types.
  • the resin (B) used in the present embodiment has a melting point or softening point of 50 ° C. or higher.
  • the melting point or softening point of the resin (B) is more preferably 50 to 150 ° C, and further preferably 60 to 130 ° C. If the melting point or softening point of the resin (B) is within the above numerical range, the resin (B) is not particularly limited, but preferably has an aromatic structure or a heterocyclic structure.
  • Such a resin (B) is preferably at least one selected from the group consisting of epoxy resins, phenoxy resins, phenol novolacs, polyamic acids, polyimides, polybenzoxazoles and (meth) acrylate resins.
  • resin (B) epoxy resin, polyamic acid, polyimide, and polybenzoxazole are preferable from the viewpoint of heat resistance of the obtained cured product, and epoxy resin is preferable from the viewpoint of low viscosity of the resin composition. More preferred.
  • Resin (B) may be used individually by 1 type, and may be used together 2 or more types.
  • the resin (B) is a resin different from the epoxy resin (A).
  • the resin (B) is preferably at least one selected from the group consisting of the following general formulas (4) to (8).
  • R 8, R 9 , R 11 and R 12 each independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms
  • R 7 and R 10 Each independently represents a divalent organic group having 1 to 10 carbon atoms.
  • R 7 in the general formula (4) independently represents a divalent organic group having 1 to 10 carbon atoms.
  • R 7 in the general formula (4) is independently preferably a divalent organic group having 1 to 5 carbon atoms, from the viewpoint of heat resistance of the cured product to be obtained.
  • a valent organic group is more preferable.
  • An example of the compound when R 7 is a divalent organic group having 1 carbon atom is triglycidyl isocyanurate.
  • R 8 in the general formula (5) independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms.
  • the monovalent organic group having 1 to 10 carbon atoms include hydrocarbon groups such as a methyl group and an ethyl group.
  • the hydrocarbon group may be substituted with a heteroatom such as a nitrogen atom, an oxygen atom, a sulfur atom, or a phosphorus atom, or may be unsubstituted.
  • R 8 is independently preferably a hydrogen atom or a monovalent organic group having 1 to 5 carbon atoms, and preferably a hydrogen atom or 1 to 3 carbon atoms.
  • a monovalent organic group is more preferable.
  • the bonding position of the glycidyl ether group in the general formula (5) is not particularly limited, but a meta position and a para position are preferable from the viewpoint of heat resistance when a cured product is used.
  • These compounds include biphenyl type epoxy resins.
  • R 9 in the general formula (6) each independently represents a monovalent organic group hydrogen atom or a C 1-10.
  • the monovalent organic group having 1 to 10 carbon atoms include hydrocarbon groups such as a methyl group and an ethyl group.
  • the hydrocarbon group may be substituted with a heteroatom such as a nitrogen atom, an oxygen atom, a sulfur atom, or a phosphorus atom, or may be unsubstituted.
  • each R 9 is independently preferably a hydrogen atom or a monovalent organic group having 1 to 5 carbon atoms, and is preferably a hydrogen atom or 1 to 3 carbon atoms.
  • a monovalent organic group is more preferable.
  • R 10 in the general formula (6) is not limited as long as a divalent organic group having 1 to 10 carbon atoms.
  • a divalent organic group having 1 to 5 carbon atoms is preferable, and a divalent organic group having 1 to 3 carbon atoms is more preferable.
  • the bonding position of the glycidyl ether group in the general formula (6) is not particularly limited, but from the viewpoint of heat resistance when a cured product is used, the 1,5-position, 1,6-position, 1,7-position, 1,8-position 2,6 and 2,7 are preferable, and the 1,6th and 1,7th positions are more preferable from the viewpoint of the low viscosity of the epoxy resin.
  • R 11 in the general formula (7) each independently represents a monovalent organic group hydrogen atom or a C 1-10.
  • the monovalent organic group having 1 to 10 carbon atoms include hydrocarbon groups such as a methyl group and an ethyl group.
  • the hydrocarbon group may be substituted with a heteroatom such as a nitrogen atom, an oxygen atom, a sulfur atom, or a phosphorus atom, or may be unsubstituted.
  • each R 11 is preferably a hydrogen atom or a monovalent organic group having 1 to 5 carbon atoms, preferably a hydrogen atom or 1 to 3 carbon atoms.
  • a monovalent organic group is more preferable.
  • the bonding position of the glycidyl ether group in the general formula (7) is not particularly limited, but a meta position and a para position are preferable from the viewpoint of heat resistance when a cured product is obtained.
  • R 12 in the general formula (8) each independently represents a monovalent organic group hydrogen atom or a C 1-10.
  • the monovalent organic group having 1 to 10 carbon atoms include hydrocarbon groups such as a methyl group and an ethyl group.
  • the hydrocarbon group may be substituted with a heteroatom such as a nitrogen atom, an oxygen atom, a sulfur atom, or a phosphorus atom, or may be unsubstituted.
  • R 12 is each independently preferably a hydrogen atom or a monovalent organic group having 1 to 5 carbon atoms, and preferably a hydrogen atom or 1 to 3 carbon atoms.
  • a monovalent organic group is more preferable.
  • the bonding position of the glycidyl ether group in the general formula (8) is not particularly limited, but a meta position and a para position are preferable from the viewpoint of heat resistance when a cured product is obtained.
  • the resin (B) is selected from the group consisting of the general formulas (4) and (5). It is preferable that it is one.
  • the content of the resin (B) is not limited, but is preferably 10% by mass or less and 80% by mass or less in the total resin.
  • the content of the resin (B) is preferably 15% by mass or more and 70% by mass or less, and particularly preferably 15% by mass or more and 50% by mass or less from the viewpoint of storage stability of the resin composition.
  • the resin composition of the present embodiment includes at least one epoxy resin (A) selected from the group consisting of general formulas (1) to (3) and at least selected from the group consisting of general formulas (4) to (8).
  • the following general formulas (9) to (11) included in the total resin composition The total of the concentration of the compound represented and the chlorine concentration derived from the alkali metal chloride is preferably 0.01 ppm or more and 1000 ppm or less. Such a resin composition can achieve high heat resistance when it is made into a cured product while maintaining low viscosity.
  • R 1 to R 6 each independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms
  • x, y, and z are integers of 0 to 10
  • Rx and Ry each independently represents any structure selected from the following formulas (a) to (e), provided that Rx and Ry are not simultaneously represented by the following formula (a).
  • R 1 to R 6 , x, y, and z in formulas (9) to (11) have the same meanings as those in formulas (1) to (3) described above.
  • the epoxy resin (A) used in the present embodiment is preferably at least one selected from the group consisting of the general formulas (1) and (2) from the viewpoint of the viscosity of the resin composition. 1) is more preferable.
  • the resin (B) used in the present embodiment is preferably at least one selected from the group consisting of general formulas (4) and (5) from the viewpoint of heat resistance of the cured product. It is more preferable that
  • the epoxy resin (A) is at least one selected from the group consisting of the general formulas (1) and (2), and the resin (B) is represented by the general formulas (4) and (4).
  • the concentration of the compound represented by the general formulas (9) and (10), which is at least one selected from the group consisting of 5) and contained in the total resin composition, and the chlorine concentration derived from the alkali metal chloride Is more preferably 0.01 ppm or more and 1000 ppm or less.
  • the epoxy resin (A) is a resin represented by the general formula (1)
  • the resin (B) is a resin represented by the general formula (4). More preferably, the sum of the concentration of the compound represented by the general formula (9) contained in the total resin composition and the chlorine concentration derived from sodium chloride and potassium chloride is 0.01 ppm or more and 1000 ppm or less. .
  • the sum of the concentration of the compounds represented by the general formulas (9) to (11) contained in the total resin composition and the chlorine concentration derived from the alkali metal chloride is 0.01 ppm. It is preferable that it is 1000 ppm or less.
  • the total concentration is 0.01 ppm or more, there is a tendency to suppress crystallization of the resin composition and maintain a low viscosity, and when it is 1000 ppm or less, the heat resistance (glass transition temperature) of the cured product is high. Tend to be.
  • the total concentration is preferably from 0.1 ppm to 1000 ppm from the viewpoint of suppressing crystallization, and more preferably from 1 ppm to 650 ppm from the viewpoint of the glass transition temperature (hereinafter also referred to as “Tg”) of the cured product. From the viewpoint of the balance between the viscosity of the cured product and the heat resistance of the cured product, 1 ppm to 200 ppm is particularly preferable.
  • the concentrations of the compounds represented by the general formulas (9) to (11) and the chlorine concentration derived from the alkali metal chloride can be measured by the methods described in the examples below. .
  • the ratio of the epoxy resin (A) in the total resin is 20% by mass or more and 90% by mass or less. If the proportion of the epoxy resin (A) is 20% by mass or more, the viscosity of the resin composition tends to be sufficiently low, and if it is 90% by mass or less, the heat resistance of the cured product is good.
  • the proportion of the epoxy resin (A) is preferably 30% by mass or more and 90% by mass or less from the viewpoint of the viscosity of the resin composition, and more preferably 30% by mass or more and 85% by mass or less from the viewpoint of heat resistance when a cured product is obtained.
  • 50% by mass or more and 85% by mass or less is particularly preferable.
  • the ratio of the resin (B) in the total resin is preferably 10% by mass or less and 80% by mass or less. If the ratio of the resin (B) is 10% by mass or more, the heat resistance of the obtained cured product tends to be high, and if it is 80% by mass or less, the handleability tends to be good and the viscosity tends to be low.
  • the proportion of the resin (B) is more preferably 15% by mass or more and 70% by mass or less, and particularly preferably 15% by mass or more and 50% by mass or less from the viewpoint of the storage stability of the resin composition.
  • the cured product for sealing includes an epoxy resin (A) having a melting point or softening point of 30 ° C. or higher, a resin (B) having a melting point or softening point of 50 ° C. or higher, and a compound having a dioxane structure.
  • the ratio of the compound (C) containing (C) and having the dioxane structure is 0.01 ppm or more and 5000 ppm or less.
  • the compound (C) having a dioxane structure used in the present embodiment is not limited as long as it has a dioxane structure in the molecular structure.
  • the dioxane structure include 1,2-dioxane, 1,3-dioxane, and 1,4-dioxane structure.
  • 1,3-dioxane and 1,4-dioxane are preferable and 1,4-dioxane is more preferable from the viewpoint of heat resistance of the encapsulated cured product.
  • the structure of the compound (C) having a dioxane structure used in this embodiment is preferably the following general formula (12) or (13).
  • the following general formula (12) or (13) corresponds to a compound in which Rx and / or Ry in the general formula (9) or (10) are reacted with each other between the compounds represented by the formula (c).
  • the resin composition it exists in the state represented by the general formula (9) or (10), but when this is heated to obtain a cured product, an intermolecular reaction proceeds, and the formula (12 Or a compound having a dioxane structure represented by (13).
  • the ratio of the compound (C) having a dioxane structure is 0.01 ppm or more in the encapsulated cured product, the compound represented by the formula (c) at the end has a dioxane structure. If it is 5000 ppm or less, the crosslink density is high, so that the heat resistance is improved.
  • the ratio of the compound (C) having a dioxane structure is not limited as long as it is 0.01 ppm or more and 5000 ppm or less, but the epoxy resin (A) is represented by the general formula (1).
  • the compound (C) having a dioxane structure is a compound represented by the general formula (12)
  • it is preferably 0.035 ppm or more and 3450 ppm or less.
  • the proportion of the compound (C) having a dioxane structure is such that the epoxy resin (A) is the general formula (2) and the compound (C) having the dioxane structure is the general formula.
  • the structure represented by (13) it is preferably 0.04 ppm or more and 4000 ppm or less.
  • the ratio of the compound (C) which has a dioxane structure can be measured by the method as described in the below-mentioned Example.
  • a method for producing an epoxy resin (A) having a total chlorine content of 0.01 ppm or more and 1000 ppm or less will be described below, taking the case where the epoxy resin (A) is a compound represented by the general formula (1) as an example. To do.
  • the method for reducing the chlorine content is not particularly limited, and examples thereof include a method of heating in the presence of a basic substance (alkali heating method) and a method of molecular distillation. By these methods, the amount of chlorine can be sufficiently reduced. Among them, molecular distillation alone and a method of performing molecular distillation after alkali treatment are preferable.
  • the basic substance used in this embodiment is not limited as long as the chlorination of the epoxy resin can be performed without increasing the molecular weight or gelling.
  • These basic substances include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal hydrides such as sodium hydride and lithium hydride, potassium t-butoxide, sodium t-butoxide, potassium iso Examples include alkali metal alkoxides such as propoxide. Among these, alkali metal alkoxides are preferable from the viewpoint of the hue of the epoxy resin described later.
  • a purification step purification method including a process is mentioned.
  • the total chlorine content in the resulting epoxy resin (A) is 0.01 ppm or more and 1000 ppm or less, preferably 0.1 ppm or more and 1000 ppm, from the viewpoint of the glass transition temperature of the cured product (hereinafter also referred to as “Tg”).
  • Tg glass transition temperature of the cured product
  • 1 ppm or more and 650 ppm or less are more preferable, and 1 ppm or more and 200 ppm or less are particularly preferable from the viewpoint of the balance between the viscosity of the resin composition and the heat resistance of the cured product.
  • the crude epoxy resin used for this embodiment can be obtained by a well-known method, for example, can be obtained by the manufacturing method including the process of making a phenol compound and an epichlorohydrin compound react.
  • the crude epoxy resin obtained by such a production method contains chlorine as an impurity in addition to the compound represented by the general formula (1).
  • the chlorine content include hydrolyzable chlorine and organic bond chlorine.
  • the content of chlorine in the crude epoxy resin (hereinafter also referred to as “total chlorine content”) is, for example, 1000 to 8000 ppm.
  • An epoxy resin (A) in which the amount of chlorine is reduced (hereinafter also referred to as “low chlorination”) can be obtained by the production method including the purification step.
  • the crude epoxy resin contains, for example, both hydrolyzable chlorine and organic bond chlorine as the chlorine component.
  • hydrolyzable chlorine refers to, for example, chlorine existing in a state as shown in the following formula (1-2)
  • organic bond chlorine refers to, for example, the following formula (1) -3) Chlorine that exists in the state shown in the figure.
  • a hydrogen atom that is supposed to be extracted by the mechanism shown in the following formula (3-2) has a low acidity and is conventionally considered to be difficult to be extracted. Nevertheless, according to the above-described method for producing the epoxy resin (A), hydrogen atoms are extracted as shown in the following formula (3-2), and organic bond chlorine can be removed.
  • the gelation of the epoxy resin proceeds.
  • the alkoxide acts as a base in preference to a nucleophilic reaction. It is thought that the removal of the chlorine content proceeds without the gelation of.
  • the epoxy resin (A) production method described above is an epoxy having an excellent hue by performing the above-mentioned step (a), which is a treatment using an alkali metal alkoxide among alkali treatments, and further combining a distillation step (b). A resin can be obtained. This will be described in detail below.
  • a crude epoxy resin is obtained by reacting a phenol compound with an epichlorohydrin compound, it contains various impurities in addition to the target epoxy compound.
  • many impurities in the crude epoxy resin tend to be removed, but impurities having a boiling point similar to that of the target epoxy compound cannot be removed.
  • an epoxy compound having a large equivalent among the epoxy compounds represented by the general formula (1) can be separated from impurities by carrying out distillation.
  • the impurity which is the cause of coloring has a boiling point comparable as the objective epoxy compound, even if it distills, it cannot isolate
  • an epoxy resin excellent in hue can be obtained by combining (a) the step of treating the crude epoxy resin with an alkali metal alkoxide in an organic solvent and (b) the step of distillation.
  • the manufacturing method of the above-mentioned epoxy resin (A) is an epoxy resin having an excellent hue by performing both (a) a step of treating with an alkali metal alkoxide in an organic solvent and (b) a step of distillation. A) can be obtained.
  • a crude epoxy resin contains the compound represented by the said General formula (1), for example.
  • the content of the compound represented by the general formula (1) is, for example, 90 to 95% by mass.
  • the compound represented by the general formula (1) exists as a mixture containing two or more compounds having different values of x in the formula (1).
  • the above-mentioned method for producing an epoxy resin includes (a) a step of treating a crude epoxy resin containing a compound represented by the general formula (1) and a chlorine content with an alkali metal alkoxide in an organic solvent, and (b) distillation. A purification process including the process is performed.
  • step (a) and (b) are not limited, but it is more preferable to carry out the step (b) after the step (a) from the viewpoint of the hue of the epoxy resin. Each step will be described below.
  • organic solvent used in the present embodiment is not particularly limited as long as the organic solvent can uniformly dissolve or disperse the crude epoxy resin.
  • organic solvents include ethers such as tetrahydrofuran, dioxane, and dibutyl ether; aromatic hydrocarbons such as toluene and xylene; aliphatic hydrocarbons such as hexane and cyclohexane; acetone, methyl ethyl ketone, and isobutyl ketone.
  • Ketones such as methyl acetate and ethyl acetate; Amides such as dimethylformamide, dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidone; Sulfur compounds such as dimethyl sulfoxide Is mentioned. These may be used alone or in combination of two or more.
  • alkali metal alkoxide Since the epoxy group in the compound represented by the general formula (1) has high reactivity with the nucleophile, the alkali metal alkoxide used in this embodiment does not act as a nucleophile on the epoxy group. In addition, it is preferable to use a bulky alkali metal alkoxide having strong basicity and low nucleophilicity. Specific examples of the alkali metal alkoxide include potassium t-butoxide, sodium t-butoxide, potassium isopropoxide, sodium isopropoxide, potassium ethoxide, sodium ethoxide and the like. These may be used alone or in combination of two or more.
  • potassium t-butoxide, sodium t-butoxide, potassium isopropoxide, and sodium isopropoxide are preferable from the viewpoint of suppression of gelation of the epoxy resin and basicity, and chlorine contained in the epoxy resin. From the viewpoint of reducing the amount, potassium t-butoxide and sodium t-butoxide are more preferable, and potassium t-butoxide is particularly preferable.
  • the treatment time in step (a) is not limited as long as the epoxy resin does not gel and the chlorine content in the crude epoxy resin is reduced, but is preferably 1 minute to 24 hours, more preferably 5 minutes to 10 hours. 15 minutes to 5 hours is more preferable. It is particularly preferable that the treatment time in the step (a) is within the above range from the viewpoint of achieving both suppression of the progress of gelation of the epoxy resin and reduction of the chlorine content in the crude epoxy resin.
  • the treatment temperature in the step (a) is not limited as long as the epoxy resin does not gel and the chlorine content in the crude epoxy resin is reduced, but it is preferably ⁇ 20 ° C. or higher and 90 ° C. or lower, and ⁇ 10 ° C. or higher and 80 ° C. or lower. The following is more preferable, and 0 ° C. or higher and 60 ° C. or lower is further preferable. It is particularly preferable that the treatment temperature in the step (a) is in the above range from the viewpoint of achieving both suppression of the progress of gelation of the epoxy resin and reduction of the chlorine content in the crude epoxy resin.
  • the addition amount of the alkali metal alkoxide used in the present embodiment is not limited as long as the total chlorine amount in the crude epoxy resin is sufficiently reduced and gelation of the epoxy resin does not occur, but the total amount contained in the crude epoxy resin is not limited.
  • the amount is preferably 1 to 20 molar equivalents relative to the amount of chlorine, more preferably 2 to 15 molar equivalents from the viewpoint of reducing the amount of chlorine in the crude epoxy resin, and 3 to 15 molar equivalents. More preferably, it is 5 to 12 molar equivalents, particularly preferably 5 to 10 molar equivalents.
  • the concentration of the crude epoxy resin used in the step (a) is 10 to 90 when the total amount of the crude epoxy resin and the organic solvent used in the step (a) is 100% by mass.
  • the content is preferably in the range of mass%, more preferably in the range of 15 mass% to 70 mass% from the viewpoint of suppressing side reactions.
  • the weight of the crude epoxy resin and the organic solvent in the step (a) preferably satisfies 0.1 ⁇ (weight of the crude epoxy resin) / (weight of the crude epoxy resin + weight of the organic solvent) ⁇ 0.9. It is more preferable that 15 ⁇ (weight of crude epoxy resin) / (weight of crude epoxy resin + weight of organic solvent) ⁇ 0.7. If the weight of the crude epoxy resin and the organic solvent in the step (a) satisfies the above conditions, the epoxy resin tends to be reduced in the chlorine content efficiently without the gelation of the epoxy resin proceeding.
  • the method for producing the epoxy resin is not limited as long as the epoxy resin does not gel and the chlorine content in the crude epoxy resin is reduced, but from the viewpoint of separation from the inorganic salt after the step (a). Further, it is preferable to further include a post-processing step.
  • a treatment step with an acid or water and a treatment step with a liquid separation operation are preferable.
  • the acid used in the post-treatment step is not particularly limited. For example, phosphoric acid, sodium phosphate, potassium phosphate, sodium dihydrogen phosphate, potassium dihydrogen phosphate, acetic acid, oxalic acid, hydrochloric acid, sulfuric acid, nitric acid Etc.
  • the crude epoxy resin is not limited as long as distillation method can be purified. Examples of such distillation methods include simple distillation and thin film distillation.
  • the step (b) of distillation is preferably performed at a degree of vacuum of 0.05 kPa to 0.3 kPa and a distillation internal temperature of 150 ° C. to 180 ° C.
  • the degree of vacuum is 0.05 kPa or more, it is preferable that a compound having a ring-opening as an impurity can be suppressed in addition to the target epoxy compound (for example, resorcinol diglycidyl ether).
  • the degree of vacuum is 0.3 kPa or less, it is preferable that the heating temperature exceeds 180 ° C., so that the gelation of the epoxy resin proceeds during distillation and the yield can be significantly reduced.
  • the degree of vacuum is preferably from 0.1 kPa to 0.2 kPa, and the distillation internal temperature is preferably from 155 ° C. to 175 ° C.
  • the epoxy resin which concerns on this embodiment is an epoxy resin represented by following General formula (1), Comprising: The total chlorine amount contained in the said epoxy resin is 0.01 ppm or more and 1000 ppm or less.
  • each R 1 independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms
  • x represents an integer of 0 or more and 5 or less
  • the epoxy resin which concerns on this embodiment is an epoxy resin represented by following General formula (2), Comprising:
  • the total chlorine amount contained in the said epoxy resin is 0.01 ppm or more and 1000 ppm or less.
  • R 2 each independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms
  • y represents an integer of 0 or more and 5 or less
  • the curable resin composition according to this embodiment preferably contains the above-described resin composition or the above-described epoxy resin (A) and the curing accelerator (A).
  • the content of the above-described resin composition or the above-described epoxy resin (A) is preferably 20 to 99% by mass from the viewpoint of heat resistance of the cured product.
  • the content is more preferably -98% by mass, and further preferably 40-96% by mass.
  • the curable resin composition according to the present embodiment can further contain other epoxy resins within a range that does not adversely affect the performance.
  • epoxy resins include alicyclic epoxy resins having a total chlorine content of 0 ppm, such as 3,4-epoxy-6-methylcyclohexylmethyl carboxylate and 3,4-epoxycyclohexylmethylcarboxylate.
  • the amount of other epoxy resin added is not limited as long as it does not adversely affect the performance, but it is preferably 30% by mass or less in the total resin.
  • ⁇ Curing accelerator (I)> As a hardening accelerator (I), what is necessary is just a compound which can accelerate
  • a hardening accelerator (I) a nitrogen compound, a phosphorus compound, and a latent hardening accelerator are preferable from a compatible viewpoint with the resin composition mentioned above or the epoxy resin (A) mentioned above.
  • a hardening accelerator (I) may be used individually by 1 type, and may be used together 2 or more types.
  • nitrogen compound examples include 1,8-diaza-bicyclo (5,4,0) undecene-7, 1,5-diaza-bicyclo (4,3,0) nonene, 5,6-dibutylamino-1, Cycloamidine compounds such as 8-diaza-bicyclo (5,4,0) undecene-7; tertiary amines such as benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, and their derivatives Imidazoles such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, and derivatives thereof.
  • Examples of the phosphorus compound include organic phosphines such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, tris (4-methylphenyl) phosphine, diphenylphosphine, and phenylphosphine. These may be used alone or in combination of two or more.
  • organic phosphines such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, tris (4-methylphenyl) phosphine, diphenylphosphine, and phenylphosphine. These may be used alone or in combination of two or more.
  • latent curing accelerators dispersion type curing accelerators, thermal decomposition type curing accelerators, photodegradation type curing accelerators, moisture curing type curing accelerators, molecular sieve encapsulated type curing accelerators, and microencapsulated potentials A hardening accelerator etc. are mentioned.
  • the latent curing accelerator is a curing accelerator that can extremely slow the curing reaction rate at room temperature while maintaining the curing reaction rate at the curing temperature of the epoxy resin.
  • dispersion type curing accelerator examples include dicyandiamide, adipic acid hydrazide, diamino maleonitrile, diallyl melamine, poly (piperidine-sebatic acid) amide, and imidazole / triazine derivatives.
  • a thermal decomposition type curing agent is a compound that decomposes into an amine compound such as a tertiary amine and a compound such as isocyanate when heated.
  • amine compound such as a tertiary amine
  • compound such as isocyanate when heated.
  • examples thereof include amine imide synthesized from carboxylic acid ester, methyl hydrazine and epoxy compound.
  • a photodegradable curing accelerator is a compound that is decomposed by irradiation with ultraviolet rays or visible light and activated as a curing accelerator.
  • aromatic diazonium salt, diallyl iodonium salt, triallyl sulfonium salt, triallyl selenium salt and the like can be mentioned.
  • moisture curable curing accelerator examples include ketimine compounds synthesized from aliphatic polyamines and ketone compounds.
  • Examples of the molecular sieve encapsulated curing accelerator include those obtained by absorbing an aliphatic polyamine in a molecular sieve.
  • the microencapsulated curing accelerator refers to a curing accelerator having a curing accelerator as a core and a shell structure around it.
  • a curing accelerator having a curing accelerator as a core and a shell structure around it.
  • an amine-epoxy adduct type in which an imidazole compound is arranged in the core structure and an epoxy resin is arranged in the shell structure, and “Novacure (registered trademark)” and the like correspond to this.
  • the content of the curing accelerator (A) is more preferably 1 to 50% by mass from the viewpoint of heat resistance of the cured product, and 2 to 40% by mass. More preferably.
  • the curable resin composition according to this embodiment preferably further contains a curing agent.
  • the curing agent (c) is not particularly limited as long as it is a compound that can cure the above-described resin composition or the above-described epoxy resin (a).
  • an acid anhydride compound, an acid dianhydride compound, an amine compound, a phenol compound, and the like are preferable from the viewpoint of reactivity with the above-described epoxy resin.
  • curing agent (c) may be used individually by 1 type, and may be used together 2 or more types.
  • Examples of the acid anhydride compound include tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, nadic acid anhydride, methylnadic acid anhydride, trialkyltetrahydrophthalic anhydride, phthalic anhydride, and trimellitic anhydride. Acid, dodecenyl succinic anhydride and the like.
  • acid dianhydride compound examples include pyromellitic anhydride, oxydiphthalic dianhydride, biphenyl-3,3 ′, 4,4′-tetracarboxylic dianhydride, and benzophenone-3,3 ′, 4,4.
  • amine compounds include aromatic amines, aliphatic amines, and alicyclic amines.
  • aromatic amine examples include metaxylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, metaphenylenediamine, and the like.
  • aromatic amines for example, “Epicure W”, “Epicure Z” (all trade names made by Japan Epoxy Resin Co., Ltd.), “Kayahard AA”, “Kayahard A— B ”,“ Kayahard AS ”(all trade names, manufactured by Nippon Kayaku Co., Ltd.),“ Totoamine HM-205 ”(trade names, manufactured by Tohto Kasei Co., Ltd.),“ Adeka Hardener EH-101 ”(Asahi Denka Kogyo) And “Epomic Q-640”, “Epomic Q-643” (both trade names, Mitsui Chemicals), “DETDA80” (trade names, manufactured by Lonza), and the like.
  • aliphatic amine examples include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and diethylaminopropylamine.
  • alicyclic amines examples include mensendiamine, isophoronediamine, N-aminoethylpiperazine, bis (4-aminocyclohexyl) methane, and the like.
  • phenol compound examples include phenol compounds such as phenol, cresol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol, and aminophenol; phenols (phenol, cresol, resorcin, catechol, bisphenol A, bisphenol F, and phenylphenol). , Aminophenol, etc.) and / or naphthols ( ⁇ -naphthol, ⁇ -naphthol, dihydroxynaphthalene, etc.) and compounds having an aldehyde group (formaldehyde, benzaldehyde, salicylaldehyde, etc.) in the presence of an acidic catalyst.
  • phenol compounds such as phenol, cresol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol, and aminophenol
  • phenols phenol, cresol, resorcin, catechol, bisphenol A, bisphenol F, and phenylphenol
  • Novolac-type phenolic resin obtained by mixing with phenols and / or naphthols and dimethoxyparaxylene or bis (methoxymethyl) biphenyl
  • Phenol-aralkyl resins synthesized from aralkyl
  • aralkyl-type phenol resins such as naphthol-aralkyl resins
  • dichloropentadiene-type phenol novolac resins synthesized by copolymerization from phenols and / or naphthols and cyclopentadiene
  • naphthol novolaks Examples thereof include dichloropentadiene-type phenol resins such as resins; terpene-modified phenol resins.
  • an acid anhydride compound is preferable from the viewpoint of the viscosity of the curable resin composition.
  • the acid anhydride compounds tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, nadic acid anhydride, and methyl nadic acid anhydride are more preferable from the viewpoint of heat resistance of the resulting cured product, and particularly nadic acid.
  • An acid anhydride and methyl nadic acid anhydride are more preferable.
  • the content of the curing agent (c) is P, the epoxy equivalent of the resin composition described above or the epoxy resin (a) described above, and the functional group equivalent of the curing agent (c).
  • Q is Q
  • 0.7 ⁇ Q / P ⁇ 1.3 is preferable from the viewpoint of heat resistance of the cured product
  • 0.8 ⁇ Q / P ⁇ 1.2 is more preferable
  • 0.9 ⁇ Q / P ⁇ 1.1 is particularly preferred.
  • the curable resin composition of the present embodiment may contain an inorganic filler (d) if necessary.
  • the inorganic filler (d) include fused silica, crystalline silica, alumina, zircon, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, silicon nitride, aluminum nitride, boron nitride, zirconia, zircon, fosterite, Examples thereof include powders such as steatite, spinel, mullite, and titania, beads formed by spheroidizing these, and glass fibers.
  • examples of the inorganic filler (d) having a flame-retardant effect include aluminum hydroxide, magnesium hydroxide, zinc borate, and zinc molybdate.
  • fused silica, crystalline silica, and alumina are preferable from the viewpoint of chemical resistance of the obtained cured product, and alumina is more preferable from the viewpoint of thermal conductivity.
  • these inorganic fillers (d) are preferably surface-treated with a silane coupling agent or the like from the viewpoint of the viscosity of the curable resin composition.
  • the amount of the inorganic filler (d) added is the above-mentioned epoxy resin (A) having a total chlorine content of 0.01 ppm to 1000 ppm, and a melting point or softening point of 50.
  • the total content of the resin (B) at a temperature equal to or higher than 100 ° C. is 100 parts by mass, it is preferably 0 to 500 parts by mass, more preferably 0 to 300 parts by mass, and 0 to 200 parts by mass. More preferably.
  • adhesion assistant examples include silane coupling agents, titanate coupling agents, aluminum coupling agents, etc. Among them, silane coupling agents are preferable.
  • silane coupling agent examples include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -ureidopropyltriethoxysilane, and N- ⁇ -aminoethyl. - ⁇ -aminopropyltrimethoxysilane and the like.
  • the blending amount of the coupling agent is preferably 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the resin composition or the epoxy resin (a), from the effect of addition and heat resistance.
  • Examples of the flame retardant include phosphorus compounds such as phosphate ester compounds and phosphazene compounds, and nitrogen compounds such as melamine flame retardants.
  • Examples of the phosphoric acid ester compound include phosphoric acid esters substituted with an aliphatic hydrocarbon group such as trimethyl phosphate, triethyl phosphate, tributyl phosphate, triisobutyl phosphate, tris (2-ethylhexyl) phosphate; tris (butoxyethyl) Phosphate ester substituted with an aliphatic organic group containing an oxygen atom such as phosphate; aromatic organic group such as triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, resorcinol bis (diphenyl phosphate) as a substituent And phosphoric acid ester compounds.
  • an aliphatic hydrocarbon group such as trimethyl phosphate, triethyl phosphate, tributyl phosphate, triisobutyl phosphate, tris (2-ethylhexyl) phosphate; tris (butoxyeth
  • Examples of the phosphazene compound include “Ravitor (registered trademark) FP-100” and “Ravitor (registered trademark) FP-300” manufactured by Fushimi Pharmaceutical.
  • melamine flame retardant examples include melamine cyanurate and melamine polyphosphate.
  • the ion scavenger examples include a copper damage preventing agent for preventing copper from being ionized and dissolved, and an inorganic ion adsorbent.
  • the copper component used as a material may be ionized by contact with moisture or the like.
  • the curable resin composition containing the copper damage inhibitor and the inorganic ion adsorbent described above it is possible to supplement and adsorb copper ions and the like that are eluted in contact with moisture and the like.
  • Examples of copper damage inhibitors include triazine thiol compounds and bisphenol reducing agents. These can also use a commercial item, for example, "disnet DB” (trade name, manufactured by Sankyo Pharmaceutical Co., Ltd.) as a copper damage inhibitor containing a triazine thiol compound as a component, and copper damage containing a bisphenol-based reducing agent as a component. Examples of the inhibitor include “Yoshinox BB” (trade name, manufactured by Yoshitomi Pharmaceutical Co., Ltd.).
  • Examples of the inorganic ion adsorbent include zirconium compounds, antimony bismuth compounds, magnesium aluminum compounds, and the like. Commercially available products can also be used as the inorganic ion adsorbent, and examples thereof include “IXE-100” (trade name, manufactured by Toa Gosei Chemical Co., Ltd.) as a cation exchange type.
  • the conductive particles include metal particles such as Au, Ag, Ni, Cu, and solder, and carbon.
  • non-conductive glass, ceramic, plastic or the like may be used as a core, and the core may be coated with the metal particles or carbon.
  • the conductive particles are made of plastic as a core and the core is coated with the metal particles or carbon, or are hot-melt metal particles, they have deformability due to heat and pressure. This is preferable because the contact area is increased and the connection reliability is improved.
  • the fine particles obtained by further coating the surface of these conductive particles with a polymer resin or the like can suppress short-circuiting due to contact between the particles when the amount of the conductive particles is increased, and can improve the insulation between the electrode circuits. .
  • the average particle diameter of the conductive particles is preferably 1 to 18 ⁇ m from the viewpoint of dispersibility and conductivity.
  • the average particle diameter here is the primary particle diameter and can be measured by a particle size distribution meter or the like.
  • the amount of the conductive particles used is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin composition or epoxy resin (a). .
  • the amount of the conductive particles used is 0.1 parts by mass or more, the conductivity tends to be improved, and when it is 30 parts by mass or less, a short circuit tends to be prevented.
  • Examples of the colorant include carbon black.
  • mold release agent a conventionally known mold release agent can be used.
  • examples of commercially available products include “SH 7020” (trade name, manufactured by Toray Dow Corning).
  • the resin composition of the present embodiment and the curable resin composition using the resin composition are preferably used as an underfill material, a die attach material, a liquid sealing material, and a material for an electronic component including them. it can.
  • Underfill material and liquid encapsulant of the present embodiment includes the above-mentioned resin composition or the curable resin composition.
  • the underfill material and liquid sealing material of this embodiment can be manufactured by a known manufacturing method.
  • it can be manufactured by sufficiently mixing the above-described curable resin composition and enclosing it in a container that can be dispensed.
  • the resin composition and the curable resin composition described above has good workability, underfill material and liquid encapsulant comprising the resin composition and the curable resin composition, a semiconductor component or the like and the substrate with the It is possible to easily fill the gaps and the like.
  • the underfill material and the liquid sealing material containing the resin composition and the curable resin composition are: Low performance degradation due to thermal history during soldering. It does not specifically limit as a kind of said base material, For example, a silicon wafer etc. are mentioned.
  • the die attach material of this embodiment contains the above-mentioned resin composition or curable resin composition.
  • the die attach material of this embodiment can be manufactured by a known manufacturing method. For example, it can be produced by applying the above-mentioned resin composition or curable resin composition to a base material and heating it until it loses fluidity at room temperature. It does not specifically limit as a kind of said base material, For example, a silicon wafer etc. are mentioned.
  • the electronic component of the present embodiment includes at least one selected from the group consisting of the above-described underfill material, die attach material, and liquid sealing material.
  • Examples of electronic components including the above-described underfill material, die attach material, and liquid sealing material include semiconductor packages, interposers, Si through electrodes, and the like.
  • At least one selected from the group consisting of an underfill material, a die attach material, and a liquid sealing material containing the above-described resin composition or curable resin composition It can be formed by including at least one selected from the group consisting of a material, a die attach material and a liquid sealing material.
  • the resin composition or the curable resin composition according to the present embodiment specifically, a protective layer formed of a printed wiring board and the circuit board used in the operation panel of various electronic devices and the like in the electronics field, the insulating laminated board Used for film formation for use in layer formation, silicon wafers used in semiconductor devices, semiconductor chips, semiconductor device peripherals, semiconductor mounting substrates, heat sinks, lead pins, semiconductors themselves, insulation and adhesion Is done.
  • RDGE-H Resorcinol diglycidyl ether, trade name “ERISYS RDGE-H” manufactured by CVC Specialty Chemicals, hereinafter abbreviated as “RDGE-H”.
  • R 1 are hydrogen atoms
  • the bonding position of the glycidyl ether and epoxy group ring-opening sites to the benzene ring is the meta position
  • the total amount of chlorine in RDGE-H was 3254 ppm.
  • the total chlorine content in HP-4032 was 1400 ppm.
  • the total chlorine content in AER260 was 1350 ppm.
  • the total chlorine content in LX-01 was 10 ppm.
  • TEPIC-S corresponds to a resin in which R 7 is a methylene group in the general formula (4). Melting point: 90-125 ° C.
  • YX4000H is a resin in the formula (5) in which two R 8 out of four R 8 are methyl groups, the remaining two R 8 are hydrogen atoms, and the bonding positions of the glycidyl ether groups are each in the para position. Equivalent. Specifically, it corresponds to the following general formula (14). Melting point: 105-110 ° C.
  • HP-4710 1-Chloro-2,3-epoxypropane, formaldehyde, 2,7-naphthalenediol polycondensate DIC Corporation, trade name “EPICRON HP-4710”, hereinafter also abbreviated as “HP-4710”.
  • HP-4710 corresponds to a resin in formula (6) in which R 9 is all hydrogen atoms, R 10 is a methylene group, and the bonding positions of glycidyl ether groups are 1 and 4 positions, respectively. Specifically, it corresponds to the following general formula (15). Melting point: 95 ° C.
  • 1031S Tetrakis (hydroxyphenyl) ethane type epoxy resin, trade name “jER 1031S” manufactured by Mitsubishi Chemical Corporation, hereinafter also abbreviated as “1031S”.
  • 1031S corresponds to a resin in which R 11 is all hydrogen atoms and the bonding position of the glycidyl ether group is para-position in formula (7). Specifically, it corresponds to the following general formula (16). Melting point: 90-100 ° C.
  • 1032H60 Tris (hydroxyphenyl) methane type epoxy resin, trade name “jER 1032H60” manufactured by Mitsubishi Chemical Corporation, hereinafter also abbreviated as “1032H60”.
  • 1032H60 corresponds to a resin in which R 12 is all hydrogen atoms and the bonding position of the glycidyl ether group is para-position in formula (8). Specifically, it corresponds to the following general formula (17). Melting point: 56-62 ° C.
  • HNA-100 is an acid anhydride compound.
  • the said chlorine amount was made into the "total chlorine amount" contained in an epoxy resin or a resin composition.
  • a composite silver electrode (for Ag precipitation titration, “C-373” manufactured by Kyoto Electronics Co., Ltd.) was used as an electrode, and titration was performed using a 0.01 mol / L silver nitrate aqueous solution.
  • a composite silver electrode (for Ag precipitation titration, “C-373” manufactured by Kyoto Electronics Co., Ltd.) was used as an electrode, and titration was performed using a 0.01 mol / L silver nitrate aqueous solution.
  • HCL-8320GPC manufactured by Tosoh Corporation
  • Viscosity measurement> The viscosity was measured using a viscometer (manufactured by Toki Sangyo Co., Ltd., “VISCOMETER TV-20”). The measurement temperature was 23 ° C. or 40 ° C., and CORD-1 (1 ° 34 ′ ⁇ R24) was used as the rotor.
  • ⁇ Storage stability evaluation> The initial viscosity (measured within 6 hours after adjusting the composition) and the viscosity after standing for 30 days at 23 ° C. were measured for the resin composition by the above viscosity measurement method, and the “viscosity after 30 days / initial viscosity” The storage stability was evaluated based on the calculated viscosity increase rate. The smaller the viscosity increase rate, the better the storage stability.
  • the glass transition temperature (Tg) was measured using a differential scanning calorimeter (manufactured by Shimadzu Corporation, “DSC-60”).
  • a sample epoxy resin composition (about 20 mg) was placed in an aluminum pan, heated to 250 ° C. at a temperature rising rate of 10 ° C./min in a nitrogen atmosphere, held for 30 minutes, and cured. Then, after cooling the cured product of the epoxy resin composition to room temperature, the Tg of the cured product was measured by further raising the temperature to 280 ° C. at 10 ° C./min.
  • ⁇ Measurement of ratio of compound (C) having dioxane structure in cured product The ratio of the compound (C) having a dioxane structure in the cured product was measured using pyrolysis gas chromatography. After the epoxy resin composition was cured (in air atmosphere, the temperature was raised from room temperature to 120 ° C. at 10 ° C./min, held for 30 minutes, then heated to 180 ° C. at 10 ° C./min and held for 30 minutes). The cured product was measured by pyrolysis gas chromatography. The ratio of the compound (C) having a dioxane structure was calculated from the ratio between the total peak area and the peak area derived from the compound (C).
  • ⁇ Melting point or measurement of resin> The melting point of the resin was measured using a differential scanning calorimeter (“DSC-60” manufactured by Shimadzu Corporation). A sample resin (about 20 mg) was placed in an aluminum pan, heated to 250 ° C. at a temperature rising rate of 10 ° C./min in a nitrogen atmosphere, and the temperature at which an endothermic peak was observed was defined as the melting point or softening point.
  • DSC-60 differential scanning calorimeter
  • Example 1 Resorcinol diglycidyl ether: RDGE-H (386.75 g) was placed in an eggplant-shaped flask, a T-tube, a thermometer and a condenser were attached, and molecular distillation was performed at a reduced pressure of 0.1 kPa. Distillation was started at a system temperature of 137 ° C, and the first distillation was performed until the system temperature increased to 157 ° C. Distillation was started when the system temperature reached 165 ° C. A molecular distillate of resorcinol diglycidyl ether was obtained with a yield of 57.7%. The total amount of chlorine in the obtained molecular distillate was 610 ppm.
  • the total chlorine content of resorcinol diglycidyl ether not subjected to molecular distillation was 3254 ppm, and the viscosity at 40 ° C. was 150 mPa ⁇ s.
  • the detected peak was only the monomer, and no dimer or higher peak was detected, and both were below the detection limit (0.01% by mass or less).
  • the resulting molecular distillate had a melting point of 39-40 ° C.
  • Example 2 Resorcinol diglycidyl ether (168.59 g) obtained in Example 1 and subjected to molecular distillation once was subjected to molecular distillation again in the same manner as in Example 1.
  • distillation was started at a reduced pressure of 0.2 kPa and an internal temperature of 145 ° C, and the first distillation was performed until the internal temperature increased to 160 ° C. Distillation was started when the system temperature reached 170 ° C. A molecular distillate was obtained with a yield of 58.0%. The total amount of chlorine in the obtained molecular distillate was 420 ppm.
  • the detected peak was only the monomer, and the dimer The above peaks were not detected, and all were below the detection limit (0.01% by mass or less).
  • the resulting molecular distillate had a melting point of 39-40 ° C.
  • Example 3 Resorcinol diglycidyl ether (41.04 g) obtained by carrying out the molecular distillation twice obtained in Example 2 was again subjected to molecular distillation in the same manner as in Example 1.
  • distillation was started at a reduced pressure of 0.11 kPa and an internal temperature of 135 ° C., and the initial distillation was performed until the internal temperature increased to 155 ° C. Distillation was started when the system temperature reached 160 ° C. A molecular distillate was obtained with a yield of 59.8%. The total amount of chlorine in the obtained molecular distillate was 130 ppm.
  • the detected peak was only the monomer, and the dimer The above peaks were not detected, and all were below the detection limit (0.01% by mass or less).
  • the resulting molecular distillate had a melting point of 39-40 ° C.
  • the organic phase was washed with distilled water (50.0) three times and separated to obtain an organic phase.
  • the obtained organic phase was distilled off under reduced pressure to obtain an epoxy resin with a yield of 75.5%.
  • the obtained epoxy resin was distilled at a reduced pressure of 0.12 kPa and an internal temperature of 135 ° C., and the initial distillation was performed until the internal temperature increased to 155 ° C. Distillation was started when the system temperature reached 160 ° C.
  • a molecular distillate was obtained with a two-stage yield of 43.8%.
  • the total amount of chlorine in the obtained molecular distillate was 8 ppm.
  • the detected peak was only the monomer, and the dimer The above peaks were not detected, and all were below the detection limit (0.01% by mass or less).
  • the resulting molecular distillate had a melting point of 39-40 ° C.
  • Example 5 In an eggplant-shaped flask, 1,6-bis (glycidyloxy) naphthalene: HP-4032 (15.0 g) was added, toluene (30.0 g) and N-methyl-2-pyrrolidone (30.0 g) were added, and magnetic. The mixture was stirred with a stirrer until uniform. Further, 0.67 g of potassium t-butoxide (10 molar equivalents relative to the total amount of chlorine in HP4032) was added and stirred at 35 ° C. for 30 minutes. Distilled water (15.0 g) was added to the stirred solution and stirred for 10 minutes.
  • the obtained solution was transferred to a separating funnel, and distilled water (15.0 g), 2-propanol (15.0 g) and methyl isobutyl ketone (15.0 g) were added and washed. After washing, the organic phase was obtained by further washing with distilled water (15.0 g) three times. The obtained organic phase was distilled off under reduced pressure to obtain an epoxy resin (1,6-bis (glycidyloxy) naphthalene).
  • the obtained epoxy resin was distilled at a reduced pressure of 0.08 kPa and an internal temperature of 155 ° C., and the initial distillation was performed until the internal temperature increased to 175 ° C. Distillation was started when the system temperature reached 180 ° C. A molecular distillate was obtained with a two-stage yield of 47.4%. The total amount of chlorine in the obtained molecular distillate was 4 ppm. Further, the epoxy resin, which is the molecular distillate obtained, was subjected to gel permeation chromatography (GPC) measurement to analyze the detected peak. As a result, the monomer ratio was 96.5% by mass. . The obtained molecular distillate had a melting point of 45 to 48 ° C.
  • Example 6 Resorcinol diglycidyl ether (85 parts by mass) obtained in Example 1 and TEPIC-S (15 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. After the solution was cooled to room temperature, NovaCure HX3941-HP (4.0 parts by mass) was added and stirred to prepare a resin composition. The viscosity, Tg and storage stability at 23 ° C. of the composition were measured. The results are shown in Table 1.
  • Example 7 Resorcinol diglycidyl ether (70 parts by mass) obtained in Example 1 and TEPIC-S (30 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. After the solution was cooled to room temperature, NovaCure HX3941-HP (4.0 parts by mass) was added and stirred to prepare a resin composition. The viscosity, Tg and storage stability at 23 ° C. of the composition were measured. The results are shown in Table 1. Moreover, it was 1200 ppm when this resin composition was measured by the measuring method of the ratio of the compound (C) which has a dioxane structure in the above-mentioned hardened
  • Example 8 Resorcinol diglycidyl ether (40 parts by mass) obtained in Example 1 and TEPIC-S (60 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. After the solution was cooled to room temperature, NovaCure HX3941-HP (4.0 parts by mass) was added and stirred to prepare a resin composition. The viscosity, Tg and storage stability at 23 ° C. of the composition were measured. The results are shown in Table 1.
  • Example 9 Resorcinol diglycidyl ether (88 parts by mass) obtained in Example 1 and TEPIC-S (12 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. After the solution was cooled to room temperature, NovaCure HX3941-HP (4.0 parts by mass) was added and stirred to prepare a resin composition. The viscosity, Tg and storage stability at 23 ° C. of the composition were measured. The results are shown in Table 1.
  • Example 10 Resorcinol diglycidyl ether (70 parts by mass) obtained in Example 2 and TEPIC-S (30 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. After the solution was cooled to room temperature, NovaCure HX3941-HP (4.0 parts by mass) was added and stirred to prepare a resin composition. The viscosity, Tg and storage stability at 23 ° C. of the composition were measured. The results are shown in Table 1.
  • Example 11 Resorcinol diglycidyl ether (70 parts by mass) obtained in Example 3 and TEPIC-S (30 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. After the solution was cooled to room temperature, NovaCure HX3941-HP (4.0 parts by mass) was added and stirred to prepare a resin composition. The viscosity, Tg and storage stability at 23 ° C. of the composition were measured. The results are shown in Table 1.
  • Example 12 Resorcinol diglycidyl ether (70 parts by mass) obtained in Example 4 and TEPIC-S (30 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. After the solution was cooled to room temperature, NovaCure HX3941-HP (4.0 parts by mass) was added and stirred to prepare a resin composition. The viscosity, Tg and storage stability at 23 ° C. of the composition were measured. The results are shown in Table 1.
  • Example 13 By mixing 85 parts by weight of resorcinol diglycidyl ether obtained in Example 1 with TEPIC-S (15 parts by weight) and HNA-100 (161.1 parts by weight), heating at 130 ° C. TEPIC-S was dissolved to obtain a solution. After this solution was cooled to 25 ° C., NovaCure HX-3941HP (4 parts by mass) was mixed to prepare an epoxy resin composition. The viscosity, Tg and storage stability at 23 ° C. of this epoxy resin composition were measured. The results are shown in Table 1.
  • Example 14 After mixing TEPIC-S (20 parts by mass) and HNA-100 (162 parts by mass) with 80 parts by mass of resorcinol diglycidyl ether obtained in Example 1, the TGIC was heated at 130 ° C. Dissolved to obtain a solution. After this solution was cooled to 25 ° C., NovaCure HX-3941HP (4 parts by mass) was mixed to prepare an epoxy resin composition. The viscosity, Tg, and storage stability of this epoxy resin composition at 23 ° C. were measured. The results are shown in Table 1.
  • Example 15 After mixing TEPIC-S (30 parts by mass) and HNA-100 (164 parts by mass) with 70 parts by mass of resorcinol diglycidyl ether obtained in Example 1, TGIC was heated at 130 ° C. Dissolved to obtain a solution. After this solution was cooled to 25 ° C., NovaCure HX-3941HP (4 parts by mass) was mixed to prepare an epoxy resin composition. The viscosity, Tg, and storage stability of this epoxy resin composition at 23 ° C. were measured. The results are shown in Table 1.
  • Example 16 After mixing TEPIC-S (30 parts by mass) and HNA-100 (164 parts by mass) with 70 parts by mass of resorcinol diglycidyl ether obtained in Example 1, TGIC was heated at 130 ° C. Dissolved to obtain a solution. After cooling this solution to 25 ° C., NovaCure HX-3941HP (4 parts by mass) and alumina filler (177.4 parts by mass) were mixed to prepare an epoxy resin composition. The viscosity, Tg, and storage stability of this epoxy resin composition at 23 ° C. were measured. The results are shown in Table 1.
  • Example 17 After mixing YH4000H (15 parts by mass) with 85 parts by mass of resorcinol diglycidyl ether obtained in Example 1, YH4000H was dissolved by heating at 130 ° C. to obtain a solution. After cooling to 0 ° C., NovaCure HX-3941HP (4 parts by mass) was mixed to prepare an epoxy resin composition. The viscosity, Tg, and storage stability at 23 ° C. of this epoxy resin composition were measured by the method described above. The results are shown in Table 1.
  • Example 18 YX4000H (15 parts by mass) and HNA-100 (149.1 parts by mass) were mixed with 85 parts by mass of resorcinol diglycidyl ether obtained in Example 1, and then heated at 130 ° C. to obtain YX4000H. Dissolved to obtain a solution. After this solution was cooled to 25 ° C., NovaCure HX-3941HP (4 parts by mass) was mixed to prepare an epoxy resin composition. The viscosity, Tg, and storage stability at 23 ° C. of this epoxy resin composition were measured by the method described above. The results are shown in Table 1.
  • Example 19 After mixing HP4710 (15 parts by mass) with 85 parts by mass of resorcinol diglycidyl ether obtained in Example 1, HP4710 was dissolved by heating at 130 ° C. to obtain a solution. After this solution was cooled to 25 ° C., NovaCure HX-3941HP (4 parts by mass) was mixed to prepare an epoxy resin composition. The viscosity, Tg, and storage stability of this epoxy resin composition at 23 ° C. were measured. The results are shown in Table 1.
  • Example 20 HP4710 (15 parts by mass) and HNA-100 (150.4 parts by mass) were mixed with 85 parts by mass of resorcinol diglycidyl ether obtained in Example 1, and then heated at 130 ° C. to obtain HP4710. Dissolved to obtain a solution. After this solution was cooled to 25 ° C., NovaCure HX-3941HP (4 parts by mass) was mixed to prepare an epoxy resin composition. The viscosity, Tg, and storage stability of this epoxy resin composition at 23 ° C. were measured. The results are shown in Table 1.
  • Example 21 After mixing 1031S (15 parts by mass) with 85 parts by mass of resorcinol diglycidyl ether obtained in Example 1, HP 4710 was dissolved by heating at 130 ° C. to obtain a solution. After this solution was cooled to 25 ° C., NovaCure HX-3941HP (4 parts by mass) was mixed to prepare an epoxy resin composition. The viscosity, Tg, and storage stability of this epoxy resin composition at 23 ° C. were measured. The results are shown in Table 1.
  • Example 22 After mixing 1032S (15 parts by mass) with 85 parts by mass of resorcinol diglycidyl ether obtained in Example 1, HP 4710 was dissolved by heating at 130 ° C. to obtain a solution. After this solution was cooled to 25 ° C., NovaCure HX-3941HP (4 parts by mass) was mixed to prepare an epoxy resin composition. The viscosity and Tg at 23 ° C. of this epoxy resin composition were measured. The results are shown in Table 1.
  • Example 23 1,6-bis (glycidyloxy) naphthalene (85 parts by mass) obtained in Example 5 and TEPIC-S (15 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. After the solution was cooled to room temperature, NovaCure HX3941-HP (4.0 parts by mass) was added and stirred to prepare a resin composition. The viscosity, Tg and storage stability at 23 ° C. of the composition were measured. The results are shown in Table 1.
  • Example 24 1,6-Bis (glycidyloxy) naphthalene (70 parts by mass) obtained in Example 5 and TEPIC-S (30 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. After the solution was cooled to room temperature, NovaCure HX3941-HP (4.0 parts by mass) was added and stirred to prepare a resin composition. The viscosity, Tg and storage stability at 23 ° C. of the composition were measured. The results are shown in Table 1. Moreover, it was 1000 ppm when this resin composition was measured by the measuring method of the ratio of the compound (C) which has a dioxane structure in the above-mentioned hardened
  • Example 25 1,6-Bis (glycidyloxy) naphthalene (50 parts by mass) obtained in Example 5 and TEPIC-S (50 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. After the solution was cooled to room temperature, NovaCure HX3941-HP (4.0 parts by mass) was added and stirred to prepare a resin composition. The viscosity, Tg and storage stability at 23 ° C. of the composition were measured. The results are shown in Table 1.
  • Example 26 1,6-bis (glycidyloxy) naphthalene obtained in Example 5 (80 parts by mass), TEPIC-S (20 parts by mass) and HNA-100 (138.7 parts by mass) were mixed at 130 ° C. A solution was obtained by heating. After the solution was cooled to room temperature, NovaCure HX-3941HP (4.0 parts by mass) was mixed to prepare an epoxy resin composition. The viscosity, Tg, and storage stability of this epoxy resin composition at 23 ° C. were measured. The results are shown in Table 1.
  • Example 27 1,6-bis (glycidyloxy) naphthalene obtained in Example 5 (70 parts by mass), TEPIC-S (30 parts by mass) and HNA-100 (143.4 parts by mass) were mixed, and at 130 ° C. A solution was obtained by heating. After the solution was cooled to room temperature, NovaCure HX-3941HP (4.0 parts by mass) was mixed to prepare an epoxy resin composition. The viscosity, Tg, and storage stability of this epoxy resin composition at 23 ° C. were measured. The results are shown in Table 1.
  • Example 28 LX-01 (85 parts by mass) and TEPIC-S (15 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. After the solution was cooled to room temperature, NovaCure HX-3941HP (4.0 parts by mass) was mixed to prepare an epoxy resin composition. The viscosity, Tg, and storage stability of this epoxy resin composition at 23 ° C. were measured. The results are shown in Table 1.
  • Example 29 LX-01 (70 parts by mass), TEPIC-S (30 parts by mass) and HNA-100 (124.2 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. After the solution was cooled to room temperature, NovaCure HX-3941HP (4.0 parts by mass) was mixed to prepare an epoxy resin composition. The viscosity, Tg, and storage stability of this epoxy resin composition at 23 ° C. were measured. The results are shown in Table 1.
  • Example 1 Resorcinol diglycidyl ether (92 parts by mass) obtained in Example 1 and TEPIC-S (8 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. When the solution was cooled to room temperature and allowed to stand at room temperature for a while, it crystallized and a liquid composition could not be obtained.
  • Example 2 Resorcinol diglycidyl ether (15 parts by mass) obtained in Example 1 and TEPIC-S (85 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. When the solution was cooled to room temperature and allowed to stand at room temperature for a while, it crystallized and a liquid composition could not be obtained.
  • Example 5 1,6-Bis (glycidyloxy) naphthalene (92 parts by mass) obtained in Example 5 and TEPIC-S (8 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. When the solution was cooled to room temperature and allowed to stand at room temperature for a while, it crystallized and a liquid composition could not be obtained.
  • Example 6 1,6-Bis (glycidyloxy) naphthalene (15 parts by mass) obtained in Example 5 and TEPIC-S (85 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. When the solution was cooled to room temperature and allowed to stand at room temperature for a while, it crystallized and a liquid composition could not be obtained.
  • Example 23 and Comparative Example 7 According to the comparison between Example 23 and Comparative Example 7, and the comparison between Example 27 and Comparative Example 8, by using 1,6-bis (glycidyloxy) naphthalene having low chlorination, As compared with the case of using 6-bis (glycidyloxy) naphthalene, it was found that the composition had a low viscosity and the cured product had a high Tg.
  • Example 28 and Comparative Example 9 By comparing the comparison between Example 28 and Comparative Example 9 and the comparison between Example 29 and Comparative Example 10 with the use of a low chlorinated bisphenol A type epoxy resin, a chlorinated bisphenol A type epoxy resin was used. It was found that the composition had a low viscosity and the Tg of the cured product was high as compared with the case where it was.
  • the epoxy resin and the resin composition according to the present invention have low viscosity, they are suitably used for adhesives for electronic parts.
  • the epoxy resin and resin composition according to the present invention have low viscosity and high heat resistance of the cured product after being cured. Therefore, in the underfill material, die attach material, liquid sealing material, and electronics field.

Abstract

[Problem] To provide: an epoxy resin which exhibits low viscosity when used in a resin composition and which exhibits excellent heat resistance when used in a cured product; and a resin composition. [Solution] This resin composition comprises an epoxy resin (A) that has a total chlorine content of 0.01 to 1000ppm and a resin (B) that has a melting or softening point of 50°C or higher, the content of the epoxy resin (A) being 20 to 90% by mass relative to the total amount of all the resins.

Description

エポキシ樹脂および樹脂組成物Epoxy resin and resin composition
 本発明は、エポキシ樹脂および樹脂組成物に関する。 The present invention relates to an epoxy resin and a resin composition.
 エポキシ樹脂は、溶媒可溶性であり機械物性が優れることから、種々の用途のバインダーとして使用されている。エポキシ樹脂は、通常フェノール化合物とエピクロロヒドリンとを反応させて得られるため、加水分解性塩素および有機結合性塩素等の塩素分が多く含まれている。塩素分を含んだエポキシ樹脂を電子材料用途で用いると、配線の腐食等を引き起こすため、該塩素分を低減させたエポキシ樹脂が求められている。 Epoxy resins are used as binders for various purposes because they are solvent-soluble and have excellent mechanical properties. Epoxy resins are usually obtained by reacting phenolic compounds with epichlorohydrin, and therefore contain a large amount of chlorine such as hydrolyzable chlorine and organic bondable chlorine. When an epoxy resin containing a chlorine content is used for an electronic material, it causes corrosion of wiring and the like, and thus an epoxy resin with a reduced chlorine content is required.
 エポキシ樹脂中の塩素量を低減させる方法として、アルカリ化合物による加熱法等が知られている(例えば、特許文献1参照)。 As a method for reducing the amount of chlorine in the epoxy resin, a heating method using an alkali compound is known (for example, see Patent Document 1).
 また、低塩素化したエポキシ樹脂の組成物として、フェノキシ樹脂溶液中にナフタレンエポキシを添加した樹脂組成物が開示されている(例えば、特許文献2参照)。 Also, a resin composition in which naphthalene epoxy is added to a phenoxy resin solution is disclosed as a low chlorinated epoxy resin composition (see, for example, Patent Document 2).
 さらに、エポキシ樹脂組成物の粘度を下げる方法として、反応性希釈剤や脂肪族系エポキシ樹脂を添加する方法が挙げられる(例えば、特許文献3参照)。 Furthermore, as a method of lowering the viscosity of the epoxy resin composition, a method of adding a reactive diluent or an aliphatic epoxy resin can be mentioned (for example, see Patent Document 3).
特開昭57-031922号公報JP-A-57-031922 特開2009-242508号公報JP 2009-242508 A 特開2003-26766号公報JP 2003-26766 A
 エポキシ樹脂は、一般的に含有塩素量を低減させると、結晶化しやすい傾向にある。特に芳香族エポキシ樹脂のような分子間力が強く働きやすい樹脂ではその傾向が強い。結晶化したエポキシ樹脂は、取扱性の観点から、いわゆる封止用途には不適である。 Epoxy resins generally tend to crystallize when the chlorine content is reduced. This tendency is particularly strong in resins such as aromatic epoxy resins that have a strong intermolecular force and are easy to work. The crystallized epoxy resin is unsuitable for so-called sealing applications from the viewpoint of handleability.
 例えば、特許文献1に記載の方法では、エポキシ樹脂の高分子量化が起こってしまい、エポキシ樹脂の粘度が著しく上昇する傾向にある。また、エポキシ樹脂の種類によっては、ゲル化が進行してしまい、目的の化合物を単離することができない場合さえある。 For example, in the method described in Patent Document 1, high molecular weight of the epoxy resin occurs, and the viscosity of the epoxy resin tends to increase remarkably. Further, depending on the type of epoxy resin, gelation may proceed, and the target compound may not be isolated.
 特許文献2に記載の方法は、ナフタレンエポキシが溶媒に均一に分散または溶解することはできるものの、溶媒を除去する必要があるため、得られるエポキシ樹脂組成物は封止用途に適さない場合がある。 Although the method described in Patent Document 2 can uniformly disperse or dissolve naphthalene epoxy in a solvent, the resulting epoxy resin composition may not be suitable for sealing applications because the solvent needs to be removed. .
 特許文献3に開示されている方法では、溶媒除去の必要はないものの、得られる硬化物の耐熱性が著しく低下する傾向にある。 Although the method disclosed in Patent Document 3 does not require solvent removal, the heat resistance of the resulting cured product tends to be significantly reduced.
 以上より、低塩素化したエポキシ樹脂であって、低粘度であり、保存安定性が良好であり、かつ硬化した際の硬化物の耐熱性が良好である、封止用途に好適なエポキシ樹脂およびエポキシ樹脂組成物の開発が望まれている。 As mentioned above, it is a low chlorinated epoxy resin, low viscosity, good storage stability, and good heat resistance of the cured product when cured, and an epoxy resin suitable for sealing applications and Development of an epoxy resin composition is desired.
 本発明はかかる点に鑑みなされたものであり、低粘度であり、保存安定性が良好であり、かつ硬化物とした際には優れた耐熱性を発揮し得る、エポキシ樹脂、樹脂組成物を提供することを目的とする。 The present invention has been made in view of such points, and has an epoxy resin and a resin composition that have low viscosity, good storage stability, and can exhibit excellent heat resistance when used as a cured product. The purpose is to provide.
 本発明者らは、鋭意検討した結果、上記課題を解決することを見出し、本発明を完成するに至った。 As a result of intensive studies, the present inventors have found that the above problems can be solved, and have completed the present invention.
 すなわち、本発明は以下に示すものである。 That is, the present invention is as follows.
 [1]
 含有全塩素量が0.01ppm以上1000ppm以下のエポキシ樹脂(A)と、
 融点または軟化点が50℃以上である樹脂(B)とを含有し、
 全樹脂中、エポキシ樹脂(A)の含有量が、20質量%以上90質量%以下である、樹脂組成物。
[1]
An epoxy resin (A) having a total chlorine content of 0.01 ppm to 1000 ppm,
A resin (B) having a melting point or softening point of 50 ° C. or higher,
During the total resin content of the epoxy resin (A) is not less than 20% by mass to 90% by mass, the resin composition.
 [2]
 全樹脂中、前記樹脂(B)の含有量が、10質量%以上80質量%以下である、[1]に記載の樹脂組成物。
[2]
Resin composition as described in [1] whose content of the said resin (B) is 10 to 80 mass% in all the resins.
 [3]
 前記エポキシ樹脂(A)の融点または軟化点が30℃以上である、[1]または[2]に記載の樹脂組成物。
[3]
The resin composition according to [1] or [2], wherein the epoxy resin (A) has a melting point or softening point of 30 ° C or higher.
 [4]
 前記エポキシ樹脂(A)が、芳香族エポキシ樹脂である、[1]~[3]のいずれかに記載の樹脂組成物。
[4]
The resin composition according to any one of [1] to [3], wherein the epoxy resin (A) is an aromatic epoxy resin.
 [5]
 前記芳香族エポキシ樹脂が、芳香族ジグリシジルエーテル構造を有する、[4]に記載の樹脂組成物。
[5]
The resin composition according to [4], wherein the aromatic epoxy resin has an aromatic diglycidyl ether structure.
 [6]
 前記芳香族エポキシ樹脂が、下記一般式(1)~(3)からなる群より選ばれる少なくとも1つである、[4]に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
(式(1)~(3)中、R~Rは、それぞれ独立に、水素原子または炭素数1~10の1価の有機基を表し、x、yおよびzは、0~10の整数を表す。)
[6]
[4] The resin composition according to [4], wherein the aromatic epoxy resin is at least one selected from the group consisting of the following general formulas (1) to (3).
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
(In the formulas (1) to (3), R 1 to R 6 each independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, and x, y, and z represent 0 to 10 Represents an integer.)
 [7]
 前記芳香族エポキシ樹脂が、下記一般式(1)および(2)からなる群より選ばれる少なくとも1つである、[4]に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
(式(1)および(2)中、RおよびRは、それぞれ独立に、水素原子または炭素数1~10の1価の有機基を表し、xおよびyは、0~5の整数を表す。)
[7]
The resin composition according to [4], wherein the aromatic epoxy resin is at least one selected from the group consisting of the following general formulas (1) and (2).
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
(In the formulas (1) and (2), R 1 and R 2 each independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, and x and y represent an integer of 0 to 5) To express.)
 [8]
 前記樹脂(B)が、芳香族構造または複素環構造を有する、[1]~[7]のいずれかに記載の樹脂組成物。
[8]
The resin composition according to any one of [1] to [7], wherein the resin (B) has an aromatic structure or a heterocyclic structure.
 [9]
 前記樹脂(B)が、エポキシ樹脂、フェノキシ樹脂、フェノールノボラック、ポリアミド酸、ポリイミド、ポリベンズオキサゾールおよび(メタ)アクリレート樹脂からなる群より選ばれる少なくとも1つである、[1]~[8]のいずれかに記載の樹脂組成物。
[9]
The resin (B) is at least one selected from the group consisting of epoxy resins, phenoxy resins, phenol novolacs, polyamic acids, polyimides, polybenzoxazoles and (meth) acrylate resins, [1] to [8] The resin composition in any one.
 [10]
 前記樹脂(B)が、下記一般式(4)~(8)からなる群より選ばれる少なくとも1つである、[1]~[9]のいずれかに記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
(式(4)~(8)中、R8、、R11およびR12は、それぞれ独立に、水素原子または炭素数1~10の1価の有機基を表し、RおよびR10は、それぞれ独立に、炭素数1~10の2価の有機基を表す。)
[10]
The resin composition according to any one of [1] to [9], wherein the resin (B) is at least one selected from the group consisting of the following general formulas (4) to (8).
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
(In the formulas (4) to (8), R 8, R 9 , R 11 and R 12 each independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, and R 7 and R 10 Each independently represents a divalent organic group having 1 to 10 carbon atoms.)
 [11]
 前記樹脂(B)が、下記一般式(4)および(5)からなる群より選ばれる少なくとも1つである、[1]~[10]のいずれかに記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
(式(4)および(5)中、Rは、それぞれ独立に、炭素数1~10の2価の有機基を表し、Rは、それぞれ独立に、水素原子または炭素数1~10の1価の有機基を表す。)
[11]
The resin composition according to any one of [1] to [10], wherein the resin (B) is at least one selected from the group consisting of the following general formulas (4) and (5).
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
(In the formulas (4) and (5), R 7 each independently represents a divalent organic group having 1 to 10 carbon atoms, and R 8 each independently represents a hydrogen atom or a carbon atom having 1 to 10 carbon atoms. Represents a monovalent organic group.)
 [12]
 下記一般式(1)~(3)からなる群より選ばれる少なくとも1つのエポキシ樹脂(A)と、
 下記一般式(4)~(8)からなる群より選ばれる少なくとも1つの樹脂(B)と、
 下記一般式(9)~(11)からなる群より選ばれる少なくとも1つの化合物および/またはアルカリ金属塩化物と
を含有し、
 全樹脂中、エポキシ樹脂(A)の割合が20質量%以上90質量%以下であり、樹脂(B)の割合が10質量%以上80質量%以下であり、
 全樹脂組成物中に含まれる、下記一般式(9)~(11)で表される化合物の濃度と、アルカリ金属塩化物に由来する塩素濃度との総和が、0.01ppm以上1000ppm以下である、樹脂組成物。
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
(式(1)~(3)中、R~Rは、それぞれ独立に、水素原子または炭素数1~10の1価の有機基を表し、x、yおよびzは、0~10の整数を表す。)
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
(式(4)~(8)中、R8、、R11およびR12は、それぞれ独立に、水素原子または炭素数1~10の1価の有機基を表し、RおよびR10は、それぞれ独立に、炭素数1~10の2価の有機基を表す。)
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
(式(9)~(11)中、R~Rは、それぞれ独立に、水素原子または炭素数1~10の1価の有機基を表し、x、yおよびzは、0~10の整数を表し、RxおよびRyは、それぞれ独立に、下記式(a)~(e)から選ばれるいずれかの構造である。ただし、RxとRyとは同時に下記式(a)であることは無い。)
Figure JPOXMLDOC01-appb-C000054
[12]
At least one epoxy resin (A) selected from the group consisting of the following general formulas (1) to (3);
At least one resin (B) selected from the group consisting of the following general formulas (4) to (8);
Containing at least one compound selected from the group consisting of the following general formulas (9) to (11) and / or an alkali metal chloride,
In all the resins, the proportion of the epoxy resin (A) is 20% by mass or more and 90% by mass or less, and the proportion of the resin (B) is 10% by mass or more and 80% by mass or less.
The total concentration of the compounds represented by the following general formulas (9) to (11) contained in the total resin composition and the chlorine concentration derived from the alkali metal chloride is 0.01 ppm or more and 1000 ppm or less. , Resin composition.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
(In the formulas (1) to (3), R 1 to R 6 each independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, and x, y, and z represent 0 to 10 Represents an integer.)
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
(In the formulas (4) to (8), R 8, R 9 , R 11 and R 12 each independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, and R 7 and R 10 Each independently represents a divalent organic group having 1 to 10 carbon atoms.)
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
(In the formulas (9) to (11), R 1 to R 6 each independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, and x, y, and z are 0 to 10 Rx and Ry each independently represents any structure selected from the following formulas (a) to (e), provided that Rx and Ry are not simultaneously represented by the following formula (a) .)
Figure JPOXMLDOC01-appb-C000054
 [13]
 エポキシ樹脂(A)が、前記一般式(1)および(2)からなる群から選ばれる少なくとも1つであり、
 樹脂(B)が、前記一般式(4)および(5)からなる群から選ばれる少なくとも1つであり、
 全樹脂組成物中に含まれる、前記一般式(9)および(10)で表される化合物の濃度と、アルカリ金属塩化物に由来する塩素濃度との総和が、0.01ppm以上1000ppm以下である、[12]に記載の樹脂組成物。
[13]
Epoxy resin (A), the general formula (1) and at least one selected from the group consisting of (2),
The resin (B) is at least one selected from the group consisting of the general formulas (4) and (5),
The sum total of the concentration of the compound represented by the general formulas (9) and (10) contained in the total resin composition and the chlorine concentration derived from the alkali metal chloride is 0.01 ppm or more and 1000 ppm or less. [12] The resin composition described in [12].
 [14]
 エポキシ樹脂(A)が、前記一般式(1)で表される樹脂であり、
 樹脂(B)が、前記一般式(4)で表される樹脂であり、
 全樹脂組成物中に含まれる、前記一般式(9)で表される化合物の濃度と、塩化ナトリウムおよび塩化カリウムに由来する塩素濃度との総和が、0.01ppm以上1000ppm以下である、[12]に記載の樹脂組成物。
[14]
The epoxy resin (A) is a resin represented by the general formula (1),
The resin (B) is a resin represented by the general formula (4),
The total of the concentration of the compound represented by the general formula (9) and the chlorine concentration derived from sodium chloride and potassium chloride contained in the entire resin composition is 0.01 ppm or more and 1000 ppm or less, [12 ] The resin composition as described in.
 [15]
 全樹脂中、エポキシ樹脂(A)の割合が50質量%以上85質量%以下であり、樹脂(B)の割合が15質量%以上50質量%以下である、[12]~[14]のいずれかに記載の樹脂組成物。
[15]
Any of [12] to [14], wherein the proportion of the epoxy resin (A) is 50% by mass or more and 85% by mass or less and the proportion of the resin (B) is 15% by mass or more and 50% by mass or less in the total resin. A resin composition according to claim 1.
 [16]
 融点または軟化点が30℃以上であるエポキシ樹脂(A)と、
 融点または軟化点が50℃以上である樹脂(B)と、
 ジオキサン構造を有する化合物(C)と
を含有し、
 該ジオキサン構造を有する化合物(C)の割合が、0.01ppm以上5000ppm以下である、封止用硬化物。
[16]
An epoxy resin (A) having a melting point or softening point of 30 ° C. or higher;
A resin (B) having a melting point or softening point of 50 ° C. or higher;
Containing a compound (C) having a dioxane structure;
Hardened | cured material for sealing whose ratio of the compound (C) which has this dioxane structure is 0.01 ppm or more and 5000 ppm or less.
 [17]
 前記エポキシ樹脂(A)が、下記一般式(1)であり、
 前記ジオキサン構造を有する化合物(C)が、下記一般式(12)であり、
 全硬化物中、ジオキサン構造を有する化合物(C)の割合が、0.035ppm以上3450ppm以下である、[16]に記載の封止用硬化物。
Figure JPOXMLDOC01-appb-C000055
(式(1)中、Rは、水素原子または炭素数1~10の1価の有機基を表し、xは、0~5の整数を表す。)
Figure JPOXMLDOC01-appb-C000056
(式(12)中、Rはそれぞれ独立に水素原子または炭素数1~10の1価の有機基を表し、xは0~10の整数を表す。)
[17]
The epoxy resin (A) is represented by the following general formula (1):
The compound (C) having the dioxane structure is the following general formula (12),
Hardened | cured material for sealing as described in [16] whose ratio of the compound (C) which has a dioxane structure is 0.035 ppm or more and 3450 ppm or less in all the hardened | cured material.
Figure JPOXMLDOC01-appb-C000055
(In Formula (1), R 1 represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, and x represents an integer of 0 to 5)
Figure JPOXMLDOC01-appb-C000056
(In Formula (12), each R 1 independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, and x represents an integer of 0 to 10)
 [18]
 前記エポキシ樹脂(A)が、下記一般式(2)であり、
 前記ジオキサン構造を有する化合物(C)が、下記一般式(13)であり、
 全硬化物中、ジオキサン構造を有する化合物(C)の割合が、0.04ppm以上4000ppm以下である、[16]に記載の封止用硬化物。
Figure JPOXMLDOC01-appb-C000057
(式(2)中、Rは、水素原子または炭素数1~10の1価の有機基を表し、yは、0~5の整数を表す。)
Figure JPOXMLDOC01-appb-C000058
(式(13)中、Rはそれぞれ独立に水素原子または炭素数1~10の1価の有機基を表し、yは0~10の整数を表す。)
[18]
The epoxy resin (A) is represented by the following general formula (2):
The compound (C) having the dioxane structure is the following general formula (13),
Hardened | cured material for sealing as described in [16] whose ratio of the compound (C) which has a dioxane structure is 0.04 ppm or more and 4000 ppm or less in all the hardened | cured material.
Figure JPOXMLDOC01-appb-C000057
(In Formula (2), R 2 represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, and y represents an integer of 0 to 5)
Figure JPOXMLDOC01-appb-C000058
(In Formula (13), each R 2 independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, and y represents an integer of 0 to 10)
 [19]
 一般式(1)で表されるエポキシ樹脂であって、
 前記エポキシ樹脂中に含まれる全塩素量が0.01ppm以上1000ppm以下である、エポキシ樹脂。
Figure JPOXMLDOC01-appb-C000059
(式(1)中、Rはそれぞれ独立に水素原子または炭素数1~10の1価の有機基を表し、xは0以上5以下の整数を表し、式(1)で表される全樹脂中に含まれるx=0で表される化合物の割合が99質量%以上である。)
[19]
An epoxy resin represented by the general formula (1),
The epoxy resin whose total chlorine amount contained in the said epoxy resin is 0.01 ppm or more and 1000 ppm or less.
Figure JPOXMLDOC01-appb-C000059
(In Formula (1), each R 1 independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, x represents an integer of 0 or more and 5 or less, and all represented by Formula (1) (The ratio of the compound represented by x = 0 contained in the resin is 99% by mass or more.)
 [20]
 一般式(2)で表されるエポキシ樹脂であって、
 前記エポキシ樹脂中に含まれる全塩素量が0.01ppm以上1000ppm以下である、エポキシ樹脂。
Figure JPOXMLDOC01-appb-C000060
(式(2)中、Rはそれぞれ独立に水素原子または炭素数1~10の1価の有機基を表し、yは0以上5以下の整数を表し、式(2)で表される全樹脂中に含まれるy=0で表される化合物の割合が95質量%以上である。)
[20]
An epoxy resin represented by the general formula (2),
The epoxy resin whose total chlorine amount contained in the said epoxy resin is 0.01 ppm or more and 1000 ppm or less.
Figure JPOXMLDOC01-appb-C000060
(In the formula (2), R 2 each independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, y represents an integer of 0 or more and 5 or less, and all represented by the formula (2) (The ratio of the compound represented by y = 0 contained in the resin is 95% by mass or more.)
 [21]
 [1]~[15]のいずれかに記載の樹脂組成物または[19]~[20]のいずれかに記載のエポキシ樹脂(ア)と、
 硬化促進剤(イ)と
を含有する、硬化性樹脂組成物。
[21]
[1] to [15] the resin composition according to any one of [19] to [20] and the epoxy resin (a) according to any one of
A curable resin composition containing a curing accelerator (I).
 [22]
 前記硬化促進剤(イ)が、窒素化合物または潜在性硬化促進剤である、[21]に記載の硬化性樹脂組成物。
[22]
The curable resin composition according to [21], wherein the curing accelerator (I) is a nitrogen compound or a latent curing accelerator.
 [23]
 前記硬化促進剤(イ)が、マイクロカプセル化された潜在性硬化促進剤である、[21]または[22]に記載の硬化性樹脂組成物。
[23]
The curable resin composition according to [21] or [22], wherein the curing accelerator (A) is a microencapsulated latent curing accelerator.
 [24]
 硬化剤(ウ)を更に含有する、[21]~[23]のいずれかに記載の硬化性樹脂組成物。
[24]
The curable resin composition according to any one of [21] to [23], further containing a curing agent (c).
 [25]
 前記硬化剤(ウ)が、酸無水物化合物、酸二無水物化合物、アミン化合物およびフェノール化合物からなる群より選ばれる少なくとも1つである、[24]に記載の硬化性樹脂組成物。
[25]
The curable resin composition according to [24], wherein the curing agent (c) is at least one selected from the group consisting of an acid anhydride compound, an acid dianhydride compound, an amine compound, and a phenol compound.
 [26]
 無機充填材(エ)を更に含有する、[21]~[25]のいずれかに記載の硬化性樹脂組成物。
[26]
Containing inorganic filler (d) In addition, [21] The curable resin composition according to any one of - [25].
 [27]
 [1]~[15]のいずれかに記載の樹脂組成物または[21]~[26]のいずれかに記載の硬化性樹脂組成物を含む、アンダーフィル材。
[27]
An underfill material comprising the resin composition according to any one of [1] to [15] or the curable resin composition according to any one of [21] to [26].
 [28]
 [1]~[15]のいずれかに記載の樹脂組成物または[21]~[26]のいずれかに記載の硬化性樹脂組成物を含む、ダイアタッチ材。
[28]
A die attach material comprising the resin composition according to any one of [1] to [15] or the curable resin composition according to any one of [21] to [26].
 [29]
 [1]~[15]のいずれかに記載の樹脂組成物または[21]~[26]のいずれかに記載の硬化性樹脂組成物を含む、液状封止材。
[29]
A liquid sealing material comprising the resin composition according to any one of [1] to [15] or the curable resin composition according to any one of [21] to [26].
 [30]
 [27]に記載のアンダーフィル材、[28]に記載のダイアタッチ材および[29]に記載の液状封止材からなる群より選ばれる少なくとも1つを含む、電子部品。
[30]
An electronic component comprising at least one selected from the group consisting of an underfill material according to [27], a die attach material according to [28], and a liquid sealing material according to [29].
 本発明によれば、樹脂組成物とした場合には低粘度であり、保存安定性が良好であり、かつ硬化物とした際には優れた耐熱性を実現することができる。 According to the present invention, when the resin composition is used, the viscosity is low, the storage stability is good, and when the resin composition is used, excellent heat resistance can be realized.
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。 Hereinafter, a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail. The following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents. The present invention can be implemented with appropriate modifications within the scope of the gist thereof.
 ≪樹脂組成物≫
 本実施形態に係る樹脂組成物は、含有全塩素量が0.01ppm以上1000ppm以下のエポキシ樹脂(A)と、融点または軟化点が50℃以上である樹脂(B)とを含有し、全樹脂中、樹脂(A)の含有量が、20質量%以上90質量%以下である。
≪Resin composition≫
The resin composition according to the present embodiment contains an epoxy resin (A) having a total chlorine content of 0.01 ppm to 1000 ppm and a resin (B) having a melting point or a softening point of 50 ° C. or higher, Inside, content of resin (A) is 20 mass% or more and 90 mass% or less.
 含有全塩素量が0.01ppm以上1000ppm以下という低塩素のエポキシ樹脂(A)は一般に固体状であり、さらに、融点または軟化点が50℃以上である樹脂(B)も固体状である。そして、固体同士の樹脂を混合させることは非常に困難であるところ、本実施形態に係る樹脂組成物は、樹脂(A)の含有量を上記の範囲に調整することで、低粘度の液体状態を維持しつつ、その硬化物は高い耐熱性を発現することができる。一般に、固体同士の樹脂を混合させる場合には、加熱すること等により溶融し、液状にすることが知られてはいるが、これを常温に戻した際には、得られた液状の樹脂組成物が再度固体状に戻ることが一般的である。しかしながら、本実施形態に係る樹脂組成物は、常温に戻しても低粘度の液体状態を維持することができる。この理由は明らかではないが、エポキシ樹脂(A)の塩素量が低いことにより、樹脂組成物中の不純物が減り、樹脂(B)との相互作用が強くなるために、樹脂(A)、樹脂(B)それぞれの分子間力が低下し、液状を維持しやすくなったと推定される。また、一般に複数の樹脂を溶融混合する際にはそれぞれの樹脂の融点以上に加熱する必要がある。そして、その加熱の際に、加水分解性塩素分などに含まれる水酸基がエポキシ基と反応してしまい、樹脂組成物が液状になっても粘度が極めて高くなるという課題がある。本実施形態に係る樹脂組成物は、加水分解性塩素も十分に低減されているため、液状となった後も低粘度を維持できると推定される。 The low chlorine epoxy resin (A) having a total chlorine content of 0.01 ppm to 1000 ppm is generally solid, and the resin (B) having a melting point or softening point of 50 ° C. or higher is also solid. And it is very difficult to mix resin of solids, The resin composition concerning this embodiment is a liquid state of low viscosity by adjusting content of resin (A) to said range. While maintaining the above, the cured product can exhibit high heat resistance. Generally, when mixing resins between solids, it is known to melt by heating or the like to form a liquid, but when this is returned to room temperature, the obtained liquid resin composition It is common for things to return to a solid state again. However, the resin composition according to the present embodiment can maintain a low-viscosity liquid state even when the temperature is returned to room temperature. The reason for this is not clear, but since the amount of chlorine in the epoxy resin (A) is low, impurities in the resin composition are reduced and the interaction with the resin (B) is strengthened. (B) It is presumed that each intermolecular force has decreased and it has become easier to maintain a liquid state. In general, when a plurality of resins are melt-mixed, it is necessary to heat them to the melting point or more of each resin. And in the case of the heating, the hydroxyl group contained in a hydrolyzable chlorine content etc. will react with an epoxy group, and there exists a subject that a viscosity becomes very high even if a resin composition becomes liquid state. In the resin composition according to the present embodiment, hydrolyzable chlorine is also sufficiently reduced. Therefore, it is presumed that low viscosity can be maintained even after becoming liquid.
 <エポキシ樹脂(A)>
 本実施形態で用いられるエポキシ樹脂(A)は、含有する全塩素量が0.01ppm以上1000ppm以下という低塩素のエポキシ樹脂である。ここで、エポキシ樹脂(A)は、全塩素量が上記の範囲であれば特に限定はされない。
<Epoxy resin (A)>
The epoxy resin (A) used in the present embodiment is a low chlorine epoxy resin having a total chlorine content of 0.01 ppm to 1000 ppm. Here, the epoxy resin (A) is not particularly limited as long as the total chlorine amount is in the above range.
 なお、ここで言う「全塩素量」とは、エポキシ樹脂中に含まれる塩素の量の合計を意味し、有機結合性塩素、加水分解性塩素、無機塩素の合計を指す。なお、特に断りがない限り、全塩素量の単位であるppmは質量基準である。全塩素量は、エポキシ樹脂に水酸化カリウム溶液を加え、加熱還流を実施し、その後に酢酸を加えたものを、電位差滴定装置(京都電子社製、電位差自動滴定装置「AT-510」)を用いて沈殿滴定することにより測定することができる。 The “total chlorine amount” referred to herein means the total amount of chlorine contained in the epoxy resin, and indicates the total amount of organic bondable chlorine, hydrolyzable chlorine, and inorganic chlorine. Unless otherwise specified, ppm, which is the unit of total chlorine, is based on mass. The total chlorine amount was determined by adding a potassium hydroxide solution to an epoxy resin, heating and refluxing, and then adding acetic acid, and using a potentiometric titrator (manufactured by Kyoto Electronics Co., Ltd., automatic potentiometric titrator “AT-510”). It can be measured by precipitation titration.
 エポキシ樹脂(A)中の含有全塩素量が0.01ppm以上であることにより、エポキシ樹脂の結晶化を抑えることができるため低粘度を維持することができ、1000ppm以下であることにより、硬化物の高耐熱性(ガラス転移温度)を達成することができる。エポキシ樹脂(A)中の含有全塩素量は、結晶化をより抑制し低粘度を維持する観点から、0.1ppm以上1000ppmが好ましく、硬化物のガラス転移温度(以下「Tg」ともいう)の観点から、1ppm以上650ppm以下がより好ましく、樹脂組成物の粘度と硬化物の耐熱性とのバランスの観点から、1ppm以上200ppm以下が特に好ましい。 When the total chlorine content in the epoxy resin (A) is 0.01 ppm or more, crystallization of the epoxy resin can be suppressed, so that a low viscosity can be maintained. High heat resistance (glass transition temperature) can be achieved. The total chlorine content in the epoxy resin (A) is preferably 0.1 ppm or more and 1000 ppm from the viewpoint of further suppressing crystallization and maintaining low viscosity, and has a glass transition temperature (hereinafter also referred to as “Tg”) of the cured product. From the viewpoint, 1 ppm to 650 ppm is more preferable, and from the viewpoint of a balance between the viscosity of the resin composition and the heat resistance of the cured product, 1 ppm to 200 ppm is particularly preferable.
 全樹脂中、エポキシ樹脂(A)の含有量は、20質量%以上90質量%以下である。エポキシ樹脂(A)の含有量が、20質量%以上であれば、樹脂組成物の粘度が十分低い傾向にあり、90質量%以下であれば、硬化物の耐熱性が良好である。エポキシ樹脂(A)の含有量は、樹脂組成物の低粘度の観点から、30質量%以上90質量%以下が好ましく、硬化物とした際の耐熱性の観点から30質量%以上85質量%以下がより好ましく、保存安定性の観点から、50質量%以上85質量%以下が特に好ましい。 In the total resin, the content of the epoxy resin (A) is 20% by mass or more and 90% by mass or less. If the content of the epoxy resin (A) is 20% by mass or more, the viscosity of the resin composition tends to be sufficiently low, and if it is 90% by mass or less, the heat resistance of the cured product is good. The content of the epoxy resin (A) is preferably 30% by mass or more and 90% by mass or less from the viewpoint of low viscosity of the resin composition, and 30% by mass or more and 85% by mass or less from the viewpoint of heat resistance when a cured product is obtained. From the viewpoint of storage stability, 50% by mass or more and 85% by mass or less is particularly preferable.
 エポキシ樹脂(A)は、融点または軟化点が30℃以上であることが好ましい。エポキシ樹脂(A)の融点または軟化点が30℃以上であれば、硬化物とした際の耐熱性が良好な傾向にある。エポキシ樹脂(A)の融点または軟化点は、30~80℃であることがより好ましく、30~50℃であることがさらに好ましい。なお、本実施形態において、融点および軟化点は、示差走査熱量測定器などによって測定することができる。 The epoxy resin (A) preferably has a melting point or softening point of 30 ° C or higher. If the melting point or softening point of the epoxy resin (A) is 30 ° C. or higher, the heat resistance when cured is likely to be good. The melting point or softening point of the epoxy resin (A) is more preferably 30 to 80 ° C., further preferably 30 to 50 ° C. In the present embodiment, the melting point and the softening point can be measured with a differential scanning calorimeter or the like.
 エポキシ樹脂(A)の構造は特に限定されないが、このようなエポキシ樹脂(A)として、例えば、芳香族エポキシ樹脂、脂肪族エポキシ樹脂、脂環式エポキシ樹脂などが挙げられる。これらの中で、樹脂(B)との相溶性の観点で、芳香族エポキシ樹脂が好ましい。芳香族エポキシ樹脂は、エポキシ樹脂骨格中に芳香族を含有することで、樹脂(B)と相互作用しやすくなり、相溶性が向上し、樹脂組成物は低粘度の傾向にある。 The structure of the epoxy resin (A) is not particularly limited, and examples of such an epoxy resin (A) include an aromatic epoxy resin, an aliphatic epoxy resin, and an alicyclic epoxy resin. In these, an aromatic epoxy resin is preferable from a compatible viewpoint with resin (B). When the aromatic epoxy resin contains an aromatic in the epoxy resin skeleton, it becomes easy to interact with the resin (B), the compatibility is improved, and the resin composition tends to have a low viscosity.
 前記芳香族エポキシ樹脂は、芳香族構造とエポキシ基とを有する構造であれば限定されない。このような芳香族エポキシ樹脂として、例えば芳香族グリシジルエーテル構造、芳香族グリシジルエステル構造、芳香族グリシジルアミン構造を有する樹脂などが挙げられる。これらの中で、樹脂組成物の低粘度の観点から、芳香族グリシジルエーテル構造、芳香族グリシジルエステル構造を有する樹脂が好ましく、硬化物の耐熱性の観点から、芳香族グリシジルエーテル構造を有する樹脂がより好ましく、芳香族ジグリシジルエーテル構造を有する樹脂がさらに好ましい。 The aromatic epoxy resin is not limited as long as it has an aromatic structure and an epoxy group. Examples of such aromatic epoxy resins include resins having an aromatic glycidyl ether structure, an aromatic glycidyl ester structure, and an aromatic glycidyl amine structure. Among these, a resin having an aromatic glycidyl ether structure and an aromatic glycidyl ester structure is preferable from the viewpoint of low viscosity of the resin composition, and a resin having an aromatic glycidyl ether structure from the viewpoint of heat resistance of the cured product. More preferred is a resin having an aromatic diglycidyl ether structure.
 本実施形態に用いる芳香族グリシジルエーテル構造を有する樹脂(芳香族グリシジルエーテル化合物)としては、下記一般式(1)~(3)からなる群より選ばれる少なくとも1つであることが好ましい。
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
(式(1)~(3)中、R~Rは、それぞれ独立に、水素原子または炭素数1~10の1価の有機基を表し、x、yおよびzは0~10の整数を表す。)
The resin having an aromatic glycidyl ether structure (aromatic glycidyl ether compound) used in the present embodiment is preferably at least one selected from the group consisting of the following general formulas (1) to (3).
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
(In the formulas (1) to (3), R 1 to R 6 each independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, and x, y, and z are integers of 0 to 10 Represents.)
 一般式(1)におけるRは、それぞれ独立に、水素原子または炭素数1~10の1価の有機基である。該炭素数1以上10以下の1価の有機基としては、例えば、メチル基、エチル基等の炭化水素基が挙げられる。該炭化水素基は、例えば、窒素原子、酸素原子、硫黄原子、リン原子等のヘテロ原子により置換されていてもよいし、無置換であってもよい。この中でも、一般式(1)におけるRは、硬化物とした際の耐熱性の点から、それぞれ独立に、水素原子またはメチル基が好ましく、水素原子がより好ましい。 R 1 in the general formula (1) are each independently a monovalent organic group hydrogen atom or a C 1-10. Examples of the monovalent organic group having 1 to 10 carbon atoms include hydrocarbon groups such as a methyl group and an ethyl group. The hydrocarbon group may be substituted with a heteroatom such as a nitrogen atom, an oxygen atom, a sulfur atom, or a phosphorus atom, or may be unsubstituted. Among these, R 1 in the general formula (1) is independently preferably a hydrogen atom or a methyl group, more preferably a hydrogen atom, from the viewpoint of heat resistance when a cured product is obtained.
 一般式(1)におけるxは、0~10の整数を表す。この中で、エポキシ樹脂の低粘度の観点から、xは0~5が好ましい。 X in the general formula (1) represents an integer of 0 to 10. Among these, x is preferably 0 to 5 from the viewpoint of low viscosity of the epoxy resin.
 一般式(1)におけるグリシジルエーテル基の結合位置は、特に限定されないが、硬化物とした際の耐熱性の観点からメタ位およびパラ位が好ましく、エポキシ樹脂の粘度の観点からメタ位がより好ましい。 The bonding position of the glycidyl ether group in the general formula (1) is not particularly limited, but the meta position and the para position are preferable from the viewpoint of heat resistance when the cured product is formed, and the meta position is more preferable from the viewpoint of the viscosity of the epoxy resin. .
 上記の通り、一般式(1)におけるxは、0~10の整数を表すが、xの数値が異なる化合物が混合した状態であってもよい。この場合、一般式(1)におけるx=0で表される化合物は、全一般式(1)で表される化合物中、95質量%以上含有されることが好ましく、樹脂組成物の低粘度の観点から99質量%以上がより好ましく、99.9質量%以上が特に好ましい。 As described above, x in the general formula (1) represents an integer of 0 to 10, but may be in a state where compounds having different numerical values of x are mixed. In this case, the compound represented by x = 0 in the general formula (1) is preferably contained in an amount of 95% by mass or more in the compound represented by the general formula (1), and the low viscosity of the resin composition From a viewpoint, 99 mass% or more is more preferable, and 99.9 mass% or more is especially preferable.
 一般式(2)におけるRは、それぞれ独立に、水素原子または炭素数1~10の1価の有機基である。該炭素数1以上10以下の1価の有機基としては、例えば、メチル基、エチル基等の炭化水素基が挙げられる。該炭化水素基は、例えば、窒素原子、酸素原子、硫黄原子、リン原子等のヘテロ原子により置換されていてもよいし、無置換であってもよい。この中でも、一般式(2)におけるRは、硬化物とした際の耐熱性の点から、それぞれ独立に、水素原子またはメチル基が好ましく、水素原子がより好ましい。 R 2 in the general formula (2) is each independently a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms. Examples of the monovalent organic group having 1 to 10 carbon atoms include hydrocarbon groups such as a methyl group and an ethyl group. The hydrocarbon group may be substituted with a heteroatom such as a nitrogen atom, an oxygen atom, a sulfur atom, or a phosphorus atom, or may be unsubstituted. Among these, R 2 in the general formula (2) is preferably independently a hydrogen atom or a methyl group, more preferably a hydrogen atom, from the viewpoint of heat resistance when a cured product is used.
 一般式(2)におけるyは、0~10の整数を表す。この中で、エポキシ樹脂の低粘度の観点から、yは0~5が好ましい。 Y in the general formula (2) represents an integer of 0 to 10. Among these, y is preferably 0 to 5 from the viewpoint of low viscosity of the epoxy resin.
 一般式(2)におけるグリシジルエーテル基の結合位置は、特に限定されないが、硬化物とした際の耐熱性の観点から、1,5位、1,6位、1,7位、1,8位、2,6位および2,7位が好ましく、エポキシ樹脂の低粘度の点から、1,6位、1,7位がより好ましい。 The bonding position of the glycidyl ether group in the general formula (2) is not particularly limited, but from the viewpoint of heat resistance when a cured product is obtained, the 1,5-position, 1,6-position, 1,7-position, 1,8-position 2,6 and 2,7 are preferable, and the 1,6th and 1,7th positions are more preferable from the viewpoint of the low viscosity of the epoxy resin.
 上記の通り、一般式(2)におけるyは、0~10の整数を表すが、yの数値が異なる化合物が混合した状態であってもよい。この場合、一般式(2)におけるy=0で表される化合物は、全一般式(2)で表される化合物中、95質量%以上含有されることが好ましく、樹脂組成物の低粘度の観点から99質量%以上がより好ましく、99.9質量%以上が特に好ましい。 As described above, y in the general formula (2) represents an integer of 0 to 10, but may be a state in which compounds having different y values are mixed. In this case, the compound represented by y = 0 in the general formula (2) is preferably contained in an amount of 95% by mass or more in the compound represented by the general formula (2), and the low viscosity of the resin composition From a viewpoint, 99 mass% or more is more preferable, and 99.9 mass% or more is especially preferable.
 一般式(3)におけるRおよびRは、それぞれ独立に、水素原子または炭素数1~10の1価の有機基である。該炭素数1以上10以下の1価の有機基としては、例えば、メチル基、エチル基等の炭化水素基が挙げられる。該炭化水素基は、例えば、窒素原子、酸素原子、硫黄原子、リン原子等のヘテロ原子により置換されていてもよいし、無置換であってもよい。 R 3 and R 4 in the general formula (3) are each independently a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms. Examples of the monovalent organic group having 1 to 10 carbon atoms include hydrocarbon groups such as a methyl group and an ethyl group. The hydrocarbon group may be substituted with a heteroatom such as a nitrogen atom, an oxygen atom, a sulfur atom, or a phosphorus atom, or may be unsubstituted.
 一般式(3)におけるRおよびRは、それぞれ独立に、水素原子または炭素数1~10の1価の有機基である。該炭素数1以上10以下の1価の有機基としては、例えば、メチル基、エチル基等の炭化水素基が挙げられる。該炭化水素基は、例えば、窒素原子、酸素原子、硫黄原子、リン原子等のヘテロ原子により置換されていてもよいし、無置換であってもよい。 R 5 and R 6 in the general formula (3) are each independently a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms. Examples of the monovalent organic group having 1 to 10 carbon atoms include hydrocarbon groups such as a methyl group and an ethyl group. The hydrocarbon group may be substituted with a heteroatom such as a nitrogen atom, an oxygen atom, a sulfur atom, or a phosphorus atom, or may be unsubstituted.
 この中で、一般式(3)におけるRおよびRは、得られる硬化物の耐熱性の観点から、それぞれ独立に、水素原子またはメチル基であることが好ましく、さらに、RおよびRがともにメチル基、RおよびRがともに水素原子、Rがメチル基かつRが水素原子であることが好ましい。 Among them, R 5 and R 6 in the general formula (3) are preferably each independently a hydrogen atom or a methyl group from the viewpoint of heat resistance of the obtained cured product, and further R 5 and R 6. Are both methyl groups, R 5 and R 6 are both hydrogen atoms, R 5 is a methyl group, and R 6 is preferably a hydrogen atom.
 一般式(3)におけるzは、0~10の整数を表す。この中で、エポキシ樹脂の低粘度の観点から、zは0~5が好ましい。 Z in the general formula (3) represents an integer of 0 to 10. Among these, z is preferably 0 to 5 from the viewpoint of the low viscosity of the epoxy resin.
 一般式(3)におけるグリシジルエーテル基の結合位置は、特に限定されないが、硬化物とした際の耐熱性の観点からメタ位およびパラ位が好ましい。 The bonding position of the glycidyl ether group in the general formula (3) is not particularly limited, but a meta position and a para position are preferable from the viewpoint of heat resistance when a cured product is used.
 上記の通り、一般式(3)におけるzは、0~10の整数を表すが、zの数値が異なる化合物が混合した状態であってもよい。この場合、一般式(3)におけるz=0で表される化合物は、全一般式(3)で表される化合物中、95質量%以上含有されることが好ましく、溶融粘度の観点から99質量%以上がより好ましく、99.9質量%以上が特に好ましい。 As described above, z in the general formula (3) represents an integer of 0 to 10, but may be in a state where compounds having different numerical values of z are mixed. In this case, the compound represented by z = 0 in the general formula (3) is preferably contained in an amount of 95% by mass or more in the compound represented by the general formula (3), and 99% by mass from the viewpoint of melt viscosity. % Or more is more preferable, and 99.9 mass% or more is especially preferable.
 なお、一般式(1)~(3)におけるx、yおよびzの数値、および、エポキシ樹脂中におけるx、yおよびzが0である化合物の含有量については、後述する実施例に記載の通り、液体クロマトグラフィーによる方法で測定することができる。また、高分子量体をエポキシ樹脂中に含むような場合には、ゲルパーミエーションクロマトグラフィー(GPC)による方法により測定することができる。 In addition, the numerical values of x, y and z in the general formulas (1) to (3) and the content of the compound in which x, y and z in the epoxy resin are 0 are as described in Examples described later. It can be measured by a method by liquid chromatography. Moreover, when a high molecular weight body is included in an epoxy resin, it can measure by the method by a gel permeation chromatography (GPC).
 エポキシ樹脂(A)としては、一般式(1)~(3)の中でも、樹脂組成物の粘度と硬化物の耐熱性とのバランスの点から、一般式(1)または一般式(2)であることが好ましく、さらに、一般式(1)であることがより好ましい。エポキシ樹脂(A)は1種単独で用いてもよく、2種以上併用してもよい。 Among the general formulas (1) to (3), the epoxy resin (A) is represented by the general formula (1) or the general formula (2) from the viewpoint of the balance between the viscosity of the resin composition and the heat resistance of the cured product. It is preferable that it is, and more preferably, it is general formula (1). An epoxy resin (A) may be used individually by 1 type, and may be used together 2 or more types.
 <樹脂(B)>
 本実施形態に用いる樹脂(B)は、融点または軟化点が50℃以上である。樹脂(B)の融点または軟化点は、50~150℃であることがより好ましく、60~130℃であることがさらに好ましい。樹脂(B)の融点または軟化点が上記の数値範囲であれば、樹脂(B)は特に限定されないが、芳香族構造または複素環構造を有することが好ましい。このような樹脂(B)として、エポキシ樹脂、フェノキシ樹脂、フェノールノボラック、ポリアミド酸、ポリイミド、ポリベンズオキサゾールおよび(メタ)アクリレート樹脂からなる群より選ばれる少なくとも1つであることが好ましい。これらの中で、樹脂(B)としては、得られる硬化物の耐熱性の観点から、エポキシ樹脂、ポリアミド酸、ポリイミド、ポリベンズオキサゾールが好ましく、樹脂組成物の低粘度の観点から、エポキシ樹脂がより好ましい。樹脂(B)は1種単独で用いてもよく、2種以上併用してもよい。なお、本実施形態において、樹脂(B)は、エポキシ樹脂(A)とは異なる樹脂とする。
<Resin (B)>
The resin (B) used in the present embodiment has a melting point or softening point of 50 ° C. or higher. The melting point or softening point of the resin (B) is more preferably 50 to 150 ° C, and further preferably 60 to 130 ° C. If the melting point or softening point of the resin (B) is within the above numerical range, the resin (B) is not particularly limited, but preferably has an aromatic structure or a heterocyclic structure. Such a resin (B) is preferably at least one selected from the group consisting of epoxy resins, phenoxy resins, phenol novolacs, polyamic acids, polyimides, polybenzoxazoles and (meth) acrylate resins. Among these, as the resin (B), epoxy resin, polyamic acid, polyimide, and polybenzoxazole are preferable from the viewpoint of heat resistance of the obtained cured product, and epoxy resin is preferable from the viewpoint of low viscosity of the resin composition. More preferred. Resin (B) may be used individually by 1 type, and may be used together 2 or more types. In the present embodiment, the resin (B) is a resin different from the epoxy resin (A).
 樹脂(B)としては、下記一般式(4)~(8)からなる群より選ばれる少なくとも1つであることが好ましい。
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
(式(4)~(8)中、R8、、R11およびR12は、それぞれ独立に、水素原子または炭素数1~10の1価の有機基を表し、RおよびR10は、それぞれ独立に、炭素数1~10の2価の有機基を表す。)
The resin (B) is preferably at least one selected from the group consisting of the following general formulas (4) to (8).
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
(In the formulas (4) to (8), R 8, R 9 , R 11 and R 12 each independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, and R 7 and R 10 Each independently represents a divalent organic group having 1 to 10 carbon atoms.)
 一般式(4)におけるRは、それぞれ独立に、炭素数1~10の2価の有機基を表す。この中で、一般式(4)におけるRは、得られる硬化物の耐熱性の観点から、それぞれ独立に、炭素数1~5の2価の有機基が好ましく、炭素数1~3の2価の有機基がより好ましい。Rが、炭素数が1の2価の有機基の場合の化合物として、トリグリシジルイソシアヌレートが挙げられる。 R 7 in the general formula (4) independently represents a divalent organic group having 1 to 10 carbon atoms. Among these, R 7 in the general formula (4) is independently preferably a divalent organic group having 1 to 5 carbon atoms, from the viewpoint of heat resistance of the cured product to be obtained. A valent organic group is more preferable. An example of the compound when R 7 is a divalent organic group having 1 carbon atom is triglycidyl isocyanurate.
 一般式(5)におけるRは、それぞれ独立に、水素原子または炭素数1~10の1価の有機基を表す。該炭素数1以上10以下の1価の有機基としては、例えば、メチル基、エチル基等の炭化水素基が挙げられる。該炭化水素基は、例えば、窒素原子、酸素原子、硫黄原子、リン原子等のヘテロ原子により置換されていてもよいし、無置換であってもよい。これらの中で、得られる硬化物の耐熱性の観点から、Rは、それぞれ独立に、水素原子または炭素数1~5の1価の有機基が好ましく、水素原子または炭素数1~3の1価の有機基がより好ましい。 R 8 in the general formula (5) independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms. Examples of the monovalent organic group having 1 to 10 carbon atoms include hydrocarbon groups such as a methyl group and an ethyl group. The hydrocarbon group may be substituted with a heteroatom such as a nitrogen atom, an oxygen atom, a sulfur atom, or a phosphorus atom, or may be unsubstituted. Among these, from the viewpoint of the heat resistance of the resulting cured product, R 8 is independently preferably a hydrogen atom or a monovalent organic group having 1 to 5 carbon atoms, and preferably a hydrogen atom or 1 to 3 carbon atoms. A monovalent organic group is more preferable.
 一般式(5)におけるグリシジルエーテル基の結合位置は、特に限定されないが、硬化物とした際の耐熱性の観点からメタ位およびパラ位が好ましい。 The bonding position of the glycidyl ether group in the general formula (5) is not particularly limited, but a meta position and a para position are preferable from the viewpoint of heat resistance when a cured product is used.
 これらの化合物として、ビフェニル型エポキシ樹脂などが挙げられる。 These compounds include biphenyl type epoxy resins.
 一般式(6)におけるRは、それぞれ独立に、水素原子または炭素数1~10の1価の有機基を表す。該炭素数1以上10以下の1価の有機基としては、例えば、メチル基、エチル基等の炭化水素基が挙げられる。該炭化水素基は、例えば、窒素原子、酸素原子、硫黄原子、リン原子等のヘテロ原子により置換されていてもよいし、無置換であってもよい。これらの中で、得られる硬化物の耐熱性の観点から、Rは、それぞれ独立に、水素原子または炭素数1~5の1価の有機基が好ましく、水素原子または炭素数1~3の1価の有機基がより好ましい。 R 9 in the general formula (6) each independently represents a monovalent organic group hydrogen atom or a C 1-10. Examples of the monovalent organic group having 1 to 10 carbon atoms include hydrocarbon groups such as a methyl group and an ethyl group. The hydrocarbon group may be substituted with a heteroatom such as a nitrogen atom, an oxygen atom, a sulfur atom, or a phosphorus atom, or may be unsubstituted. Among these, from the viewpoint of the heat resistance of the resulting cured product, each R 9 is independently preferably a hydrogen atom or a monovalent organic group having 1 to 5 carbon atoms, and is preferably a hydrogen atom or 1 to 3 carbon atoms. A monovalent organic group is more preferable.
 一般式(6)におけるR10は、炭素数1~10の2価の有機基であれば限定されない。この中で、得られる硬化物の耐熱性の観点から、炭素数1~5の2価の有機基が好ましく、炭素数1~3の2価の有機基がより好ましい。 R 10 in the general formula (6) is not limited as long as a divalent organic group having 1 to 10 carbon atoms. Among these, from the viewpoint of heat resistance of the obtained cured product, a divalent organic group having 1 to 5 carbon atoms is preferable, and a divalent organic group having 1 to 3 carbon atoms is more preferable.
 一般式(6)におけるグリシジルエーテル基の結合位置は、特に限定されないが、硬化物とした際の耐熱性の観点から、1,5位、1,6位、1,7位、1,8位、2,6位および2,7位が好ましく、エポキシ樹脂の低粘度の点から、1,6位、1,7位がより好ましい。 The bonding position of the glycidyl ether group in the general formula (6) is not particularly limited, but from the viewpoint of heat resistance when a cured product is used, the 1,5-position, 1,6-position, 1,7-position, 1,8-position 2,6 and 2,7 are preferable, and the 1,6th and 1,7th positions are more preferable from the viewpoint of the low viscosity of the epoxy resin.
 一般式(7)におけるR11は、それぞれ独立に、水素原子または炭素数1~10の1価の有機基を表す。該炭素数1以上10以下の1価の有機基としては、例えば、メチル基、エチル基等の炭化水素基が挙げられる。該炭化水素基は、例えば、窒素原子、酸素原子、硫黄原子、リン原子等のヘテロ原子により置換されていてもよいし、無置換であってもよい。これらの中で、得られる硬化物の耐熱性の観点から、R11は、それぞれ独立に、水素原子または炭素数1~5の1価の有機基が好ましく、水素原子または炭素数1~3の1価の有機基がより好ましい。 R 11 in the general formula (7) each independently represents a monovalent organic group hydrogen atom or a C 1-10. Examples of the monovalent organic group having 1 to 10 carbon atoms include hydrocarbon groups such as a methyl group and an ethyl group. The hydrocarbon group may be substituted with a heteroatom such as a nitrogen atom, an oxygen atom, a sulfur atom, or a phosphorus atom, or may be unsubstituted. Among these, from the viewpoint of the heat resistance of the resulting cured product, each R 11 is preferably a hydrogen atom or a monovalent organic group having 1 to 5 carbon atoms, preferably a hydrogen atom or 1 to 3 carbon atoms. A monovalent organic group is more preferable.
 一般式(7)におけるグリシジルエーテル基の結合位置は、特に限定されないが、硬化物とした際の耐熱性の観点からメタ位およびパラ位が好ましい。 The bonding position of the glycidyl ether group in the general formula (7) is not particularly limited, but a meta position and a para position are preferable from the viewpoint of heat resistance when a cured product is obtained.
 一般式(8)におけるR12は、それぞれ独立に、水素原子または炭素数1~10の1価の有機基を表す。該炭素数1以上10以下の1価の有機基としては、例えば、メチル基、エチル基等の炭化水素基が挙げられる。該炭化水素基は、例えば、窒素原子、酸素原子、硫黄原子、リン原子等のヘテロ原子により置換されていてもよいし、無置換であってもよい。これらの中で、得られる硬化物の耐熱性の観点から、R12は、それぞれ独立に、水素原子または炭素数1~5の1価の有機基が好ましく、水素原子または炭素数1~3の1価の有機基がより好ましい。 R 12 in the general formula (8) each independently represents a monovalent organic group hydrogen atom or a C 1-10. Examples of the monovalent organic group having 1 to 10 carbon atoms include hydrocarbon groups such as a methyl group and an ethyl group. The hydrocarbon group may be substituted with a heteroatom such as a nitrogen atom, an oxygen atom, a sulfur atom, or a phosphorus atom, or may be unsubstituted. Among these, from the viewpoint of the heat resistance of the resulting cured product, R 12 is each independently preferably a hydrogen atom or a monovalent organic group having 1 to 5 carbon atoms, and preferably a hydrogen atom or 1 to 3 carbon atoms. A monovalent organic group is more preferable.
 一般式(8)におけるグリシジルエーテル基の結合位置は、特に限定されないが、硬化物とした際の耐熱性の観点からメタ位およびパラ位が好ましい。 The bonding position of the glycidyl ether group in the general formula (8) is not particularly limited, but a meta position and a para position are preferable from the viewpoint of heat resistance when a cured product is obtained.
 上記の中でも、樹脂組成物の粘度と硬化物の耐熱性とのバランスおよび樹脂組成物の保存安定性の観点から、樹脂(B)は、一般式(4)および(5)からなる群より選ばれる1つであることが好ましい。 Among the above, from the viewpoint of the balance between the viscosity of the resin composition and the heat resistance of the cured product and the storage stability of the resin composition, the resin (B) is selected from the group consisting of the general formulas (4) and (5). It is preferable that it is one.
 本実施形態に係る樹脂組成物において、樹脂(B)の含有量は限定されないが、全樹脂中、10質量%80質量%以下であることが好ましい。本実施形態では、固体のエポキシ樹脂(A)と固体の樹脂(B)とを混合させる場合において、エポキシ樹脂(A)の含有量を特定の範囲に調整することが重要であり、さらに樹脂(B)の含有量を上記範囲に調整することで、樹脂組成物とした際に低粘度となって液体状態を維持し、得られる硬化物の耐熱性を達成することができる。全樹脂中、樹脂(B)の含有量が、10質量%以上であれば、得られる硬化物の耐熱性が高くなる傾向にあり、80質量%以下であれば、樹脂組成物は低粘度となる傾向にある。全樹脂中、樹脂(B)の含有量は、樹脂組成物の保存安定性の観点から、15質量%以上70質量%以下が好ましく、15質量%以上50質量%以下が特に好ましい。 In the resin composition according to the present embodiment, the content of the resin (B) is not limited, but is preferably 10% by mass or less and 80% by mass or less in the total resin. In this embodiment, when mixing the solid epoxy resin (A) and the solid resin (B), it is important to adjust the content of the epoxy resin (A) to a specific range. By adjusting the content of B) to the above range, when the resin composition is obtained, the viscosity becomes low and the liquid state is maintained, and the heat resistance of the obtained cured product can be achieved. If the content of the resin (B) is 10% by mass or more in the total resin, the resulting cured product tends to have high heat resistance, and if it is 80% by mass or less, the resin composition has a low viscosity. Tend to be. In all the resins, the content of the resin (B) is preferably 15% by mass or more and 70% by mass or less, and particularly preferably 15% by mass or more and 50% by mass or less from the viewpoint of storage stability of the resin composition.
 本実施形態の樹脂組成物は、一般式(1)~(3)からなる群より選ばれる少なくとも1つのエポキシ樹脂(A)と、一般式(4)~(8)からなる群より選ばれる少なくとも1つの樹脂(B)と、下記一般式(9)~(11)からなる群より選ばれる少なくとも1つの化合物および/またはアルカリ金属塩化物とを含有し、全樹脂中、樹脂(A)の割合が20質量%以上90質量%以下であり、樹脂(B)の割合が10質量%以上80質量%以下であり、全樹脂組成物中に含まれる、下記一般式(9)~(11)で表される化合物の濃度と、アルカリ金属塩化物に由来する塩素濃度との総和が、0.01ppm以上1000ppm以下であることが好ましい。このような樹脂組成物は、低粘度を維持しつつ、硬化物にした際に高い耐熱性を実現することができる。 The resin composition of the present embodiment includes at least one epoxy resin (A) selected from the group consisting of general formulas (1) to (3) and at least selected from the group consisting of general formulas (4) to (8). 1 resin (B) and at least one compound selected from the group consisting of the following general formulas (9) to (11) and / or alkali metal chloride, the ratio of the resin (A) in the total resin Is 20% by mass or more and 90% by mass or less, and the ratio of the resin (B) is 10% by mass or more and 80% by mass or less. The following general formulas (9) to (11) included in the total resin composition The total of the concentration of the compound represented and the chlorine concentration derived from the alkali metal chloride is preferably 0.01 ppm or more and 1000 ppm or less. Such a resin composition can achieve high heat resistance when it is made into a cured product while maintaining low viscosity.
 なお、本実施形態に用いるアルカリ金属塩化物におけるアルカリ金属としては、ナトリウム、カリウム、リチウムなどが挙げられる。
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
(式(9)~(11)中、R~Rは、それぞれ独立に、水素原子または炭素数1~10の1価の有機基を表し、x、yおよびzは0~10の整数を表し、RxおよびRyは、それぞれ独立に、下記式(a)~(e)から選ばれるいずれかの構造である。ただし、RxとRyとは同時に下記式(a)であることは無い。)
Figure JPOXMLDOC01-appb-C000072
In addition, sodium, potassium, lithium etc. are mentioned as an alkali metal in the alkali metal chloride used for this embodiment.
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
(In the formulas (9) to (11), R 1 to R 6 each independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, and x, y, and z are integers of 0 to 10 Rx and Ry each independently represents any structure selected from the following formulas (a) to (e), provided that Rx and Ry are not simultaneously represented by the following formula (a). )
Figure JPOXMLDOC01-appb-C000072
 ここで、式(9)~(11)中のR~R、x、y、zに関しては前述した式(1)~(3)中のものと同義である。 Here, R 1 to R 6 , x, y, and z in formulas (9) to (11) have the same meanings as those in formulas (1) to (3) described above.
 本実施形態に用いるエポキシ樹脂(A)としては、樹脂組成物の粘度の観点から、前記一般式(1)および(2)からなる群より選ばれる少なくとも1つであることが好ましく、一般式(1)がより好ましい。 The epoxy resin (A) used in the present embodiment is preferably at least one selected from the group consisting of the general formulas (1) and (2) from the viewpoint of the viscosity of the resin composition. 1) is more preferable.
 本実施形態に用いる樹脂(B)としては、硬化物の耐熱性の観点から、一般式(4)および(5)からなる群より選ばれる少なくとも1つであることが好ましく、一般式(4)であることがより好ましい。 The resin (B) used in the present embodiment is preferably at least one selected from the group consisting of general formulas (4) and (5) from the viewpoint of heat resistance of the cured product. It is more preferable that
 本実施形態の樹脂組成物は、エポキシ樹脂(A)が、一般式(1)および(2)からなる群から選ばれる少なくとも1つであり、樹脂(B)が、一般式(4)および(5)からなる群から選ばれる少なくとも1つであり、全樹脂組成物中に含まれる、一般式(9)および(10)で表される化合物の濃度と、アルカリ金属塩化物に由来する塩素濃度との総和が、0.01ppm以上1000ppm以下であることがより好ましい。 In the resin composition of the present embodiment, the epoxy resin (A) is at least one selected from the group consisting of the general formulas (1) and (2), and the resin (B) is represented by the general formulas (4) and (4). 5) The concentration of the compound represented by the general formulas (9) and (10), which is at least one selected from the group consisting of 5) and contained in the total resin composition, and the chlorine concentration derived from the alkali metal chloride Is more preferably 0.01 ppm or more and 1000 ppm or less.
 また、本実施形態の樹脂組成物は、エポキシ樹脂(A)が、一般式(1)で表される樹脂であり、樹脂(B)が、一般式(4)で表される樹脂であり、全樹脂組成物中に含まれる、一般式(9)で表される化合物の濃度と、塩化ナトリウム及び塩化カリウムに由来する塩素濃度との総和が、0.01ppm以上1000ppm以下であることがさらに好ましい。 In the resin composition of the present embodiment, the epoxy resin (A) is a resin represented by the general formula (1), and the resin (B) is a resin represented by the general formula (4). More preferably, the sum of the concentration of the compound represented by the general formula (9) contained in the total resin composition and the chlorine concentration derived from sodium chloride and potassium chloride is 0.01 ppm or more and 1000 ppm or less. .
 本実施形態において、全樹脂組成物中に含まれる、前記一般式(9)~(11)で表される化合物の濃度と、アルカリ金属塩化物に由来する塩素濃度との総和は、0.01ppm以上1000ppm以下であることが好ましい。該濃度の総和が0.01ppm以上であることにより、樹脂組成物の結晶化を抑え低粘度を維持する傾向にあり、1000ppm以下であることにより、硬化物の耐熱性(ガラス転移温度)が高くなる傾向にある。該濃度の総和は、結晶化を抑制する観点から、0.1ppm以上1000ppmが好ましく、硬化物のガラス転移温度(以下「Tg」ともいう)の観点から1ppm以上650ppm以下がより好ましく、樹脂組成物の粘度と硬化物の耐熱性とのバランスの観点から、1ppm以上200ppm以下が特に好ましい。 In the present embodiment, the sum of the concentration of the compounds represented by the general formulas (9) to (11) contained in the total resin composition and the chlorine concentration derived from the alkali metal chloride is 0.01 ppm. It is preferable that it is 1000 ppm or less. When the total concentration is 0.01 ppm or more, there is a tendency to suppress crystallization of the resin composition and maintain a low viscosity, and when it is 1000 ppm or less, the heat resistance (glass transition temperature) of the cured product is high. Tend to be. The total concentration is preferably from 0.1 ppm to 1000 ppm from the viewpoint of suppressing crystallization, and more preferably from 1 ppm to 650 ppm from the viewpoint of the glass transition temperature (hereinafter also referred to as “Tg”) of the cured product. From the viewpoint of the balance between the viscosity of the cured product and the heat resistance of the cured product, 1 ppm to 200 ppm is particularly preferable.
 なお、本実施形態において、一般式(9)~(11)で表される化合物の濃度、及びアルカリ金属塩化物に由来する塩素濃度は、後述の実施例に記載の方法により測定することができる。 In the present embodiment, the concentrations of the compounds represented by the general formulas (9) to (11) and the chlorine concentration derived from the alkali metal chloride can be measured by the methods described in the examples below. .
 エポキシ樹脂(A)の、全樹脂中における割合は、20質量%以上90質量%以下である。エポキシ樹脂(A)の割合が20質量%以上であれば、樹脂組成物の粘度が十分低い傾向にあり、90質量%以下であれば、硬化物の耐熱性が良好である。エポキシ樹脂(A)の割合は、樹脂組成物の粘度の観点から、30質量%以上90質量%以下が好ましく、硬化物とした際の耐熱性の観点から30質量%以上85質量%以下がより好ましく、樹脂組成物の保存安定性の観点から、50質量%以上85質量%以下が特に好ましい。 The ratio of the epoxy resin (A) in the total resin is 20% by mass or more and 90% by mass or less. If the proportion of the epoxy resin (A) is 20% by mass or more, the viscosity of the resin composition tends to be sufficiently low, and if it is 90% by mass or less, the heat resistance of the cured product is good. The proportion of the epoxy resin (A) is preferably 30% by mass or more and 90% by mass or less from the viewpoint of the viscosity of the resin composition, and more preferably 30% by mass or more and 85% by mass or less from the viewpoint of heat resistance when a cured product is obtained. Preferably, from the viewpoint of storage stability of the resin composition, 50% by mass or more and 85% by mass or less is particularly preferable.
 樹脂(B)の、全樹脂中における割合は、10質量%80質量%以下であることが好ましい。樹脂(B)の割合が10質量%以上であれば、得られる硬化物の耐熱性が高くなる傾向にあり、80質量%以下であれば、取扱性が良く低粘度となる傾向にある。樹脂(B)の割合は、樹脂組成物の保存安定性の観点から15質量%以上70質量%以下がより好ましく、15質量%以上50質量%以下が特に好ましい。 The ratio of the resin (B) in the total resin is preferably 10% by mass or less and 80% by mass or less. If the ratio of the resin (B) is 10% by mass or more, the heat resistance of the obtained cured product tends to be high, and if it is 80% by mass or less, the handleability tends to be good and the viscosity tends to be low. The proportion of the resin (B) is more preferably 15% by mass or more and 70% by mass or less, and particularly preferably 15% by mass or more and 50% by mass or less from the viewpoint of the storage stability of the resin composition.
 ≪封止用硬化物≫
 本実施形態に係る封止用硬化物は、融点または軟化点が30℃以上であるエポキシ樹脂(A)と、融点または軟化点が50℃以上である樹脂(B)と、ジオキサン構造を有する化合物(C)とを含有し、該ジオキサン構造を有する化合物(C)の割合が、0.01ppm以上5000ppm以下である。
≪Hardened material for sealing≫
The cured product for sealing according to this embodiment includes an epoxy resin (A) having a melting point or softening point of 30 ° C. or higher, a resin (B) having a melting point or softening point of 50 ° C. or higher, and a compound having a dioxane structure. The ratio of the compound (C) containing (C) and having the dioxane structure is 0.01 ppm or more and 5000 ppm or less.
 本実施形態に用いるジオキサン構造を有する化合物(C)は、分子構造中にジオキサン構造を有していれば限定されない。ジオキサン構造としては、例えば、1,2-ジオキサン、1,3-ジオキサン、1,4-ジオキサン構造が挙げられる。この中で、封止用硬化物の耐熱性の観点から、1,3-ジオキサン、1,4-ジオキサンが好ましく、1,4-ジオキサンがより好ましい。 The compound (C) having a dioxane structure used in the present embodiment is not limited as long as it has a dioxane structure in the molecular structure. Examples of the dioxane structure include 1,2-dioxane, 1,3-dioxane, and 1,4-dioxane structure. Among these, 1,3-dioxane and 1,4-dioxane are preferable and 1,4-dioxane is more preferable from the viewpoint of heat resistance of the encapsulated cured product.
 本実施形態に用いるジオキサン構造を有する化合物(C)の構造は、下記一般式(12)または(13)であることが好ましい。下記一般式(12)または(13)は、一般式(9)または(10)におけるRxおよび/またはRyが式(c)で表される化合物同士が分子間で反応したものに相当する。樹脂組成物中では、一般式(9)または(10)で表される状態で存在しているが、これを加熱して硬化物とした際には、分子間反応が進行し、式(12)または(13)で表されるジオキサン構造を有する化合物となる。 The structure of the compound (C) having a dioxane structure used in this embodiment is preferably the following general formula (12) or (13). The following general formula (12) or (13) corresponds to a compound in which Rx and / or Ry in the general formula (9) or (10) are reacted with each other between the compounds represented by the formula (c). In the resin composition, it exists in the state represented by the general formula (9) or (10), but when this is heated to obtain a cured product, an intermolecular reaction proceeds, and the formula (12 Or a compound having a dioxane structure represented by (13).
 従って、封止用硬化物において、ジオキサン構造を有する化合物(C)の割合が0.01ppm以上であれば、末端が式(c)で表される化合物がジオキサン構造になっているため、耐熱性が向上し、5000ppm以下であれば架橋密度が高いために、耐熱性が向上する。
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Therefore, if the ratio of the compound (C) having a dioxane structure is 0.01 ppm or more in the encapsulated cured product, the compound represented by the formula (c) at the end has a dioxane structure. If it is 5000 ppm or less, the crosslink density is high, so that the heat resistance is improved.
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
 本実施形態の封止用硬化物において、ジオキサン構造を有する化合物(C)の割合は、0.01ppm以上5000ppm以下であれば限定されないが、前記エポキシ樹脂(A)が一般式(1)であり、ジオキサン構造を有する化合物(C)が一般式(12)で表される化合物の場合は、0.035ppm以上3450ppm以下であることが好ましい。また、本実施形態の封止用硬化物において、ジオキサン構造を有する化合物(C)の割合は、エポキシ樹脂(A)が一般式(2)であり、ジオキサン構造を有する化合物(C)が一般式(13)で表される構造の場合には、0.04ppm以上4000ppm以下であることが好ましい。 In the encapsulated cured product of the present embodiment, the ratio of the compound (C) having a dioxane structure is not limited as long as it is 0.01 ppm or more and 5000 ppm or less, but the epoxy resin (A) is represented by the general formula (1). In the case where the compound (C) having a dioxane structure is a compound represented by the general formula (12), it is preferably 0.035 ppm or more and 3450 ppm or less. In the cured cured product of this embodiment, the proportion of the compound (C) having a dioxane structure is such that the epoxy resin (A) is the general formula (2) and the compound (C) having the dioxane structure is the general formula. In the case of the structure represented by (13), it is preferably 0.04 ppm or more and 4000 ppm or less.
 なお、本実施形態において、ジオキサン構造を有する化合物(C)の割合は、後述の実施例に記載の方法で測定することができる。 In addition, in this embodiment, the ratio of the compound (C) which has a dioxane structure can be measured by the method as described in the below-mentioned Example.
 <エポキシ樹脂(A)の製造方法>
 含有全塩素量が0.01ppm以上1000ppm以下のエポキシ樹脂(A)の製造方法を、エポキシ樹脂(A)が前記一般式(1)で表される化合物である場合を例に挙げて、以下説明する。
<Method for producing epoxy resin (A)>
A method for producing an epoxy resin (A) having a total chlorine content of 0.01 ppm or more and 1000 ppm or less will be described below, taking the case where the epoxy resin (A) is a compound represented by the general formula (1) as an example. To do.
 本実施形態のエポキシ樹脂の製造において、その塩素量を低減する方法は、特に限定されないが、例えば、塩基性物質存在下で加熱する方法(アルカリ加熱法)や分子蒸留する方法等が挙げられる。これらの方法により塩素量を充分に低減することができる。その中で、分子蒸留単独およびアルカリ処理した後に分子蒸留を実施する方法が好ましい。 In the production of the epoxy resin of the present embodiment, the method for reducing the chlorine content is not particularly limited, and examples thereof include a method of heating in the presence of a basic substance (alkali heating method) and a method of molecular distillation. By these methods, the amount of chlorine can be sufficiently reduced. Among them, molecular distillation alone and a method of performing molecular distillation after alkali treatment are preferable.
 本実施形態に用いる塩基性物質は、高分子量化やゲル化が進行せずにエポキシ樹脂の低塩素化が実施できれば限定されない。これらの塩基性物質としては、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物、水素化ナトリウム、水素化リチウムのようなアルカリ金属水素化物、カリウムt-ブトキシド、ナトリウムt-ブトキシド、カリウムイソプロポキシドなどのようなアルカリ金属アルコキシドなどが挙げられる。この中で、後述するエポキシ樹脂の色相の観点から、アルカリ金属アルコキシドが好ましい。 The basic substance used in this embodiment is not limited as long as the chlorination of the epoxy resin can be performed without increasing the molecular weight or gelling. These basic substances include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal hydrides such as sodium hydride and lithium hydride, potassium t-butoxide, sodium t-butoxide, potassium iso Examples include alkali metal alkoxides such as propoxide. Among these, alkali metal alkoxides are preferable from the viewpoint of the hue of the epoxy resin described later.
 以下、アルカリ金属アルコキシドを用いてアルカリ処理する方法、ついで分子蒸留する方法を例に挙げて説明する。 Hereinafter, a method for alkali treatment using an alkali metal alkoxide and a method for molecular distillation will be described as examples.
 エポキシ樹脂(A)の製造方法としては、例えば、前記一般式(1)で表される化合物及び塩素分などを含む粗エポキシ樹脂を、(a)有機溶媒中、アルカリ金属アルコキシドで処理する工程と、(b)蒸留する工程とを含む精製工程(精製方法)を行って、前記一般式(1)で表される化合物におけるx=0の化合物の割合が95質量%以上であるエポキシ樹脂を得る工程を含む製造方法が挙げられる。得られるエポキシ樹脂(A)中の含有全塩素量は、0.01ppm以上1000ppm以下であり、0.1ppm以上1000ppmが好ましく、硬化物のガラス転移温度(以下「Tg」ともいう)の観点から、1ppm以上650ppm以下がより好ましく、樹脂組成物の粘度と硬化物の耐熱性とのバランスの観点から、1ppm以上200ppm以下が特に好ましい。これらの(a)及び(b)工程を含む精製工程(精製方法)を行うことにより、エポキシ樹脂(A)中の塩素量が十分に低減され、前記一般式(1)で表される化合物におけるx=0の化合物の割合が向上する。その結果、低粘度を発現し、かつ色相に優れるエポキシ樹脂を得ることができる。 As a method for producing the epoxy resin (A), for example, (a) a step of treating a crude epoxy resin containing the compound represented by the general formula (1) and a chlorine content with an alkali metal alkoxide in an organic solvent; And (b) performing a purification step (purification method) including a step of distillation to obtain an epoxy resin in which the proportion of the compound of x = 0 in the compound represented by the general formula (1) is 95% by mass or more. The manufacturing method including a process is mentioned. The total chlorine content in the resulting epoxy resin (A) is 0.01 ppm or more and 1000 ppm or less, preferably 0.1 ppm or more and 1000 ppm, from the viewpoint of the glass transition temperature of the cured product (hereinafter also referred to as “Tg”). 1 ppm or more and 650 ppm or less are more preferable, and 1 ppm or more and 200 ppm or less are particularly preferable from the viewpoint of the balance between the viscosity of the resin composition and the heat resistance of the cured product. By performing a purification step (purification method) including these steps (a) and (b), the amount of chlorine in the epoxy resin (A) is sufficiently reduced, and in the compound represented by the general formula (1) The proportion of compounds with x = 0 is improved. As a result, an epoxy resin exhibiting low viscosity and excellent in hue can be obtained.
 〈粗エポキシ樹脂〉
 本実施形態に用いる粗エポキシ樹脂は、公知の方法で得ることができ、例えば、フェノール化合物とエピクロロヒドリン化合物とを反応させる工程を含む製造方法により得ることができる。
<Coarse epoxy resin>
The crude epoxy resin used for this embodiment can be obtained by a well-known method, for example, can be obtained by the manufacturing method including the process of making a phenol compound and an epichlorohydrin compound react.
 このような製造方法で得られる粗エポキシ樹脂中には、上記一般式(1)で表される化合物以外に、不純物として塩素分が含まれる。塩素分としては、例えば、加水分解性塩素や有機結合性塩素が挙げられる。粗エポキシ樹脂中の塩素分の含有量(以下「全塩素量」とも記す。)は、例えば、1000~8000ppmである。 The crude epoxy resin obtained by such a production method contains chlorine as an impurity in addition to the compound represented by the general formula (1). Examples of the chlorine content include hydrolyzable chlorine and organic bond chlorine. The content of chlorine in the crude epoxy resin (hereinafter also referred to as “total chlorine content”) is, for example, 1000 to 8000 ppm.
 〈低塩素化のメカニズム〉
 上記精製工程を含む製造方法により、塩素量が低減(以下「低塩素化」とも記す。)されたエポキシ樹脂(A)を得ることができる。
<Mechanism of low chlorination>
An epoxy resin (A) in which the amount of chlorine is reduced (hereinafter also referred to as “low chlorination”) can be obtained by the production method including the purification step.
 上記精製工程を含むことにより、低塩素化できる理由としては、明らかではないが、本発明者らは下記のように推定している。 Although the reason why the chlorination can be reduced by including the above purification step is not clear, the present inventors presume as follows.
 粗エポキシ樹脂中には、上述したとおり、塩素分として、例えば、加水分解性塩素と有機結合性塩素とが共に含まれている。本実施形態において、加水分解性塩素とは、例えば、以下の式(1-2)に示すような状態で存在する塩素のことをいい、有機結合性塩素とは、例えば、以下の式(1-3)に示すような状態で存在する塩素のことをいう。
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
As described above, the crude epoxy resin contains, for example, both hydrolyzable chlorine and organic bond chlorine as the chlorine component. In the present embodiment, hydrolyzable chlorine refers to, for example, chlorine existing in a state as shown in the following formula (1-2), and organic bond chlorine refers to, for example, the following formula (1) -3) Chlorine that exists in the state shown in the figure.
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
 まず、加水分解性塩素を含む化合物(例えば化学式(1-2))の場合は、有機溶媒中でアルカリ金属アルコキシドと反応させると、以下の式(2-2)のように閉環し、加水分解性塩素が除去される。
Figure JPOXMLDOC01-appb-C000077
First, in the case of a compound containing hydrolyzable chlorine (for example, chemical formula (1-2)), when it is reacted with an alkali metal alkoxide in an organic solvent, the ring is closed as shown in the following formula (2-2). Is removed.
Figure JPOXMLDOC01-appb-C000077
 次に、有機結合性塩素を含む化合物の場合は、有機結合性塩素が除去されるメカニズムについては明らかではないが、本発明者らは以下のように考えている。つまり、有機結合性塩素を含む化合物(例えば化学式(1-3))の場合は、塩基性の高いアルカリ金属アルコキシドにより、以下の式(3-2)に示すように水素原子を引き抜かれ、オレフィン部位を形成し、有機結合性塩素が除去されると考えている。 Next, in the case of a compound containing organic bond chlorine, the mechanism by which the organic bond chlorine is removed is not clear, but the present inventors consider as follows. That is, in the case of a compound containing organic bond chlorine (for example, chemical formula (1-3)), a hydrogen atom is extracted by an alkali metal alkoxide having a high basicity as shown in the following formula (3-2). A site is formed, and organic bond chlorine is considered to be removed.
 一般に、以下の式(3-2)に示すメカニズムにて引き抜かれると推測されている水素原子は、酸性度が低いため、従来は引き抜かれにくいと考えられている。それにも関わらず、上述のエポキシ樹脂(A)の製造方法によれば、以下の式(3-2)に示すように水素原子が引き抜かれ、有機結合性塩素を除去することができる。 Generally, a hydrogen atom that is supposed to be extracted by the mechanism shown in the following formula (3-2) has a low acidity and is conventionally considered to be difficult to be extracted. Nevertheless, according to the above-described method for producing the epoxy resin (A), hydrogen atoms are extracted as shown in the following formula (3-2), and organic bond chlorine can be removed.
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
 また、一般的に、共存する一般式(1)で表される化合物におけるエポキシ基が、求核攻撃を受けるとエポキシ樹脂のゲル化が進行する。しかしながら、上述のエポキシ樹脂の製造方法によれば、いずれの反応においても、塩基性の高いアルカリ金属アルコキシドを用いることにより、該アルコキシドが求核反応よりも優先して塩基として働くこととなり、エポキシ樹脂のゲル化が進行することなく塩素分の除去が進行すると考えている。 Further, generally, when the epoxy group in the compound represented by the general formula (1) coexisting is subjected to nucleophilic attack, the gelation of the epoxy resin proceeds. However, according to the above-described method for producing an epoxy resin, in any reaction, by using a highly basic alkali metal alkoxide, the alkoxide acts as a base in preference to a nucleophilic reaction. It is thought that the removal of the chlorine content proceeds without the gelation of.
 〈色相について〉
 一般式(1)で表される化合物及び塩素分を含む粗エポキシ樹脂は、アルカリで処理を行うと、色相が黄色に変化する傾向にあり、更に、用いる試薬によっては、蒸留工程でも色相が改善されない場合もある。また、その一方でアルカリ処理を行わずに蒸留工程を実施したエポキシ樹脂は、蒸留後は透明であるにも関わらず、時間の経過とともに黄変が見られる傾向にもある。上述のエポキシ樹脂(A)の製造方法は、アルカリ処理の中でもアルカリ金属アルコキシドを用いた処理である上記工程(a)を行い、更に蒸留工程(b)も組み合わせることで、優れた色相を有するエポキシ樹脂を得ることができる。以下詳細に説明する。
<About hue>
When the crude epoxy resin containing the compound represented by the general formula (1) and the chlorine content is treated with an alkali, the hue tends to change to yellow, and depending on the reagent used, the hue is improved even in the distillation step. It may not be done. On the other hand, an epoxy resin that has been subjected to a distillation step without performing an alkali treatment tends to be yellowed over time despite being transparent after distillation. The epoxy resin (A) production method described above is an epoxy having an excellent hue by performing the above-mentioned step (a), which is a treatment using an alkali metal alkoxide among alkali treatments, and further combining a distillation step (b). A resin can be obtained. This will be described in detail below.
 一般に、粗エポキシ樹脂は、フェノール化合物とエピクロロヒドリン化合物とを反応させて得られるため、目的のエポキシ化合物以外に、種々の不純物が含まれている。粗エポキシ樹脂の蒸留を実施することにより、粗エポキシ樹脂中の不純物の多くは除去できる傾向にあるが、目的のエポキシ化合物と沸点が同程度の不純物については除去できない。例えば、一般式(1)で表されるエポキシ化合物のうち当量の大きいエポキシ化合物については、蒸留を実施することにより不純物と分離することができる。一方で、当量の小さいエポキシ化合物については、着色の原因である不純物が目的のエポキシ化合物と沸点が同程度であるため、蒸留を実施しても不純物と分離することができない。そのため、当量の小さいエポキシ化合物を含む粗エポキシ樹脂の場合、蒸留を実施しただけでは着色を抑えることができない。その点、粗エポキシ樹脂を、アルカリ金属アルコキシドで処理した場合、上記の蒸留工程では取り除くことのできない不純物が効果的に除去または変性される。そのため、粗エポキシ樹脂を、(a)有機溶媒中、アルカリ金属アルコキシドで処理する工程と(b)蒸留する工程とを組み合わせることで色相に優れたエポキシ樹脂を得ることができる。 Generally, since a crude epoxy resin is obtained by reacting a phenol compound with an epichlorohydrin compound, it contains various impurities in addition to the target epoxy compound. By carrying out distillation of the crude epoxy resin, many impurities in the crude epoxy resin tend to be removed, but impurities having a boiling point similar to that of the target epoxy compound cannot be removed. For example, an epoxy compound having a large equivalent among the epoxy compounds represented by the general formula (1) can be separated from impurities by carrying out distillation. On the other hand, about the epoxy compound with a small equivalent, since the impurity which is the cause of coloring has a boiling point comparable as the objective epoxy compound, even if it distills, it cannot isolate | separate with an impurity. Therefore, in the case of a crude epoxy resin containing an epoxy compound with a small equivalent weight, coloring cannot be suppressed only by carrying out distillation. In this regard, when the crude epoxy resin is treated with an alkali metal alkoxide, impurities that cannot be removed by the distillation step are effectively removed or modified. Therefore, an epoxy resin excellent in hue can be obtained by combining (a) the step of treating the crude epoxy resin with an alkali metal alkoxide in an organic solvent and (b) the step of distillation.
 また、アルカリ金属アルコキシドに代えて、アルカリ金属水酸化物などを用いると、一般式(1)で表される化合物を含む粗エポキシ樹脂の場合、着色の原因の不純物が効果的に除去または変性されないため、蒸留後の着色を抑えることができない傾向にある。 In addition, when an alkali metal hydroxide or the like is used instead of the alkali metal alkoxide, the impurity causing the coloring is not effectively removed or modified in the case of the crude epoxy resin containing the compound represented by the general formula (1). Therefore, there is a tendency that coloring after distillation cannot be suppressed.
 上述のエポキシ樹脂(A)の製造方法は、(a)有機溶媒中、アルカリ金属アルコキシドで処理する工程と、(b)蒸留する工程とをともに実施することにより、優れた色相を有するエポキシ樹脂(A)を得ることができる。 The manufacturing method of the above-mentioned epoxy resin (A) is an epoxy resin having an excellent hue by performing both (a) a step of treating with an alkali metal alkoxide in an organic solvent and (b) a step of distillation. A) can be obtained.
 〈低粘度について〉
 粗エポキシ樹脂は、例えば、上記一般式(1)で表される化合物を含む。粗エポキシ樹脂において、上記一般式(1)で表される化合物の含有量は、例えば、90~95質量%である。
<Low viscosity>
A crude epoxy resin contains the compound represented by the said General formula (1), for example. In the crude epoxy resin, the content of the compound represented by the general formula (1) is, for example, 90 to 95% by mass.
 また、粗エポキシ樹脂中において、例えば、上記一般式(1)で表される化合物は、式(1)中のxの値が異なる化合物を2種以上含む混合物などとして存在する。 In the crude epoxy resin, for example, the compound represented by the general formula (1) exists as a mixture containing two or more compounds having different values of x in the formula (1).
 粗エポキシ樹脂中に含まれる上記一般式(1)で表される化合物において、x=0の化合物の割合は、例えば、90質量%以上95質量%未満である。 In the compound represented by the general formula (1) contained in the crude epoxy resin, the ratio of the compound of x = 0 is, for example, 90% by mass or more and less than 95% by mass.
 上述のエポキシ樹脂(A)の製造方法は、上記精製工程を行うことにより、上記一般式(1)で表される化合物におけるx=0の化合物の割合を向上させることができる。 The manufacturing method of the above-mentioned epoxy resin (A) can improve the ratio of the compound of x = 0 in the compound represented by the said General formula (1) by performing the said refinement | purification process.
 上記精製工程後、得られたエポキシ樹脂(A)に含まれる上記一般式(1)で表される化合物において、x=0の化合物の割合は95質量%以上であり、好ましくは99質量%以上であり、より好ましくは99.9質量%以上である。これは、(b)蒸留工程を実施前は、x=0以上10以下の化合物などを複数種含んでいるが、(b)蒸留工程を実施することで、x=0の化合物(以下「単量体」とも記す。)の割合が増えるためである。これによって、エポキシ樹脂の低粘度を実現することができる。 In the compound represented by the general formula (1) contained in the obtained epoxy resin (A) after the purification step, the proportion of the compound where x = 0 is 95% by mass or more, preferably 99% by mass or more. More preferably, it is 99.9 mass% or more. Before the (b) distillation step, the compound contains a plurality of compounds having x = 0 or more and 10 or less. However, by performing the (b) distillation step, the compound with x = 0 (hereinafter “single” This is because the ratio of “mer” is also increased. Thereby, the low viscosity of an epoxy resin is realizable.
 〈精製工程〉
 上述のエポキシ樹脂の製造方法は、一般式(1)で表される化合物及び塩素分を含む粗エポキシ樹脂を、(a)有機溶媒中、アルカリ金属アルコキシドで処理する工程と、(b)蒸留する工程とを含む精製工程を行う。
<Purification process>
The above-mentioned method for producing an epoxy resin includes (a) a step of treating a crude epoxy resin containing a compound represented by the general formula (1) and a chlorine content with an alkali metal alkoxide in an organic solvent, and (b) distillation. A purification process including the process is performed.
 該(a)及び(b)工程の順序は問わないが、(a)工程の後に、(b)工程を実施することがエポキシ樹脂の色相の点からより好ましい。以下各工程について説明する。 The order of the steps (a) and (b) is not limited, but it is more preferable to carry out the step (b) after the step (a) from the viewpoint of the hue of the epoxy resin. Each step will be described below.
 〈(a)有機溶媒中、アルカリ金属アルコキシドで処理する工程〉
 (有機溶媒)
 本実施形態に用いる有機溶媒は、粗エポキシ樹脂を均一に溶解または分散させ得る有機溶媒であれば特に限定されない。このような有機溶媒として、例えば、テトラヒドロフラン、ジオキサン、ジブチルエーテル等のエーテル類;トルエン、キシレン等の芳香族炭化水素類;ヘキサン、シクロヘキサン等の脂肪族炭化水素類;アセトン、メチルエチルケトン、イソブチルケトン等のケトン類;酢酸メチル、酢酸エチル等のエステル類;ジメチルホルムアミド、ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノン、N-メチル-2-ピロリドン等のアミド類;ジメチルスルホキシドなどの硫黄化合物などが挙げられる。これらは、1種単独で用いてもよいし、2種以上併用してもよい。
<(A) Process of processing with alkali metal alkoxide in organic solvent>
(Organic solvent)
The organic solvent used in the present embodiment is not particularly limited as long as the organic solvent can uniformly dissolve or disperse the crude epoxy resin. Examples of such organic solvents include ethers such as tetrahydrofuran, dioxane, and dibutyl ether; aromatic hydrocarbons such as toluene and xylene; aliphatic hydrocarbons such as hexane and cyclohexane; acetone, methyl ethyl ketone, and isobutyl ketone. Ketones; Esters such as methyl acetate and ethyl acetate; Amides such as dimethylformamide, dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidone; Sulfur compounds such as dimethyl sulfoxide Is mentioned. These may be used alone or in combination of two or more.
 (アルカリ金属アルコキシド)
 一般式(1)で表される化合物におけるエポキシ基は、求核剤との反応性が高いため、本実施形態に用いるアルカリ金属アルコキシドとしては、上記エポキシ基に求核剤として働くことのないように、塩基性が強くかつ求核性の低い、よりかさ高いアルカリ金属アルコキシドを用いることが好ましい。アルカリ金属アルコキシドの具体例としては、カリウムt-ブトキシド、ナトリウムt-ブトキシド、カリウムイソプロポキシド、ナトリウムイソプロポキシド、カリウムエトキシド、ナトリウムエトキシド等が挙げられる。これらは1種単独で用いてもよいし、2種以上併用してもよい。この中で、エポキシ樹脂のゲル化の抑制の観点、及び塩基性度の観点から、カリウムt-ブトキシド、ナトリウムt-ブトキシド、カリウムイソプロポキシド、ナトリウムイソプロポキシドが好ましく、エポキシ樹脂に含まれる塩素量低減の観点から、カリウムt-ブトキシド、ナトリウムt-ブトキシドがより好ましく、カリウムt-ブトキシドが特に好ましい。
(Alkali metal alkoxide)
Since the epoxy group in the compound represented by the general formula (1) has high reactivity with the nucleophile, the alkali metal alkoxide used in this embodiment does not act as a nucleophile on the epoxy group. In addition, it is preferable to use a bulky alkali metal alkoxide having strong basicity and low nucleophilicity. Specific examples of the alkali metal alkoxide include potassium t-butoxide, sodium t-butoxide, potassium isopropoxide, sodium isopropoxide, potassium ethoxide, sodium ethoxide and the like. These may be used alone or in combination of two or more. Of these, potassium t-butoxide, sodium t-butoxide, potassium isopropoxide, and sodium isopropoxide are preferable from the viewpoint of suppression of gelation of the epoxy resin and basicity, and chlorine contained in the epoxy resin. From the viewpoint of reducing the amount, potassium t-butoxide and sodium t-butoxide are more preferable, and potassium t-butoxide is particularly preferable.
 (処理条件)
 (a)工程における処理時間は、エポキシ樹脂がゲル化せず、かつ粗エポキシ樹脂中の塩素分が低減されれば限定されないが、1分~24時間が好ましく、5分~10時間がより好ましく、15分~5時間がさらに好ましい。(a)工程における処理時間が前記範囲内であると、エポキシ樹脂のゲル化の進行の抑制と、粗エポキシ樹脂中の塩素分の低減とを両立させる点から特に好ましい。
(Processing conditions)
The treatment time in step (a) is not limited as long as the epoxy resin does not gel and the chlorine content in the crude epoxy resin is reduced, but is preferably 1 minute to 24 hours, more preferably 5 minutes to 10 hours. 15 minutes to 5 hours is more preferable. It is particularly preferable that the treatment time in the step (a) is within the above range from the viewpoint of achieving both suppression of the progress of gelation of the epoxy resin and reduction of the chlorine content in the crude epoxy resin.
 (a)工程における処理温度は、エポキシ樹脂がゲル化せず、かつ粗エポキシ樹脂中の塩素分が低減されれば限定されないが、-20℃以上90℃以下が好ましく、-10℃以上80℃以下がより好ましく、0℃以上60℃以下がさらに好ましい。(a)工程における処理温度が前記範囲内であると、エポキシ樹脂のゲル化の進行の抑制と、粗エポキシ樹脂中の塩素分の低減とを両立させる点から特に好ましい。 The treatment temperature in the step (a) is not limited as long as the epoxy resin does not gel and the chlorine content in the crude epoxy resin is reduced, but it is preferably −20 ° C. or higher and 90 ° C. or lower, and −10 ° C. or higher and 80 ° C. or lower. The following is more preferable, and 0 ° C. or higher and 60 ° C. or lower is further preferable. It is particularly preferable that the treatment temperature in the step (a) is in the above range from the viewpoint of achieving both suppression of the progress of gelation of the epoxy resin and reduction of the chlorine content in the crude epoxy resin.
 (工程(a)におけるアルカリ金属アルコキシドの添加量)
 本実施形態に用いるアルカリ金属アルコキシドの添加量は、粗エポキシ樹脂中の全塩素量が十分に低減され、かつエポキシ樹脂のゲル化などが起こらなければ限定されないが、粗エポキシ樹脂中に含まれる全塩素量に対して、1~20モル当量であることが好ましく、粗エポキシ樹脂中の塩素量低減の観点から、2~15モル当量であることがより好ましく、3~15モル当量であることがさらに好ましく、5~12モル当量であることが特に好ましく、5~10モル当量であることが極めて好ましい。
(Addition amount of alkali metal alkoxide in step (a))
The addition amount of the alkali metal alkoxide used in the present embodiment is not limited as long as the total chlorine amount in the crude epoxy resin is sufficiently reduced and gelation of the epoxy resin does not occur, but the total amount contained in the crude epoxy resin is not limited. The amount is preferably 1 to 20 molar equivalents relative to the amount of chlorine, more preferably 2 to 15 molar equivalents from the viewpoint of reducing the amount of chlorine in the crude epoxy resin, and 3 to 15 molar equivalents. More preferably, it is 5 to 12 molar equivalents, particularly preferably 5 to 10 molar equivalents.
 一般に、式(3-2)のメカニズムにて引き抜かれると推測されている水素原子は酸性度が低いため、従来は引き抜かれにくいと考えられている。また一方で、アルカリ金属アルコキシドのような試薬量を増やすとエポキシ樹脂のゲル化が進行することから、従来、アルカリ金属アルコキシドのような試薬量はある程度で抑える必要がある。しかしながら、上述のエポキシ樹脂の製造方法は、一般式(1)で表される化合物を含む粗エポキシ樹脂において、アルカリ金属アルコキシドを前記範囲内で添加しても、ゲル化が進行することなく低塩素化を実現できる。 Generally, hydrogen atoms that are supposed to be extracted by the mechanism of the formula (3-2) have low acidity, and are conventionally considered difficult to be extracted. On the other hand, when the amount of a reagent such as an alkali metal alkoxide is increased, the gelation of the epoxy resin proceeds. Therefore, conventionally, the amount of a reagent such as an alkali metal alkoxide needs to be suppressed to some extent. However, the above-described method for producing an epoxy resin is a low-chlorine resin that does not progress in gelation even when an alkali metal alkoxide is added within the above range in a crude epoxy resin containing a compound represented by the general formula (1). Can be realized.
 (工程(a)における粗エポキシ樹脂及び有機溶媒の重量)
 上述のエポキシ樹脂(A)の製造方法において、(a)工程で用いる粗エポキシ樹脂の濃度は、(a)工程で用いる粗エポキシ樹脂および有機溶媒の合計を100質量%とした場合、10~90質量%の範囲内であることが好ましく、副反応抑制観点から15質量%~70質量%の範囲内であることがより好ましい。
(Weight of crude epoxy resin and organic solvent in step (a))
In the method for producing the epoxy resin (A), the concentration of the crude epoxy resin used in the step (a) is 10 to 90 when the total amount of the crude epoxy resin and the organic solvent used in the step (a) is 100% by mass. The content is preferably in the range of mass%, more preferably in the range of 15 mass% to 70 mass% from the viewpoint of suppressing side reactions.
 工程(a)における粗エポキシ樹脂及び有機溶媒の重量は、0.1≦(粗エポキシ樹脂の重量)/(粗エポキシ樹脂の重量+有機溶媒の重量)≦0.9を満たすことが好ましく、0.15≦(粗エポキシ樹脂の重量)/(粗エポキシ樹脂の重量+有機溶媒の重量)≦0.7を満たすことがより好ましい。工程(a)における粗エポキシ樹脂及び有機溶媒の重量が上記条件を満たすと、エポキシ樹脂のゲル化が進行することなく、効率良く粗エポキシ樹脂中の塩素分を低減できる傾向にある。 The weight of the crude epoxy resin and the organic solvent in the step (a) preferably satisfies 0.1 ≦ (weight of the crude epoxy resin) / (weight of the crude epoxy resin + weight of the organic solvent) ≦ 0.9. It is more preferable that 15 ≦ (weight of crude epoxy resin) / (weight of crude epoxy resin + weight of organic solvent) ≦ 0.7. If the weight of the crude epoxy resin and the organic solvent in the step (a) satisfies the above conditions, the epoxy resin tends to be reduced in the chlorine content efficiently without the gelation of the epoxy resin proceeding.
 (後処理工程)
 上述のエポキシ樹脂の製造方法は、エポキシ樹脂がゲル化せず、かつ粗エポキシ樹脂中の塩素分が低減されれば限定されないが、上記工程(a)の後、無機塩との分離の観点から、さらに後処理する工程を含むことが好ましい。後処理する工程としては、酸または水により処理する工程、及び、分液操作により処理する工程が好ましい。後処理する工程に用いる酸としては、特に限定されず、例えば、リン酸、リン酸ナトリウム、リン酸カリウム、リン酸二水素ナトリウム、リン酸二水素カリウム、酢酸、シュウ酸、塩酸、硫酸、硝酸等が挙げられる。
(Post-processing process)
The method for producing the epoxy resin is not limited as long as the epoxy resin does not gel and the chlorine content in the crude epoxy resin is reduced, but from the viewpoint of separation from the inorganic salt after the step (a). Further, it is preferable to further include a post-processing step. As the post-treatment step, a treatment step with an acid or water and a treatment step with a liquid separation operation are preferable. The acid used in the post-treatment step is not particularly limited. For example, phosphoric acid, sodium phosphate, potassium phosphate, sodium dihydrogen phosphate, potassium dihydrogen phosphate, acetic acid, oxalic acid, hydrochloric acid, sulfuric acid, nitric acid Etc.
 〈(b)蒸留する工程〉
 (b)蒸留する工程で用いる方法としては、粗エポキシ樹脂が精製できる蒸留方法であれば限定されない。このような蒸留方法として、単蒸留や薄膜蒸留が挙げられる。上述のエポキシ樹脂の製造方法において、(b)蒸留する工程は、減圧度0.05kPa以上0.3kPa以下かつ蒸留内温が150℃以上180℃以下で実施することが好ましい。減圧度が0.05kPa以上の場合は、目的のエポキシ化合物(例えば、レゾルシノールジグリシジルエーテル)以外に、不純物として開環した化合物が混入することを抑えることができるため好ましい。また、減圧度が0.3kPa以下の場合は、加熱温度が180℃を超えることで、蒸留中にエポキシ樹脂のゲル化が進行して収率が著しく低下するということを避けることができるため好ましい。得られるエポキシ樹脂の含有塩素量および生産性の観点から、減圧度は0.1kPa以上0.2kPa以下であることが好ましく、蒸留内温は155℃以上175℃以下が好ましい。
<(B) Step of distillation>
(B) The method used in distillation step, the crude epoxy resin is not limited as long as distillation method can be purified. Examples of such distillation methods include simple distillation and thin film distillation. In the above-described method for producing an epoxy resin, the step (b) of distillation is preferably performed at a degree of vacuum of 0.05 kPa to 0.3 kPa and a distillation internal temperature of 150 ° C. to 180 ° C. When the degree of vacuum is 0.05 kPa or more, it is preferable that a compound having a ring-opening as an impurity can be suppressed in addition to the target epoxy compound (for example, resorcinol diglycidyl ether). Further, when the degree of vacuum is 0.3 kPa or less, it is preferable that the heating temperature exceeds 180 ° C., so that the gelation of the epoxy resin proceeds during distillation and the yield can be significantly reduced. . From the viewpoint of the amount of chlorine contained in the resulting epoxy resin and productivity, the degree of vacuum is preferably from 0.1 kPa to 0.2 kPa, and the distillation internal temperature is preferably from 155 ° C. to 175 ° C.
 また、(b)蒸留する工程を数回繰返すことで、更に塩素分の低減されたエポキシ樹脂を得ることができる。 Further, (b) by repeating the distillation step several times, an epoxy resin with further reduced chlorine content can be obtained.
 ≪エポキシ樹脂≫
 本実施形態に係るエポキシ樹脂は、下記一般式(1)で表されるエポキシ樹脂であって、前記エポキシ樹脂中に含まれる全塩素量が0.01ppm以上1000ppm以下である。
Figure JPOXMLDOC01-appb-C000079
(式(1)中、Rはそれぞれ独立に水素原子又は炭素数1~10の1価の有機基を表し、xは0以上5以下の整数を表し、式(1)で表される全樹脂中に含まれるx=0で表される化合物の割合が99質量%以上である。)
≪Epoxy resin≫
The epoxy resin which concerns on this embodiment is an epoxy resin represented by following General formula (1), Comprising: The total chlorine amount contained in the said epoxy resin is 0.01 ppm or more and 1000 ppm or less.
Figure JPOXMLDOC01-appb-C000079
(In Formula (1), each R 1 independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, x represents an integer of 0 or more and 5 or less, and all represented by Formula (1) (The ratio of the compound represented by x = 0 contained in the resin is 99% by mass or more.)
 本実施形態に係るエポキシ樹脂は、下記一般式(2)で表されるエポキシ樹脂であって、前記エポキシ樹脂中に含まれる全塩素量が0.01ppm以上1000ppm以下である。
Figure JPOXMLDOC01-appb-C000080
(式(2)中、Rはそれぞれ独立に水素原子又は炭素数1~10の1価の有機基を表し、yは0以上5以下の整数を表し、式(2)で表される全樹脂中に含まれるy=0で表される化合物の割合が95質量%以上である。)
The epoxy resin which concerns on this embodiment is an epoxy resin represented by following General formula (2), Comprising: The total chlorine amount contained in the said epoxy resin is 0.01 ppm or more and 1000 ppm or less.
Figure JPOXMLDOC01-appb-C000080
(In the formula (2), R 2 each independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, y represents an integer of 0 or more and 5 or less, and all represented by the formula (2) (The ratio of the compound represented by y = 0 contained in the resin is 95% by mass or more.)
 ≪硬化性樹脂組成物≫
 本実施形態に係る硬化性樹脂組成物は、上述した樹脂組成物または上述したエポキシ樹脂(ア)と、硬化促進剤(イ)とを含有することが好ましい。
≪Curable resin composition≫
The curable resin composition according to this embodiment preferably contains the above-described resin composition or the above-described epoxy resin (A) and the curing accelerator (A).
 本実施形態に係る硬化性樹脂組成物において、上述した樹脂組成物または上述したエポキシ樹脂(ア)の含有量は、硬化物の耐熱性の観点から20~99質量%であることが好ましく、30~98質量%であることがより好ましく、40~96質量%であることがさらに好ましい。 In the curable resin composition according to the present embodiment, the content of the above-described resin composition or the above-described epoxy resin (A) is preferably 20 to 99% by mass from the viewpoint of heat resistance of the cured product. The content is more preferably -98% by mass, and further preferably 40-96% by mass.
 また、本実施形態に係る硬化性樹脂組成物は、その性能に悪影響を及ぼさない範囲内で、さらにその他のエポキシ樹脂を含むことができる。 Further, the curable resin composition according to the present embodiment can further contain other epoxy resins within a range that does not adversely affect the performance.
 その他のエポキシ樹脂としては3,4-エポキシ-6-メチルシクロヘキシルメチルカルボキシレート、3,4-エポキシシクロヘキシルメチルカルボキシレートなどの、含有全塩素量が0ppmである脂環式エポキシ樹脂などが挙げられる。 Other epoxy resins include alicyclic epoxy resins having a total chlorine content of 0 ppm, such as 3,4-epoxy-6-methylcyclohexylmethyl carboxylate and 3,4-epoxycyclohexylmethylcarboxylate.
 その他のエポキシ樹脂の添加量としては、性能に悪影響を及ぼさなければ限定されないが、全樹脂中、30質量%以下であることが好ましい。 The amount of other epoxy resin added is not limited as long as it does not adversely affect the performance, but it is preferably 30% by mass or less in the total resin.
 <硬化促進剤(イ)>
 硬化促進剤(イ)としては、上述した樹脂組成物または上述したエポキシ樹脂(ア)の硬化を促進しうる化合物であればよく、その種類は特に限定されない。硬化促進剤(イ)としては、上述した樹脂組成物または上述したエポキシ樹脂(ア)との相溶性の観点から、窒素化合物、リン化合物、潜在性硬化促進剤が好ましい。硬化促進剤(イ)としては、上述した樹脂組成物または上述したエポキシ樹脂(ア)との相溶性の観点から、窒素化合物、潜在性硬化促進剤がより好ましく、保存安定性の観点から、潜在性硬化促進剤が更に好ましく、得られる硬化物の絶縁信頼性の観点から、マイクロカプセル化された潜在性硬化促進剤がより更に好ましい。硬化促進剤(イ)は、1種単独で用いてもよく、2種以上併用してもよい。
<Curing accelerator (I)>
As a hardening accelerator (I), what is necessary is just a compound which can accelerate | stimulate hardening of the resin composition mentioned above or the epoxy resin (A) mentioned above, and the kind is not specifically limited. As a hardening accelerator (I), a nitrogen compound, a phosphorus compound, and a latent hardening accelerator are preferable from a compatible viewpoint with the resin composition mentioned above or the epoxy resin (A) mentioned above. As the curing accelerator (I), from the viewpoint of compatibility with the above-described resin composition or the above-described epoxy resin (A), a nitrogen compound and a latent curing accelerator are more preferable, and from the viewpoint of storage stability, latent From the viewpoint of insulation reliability of the resulting cured product, a microencapsulated latent curing accelerator is even more preferable. A hardening accelerator (I) may be used individually by 1 type, and may be used together 2 or more types.
 窒素化合物としては、例えば、1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7、1,5-ジアザ-ビシクロ(4,3,0)ノネン、5、6-ジブチルアミノ-1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7等のシクロアミジン化合物;ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の3級アミン類およびこれらの誘導体;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール等のイミダゾール類およびこれらの誘導体等が挙げられる。 Examples of the nitrogen compound include 1,8-diaza-bicyclo (5,4,0) undecene-7, 1,5-diaza-bicyclo (4,3,0) nonene, 5,6-dibutylamino-1, Cycloamidine compounds such as 8-diaza-bicyclo (5,4,0) undecene-7; tertiary amines such as benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, and their derivatives Imidazoles such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, and derivatives thereof.
 リン化合物としては、例えば、トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、トリス(4-メチルフェニル)ホスフィン、ジフェニルホスフィン、フェニルホスフィン等の有機ホスフィン類等が挙げられる。これらは1種類単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。 Examples of the phosphorus compound include organic phosphines such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, tris (4-methylphenyl) phosphine, diphenylphosphine, and phenylphosphine. These may be used alone or in combination of two or more.
 潜在性硬化促進剤としては、分散型硬化促進剤、熱分解型硬化促進剤、光分解型硬化促進剤、湿気硬化型硬化促進剤、モレキュラーシーブ封入型硬化促進剤、マイクロカプセル化された潜在性硬化促進剤等が挙げられる。なお、潜在性硬化促進剤とは、エポキシ樹脂の硬化温度での硬化反応速度を維持したまま、室温における硬化反応速度を極めて遅くすることができる硬化促進剤のことである。 As latent curing accelerators, dispersion type curing accelerators, thermal decomposition type curing accelerators, photodegradation type curing accelerators, moisture curing type curing accelerators, molecular sieve encapsulated type curing accelerators, and microencapsulated potentials A hardening accelerator etc. are mentioned. The latent curing accelerator is a curing accelerator that can extremely slow the curing reaction rate at room temperature while maintaining the curing reaction rate at the curing temperature of the epoxy resin.
 分散型硬化促進剤としては、例えば、ジシアンジアミド、アジピン酸ヒドラジド、ジアミノマレノニトリル、ジアリルメラミン、ポリ(ピペリジン-セバチン酸)アミド、イミダゾール・トリアジン誘導体等が挙げられる。 Examples of the dispersion type curing accelerator include dicyandiamide, adipic acid hydrazide, diamino maleonitrile, diallyl melamine, poly (piperidine-sebatic acid) amide, and imidazole / triazine derivatives.
 熱分解型硬化剤とは、加熱すると3級アミン等のアミン化合物とイソシアネート等の化合物とに分解する化合物である。例えば、カルボン酸エステル、メチルヒドラジンおよびエポキシ化合物から合成されるアミンイミド等が挙げられる。 A thermal decomposition type curing agent is a compound that decomposes into an amine compound such as a tertiary amine and a compound such as isocyanate when heated. Examples thereof include amine imide synthesized from carboxylic acid ester, methyl hydrazine and epoxy compound.
 光分解型硬化促進剤とは、紫外線または可視光の照射により分解して硬化促進剤として活性化される化合物である。例えば、芳香族ジアゾニウム塩、ジアリルヨードニウム塩、トリアリルスルホニウム塩、トリアリルセレニウム塩等が挙げられる。 A photodegradable curing accelerator is a compound that is decomposed by irradiation with ultraviolet rays or visible light and activated as a curing accelerator. For example, aromatic diazonium salt, diallyl iodonium salt, triallyl sulfonium salt, triallyl selenium salt and the like can be mentioned.
 湿気硬化型硬化促進剤としては、脂肪族ポリアミンとケトン化合物とから合成されるケチミン化合物等が挙げられる。 Examples of the moisture curable curing accelerator include ketimine compounds synthesized from aliphatic polyamines and ketone compounds.
 モレキュラーシーブ封入型硬化促進剤としては、モレキュラーシーブに脂肪族ポリアミンを吸収させたもの等が挙げられる。 Examples of the molecular sieve encapsulated curing accelerator include those obtained by absorbing an aliphatic polyamine in a molecular sieve.
 マイクロカプセル化された硬化促進剤とは、硬化促進剤をコアとし周りにシェル構造を有する硬化促進剤のことをいう。例えば、コア構造にイミダゾール化合物を、シェル構造にエポキシ樹脂を配したアミン-エポキシアダクト型等が挙げられ、市販品としては、「ノバキュア(登録商標)」等がこれに相当する。 The microencapsulated curing accelerator refers to a curing accelerator having a curing accelerator as a core and a shell structure around it. For example, an amine-epoxy adduct type in which an imidazole compound is arranged in the core structure and an epoxy resin is arranged in the shell structure, and “Novacure (registered trademark)” and the like correspond to this.
 本実施形態に係る硬化性樹脂組成物において、硬化促進剤(イ)の含有量は、硬化物の耐熱性の観点から1~50質量%であることがより好ましく、2~40質量%であることがさらに好ましい。 In the curable resin composition according to this embodiment, the content of the curing accelerator (A) is more preferably 1 to 50% by mass from the viewpoint of heat resistance of the cured product, and 2 to 40% by mass. More preferably.
 <硬化剤(ウ)>
 本実施形態に係る硬化性樹脂組成物は、更に、硬化剤を含有することが好ましい。
<Curing agent (U)>
The curable resin composition according to this embodiment preferably further contains a curing agent.
 硬化剤(ウ)は、上述した樹脂組成物または上述したエポキシ樹脂(ア)を硬化させうる化合物であればよく、その種類は特に限定されない。硬化剤(ウ)としては、上述したエポキシ樹脂との反応性の観点から、酸無水物化合物、酸二無水物化合物、アミン化合物、フェノール化合物等が好ましい。硬化剤(ウ)は1種単独で用いてもよく、2種以上併用してもよい。 The curing agent (c) is not particularly limited as long as it is a compound that can cure the above-described resin composition or the above-described epoxy resin (a). As the curing agent (c), an acid anhydride compound, an acid dianhydride compound, an amine compound, a phenol compound, and the like are preferable from the viewpoint of reactivity with the above-described epoxy resin. A hardening | curing agent (c) may be used individually by 1 type, and may be used together 2 or more types.
 酸無水物化合物としては、例えば、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、ナジック酸無水物、メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、無水フタル酸、無水トリメリット酸、ドデセニル無水コハク酸等が挙げられる。 Examples of the acid anhydride compound include tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, nadic acid anhydride, methylnadic acid anhydride, trialkyltetrahydrophthalic anhydride, phthalic anhydride, and trimellitic anhydride. Acid, dodecenyl succinic anhydride and the like.
 酸二無水物化合物としては、例えば、無水ピロメリット酸、オキシジフタル酸二無水物、ビフェニル-3,3’,4,4’-テトラカルボン酸二無水物、ベンゾフェノン-3,3’,4,4’-テトラカルボン酸二無水物、ジフェニルスルホン-3,3’,4,4’-テトラカルボン酸二無水物、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、メタ-ターフェニル-3,3’,4,4’-テトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、シクロブタン-1,2,3,4-テトラカルボン酸二無水物、1-カルボキシメチル-2,3,5-シクロペンタトリカルボン酸-2,6:3,5-二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸二無水物、エチレングリコールビス(トリメリット酸モノエステル酸無水物)、p-フェニレンビス(トリメリット酸モノエステル酸無水物)、ペンタンジオールビス(トリメリット酸モノエステル酸無水物)、デカンジオールビス(トリメリット酸モノエステル酸無水物)等が挙げられる。 Examples of the acid dianhydride compound include pyromellitic anhydride, oxydiphthalic dianhydride, biphenyl-3,3 ′, 4,4′-tetracarboxylic dianhydride, and benzophenone-3,3 ′, 4,4. '-Tetracarboxylic dianhydride, diphenylsulfone-3,3', 4,4'-tetracarboxylic dianhydride, 4,4 '-(2,2-hexafluoroisopropylidene) diphthalic dianhydride, Meta-terphenyl-3,3 ′, 4,4′-tetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, bicyclo [2,2,2] oct-7- Ene-2,3,5,6-tetracarboxylic dianhydride, cyclobutane-1,2,3,4-tetracarboxylic dianhydride, 1-carboxymethyl-2,3,5-cyclopentatricarboxylic acid 2, : 3,5-dianhydride, 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic dianhydride, 5- (2 , 5-Dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic dianhydride, ethylene glycol bis (trimellitic acid monoester anhydride), p-phenylene bis (trimellitic acid mono Ester acid anhydride), pentanediol bis (trimellitic acid monoester acid anhydride), decanediol bis (trimellitic acid monoester acid anhydride), and the like.
 アミン化合物としては、芳香族アミン、脂肪族アミン、脂環式アミン等が挙げられる。芳香族アミンとしては、例えば、メタキシレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、メタフェニレンジアミン等が挙げられる。また、芳香族アミンとして、市販品を用いることもでき、例えば、「エピキュアW」、「エピキュアZ」(いずれもジャパンエポキシレジン社製、商品名)、「カヤハードA-A」、「カヤハードA-B」、「カヤハードA-S」(いずれも日本化薬社製、商品名)、「トートアミンHM-205」(東都化成社製、商品名)、「アデカハードナーEH-101」(旭電化工業社製、商品名)、「エポミックQ-640」、「エポミックQ-643」(いずれも三井化学社製、商品名)、「DETDA80」(Lonza社製、商品名)等が挙げられる。脂肪族アミンとしては、例えば、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジエチルアミノプロピルアミン等が挙げられる。脂環式アミンとしては、例えば、メンセンジアミン、イソホロンジアミン、N-アミノエチルピペラジン、ビス(4-アミノシクロヘキシル)メタン等が挙げられる。 Examples of amine compounds include aromatic amines, aliphatic amines, and alicyclic amines. Examples of the aromatic amine include metaxylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, metaphenylenediamine, and the like. Commercially available products can also be used as aromatic amines, for example, “Epicure W”, “Epicure Z” (all trade names made by Japan Epoxy Resin Co., Ltd.), “Kayahard AA”, “Kayahard A— B ”,“ Kayahard AS ”(all trade names, manufactured by Nippon Kayaku Co., Ltd.),“ Totoamine HM-205 ”(trade names, manufactured by Tohto Kasei Co., Ltd.),“ Adeka Hardener EH-101 ”(Asahi Denka Kogyo) And “Epomic Q-640”, “Epomic Q-643” (both trade names, Mitsui Chemicals), “DETDA80” (trade names, manufactured by Lonza), and the like. Examples of the aliphatic amine include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and diethylaminopropylamine. Examples of alicyclic amines include mensendiamine, isophoronediamine, N-aminoethylpiperazine, bis (4-aminocyclohexyl) methane, and the like.
 フェノール化合物としては、例えば、フェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール化合物;フェノール類(フェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等)および/またはナフトール類(α-ナフトール、β-ナフトール、ジヒドロキシナフタレン等)と、アルデヒド基を有する化合物(ホルムアルデヒド、ベンズアルデヒド、サリチルアルデヒド等)と、を酸性触媒下で縮合または共縮合させて得られるノボラック型フェノール樹脂;フェノール類および/またはナフトール類と、ジメトキシパラキシレンまたはビス(メトキシメチル)ビフェニルと、から合成されるフェノール・アラルキル樹脂;ナフトール・アラルキル樹脂等のアラルキル型フェノール樹脂;フェノール類および/またはナフトール類とシクロペンタジエンから共重合により合成される、ジクロペンタジエン型フェノールノボラック樹脂;ナフトールノボラック樹脂等のジクロペンタジエン型フェノール樹脂;テルペン変性フェノール樹脂等が挙げられる。 Examples of the phenol compound include phenol compounds such as phenol, cresol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol, and aminophenol; phenols (phenol, cresol, resorcin, catechol, bisphenol A, bisphenol F, and phenylphenol). , Aminophenol, etc.) and / or naphthols (α-naphthol, β-naphthol, dihydroxynaphthalene, etc.) and compounds having an aldehyde group (formaldehyde, benzaldehyde, salicylaldehyde, etc.) in the presence of an acidic catalyst. Novolac-type phenolic resin obtained by mixing with phenols and / or naphthols and dimethoxyparaxylene or bis (methoxymethyl) biphenyl Phenol-aralkyl resins synthesized from aralkyl; aralkyl-type phenol resins such as naphthol-aralkyl resins; dichloropentadiene-type phenol novolac resins synthesized by copolymerization from phenols and / or naphthols and cyclopentadiene; naphthol novolaks Examples thereof include dichloropentadiene-type phenol resins such as resins; terpene-modified phenol resins.
 これらの中でも、硬化性樹脂組成物の粘度の観点から、酸無水物化合物が好ましい。酸無水物化合物の中でも、得られる硬化物の耐熱性の観点から、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、ナジック酸無水物、メチルナジック酸無水物がより好ましく、特にナジック酸無水物、メチルナジック酸無水物が更に好ましい。 Among these, an acid anhydride compound is preferable from the viewpoint of the viscosity of the curable resin composition. Among the acid anhydride compounds, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, nadic acid anhydride, and methyl nadic acid anhydride are more preferable from the viewpoint of heat resistance of the resulting cured product, and particularly nadic acid. An acid anhydride and methyl nadic acid anhydride are more preferable.
 本実施形態に係る硬化性樹脂組成物において、硬化剤(ウ)の含有量は、上述した樹脂組成物または上述したエポキシ樹脂(ア)のエポキシ当量をP、硬化剤(ウ)の官能基当量をQとした時、硬化物の耐熱性の観点から0.7≦Q/P≦1.3が好ましく、0.8≦Q/P≦1.2がより好ましく、0.9≦Q/P≦1.1が特に好ましい。 In the curable resin composition according to the present embodiment, the content of the curing agent (c) is P, the epoxy equivalent of the resin composition described above or the epoxy resin (a) described above, and the functional group equivalent of the curing agent (c). When Q is Q, 0.7 ≦ Q / P ≦ 1.3 is preferable from the viewpoint of heat resistance of the cured product, 0.8 ≦ Q / P ≦ 1.2 is more preferable, and 0.9 ≦ Q / P ≦ 1.1 is particularly preferred.
 <無機充填材(エ)>
 本実施形態の硬化性樹脂組成物には、必要に応じて無機充填材(エ)を含有させることができる。無機充填材(エ)としては、例えば、溶融シリカ、結晶シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、チタン酸カリウム、炭化珪素、窒化珪素、窒化アルミ、窒化ホウ素、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア等の粉体またはこれらを球形化したビーズ、ガラス繊維等が挙げられる。更に、難燃効果のある無機充填材(エ)としては、水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、モリブデン酸亜鉛等が挙げられる。これらの中でも、得られる硬化物の耐薬品性等の観点から、溶融シリカ、結晶シリカ、アルミナが好ましく、熱伝導性の観点から、アルミナがより好ましい。また、これら無機充填材(エ)は、硬化性樹脂組成物の粘度の観点から、シランカップリング剤等で表面処理されたものが好ましい。
<Inorganic filler (d)>
The curable resin composition of the present embodiment may contain an inorganic filler (d) if necessary. Examples of the inorganic filler (d) include fused silica, crystalline silica, alumina, zircon, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, silicon nitride, aluminum nitride, boron nitride, zirconia, zircon, fosterite, Examples thereof include powders such as steatite, spinel, mullite, and titania, beads formed by spheroidizing these, and glass fibers. Furthermore, examples of the inorganic filler (d) having a flame-retardant effect include aluminum hydroxide, magnesium hydroxide, zinc borate, and zinc molybdate. Among these, fused silica, crystalline silica, and alumina are preferable from the viewpoint of chemical resistance of the obtained cured product, and alumina is more preferable from the viewpoint of thermal conductivity. Further, these inorganic fillers (d) are preferably surface-treated with a silane coupling agent or the like from the viewpoint of the viscosity of the curable resin composition.
 本実施形態に係る硬化性樹脂組成物において、無機充填材(エ)の添加量は、上述の含有全塩素量が0.01ppm以上1000ppm以下のエポキシ樹脂(A)と、融点または軟化点が50℃以上である樹脂(B)との含有量の総和を100質量部とした場合、0~500質量部であることが好ましく、0~300質量部であることがより好ましく、0~200質量部であることがさらに好ましい。 In the curable resin composition according to this embodiment, the amount of the inorganic filler (d) added is the above-mentioned epoxy resin (A) having a total chlorine content of 0.01 ppm to 1000 ppm, and a melting point or softening point of 50. When the total content of the resin (B) at a temperature equal to or higher than 100 ° C. is 100 parts by mass, it is preferably 0 to 500 parts by mass, more preferably 0 to 300 parts by mass, and 0 to 200 parts by mass. More preferably.
 <その他の成分>
 本実施形態の硬化性樹脂組成物には、その性能に悪影響を及ぼさない範囲でその他の成分を添加することができる。その他の成分としては、例えば、接着助剤、難燃剤、イオン捕捉剤、導電性粒子、着色剤、離型剤等が挙げられる。
<Other ingredients>
Other components can be added to the curable resin composition of the present embodiment as long as the performance is not adversely affected. Examples of other components include an adhesion aid, a flame retardant, an ion scavenger, conductive particles, a colorant, and a release agent.
 接着助剤としては、例えば、シラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤等が挙げられ、その中でもシラン系カップリング剤が好ましい。 Examples of the adhesion assistant include silane coupling agents, titanate coupling agents, aluminum coupling agents, etc. Among them, silane coupling agents are preferable.
 シラン系カップリング剤としては、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-ウレイドプロピルトリエトキシシラン、N-β-アミノエチル-γ-アミノプロピルトリメトキシシラン等が挙げられる。カップリング剤の配合量は、添加による効果や耐熱性から、樹脂組成物またはエポキシ樹脂(ア)100質量部に対して、0.1質量部以上10質量部以下であることが好ましい。 Examples of the silane coupling agent include γ-glycidoxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-ureidopropyltriethoxysilane, and N-β-aminoethyl. -Γ-aminopropyltrimethoxysilane and the like. The blending amount of the coupling agent is preferably 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the resin composition or the epoxy resin (a), from the effect of addition and heat resistance.
 難燃剤としては、例えば、リン酸エステル化合物やホスファゼン化合物等のリン化合物、メラミン系難燃剤等の窒素化合物等が挙げられる。 Examples of the flame retardant include phosphorus compounds such as phosphate ester compounds and phosphazene compounds, and nitrogen compounds such as melamine flame retardants.
 リン酸エステル化合物としては、例えば、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリイソブチルホスフェート、トリス(2-エチルヘキシル)ホスフェート等の脂肪族炭化水素基を置換基とするリン酸エステル;トリス(ブトキシエチル)ホスフェート等の酸素原子を含む脂肪族有機基を置換基とするリン酸エステル;トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、レゾルシノールビス(ジフェニルホスフェート)等の芳香族有機基を置換基とするリン酸エステル化合物等が挙げられる。 Examples of the phosphoric acid ester compound include phosphoric acid esters substituted with an aliphatic hydrocarbon group such as trimethyl phosphate, triethyl phosphate, tributyl phosphate, triisobutyl phosphate, tris (2-ethylhexyl) phosphate; tris (butoxyethyl) Phosphate ester substituted with an aliphatic organic group containing an oxygen atom such as phosphate; aromatic organic group such as triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, resorcinol bis (diphenyl phosphate) as a substituent And phosphoric acid ester compounds.
 ホスファゼン化合物としては、例えば、伏見製薬所製の「ラビトル(登録商標)FP-100」、「ラビトル(登録商標)FP-300」等が挙げられる。 Examples of the phosphazene compound include “Ravitor (registered trademark) FP-100” and “Ravitor (registered trademark) FP-300” manufactured by Fushimi Pharmaceutical.
 メラミン系難燃剤としては、例えば、メラミンシアヌレート、ポリリン酸メラミン等が挙げられる。 Examples of the melamine flame retardant include melamine cyanurate and melamine polyphosphate.
 イオン捕捉剤としては、例えば、銅がイオン化して溶け出すのを防止するための銅害防止剤や、無機イオン吸着剤が挙げられる。例えば、本実施形態の硬化性樹脂組成物を銅配線基板等の各種電子部品上で使用する場合、材料として用いられている銅成分が水分等と接触することによりイオン化することがある。このような場合、上記した銅害防止剤や無機イオン吸着剤を含有する硬化性樹脂組成物とすることで、水分等と接触して溶出した銅イオン等を補足・吸着することができる。 Examples of the ion scavenger include a copper damage preventing agent for preventing copper from being ionized and dissolved, and an inorganic ion adsorbent. For example, when the curable resin composition of the present embodiment is used on various electronic components such as a copper wiring board, the copper component used as a material may be ionized by contact with moisture or the like. In such a case, by using the curable resin composition containing the copper damage inhibitor and the inorganic ion adsorbent described above, it is possible to supplement and adsorb copper ions and the like that are eluted in contact with moisture and the like.
 銅害防止剤としては、例えば、トリアジンチオール化合物、ビスフェノール系還元剤等が挙げられる。これらは、市販品を用いることもでき、例えば、トリアジンチオール化合物を成分とする銅害防止剤として「ジスネットDB」(三協製薬社製、商品名)、ビスフェノール系還元剤を成分とする銅害防止剤として「ヨシノックスBB」(吉富製薬社製、商品名)等が挙げられる。 Examples of copper damage inhibitors include triazine thiol compounds and bisphenol reducing agents. These can also use a commercial item, for example, "disnet DB" (trade name, manufactured by Sankyo Pharmaceutical Co., Ltd.) as a copper damage inhibitor containing a triazine thiol compound as a component, and copper damage containing a bisphenol-based reducing agent as a component. Examples of the inhibitor include “Yoshinox BB” (trade name, manufactured by Yoshitomi Pharmaceutical Co., Ltd.).
 無機イオン吸着剤としては、例えば、ジルコニウム系化合物、アンチモンビスマス系化合物、マグネシウムアルミニウム系化合物等が挙げられる。また、無機イオン吸着剤としては、市販品を用いることもでき、例えば、陽イオン交換型として、「IXE-100」(東亜合成化学工業社製、商品名)等が挙げられる。 Examples of the inorganic ion adsorbent include zirconium compounds, antimony bismuth compounds, magnesium aluminum compounds, and the like. Commercially available products can also be used as the inorganic ion adsorbent, and examples thereof include “IXE-100” (trade name, manufactured by Toa Gosei Chemical Co., Ltd.) as a cation exchange type.
 導電性粒子としては、例えば、Au、Ag、Ni、Cu、はんだ等の金属粒子やカーボン等が挙げられる。また、非導電性のガラス、セラミック、プラスチック等を核とし、この核に上記金属粒子やカーボンを被覆したものであってもよい。導電性粒子が、プラスチックを核とし、この核に前記金属粒子やカーボンを被覆したものや、熱溶融金属粒子である場合、加熱加圧による変形性を有するので、銅との接続時に電極との接触面積が増加し、接続信頼性が向上するので好ましい。これらの導電性粒子の表面を、高分子樹脂等で更に被覆した微粒子は、導電性粒子の配合量を増加した場合の粒子同士の接触による短絡を抑制し、電極回路間の絶縁性を向上できる。そのため、適宜、これを単独あるいは導電性粒子と混合して用いてもよい。この導電性粒子の平均粒径は、分散性、導電性の観点から1~18μmであることが好ましい。ここでいう平均粒径とは、一次粒径であり、粒度分布計等により測定できる。 Examples of the conductive particles include metal particles such as Au, Ag, Ni, Cu, and solder, and carbon. Further, non-conductive glass, ceramic, plastic or the like may be used as a core, and the core may be coated with the metal particles or carbon. In the case where the conductive particles are made of plastic as a core and the core is coated with the metal particles or carbon, or are hot-melt metal particles, they have deformability due to heat and pressure. This is preferable because the contact area is increased and the connection reliability is improved. The fine particles obtained by further coating the surface of these conductive particles with a polymer resin or the like can suppress short-circuiting due to contact between the particles when the amount of the conductive particles is increased, and can improve the insulation between the electrode circuits. . Therefore, you may use this individually or in mixture with electroconductive particle suitably. The average particle diameter of the conductive particles is preferably 1 to 18 μm from the viewpoint of dispersibility and conductivity. The average particle diameter here is the primary particle diameter and can be measured by a particle size distribution meter or the like.
 導電性粒子の使用量は、樹脂組成物またはエポキシ樹脂(ア)100質量部に対して、0.1~30質量部であることが好ましく、0.1~10質量部であることがより好ましい。導電性粒子の使用量を0.1質量部以上とすることにより導電性が向上する傾向にあり、30質量部以下とすることにより回路の短絡を防止できる傾向にある。 The amount of the conductive particles used is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin composition or epoxy resin (a). . When the amount of the conductive particles used is 0.1 parts by mass or more, the conductivity tends to be improved, and when it is 30 parts by mass or less, a short circuit tends to be prevented.
 着色剤としては、例えば、カーボンブラック等が挙げられる。 Examples of the colorant include carbon black.
 離型剤としては、従来公知の離型剤を用いることができ、例えば、市販品としては、「SH 7020」(東レ・ダウコーニング社製、商品名)等が挙げられる。 As the mold release agent, a conventionally known mold release agent can be used. Examples of commercially available products include “SH 7020” (trade name, manufactured by Toray Dow Corning).
 ≪用途≫
 本実施形態の樹脂組成物は、粘度が十分に低くなるので作業性が良好であり、かつ硬化物にした際に高い耐熱性を示すことができる。このことから、本実施形態の樹脂組成物およびそれを用いた硬化性樹脂組成物は、アンダーフィル材、ダイアタッチ材、液状封止材更にはこれらを含む電子部品の材料として好適に用いることができる。
≪Usage≫
Since the viscosity of the resin composition of the present embodiment is sufficiently low, the workability is good, and high heat resistance can be exhibited when a cured product is obtained. Therefore, the resin composition of the present embodiment and the curable resin composition using the resin composition are preferably used as an underfill material, a die attach material, a liquid sealing material, and a material for an electronic component including them. it can.
 <アンダーフィル材、液状封止材>
 本実施形態のアンダーフィル材および液状封止材は、上述の樹脂組成物または硬化性樹脂組成物を含む。
<Underfill material, liquid sealing material>
Underfill material and liquid encapsulant of the present embodiment includes the above-mentioned resin composition or the curable resin composition.
 本実施形態のアンダーフィル材および液状封止材は、公知の製造方法によって製造することができる。例えば、上述の硬化性樹脂組成物を充分に混合し、分注し得る容器に封入することによって製造することができる。上述の樹脂組成物および硬化性樹脂組成物は作業性が良好であるので、該樹脂組成物および硬化性樹脂組成物を含むアンダーフィル材および液状封止材は、半導体部品等と基材との隙間等に容易に充填することができる。また、上述の樹脂組成物および硬化性樹脂組成物は、硬化物にした際に高い耐熱性を示すので、該樹脂組成物および硬化性樹脂組成物を含むアンダーフィル材および液状封止材は、半田による接続時等の熱履歴による性能低下が低い。上記基材の種類としては、特に限定されず、例えば、シリコンウエハー等が挙げられる。 The underfill material and liquid sealing material of this embodiment can be manufactured by a known manufacturing method. For example, it can be manufactured by sufficiently mixing the above-described curable resin composition and enclosing it in a container that can be dispensed. Since the resin composition and the curable resin composition described above has good workability, underfill material and liquid encapsulant comprising the resin composition and the curable resin composition, a semiconductor component or the like and the substrate with the It is possible to easily fill the gaps and the like. Moreover, since the above-mentioned resin composition and curable resin composition exhibit high heat resistance when made into a cured product, the underfill material and the liquid sealing material containing the resin composition and the curable resin composition are: Low performance degradation due to thermal history during soldering. It does not specifically limit as a kind of said base material, For example, a silicon wafer etc. are mentioned.
 <ダイアタッチ材>
 本実施形態のダイアタッチ材は、上述の樹脂組成物または硬化性樹脂組成物を含む。
<Die attach material>
The die attach material of this embodiment contains the above-mentioned resin composition or curable resin composition.
 本実施形態のダイアタッチ材は、公知の製造方法によって製造することができる。例えば、上述の樹脂組成物または硬化性樹脂組成物を基材に塗布し、室温で流動性がなくなるまで加熱することによって製造することができる。上記基材の種類としては、特に限定されず、例えば、シリコンウエハー等が挙げられる。 The die attach material of this embodiment can be manufactured by a known manufacturing method. For example, it can be produced by applying the above-mentioned resin composition or curable resin composition to a base material and heating it until it loses fluidity at room temperature. It does not specifically limit as a kind of said base material, For example, a silicon wafer etc. are mentioned.
 <電子部品>
 本実施形態の電子部品は、上述のアンダーフィル材、ダイアタッチ材および液状封止材からなる群より選ばれる少なくとも1つを含む。
<Electronic parts>
The electronic component of the present embodiment includes at least one selected from the group consisting of the above-described underfill material, die attach material, and liquid sealing material.
 上述のアンダーフィル材、ダイアタッチ材および液状封止材を含む電子部品としては、例えば、半導体パッケージ、インターポーザー、Si貫通電極等が挙げられる。 Examples of electronic components including the above-described underfill material, die attach material, and liquid sealing material include semiconductor packages, interposers, Si through electrodes, and the like.
 本実施形態の電子部品は、上述の樹脂組成物または硬化性樹脂組成物を含むアンダーフィル材、ダイアタッチ材および液状封止材からなる群より選ばれる少なくとも1つを形成した後に、該アンダーフィル材、ダイアタッチ材および液状封止材からなる群より選ばれる少なくとも1つを含めることにより形成することができる。 After forming at least one selected from the group consisting of an underfill material, a die attach material, and a liquid sealing material containing the above-described resin composition or curable resin composition, It can be formed by including at least one selected from the group consisting of a material, a die attach material and a liquid sealing material.
 本実施形態に係る樹脂組成物または硬化性樹脂組成物は、具体的には、エレクトロニクス分野で各種電子機器の操作パネル等に使用されるプリント配線板や回路基板の保護層形成、積層基板の絶縁層形成、半導体装置に使用されるシリコンウエハー、半導体チップ、半導体装置周辺の部材、半導体搭載用基板、放熱板、リードピン、半導体自身等の保護、絶縁および接着に使用するための膜形成用途に利用される。 The resin composition or the curable resin composition according to the present embodiment, specifically, a protective layer formed of a printed wiring board and the circuit board used in the operation panel of various electronic devices and the like in the electronics field, the insulating laminated board Used for film formation for use in layer formation, silicon wafers used in semiconductor devices, semiconductor chips, semiconductor device peripherals, semiconductor mounting substrates, heat sinks, lead pins, semiconductors themselves, insulation and adhesion Is done.
 以下の実施例により本発明を更に詳しく説明するが、本発明は以下の実施例により何ら限定されるものではない。 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples.
 <試薬>
 実施例および比較例において以下の試薬を用いた。
<Reagent>
The following reagents were used in Examples and Comparative Examples.
 〈エポキシ樹脂〉
 ・レゾルシノールジグリシジルエーテル
 CVCスペシャリティケミカルズ社製、商品名「ERISYS RDGE-H」、以下「RDGE-H」とも略称する。RDGE-Hは、一般式(1)において、Rが全て水素原子であり、グリシジルエーテルおよびエポキシ基の開環部位のベンゼン環に対する結合位置がメタ位であり、x=0の化合物の割合が80~90質量%程度でありかつx=1~10の化合物の割合が10~20質量%程度の混合物を含む粗エポキシ樹脂に相当。RDGE-H中の全塩素量は、3254ppmであった。
<Epoxy resin>
Resorcinol diglycidyl ether, trade name “ERISYS RDGE-H” manufactured by CVC Specialty Chemicals, hereinafter abbreviated as “RDGE-H”. In RDGE-H, in the general formula (1), all R 1 are hydrogen atoms, the bonding position of the glycidyl ether and epoxy group ring-opening sites to the benzene ring is the meta position, and the ratio of the compound of x = 0 is It corresponds to a crude epoxy resin containing a mixture of about 80 to 90% by mass and the ratio of the compound of x = 1 to 10 being about 10 to 20% by mass. The total amount of chlorine in RDGE-H was 3254 ppm.
 ・1,6-ビス(グリシジルオキシ)ナフタレン
 DIC株式会社製、商品名「EPICLON HP-4032」、以下「HP-4032」とも略称する。HP-4032は、一般式(2)において、Rが全て水素原子であり、グリシジルエーテルおよびエポキシ基の開環部位のナフタレン環に対する結合位置が1,6位であり、y=0の化合物の割合が80~90質量%程度でありかつy=1~10の化合物の割合が10~20質量%程度の混合物を含む粗エポキシ樹脂に相当。HP-4032中の全塩素量は1400ppmであった。
1,6-bis (glycidyloxy) naphthalene DIC Corporation, trade name “EPICLON HP-4032”, hereinafter also abbreviated as “HP-4032”. HP-4032 is a compound of the general formula (2) in which R 2 is all hydrogen atoms, the bonding position of the ring opening site of the glycidyl ether and epoxy group to the naphthalene ring is the 1,6-position, and y = 0 This corresponds to a crude epoxy resin containing a mixture having a ratio of about 80 to 90% by mass and a ratio of the compound of y = 1 to 10 being about 10 to 20% by mass. The total chlorine content in HP-4032 was 1400 ppm.
 ・ビスフェノールA型エポキシ樹脂
 旭化成イーマテリアルズ社製、商品名「AER260」、以下「AER260」とも略称する。AER260は、一般式(3)において、R、Rが全て水素原子であり、RおよびRがメチル基であり、z=0の化合物の割合が80~90質量%程度でありかつz=1~10の化合物の割合が10~20質量%程度の混合物を含む粗エポキシ樹脂に相当。AER260中の全塩素量は1350ppmであった。
-Bisphenol A type epoxy resin manufactured by Asahi Kasei E-Materials, trade name "AER260", hereinafter also abbreviated as "AER260". AER260 is a compound represented by the general formula (3), wherein R 3 and R 4 are all hydrogen atoms, R 5 and R 6 are methyl groups, and the ratio of the compound with z = 0 is about 80 to 90% by mass; Corresponds to a crude epoxy resin containing a mixture in which the ratio of the compound of z = 1 to 10 is about 10 to 20% by mass. The total chlorine content in AER260 was 1350 ppm.
 ・ビスフェノールA型エポキシ樹脂
 ダイソー社製、商品名「LX-01」、以下「LX-01」とも略称する。LX-01は、一般式(3)において、R、Rが全て水素原子であり、RおよびRがメチル基であり、z=0の化合物の割合が95.2質量%程度でありかつz=1~10の化合物の割合が4.8質量%程度の混合物を含むエポキシ樹脂に相当。LX-01中の全塩素量は10ppmであった。
-Bisphenol A type epoxy resin, trade name “LX-01” manufactured by Daiso Corporation, also abbreviated as “LX-01”. In the general formula (3), LX-01 is such that R 3 and R 4 are all hydrogen atoms, R 5 and R 6 are methyl groups, and the proportion of the compound with z = 0 is about 95.2% by mass. It corresponds to an epoxy resin containing a mixture in which the ratio of the compound having z = 1 to 10 is about 4.8% by mass. The total chlorine content in LX-01 was 10 ppm.
 〈樹脂(B)〉
 ・トリグリシジルイソシアヌレート
 日産化学工業社製、商品名「TEPIC―S」、以下「TEPIC―S」とも略称する。TEPIC―Sは、一般式(4)において、Rがメチレン基である樹脂に相当。融点:90~125℃。
<Resin (B)>
Triglycidyl isocyanurate, manufactured by Nissan Chemical Industries, Ltd., trade name “TEPIC-S”, hereinafter also abbreviated as “TEPIC-S”. TEPIC-S corresponds to a resin in which R 7 is a methylene group in the general formula (4). Melting point: 90-125 ° C.
 ・テトラメチルビフェノール型エポキシ樹脂
 三菱化学社製、商品名「jER YX4000H」、以下「YX4000H」とも略称する。YX4000Hは、式(5)において、4つのRのうち2つのRがメチル基であり、残り2つのRが水素原子であり、グリシジルエーテル基の結合位置がそれぞれパラ位である樹脂に相当。具体的には、下記一般式(14)に相当する。融点:105~110℃。
Figure JPOXMLDOC01-appb-C000081
-Tetramethylbiphenol type epoxy resin, manufactured by Mitsubishi Chemical Corporation, trade name “jER YX4000H”, hereinafter also abbreviated as “YX4000H”. YX4000H is a resin in the formula (5) in which two R 8 out of four R 8 are methyl groups, the remaining two R 8 are hydrogen atoms, and the bonding positions of the glycidyl ether groups are each in the para position. Equivalent. Specifically, it corresponds to the following general formula (14). Melting point: 105-110 ° C.
Figure JPOXMLDOC01-appb-C000081
 ・1-クロロ-2,3-エポキシプロパン・ホルムアルデヒド・2,7-ナフタレンジオール重縮合物
 DIC株式会社製、商品名「EPICRON HP-4710」、以下「HP-4710」とも略称する。HP-4710は、式(6)において、Rがすべて水素原子であり、R10がメチレン基であり、グリシジルエーテル基の結合位置がそれぞれ1,4位である樹脂に相当。具体的には下記一般式(15)に相当する。融点:95℃。
Figure JPOXMLDOC01-appb-C000082
1-Chloro-2,3-epoxypropane, formaldehyde, 2,7-naphthalenediol polycondensate DIC Corporation, trade name “EPICRON HP-4710”, hereinafter also abbreviated as “HP-4710”. HP-4710 corresponds to a resin in formula (6) in which R 9 is all hydrogen atoms, R 10 is a methylene group, and the bonding positions of glycidyl ether groups are 1 and 4 positions, respectively. Specifically, it corresponds to the following general formula (15). Melting point: 95 ° C.
Figure JPOXMLDOC01-appb-C000082
 ・テトラキス(ヒドロキシフェニル)エタン型エポキシ樹脂
 三菱化学社製、商品名「jER 1031S」、以下「1031S」とも略称する。1031Sは、式(7)において、R11がすべて水素原子であり、グリシジルエーテル基の結合位置がパラ位である樹脂に相当。具体的には下記一般式(16)に相当する。融点:90~100℃。
Figure JPOXMLDOC01-appb-C000083
Tetrakis (hydroxyphenyl) ethane type epoxy resin, trade name “jER 1031S” manufactured by Mitsubishi Chemical Corporation, hereinafter also abbreviated as “1031S”. 1031S corresponds to a resin in which R 11 is all hydrogen atoms and the bonding position of the glycidyl ether group is para-position in formula (7). Specifically, it corresponds to the following general formula (16). Melting point: 90-100 ° C.
Figure JPOXMLDOC01-appb-C000083
 ・トリス(ヒドロキシフェニル)メタン型エポキシ樹脂
 三菱化学社製、商品名「jER 1032H60」、以下「1032H60」とも略称する。1032H60は、式(8)において、R12がすべて水素原子であり、グリシジルエーテル基の結合位置がパラ位である樹脂に相当。具体的には下記一般式(17)に相当する。融点:56~62℃。
Figure JPOXMLDOC01-appb-C000084
Tris (hydroxyphenyl) methane type epoxy resin, trade name “jER 1032H60” manufactured by Mitsubishi Chemical Corporation, hereinafter also abbreviated as “1032H60”. 1032H60 corresponds to a resin in which R 12 is all hydrogen atoms and the bonding position of the glycidyl ether group is para-position in formula (8). Specifically, it corresponds to the following general formula (17). Melting point: 56-62 ° C.
Figure JPOXMLDOC01-appb-C000084
 〈硬化促進剤〉
 ・ノバキュアHX3941-HP(旭化成イーマテリアルズ社製)。ノバキュアHX3941-HPは、マイクロカプセル化された潜在性硬化促進剤である。
<Curing accelerator>
・ Novacure HX3941-HP (manufactured by Asahi Kasei E-Materials). NovaCure HX3941-HP is a microencapsulated latent cure accelerator.
 〈硬化剤〉
 ・HNA-100(新日本理化社製)。HNA-100は、酸無水物化合物である。
<Curing agent>
-HNA-100 (manufactured by Shin Nippon Rika). HNA-100 is an acid anhydride compound.
 〈無機充填材〉
 ・アルミナフィラーAC2500 SXQ(アドマテックス社製)。
<Inorganic filler>
-Alumina filler AC2500 SXQ (manufactured by Admatechs).
 〈アルカリ金属アルコキシド〉
 ・カリウムt-ブトキシド(和光純薬工業社製)。
<Alkali metal alkoxide>
Potassium t-butoxide (manufactured by Wako Pure Chemical Industries, Ltd.)
 〈有機溶媒〉
 ・トルエン(和光純薬工業社製、超脱水グレード)。
 ・N-メチル-2-ピロリドン(和光純薬工業社製、脱水グレード)。
 ・2-プロパノール(和光純薬工業社製、試薬特級)。
 ・メチルイソブチルケトン(和光純薬工業社製、試薬特級)。
<Organic solvent>
-Toluene (manufactured by Wako Pure Chemical Industries, super dehydrated grade).
N-methyl-2-pyrrolidone (manufactured by Wako Pure Chemical Industries, dehydrated grade).
2-Propanol (made by Wako Pure Chemical Industries, reagent special grade).
-Methyl isobutyl ketone (manufactured by Wako Pure Chemical Industries, special reagent grade).
 〈その他の試薬〉
 ・水酸化カリウム(和光純薬工業社製)。
 ・酢酸(和光純薬工業社製)。
 ・プロピレングリコール(和光純薬工業社製)。
 ・0.01mol/L硝酸銀水溶液(和光純薬工業社製)。
 ・2-(2-ブトキシエトキシ)エタノール(和光純薬工業社製)。
 ・アセトニトリル(和光純薬工業社製)。
<Other reagents>
-Potassium hydroxide (made by Wako Pure Chemical Industries).
Acetic acid (manufactured by Wako Pure Chemical Industries).
Propylene glycol (manufactured by Wako Pure Chemical Industries).
-0.01 mol / L silver nitrate aqueous solution (made by Wako Pure Chemical Industries, Ltd.).
2- (2-butoxyethoxy) ethanol (manufactured by Wako Pure Chemical Industries, Ltd.)
-Acetonitrile (manufactured by Wako Pure Chemical Industries).
 上述の試薬は特に精製せずに用いた。 The above reagents were used without any particular purification.
 <全塩素量の測定方法>
 セパラブルフラスコに、試料であるエポキシ樹脂または樹脂組成物0.3gを秤量し、2-(2-ブトキシエトキシ)エタノール25mLに溶解させて溶液を得た。該溶液に1.16mmol/Lの水酸化カリウムのプロピレングリコール溶液25mLを加え、30分間加熱還流を実施した。その後、室温まで冷却した後の前記溶液に、酢酸200mLを加えた。そして、前記溶液について電位差滴定装置(京都電子社製、「AT-510」)を用いて沈殿滴定することにより、塩素量を測定した。当該塩素量をエポキシ樹脂または樹脂組成物に含まれる「全塩素量」とした。なお、電極として複合銀電極(Ag沈殿滴定用、京都電子社製「C-373」)を用い、0.01mol/Lの硝酸銀水溶液を用いて滴定した。
<Measurement method of total chlorine content>
In a separable flask, 0.3 g of a sample epoxy resin or resin composition was weighed and dissolved in 25 mL of 2- (2-butoxyethoxy) ethanol to obtain a solution. To the solution was added 25 mL of a 1.16 mmol / L potassium hydroxide propylene glycol solution, and the mixture was heated to reflux for 30 minutes. Thereafter, 200 mL of acetic acid was added to the solution after cooling to room temperature. Then, the amount of chlorine was measured by subjecting the solution to precipitation titration using a potentiometric titrator (“AT-510” manufactured by Kyoto Electronics Co., Ltd.). The said chlorine amount was made into the "total chlorine amount" contained in an epoxy resin or a resin composition. A composite silver electrode (for Ag precipitation titration, “C-373” manufactured by Kyoto Electronics Co., Ltd.) was used as an electrode, and titration was performed using a 0.01 mol / L silver nitrate aqueous solution.
 <アルカリ金属塩化物の測定方法>
 セパラブルフラスコに、試料であるエポキシ樹脂または樹脂組成物0.3gを秤量し、トルエン100mLおよびメタノール100mLに溶解させて溶液を得た。そして、前記溶液について電位差滴定装置(京都電子社製、「AT-510」)を用いて沈殿滴定することにより、塩素量を測定した。当該塩素量をエポキシ樹脂または樹脂組成物に含まれる「無機塩素量」とし、アルカリ金属塩化物に由来する塩素量とした。なお、電極として複合銀電極(Ag沈殿滴定用、京都電子社製「C-373」)を用い、0.01mol/Lの硝酸銀水溶液を用いて滴定した。
<Measurement method of alkali metal chloride>
In a separable flask, 0.3 g of the epoxy resin or resin composition as a sample was weighed and dissolved in 100 mL of toluene and 100 mL of methanol to obtain a solution. Then, the amount of chlorine was measured by subjecting the solution to precipitation titration using a potentiometric titrator (“AT-510” manufactured by Kyoto Electronics Co., Ltd.). The said chlorine amount was made into the "inorganic chlorine amount" contained in an epoxy resin or a resin composition, and was made into the chlorine amount derived from an alkali metal chloride. A composite silver electrode (for Ag precipitation titration, “C-373” manufactured by Kyoto Electronics Co., Ltd.) was used as an electrode, and titration was performed using a 0.01 mol / L silver nitrate aqueous solution.
 <一般式(9)~(11)で表される化合物の測定>
 一般式(9)~(11)で表される化合物の測定方法について、一般式(9)で表される樹脂を例に挙げて説明する。
<Measurement of compounds represented by general formulas (9) to (11)>
The method for measuring the compounds represented by the general formulas (9) to (11) will be described by taking the resin represented by the general formula (9) as an example.
 一般式(9)におけるRxおよびRyが(a)~(e)の化合物は、GC-MS(島津製作所社製、GC-2010)にて測定を行った。 The compounds in which Rx and Ry in the general formula (9) are (a) to (e) were measured by GC-MS (manufactured by Shimadzu Corporation, GC-2010).
 カラム種類:DB-1(長さ:30m、直径:0.25mm)
 カラム温度:50℃(1分間保持)→280℃(昇温10℃/分、10分保持)
 インジェクション温度:250℃
 イオン源温度:250℃
 インターフェース温度:320℃
Column type: DB-1 (length: 30 m, diameter: 0.25 mm)
Column temperature: 50 ° C. (1 minute hold) → 280 ° C. (temperature increase 10 ° C./minute, 10 minute hold)
Injection temperature: 250 ° C
Ion source temperature: 250 ° C
Interface temperature: 320 ° C
 上記条件において、x=0であり、Rx=Ry=(a)で表される化合物が18分、Rx=(a)、Ry=(b)で表される化合物が19.6分、Rx=(a)、Ry=(c)で表される化合物が19.8分、Rx=(a)、Ry=(d)で表される化合物が22.5分、Rx=(a)、Ry=(e)で表される化合物が22.9分に検出された。全ピーク面積と上記ピーク面積の比から、一般式(9)におけるそれぞれの化合物の割合を算出した。一般式(10)および(11)で表される化合物の割合も同様に算出した。 In the above condition, x = 0, the compound represented by Rx = Ry = (a) is 18 minutes, Rx = (a), a compound represented by Ry = (b) 19.6 minutes, Rx = (a), a compound represented by Ry = (c) is 19.8 minutes, Rx = (a), a compound represented by Ry = (d) 22.5 minutes, Rx = (a), Ry = The compound represented by (e) was detected at 22.9 minutes. From the ratio between the total peak area and the peak area, the ratio of each compound in the general formula (9) was calculated. The ratio of the compounds represented by the general formulas (10) and (11) was calculated in the same manner.
 <一般式(1)、(2)で表される化合物におけるx=0、y=0の化合物等の割合>
 一般式(1)で表される化合物におけるx=0の化合物等の割合は、液体クロマトグラフィー(HPLC)またはゲルパーミエーションクロマトグラフィー(GPC)により測定を行った。HPLC測定では、具体的には、試料であるエポキシ樹脂のアセトニトリル溶液(0.1質量%)を調製し、該溶液を用いて下記の条件の液体クロマトグラフィー(HPLC)により測定を実施した。
<Formula (1), the proportion of such compound of x = 0, y = 0 in the compound represented by (2)>
The ratio of the compound of x = 0 in the compound represented by the general formula (1) was measured by liquid chromatography (HPLC) or gel permeation chromatography (GPC). In the HPLC measurement, specifically, an acetonitrile solution (0.1% by mass) of an epoxy resin as a sample was prepared, and measurement was performed by liquid chromatography (HPLC) under the following conditions using the solution.
  カラム:TS-gel ODS-100V(東ソー社製)
  カラム温度:40℃
  ポンプ:DP-8020(東ソー社製)
  検出器:UV-8020(東ソー社製)
  移動相:A液;水、B液;アセトニトリル
  移動相グラジエント条件:0分;B液30容量%、60分;B液100容量%、80分;B液30容量%
Column: TS-gel ODS-100V (manufactured by Tosoh Corporation)
Column temperature: 40 ° C
Pump: DP-8020 (manufactured by Tosoh Corporation)
Detector: UV-8020 (manufactured by Tosoh Corporation)
Mobile phase: liquid A; water, liquid B; acetonitrile Mobile phase gradient conditions: 0 minutes; liquid B 30% by volume, 60 minutes; liquid B 100% by volume, 80 minutes; liquid B 30% by volume
 上記条件により、Rが水素原子であるRDGE-Hの測定を行ったところ、RDGE-Hに含まれる一般式(1)で表される化合物におけるxが0の化合物の割合が89.3質量%であることを算出した。なお、一般式(2)で表され、Rが水素原子におけるy=0の化合物等の割合の算出についても、同様の方法で行った。 When RDGE-H in which R 1 is a hydrogen atom was measured under the above conditions, the ratio of the compound having x = 0 in the compound represented by the general formula (1) contained in RDGE-H was 89.3 mass. %. The calculation of the ratio of the compound represented by the general formula (2) where R 2 is y = 0 in the hydrogen atom was performed in the same manner.
 GPC測定では、具体的には、試料であるエポキシ樹脂のテトラヒドロフラン溶液を調製し、該溶液を用いて下記の条件の液体クロマトグラフィー(GPC)により測定を実施した。 In the GPC measurement, specifically, a tetrahydrofuran solution of an epoxy resin as a sample was prepared, and measurement was performed by liquid chromatography (GPC) under the following conditions using the solution.
  GPC:HCL-8320GPC(東ソー社製)
  カラム:shodex A-804(昭和電工社製)
     :shodex A-803(昭和電工社製)
     :shodex A-802(昭和電工社製)
     :shodex A-802(昭和電工社製)
  カラム温度:40℃
  移動相:テトラヒドロフラン
GPC: HCL-8320GPC (manufactured by Tosoh Corporation)
Column: shodex A-804 (made by Showa Denko)
: Shodex A-803 (Showa Denko)
: Shodex A-802 (made by Showa Denko KK)
: Shodex A-802 (made by Showa Denko KK)
Column temperature: 40 ° C
Mobile phase: tetrahydrofuran
 上記条件により、Rが水素原子であるHP-4032の測定を行ったところ、HP-4032に含まれる一般式(2)で表される化合物におけるyが0の化合物の割合が82.3質量%であることを算出した。 Measurement of HP-4032 in which R 2 is a hydrogen atom under the above conditions revealed that the ratio of the compound with y = 0 to the compound represented by the general formula (2) contained in HP-4032 was 82.3 masses. %.
 <粘度測定>
 粘度測定は、粘度計(東機産業社製、「VISCOMETER TV-20」)を用いて行った。測定温度は23℃または40℃とし、ローターはCORD-1(1°34‘×R24)を使用した。
<Viscosity measurement>
The viscosity was measured using a viscometer (manufactured by Toki Sangyo Co., Ltd., “VISCOMETER TV-20”). The measurement temperature was 23 ° C. or 40 ° C., and CORD-1 (1 ° 34 ′ × R24) was used as the rotor.
 <保存安定性評価>
 樹脂組成物を、上記粘度測定法により、初期粘度(組成物調整後、6時間以内に測定)および23℃で30日間静置後の粘度を測定し、「30日後の粘度/初期粘度」で算出された粘度上昇率により、保存安定性の評価を行った。粘度上昇率が小さいほど、保存安定性に優れる。
<Storage stability evaluation>
The initial viscosity (measured within 6 hours after adjusting the composition) and the viscosity after standing for 30 days at 23 ° C. were measured for the resin composition by the above viscosity measurement method, and the “viscosity after 30 days / initial viscosity” The storage stability was evaluated based on the calculated viscosity increase rate. The smaller the viscosity increase rate, the better the storage stability.
 <硬化物の耐熱性(ガラス転移温度)評価>
 ガラス転移温度(Tg)の測定は、示差走査熱量測定器(島津製作所社製、「DSC-60」)を用いて測定を行った。試料であるエポキシ樹脂組成物(約20mg)を、アルミパンに入れ、窒素雰囲気下、昇温速度10℃/分にて250℃まで昇温し、30分間保持し、硬化させた。その後、エポキシ樹脂組成物の硬化物を、室温まで冷却した後、更に10℃/分で280℃まで昇温させることにより硬化物のTgの測定を行った。
<Evaluation of heat resistance (glass transition temperature) of cured product>
The glass transition temperature (Tg) was measured using a differential scanning calorimeter (manufactured by Shimadzu Corporation, “DSC-60”). A sample epoxy resin composition (about 20 mg) was placed in an aluminum pan, heated to 250 ° C. at a temperature rising rate of 10 ° C./min in a nitrogen atmosphere, held for 30 minutes, and cured. Then, after cooling the cured product of the epoxy resin composition to room temperature, the Tg of the cured product was measured by further raising the temperature to 280 ° C. at 10 ° C./min.
 <硬化物中のジオキサン構造を有する化合物(C)の割合の測定>
 硬化物中のジオキサン構造を有する化合物(C)の割合の測定は、熱分解ガスクロマトグラフィーを用いて実施した。エポキシ樹脂組成物を硬化(空気雰囲気下、室温から120℃まで10℃/分で昇温し、30分間保持、続いて180℃まで10℃/分で昇温し、30分間保持。)した後に、該硬化物について熱分解ガスクロマトグラフィーにて測定を行った。全ピーク面積と化合物(C)に由来するピーク面積との比から、ジオキサン構造を有する化合物(C)の割合を算出した。
<Measurement of ratio of compound (C) having dioxane structure in cured product>
The ratio of the compound (C) having a dioxane structure in the cured product was measured using pyrolysis gas chromatography. After the epoxy resin composition was cured (in air atmosphere, the temperature was raised from room temperature to 120 ° C. at 10 ° C./min, held for 30 minutes, then heated to 180 ° C. at 10 ° C./min and held for 30 minutes). The cured product was measured by pyrolysis gas chromatography. The ratio of the compound (C) having a dioxane structure was calculated from the ratio between the total peak area and the peak area derived from the compound (C).
 カラム種類:DB-1(長さ:30m、直径:0.25mm)
 カラム温度:40℃(5分間保持)→320℃(昇温20℃/分、21分間保持)
 インジェクション温度:320℃
 イオン源温度:250℃
 熱分解温度:600℃
Column type: DB-1 (length: 30 m, diameter: 0.25 mm)
Column temperature: 40 ° C. (held for 5 minutes) → 320 ° C. (temperature raised 20 ° C./minute, held for 21 minutes)
Injection temperature: 320 ° C
Ion source temperature: 250 ° C
Thermal decomposition temperature: 600 ° C
 上記条件において、ジオキサン構造を有する化合物(C)に由来するピークが15.2分に検出された。 Under the above conditions, a peak derived from the compound (C) having a dioxane structure was detected at 15.2 minutes.
 <樹脂の融点または測定>
 樹脂の融点は、示差走査熱量測定器(島津製作所社製、「DSC-60」)を用いて測定を行った。試料である樹脂(約20mg)を、アルミパンに入れ、窒素雰囲気下、昇温速度10℃/分にて250℃まで昇温し、吸熱ピークが観測された温度を融点または軟化点とした。
<Melting point or measurement of resin>
The melting point of the resin was measured using a differential scanning calorimeter (“DSC-60” manufactured by Shimadzu Corporation). A sample resin (about 20 mg) was placed in an aluminum pan, heated to 250 ° C. at a temperature rising rate of 10 ° C./min in a nitrogen atmosphere, and the temperature at which an endothermic peak was observed was defined as the melting point or softening point.
 (実施例1)
 ナス型フラスコに、レゾルシノールジグリシジルエーテル:RDGE-H(386.75g)を入れ、ト字管、温度計および冷却器をつけ、減圧度0.1kPaにて分子蒸留を実施した。系内温度137℃で蒸留を開始し、157℃まで系内温度が上昇したところまでを初留とした。系内温度165℃となったところを蒸留の開始とした。収率57.7%でレゾルシノールジグリシジルエーテルの分子蒸留物が得られた。得られた分子蒸留物の全塩素量は610ppmであった。なお、分子蒸留を実施していないレゾルシノールジグリシジルエーテルの全塩素量は3254ppmであり、40℃における粘度は150mPa・sであった。また、得られた分子蒸留物である全エポキシ樹脂中の、x=0で表される化合物(以下「単量体」ともいう)、x=1で表される化合物(以下「二量体」ともいう)、x=2で表される化合物(以下「三量体」ともいう)、x=4で表される化合物(以下「四量体」ともいう)等の含有量を液体クロマトグラフィーにより測定したところ、検出されたピークは単量体のみであり、二量体以上のピークは検出されず、いずれも検出限界量以下(0.01質量%以下)であった。得られた分子蒸留物の融点は39~40℃であった。
Example 1
Resorcinol diglycidyl ether: RDGE-H (386.75 g) was placed in an eggplant-shaped flask, a T-tube, a thermometer and a condenser were attached, and molecular distillation was performed at a reduced pressure of 0.1 kPa. Distillation was started at a system temperature of 137 ° C, and the first distillation was performed until the system temperature increased to 157 ° C. Distillation was started when the system temperature reached 165 ° C. A molecular distillate of resorcinol diglycidyl ether was obtained with a yield of 57.7%. The total amount of chlorine in the obtained molecular distillate was 610 ppm. The total chlorine content of resorcinol diglycidyl ether not subjected to molecular distillation was 3254 ppm, and the viscosity at 40 ° C. was 150 mPa · s. Also, in all the epoxy resins that are molecular distillates obtained, a compound represented by x = 0 (hereinafter also referred to as “monomer”), a compound represented by x = 1 (hereinafter referred to as “dimer”). The content of a compound represented by x = 2 (hereinafter also referred to as “trimer”), a compound represented by x = 4 (hereinafter also referred to as “tetramer”) and the like by liquid chromatography. As a result of the measurement, the detected peak was only the monomer, and no dimer or higher peak was detected, and both were below the detection limit (0.01% by mass or less). The resulting molecular distillate had a melting point of 39-40 ° C.
 (実施例2)
 実施例1で得られた、分子蒸留を1回実施したレゾルシノールジグリシジルエーテル(168.59g)を、実施例1と同様の方法により再度分子蒸留を実施した。2回目の分子蒸留では、減圧度0.2kPa、系内温度145℃にて蒸留を開始し、160℃まで系内温度が上昇したところまでを初留とした。系内温度170℃となったところを蒸留の開始とした。収率58.0%で分子蒸留物が得られた。得られた分子蒸留物の全塩素量は420ppmであった。また、得られた分子蒸留物である全エポキシ樹脂中の単量体~四量体等の含有量を液体クロマトグラフィーにより測定したところ、検出されたピークは単量体のみであり、二量体以上のピークは検出されず、いずれも検出限界量以下(0.01質量%以下)であった。得られた分子蒸留物の融点は39~40℃であった。
(Example 2)
Resorcinol diglycidyl ether (168.59 g) obtained in Example 1 and subjected to molecular distillation once was subjected to molecular distillation again in the same manner as in Example 1. In the second molecular distillation, distillation was started at a reduced pressure of 0.2 kPa and an internal temperature of 145 ° C, and the first distillation was performed until the internal temperature increased to 160 ° C. Distillation was started when the system temperature reached 170 ° C. A molecular distillate was obtained with a yield of 58.0%. The total amount of chlorine in the obtained molecular distillate was 420 ppm. Further, when the content of monomers to tetramers in the total epoxy resin as the molecular distillate obtained was measured by liquid chromatography, the detected peak was only the monomer, and the dimer The above peaks were not detected, and all were below the detection limit (0.01% by mass or less). The resulting molecular distillate had a melting point of 39-40 ° C.
 (実施例3)
 実施例2で得られた分子蒸留を2回実施したレゾルシノールジグリシジルエーテル(41.04g)を、実施例1と同様の方法により再度分子蒸留を実施した。3回目の分子蒸留では、減圧度0.11kPa、系内温度135℃にて蒸留を開始し、155℃まで系内温度が上昇したところまでを初留とした。系内温度160℃となったところを蒸留の開始とした。収率59.8%で分子蒸留物が得られた。得られた分子蒸留物の全塩素量は130ppmであった。また、得られた分子蒸留物である全エポキシ樹脂中の単量体~四量体等の含有量を液体クロマトグラフィーにより測定したところ、検出されたピークは単量体のみであり、二量体以上のピークは検出されず、いずれも検出限界量以下(0.01質量%以下)であった。得られた分子蒸留物の融点は39~40℃であった。
(Example 3)
Resorcinol diglycidyl ether (41.04 g) obtained by carrying out the molecular distillation twice obtained in Example 2 was again subjected to molecular distillation in the same manner as in Example 1. In the third molecular distillation, distillation was started at a reduced pressure of 0.11 kPa and an internal temperature of 135 ° C., and the initial distillation was performed until the internal temperature increased to 155 ° C. Distillation was started when the system temperature reached 160 ° C. A molecular distillate was obtained with a yield of 59.8%. The total amount of chlorine in the obtained molecular distillate was 130 ppm. Further, when the content of monomers to tetramers in the total epoxy resin as the molecular distillate obtained was measured by liquid chromatography, the detected peak was only the monomer, and the dimer The above peaks were not detected, and all were below the detection limit (0.01% by mass or less). The resulting molecular distillate had a melting point of 39-40 ° C.
 (実施例4)
 窒素雰囲気下、ナス型フラスコに、レゾルシノールジグリシジルエーテル:RDGE-H(60.0g)とトルエン(105.0g)とN-メチル-2-ピロリドン(18.0g)とを入れ、35℃で5分間撹拌した後に、カリウムt-ブトキシド(3.83g、全塩素量に対して5モル当量)のN-メチル-2-ピロリドン溶液を加え、35℃で10分間加熱撹拌した。10分間加熱撹拌した溶液に、蒸留水(50.0g)およびトルエン(120.0g)を加えて分液して有機相を得た。その後、該有機相を蒸留水(50.0)で3回洗浄、分液を行って有機相を得た。得られた有機相を減圧留去することにより、収率75.5%でエポキシ樹脂を得た。得られたエポキシ樹脂を、減圧度0.12kPa、系内温度135℃にて蒸留し、155℃まで系内温度が上昇したところまでを初留とした。系内温度160℃となったところを蒸留の開始とした。2段階収率43.8%で分子蒸留物が得られた。得られた分子蒸留物の全塩素量は8ppmであった。また、得られた分子蒸留物である全エポキシ樹脂中の単量体~四量体等の含有量を液体クロマトグラフィーにより測定したところ、検出されたピークは単量体のみであり、二量体以上のピークは検出されず、いずも検出限界量以下(0.01質量%以下)であった。得られた分子蒸留物の融点は39~40℃であった。
(Example 4)
Under a nitrogen atmosphere, resorcinol diglycidyl ether: RDGE-H (60.0 g), toluene (105.0 g), and N-methyl-2-pyrrolidone (18.0 g) were placed in an eggplant type flask at 35 ° C. After stirring for 5 minutes, a solution of potassium t-butoxide (3.83 g, 5 molar equivalents relative to the total chlorine content) in N-methyl-2-pyrrolidone was added and stirred with heating at 35 ° C. for 10 minutes. Distilled water (50.0 g) and toluene (120.0 g) were added to the solution heated and stirred for 10 minutes, and the mixture was separated to obtain an organic phase. Thereafter, the organic phase was washed with distilled water (50.0) three times and separated to obtain an organic phase. The obtained organic phase was distilled off under reduced pressure to obtain an epoxy resin with a yield of 75.5%. The obtained epoxy resin was distilled at a reduced pressure of 0.12 kPa and an internal temperature of 135 ° C., and the initial distillation was performed until the internal temperature increased to 155 ° C. Distillation was started when the system temperature reached 160 ° C. A molecular distillate was obtained with a two-stage yield of 43.8%. The total amount of chlorine in the obtained molecular distillate was 8 ppm. Further, when the content of monomers to tetramers in the total epoxy resin as the molecular distillate obtained was measured by liquid chromatography, the detected peak was only the monomer, and the dimer The above peaks were not detected, and all were below the detection limit (0.01% by mass or less). The resulting molecular distillate had a melting point of 39-40 ° C.
 (実施例5)
 ナス型フラスコに、1,6-ビス(グリシジルオキシ)ナフタレン:HP-4032(15.0g)を入れ、トルエン(30.0g)およびN-メチル-2-ピロリドン(30.0g)を入れ、マグネティックスターラーで均一になるまで攪拌した。更に、カリウムt-ブトキシドを0.67g(HP4032中の全塩素量に対し10モル当量)入れ、35℃で30分攪拌した。攪拌後の溶液に蒸留水(15.0g)を加え、10分攪拌した。得られた溶液を分液ロートに移し、蒸留水(15.0g)と2-プロパノール(15.0g)とメチルイソブチルケトン(15.0g)とを加え洗浄した。洗浄後、蒸留水(15.0g)で更に3回洗浄して有機相を得た。得られた有機相を減圧留去することにより、エポキシ樹脂(1,6-ビス(グリシジルオキシ)ナフタレン)を得た。
(Example 5)
In an eggplant-shaped flask, 1,6-bis (glycidyloxy) naphthalene: HP-4032 (15.0 g) was added, toluene (30.0 g) and N-methyl-2-pyrrolidone (30.0 g) were added, and magnetic. The mixture was stirred with a stirrer until uniform. Further, 0.67 g of potassium t-butoxide (10 molar equivalents relative to the total amount of chlorine in HP4032) was added and stirred at 35 ° C. for 30 minutes. Distilled water (15.0 g) was added to the stirred solution and stirred for 10 minutes. The obtained solution was transferred to a separating funnel, and distilled water (15.0 g), 2-propanol (15.0 g) and methyl isobutyl ketone (15.0 g) were added and washed. After washing, the organic phase was obtained by further washing with distilled water (15.0 g) three times. The obtained organic phase was distilled off under reduced pressure to obtain an epoxy resin (1,6-bis (glycidyloxy) naphthalene).
 得られたエポキシ樹脂を、減圧度0.08kPa、系内温度155℃にて蒸留し、175℃まで系内温度が上昇したところまでを初留とした。系内温度180℃となったところを蒸留の開始とした。2段階収率47.4%で分子蒸留物が得られた。得られた分子蒸留物の全塩素量は4ppmであった。また、得られた分子蒸留物であるエポキシ樹脂について、ゲルパーミエーションクロマトグラフィ-(GPC)測定を実施して検出されたピークを分析したところ、単量体の割合が96.5質量%であった。得られた分子蒸留物の融点は45~48℃であった。 The obtained epoxy resin was distilled at a reduced pressure of 0.08 kPa and an internal temperature of 155 ° C., and the initial distillation was performed until the internal temperature increased to 175 ° C. Distillation was started when the system temperature reached 180 ° C. A molecular distillate was obtained with a two-stage yield of 47.4%. The total amount of chlorine in the obtained molecular distillate was 4 ppm. Further, the epoxy resin, which is the molecular distillate obtained, was subjected to gel permeation chromatography (GPC) measurement to analyze the detected peak. As a result, the monomer ratio was 96.5% by mass. . The obtained molecular distillate had a melting point of 45 to 48 ° C.
 (実施例6)
 実施例1で得られたレゾルシノールジグリシジルエーテル(85質量部)とTEPIC-S(15質量部)とを混合し、130℃で加熱することにより、溶液を得た。該溶液を室温まで冷却した後に、ノバキュアHX3941-HP(4.0質量部)を加え、撹拌することにより樹脂組成物を調製した。該組成物の23℃における粘度、Tgおよび保存安定性を測定した。結果を表1に示す。
(Example 6)
Resorcinol diglycidyl ether (85 parts by mass) obtained in Example 1 and TEPIC-S (15 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. After the solution was cooled to room temperature, NovaCure HX3941-HP (4.0 parts by mass) was added and stirred to prepare a resin composition. The viscosity, Tg and storage stability at 23 ° C. of the composition were measured. The results are shown in Table 1.
 (実施例7)
 実施例1で得られたレゾルシノールジグリシジルエーテル(70質量部)とTEPIC-S(30質量部)とを混合し、130℃で加熱することにより、溶液を得た。該溶液を室温まで冷却した後に、ノバキュアHX3941-HP(4.0質量部)を加え、撹拌することにより樹脂組成物を調製した。該組成物の23℃における粘度、Tgおよび保存安定性を測定した。結果を表1に示す。また、該樹脂組成物を前述の硬化物中のジオキサン構造を有する化合物(C)の割合の測定方法により測定したところ、1200ppmであった。
(Example 7)
Resorcinol diglycidyl ether (70 parts by mass) obtained in Example 1 and TEPIC-S (30 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. After the solution was cooled to room temperature, NovaCure HX3941-HP (4.0 parts by mass) was added and stirred to prepare a resin composition. The viscosity, Tg and storage stability at 23 ° C. of the composition were measured. The results are shown in Table 1. Moreover, it was 1200 ppm when this resin composition was measured by the measuring method of the ratio of the compound (C) which has a dioxane structure in the above-mentioned hardened | cured material.
 (実施例8)
 実施例1で得られたレゾルシノールジグリシジルエーテル(40質量部)とTEPIC-S(60質量部)とを混合し、130℃で加熱することにより、溶液を得た。該溶液を室温まで冷却した後に、ノバキュアHX3941-HP(4.0質量部)を加え、撹拌することにより樹脂組成物を調製した。該組成物の23℃における粘度、Tgおよび保存安定性を測定した。結果を表1に示す。
(Example 8)
Resorcinol diglycidyl ether (40 parts by mass) obtained in Example 1 and TEPIC-S (60 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. After the solution was cooled to room temperature, NovaCure HX3941-HP (4.0 parts by mass) was added and stirred to prepare a resin composition. The viscosity, Tg and storage stability at 23 ° C. of the composition were measured. The results are shown in Table 1.
 (実施例9)
 実施例1で得られたレゾルシノールジグリシジルエーテル(88質量部)とTEPIC-S(12質量部)とを混合し、130℃で加熱することにより、溶液を得た。該溶液を室温まで冷却した後に、ノバキュアHX3941-HP(4.0質量部)を加え、撹拌することにより樹脂組成物を調製した。該組成物の23℃における粘度、Tgおよび保存安定性を測定した。結果を表1に示す。
Example 9
Resorcinol diglycidyl ether (88 parts by mass) obtained in Example 1 and TEPIC-S (12 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. After the solution was cooled to room temperature, NovaCure HX3941-HP (4.0 parts by mass) was added and stirred to prepare a resin composition. The viscosity, Tg and storage stability at 23 ° C. of the composition were measured. The results are shown in Table 1.
 (実施例10)
 実施例2で得られたレゾルシノールジグリシジルエーテル(70質量部)とTEPIC-S(30質量部)とを混合し、130℃で加熱することにより、溶液を得た。該溶液を室温まで冷却した後に、ノバキュアHX3941-HP(4.0質量部)を加え、撹拌することにより樹脂組成物を調製した。該組成物の23℃における粘度、Tgおよび保存安定性を測定した。結果を表1に示す。
(Example 10)
Resorcinol diglycidyl ether (70 parts by mass) obtained in Example 2 and TEPIC-S (30 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. After the solution was cooled to room temperature, NovaCure HX3941-HP (4.0 parts by mass) was added and stirred to prepare a resin composition. The viscosity, Tg and storage stability at 23 ° C. of the composition were measured. The results are shown in Table 1.
 (実施例11)
 実施例3で得られたレゾルシノールジグリシジルエーテル(70質量部)とTEPIC-S(30質量部)とを混合し、130℃で加熱することにより、溶液を得た。該溶液を室温まで冷却した後に、ノバキュアHX3941-HP(4.0質量部)を加え、撹拌することにより樹脂組成物を調製した。該組成物の23℃における粘度、Tgおよび保存安定性を測定した。結果を表1に示す。
(Example 11)
Resorcinol diglycidyl ether (70 parts by mass) obtained in Example 3 and TEPIC-S (30 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. After the solution was cooled to room temperature, NovaCure HX3941-HP (4.0 parts by mass) was added and stirred to prepare a resin composition. The viscosity, Tg and storage stability at 23 ° C. of the composition were measured. The results are shown in Table 1.
 (実施例12)
 実施例4で得られたレゾルシノールジグリシジルエーテル(70質量部)とTEPIC-S(30質量部)とを混合し、130℃で加熱することにより、溶液を得た。該溶液を室温まで冷却した後に、ノバキュアHX3941-HP(4.0質量部)を加え、撹拌することにより樹脂組成物を調製した。該組成物の23℃における粘度、Tgおよび保存安定性を測定した。結果を表1に示す。
(Example 12)
Resorcinol diglycidyl ether (70 parts by mass) obtained in Example 4 and TEPIC-S (30 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. After the solution was cooled to room temperature, NovaCure HX3941-HP (4.0 parts by mass) was added and stirred to prepare a resin composition. The viscosity, Tg and storage stability at 23 ° C. of the composition were measured. The results are shown in Table 1.
 (実施例13)
 実施例1で得られたレゾルシノールジグリシジルエーテル85質量部に対して、TEPIC-S(15質量部)とHNA-100(161.1質量部)とを混合した後、130℃で加熱することによりTEPIC-Sを溶解させ、溶液を得た。この溶液を25℃まで冷却した後に、ノバキュアHX-3941HP(4質量部)を混合し、エポキシ樹脂組成物を調製した。このエポキシ樹脂成物の23℃における粘度、Tgおよび保存安定性を測定した。その結果を表1に示す。
(Example 13)
By mixing 85 parts by weight of resorcinol diglycidyl ether obtained in Example 1 with TEPIC-S (15 parts by weight) and HNA-100 (161.1 parts by weight), heating at 130 ° C. TEPIC-S was dissolved to obtain a solution. After this solution was cooled to 25 ° C., NovaCure HX-3941HP (4 parts by mass) was mixed to prepare an epoxy resin composition. The viscosity, Tg and storage stability at 23 ° C. of this epoxy resin composition were measured. The results are shown in Table 1.
 (実施例14)
 実施例1で得られたレゾルシノールジグリシジルエーテル80質量部に対して、TEPIC-S(20質量部)とHNA-100(162質量部)とを混合した後、130℃で加熱することによりTGICを溶解させ、溶液を得た。この溶液を25℃まで冷却した後に、ノバキュアHX-3941HP(4質量部)を混合し、エポキシ樹脂組成物を調製した。このエポキシ樹脂組成物の23℃における粘度、Tgおよび保存安定性を測定した。その結果を表1に示す。
(Example 14)
After mixing TEPIC-S (20 parts by mass) and HNA-100 (162 parts by mass) with 80 parts by mass of resorcinol diglycidyl ether obtained in Example 1, the TGIC was heated at 130 ° C. Dissolved to obtain a solution. After this solution was cooled to 25 ° C., NovaCure HX-3941HP (4 parts by mass) was mixed to prepare an epoxy resin composition. The viscosity, Tg, and storage stability of this epoxy resin composition at 23 ° C. were measured. The results are shown in Table 1.
 (実施例15)
 実施例1で得られたレゾルシノールジグリシジルエーテル70質量部に対して、TEPIC-S(30質量部)とHNA-100(164質量部)とを混合した後、130℃で加熱することによりTGICを溶解させ、溶液を得た。この溶液を25℃まで冷却した後に、ノバキュアHX-3941HP(4質量部)を混合し、エポキシ樹脂組成物を調製した。このエポキシ樹脂組成物の23℃における粘度、Tgおよび保存安定性を測定した。その結果を表1に示す。
(Example 15)
After mixing TEPIC-S (30 parts by mass) and HNA-100 (164 parts by mass) with 70 parts by mass of resorcinol diglycidyl ether obtained in Example 1, TGIC was heated at 130 ° C. Dissolved to obtain a solution. After this solution was cooled to 25 ° C., NovaCure HX-3941HP (4 parts by mass) was mixed to prepare an epoxy resin composition. The viscosity, Tg, and storage stability of this epoxy resin composition at 23 ° C. were measured. The results are shown in Table 1.
 (実施例16)
 実施例1で得られたレゾルシノールジグリシジルエーテル70質量部に対して、TEPIC-S(30質量部)とHNA-100(164質量部)とを混合した後、130℃で加熱することによりTGICを溶解させ、溶液を得た。この溶液を25℃まで冷却した後に、ノバキュアHX-3941HP(4質量部)とアルミナフィラー(177.4質量部)を混合し、エポキシ樹脂組成物を調製した。このエポキシ樹脂組成物の23℃における粘度、Tgおよび保存安定性を測定した。その結果を表1に示す。
(Example 16)
After mixing TEPIC-S (30 parts by mass) and HNA-100 (164 parts by mass) with 70 parts by mass of resorcinol diglycidyl ether obtained in Example 1, TGIC was heated at 130 ° C. Dissolved to obtain a solution. After cooling this solution to 25 ° C., NovaCure HX-3941HP (4 parts by mass) and alumina filler (177.4 parts by mass) were mixed to prepare an epoxy resin composition. The viscosity, Tg, and storage stability of this epoxy resin composition at 23 ° C. were measured. The results are shown in Table 1.
 (実施例17)
 実施例1で得られたレゾルシノールジグリシジルエーテル85質量部に対して、YH4000H(15質量部)を混合した後、130℃で加熱することによりYH4000Hを溶解させ、溶液を得た、この溶液を25℃まで冷却した後に、ノバキュアHX-3941HP(4質量部)を混合し、エポキシ樹脂組成物を調製した。このエポキシ樹脂組成物を前述の方法にて23℃における粘度、Tgおよび保存安定性を測定した。その結果を表1に示す。
(Example 17)
After mixing YH4000H (15 parts by mass) with 85 parts by mass of resorcinol diglycidyl ether obtained in Example 1, YH4000H was dissolved by heating at 130 ° C. to obtain a solution. After cooling to 0 ° C., NovaCure HX-3941HP (4 parts by mass) was mixed to prepare an epoxy resin composition. The viscosity, Tg, and storage stability at 23 ° C. of this epoxy resin composition were measured by the method described above. The results are shown in Table 1.
 (実施例18)
 実施例1で得られたレゾルシノールジグリシジルエーテル85質量部に対して、YX4000H(15質量部)とHNA-100(149.1質量部)とを混合した後、130℃で加熱することによりYX4000Hを溶解させ、溶液を得た。この溶液を25℃まで冷却した後に、ノバキュアHX-3941HP(4質量部)を混合し、エポキシ樹脂組成物を調製した。このエポキシ樹脂組成物を前述の方法にて23℃における粘度、Tgおよび保存安定性を測定した。その結果を表1に示す。
(Example 18)
YX4000H (15 parts by mass) and HNA-100 (149.1 parts by mass) were mixed with 85 parts by mass of resorcinol diglycidyl ether obtained in Example 1, and then heated at 130 ° C. to obtain YX4000H. Dissolved to obtain a solution. After this solution was cooled to 25 ° C., NovaCure HX-3941HP (4 parts by mass) was mixed to prepare an epoxy resin composition. The viscosity, Tg, and storage stability at 23 ° C. of this epoxy resin composition were measured by the method described above. The results are shown in Table 1.
 (実施例19)
 実施例1で得られたレゾルシノールジグリシジルエーテル85質量部に対して、HP4710(15質量部)を混合した後、130℃で加熱することによりHP4710を溶解させ、溶液を得た。この溶液を25℃まで冷却した後に、ノバキュアHX-3941HP(4質量部)を混合し、エポキシ樹脂組成物を調製した。このエポキシ樹脂組成物の23℃における粘度、Tgおよび保存安定性を測定した。その結果を表1に示す。
(Example 19)
After mixing HP4710 (15 parts by mass) with 85 parts by mass of resorcinol diglycidyl ether obtained in Example 1, HP4710 was dissolved by heating at 130 ° C. to obtain a solution. After this solution was cooled to 25 ° C., NovaCure HX-3941HP (4 parts by mass) was mixed to prepare an epoxy resin composition. The viscosity, Tg, and storage stability of this epoxy resin composition at 23 ° C. were measured. The results are shown in Table 1.
 (実施例20)
 実施例1で得られたレゾルシノールジグリシジルエーテル85質量部に対して、HP4710(15質量部)とHNA-100(150.4質量部)とを混合した後、130℃で加熱することによりHP4710を溶解させ、溶液を得た。この溶液を25℃まで冷却した後に、ノバキュアHX-3941HP(4質量部)を混合し、エポキシ樹脂組成物を調製した。このエポキシ樹脂組成物の23℃における粘度、Tgおよび保存安定性を測定した。その結果を表1に示す。
(Example 20)
HP4710 (15 parts by mass) and HNA-100 (150.4 parts by mass) were mixed with 85 parts by mass of resorcinol diglycidyl ether obtained in Example 1, and then heated at 130 ° C. to obtain HP4710. Dissolved to obtain a solution. After this solution was cooled to 25 ° C., NovaCure HX-3941HP (4 parts by mass) was mixed to prepare an epoxy resin composition. The viscosity, Tg, and storage stability of this epoxy resin composition at 23 ° C. were measured. The results are shown in Table 1.
 (実施例21)
 実施例1で得られたレゾルシノールジグリシジルエーテル85質量部に対して、1031S(15質量部)を混合した後、130℃で加熱することによりHP4710を溶解させ、溶液を得た。この溶液を25℃まで冷却した後に、ノバキュアHX-3941HP(4質量部)を混合し、エポキシ樹脂組成物を調製した。このエポキシ樹脂組成物の23℃における粘度、Tgおよび保存安定性を測定した。その結果を表1に示す。
(Example 21)
After mixing 1031S (15 parts by mass) with 85 parts by mass of resorcinol diglycidyl ether obtained in Example 1, HP 4710 was dissolved by heating at 130 ° C. to obtain a solution. After this solution was cooled to 25 ° C., NovaCure HX-3941HP (4 parts by mass) was mixed to prepare an epoxy resin composition. The viscosity, Tg, and storage stability of this epoxy resin composition at 23 ° C. were measured. The results are shown in Table 1.
 (実施例22)
 実施例1で得られたレゾルシノールジグリシジルエーテル85質量部に対して、1032S(15質量部)を混合した後、130℃で加熱することによりHP4710を溶解させ、溶液を得た。この溶液を25℃まで冷却した後に、ノバキュアHX-3941HP(4質量部)を混合し、エポキシ樹脂組成物を調製した。このエポキシ樹脂組成物の23℃における粘度およびTgを測定した。その結果を表1に示す。
(Example 22)
After mixing 1032S (15 parts by mass) with 85 parts by mass of resorcinol diglycidyl ether obtained in Example 1, HP 4710 was dissolved by heating at 130 ° C. to obtain a solution. After this solution was cooled to 25 ° C., NovaCure HX-3941HP (4 parts by mass) was mixed to prepare an epoxy resin composition. The viscosity and Tg at 23 ° C. of this epoxy resin composition were measured. The results are shown in Table 1.
 (実施例23)
 実施例5で得られた1,6-ビス(グリシジルオキシ)ナフタレン(85質量部)とTEPIC-S(15質量部)とを混合し、130℃で加熱することにより、溶液を得た。該溶液を室温まで冷却した後に、ノバキュアHX3941-HP(4.0質量部)を加え、撹拌することにより樹脂組成物を調製した。該組成物の23℃における粘度、Tgおよび保存安定性を測定した。結果を表1に示す。
(Example 23)
1,6-bis (glycidyloxy) naphthalene (85 parts by mass) obtained in Example 5 and TEPIC-S (15 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. After the solution was cooled to room temperature, NovaCure HX3941-HP (4.0 parts by mass) was added and stirred to prepare a resin composition. The viscosity, Tg and storage stability at 23 ° C. of the composition were measured. The results are shown in Table 1.
 (実施例24)
 実施例5で得られた1,6-ビス(グリシジルオキシ)ナフタレン(70質量部)とTEPIC-S(30質量部)とを混合し、130℃で加熱することにより、溶液を得た。該溶液を室温まで冷却した後に、ノバキュアHX3941-HP(4.0質量部)を加え、撹拌することにより樹脂組成物を調製した。該組成物の23℃における粘度、Tgおよび保存安定性を測定した。結果を表1に示す。また、該樹脂組成物を前述の硬化物中のジオキサン構造を有する化合物(C)の割合の測定方法により測定したところ、1000ppmであった。
(Example 24)
1,6-Bis (glycidyloxy) naphthalene (70 parts by mass) obtained in Example 5 and TEPIC-S (30 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. After the solution was cooled to room temperature, NovaCure HX3941-HP (4.0 parts by mass) was added and stirred to prepare a resin composition. The viscosity, Tg and storage stability at 23 ° C. of the composition were measured. The results are shown in Table 1. Moreover, it was 1000 ppm when this resin composition was measured by the measuring method of the ratio of the compound (C) which has a dioxane structure in the above-mentioned hardened | cured material.
 (実施例25)
 実施例5で得られた1,6-ビス(グリシジルオキシ)ナフタレン(50質量部)とTEPIC-S(50質量部)とを混合し、130℃で加熱することにより、溶液を得た。該溶液を室温まで冷却した後に、ノバキュアHX3941-HP(4.0質量部)を加え、撹拌することにより樹脂組成物を調製した。該組成物の23℃における粘度、Tgおよび保存安定性を測定した。結果を表1に示す。
(Example 25)
1,6-Bis (glycidyloxy) naphthalene (50 parts by mass) obtained in Example 5 and TEPIC-S (50 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. After the solution was cooled to room temperature, NovaCure HX3941-HP (4.0 parts by mass) was added and stirred to prepare a resin composition. The viscosity, Tg and storage stability at 23 ° C. of the composition were measured. The results are shown in Table 1.
 (実施例26)
 実施例5で得られた1,6-ビス(グリシジルオキシ)ナフタレン(80質量部)とTEPIC-S(20質量部)とHNA-100(138.7質量部)とを混合し、130℃で加熱することにより、溶液を得た。該溶液を室温まで冷却した後に、ノバキュアHX-3941HP(4.0質量部)を混合し、エポキシ樹脂組成物を調製した。このエポキシ樹脂組成物の23℃における粘度、Tgおよび保存安定性を測定した。その結果を表1に示す。
(Example 26)
1,6-bis (glycidyloxy) naphthalene obtained in Example 5 (80 parts by mass), TEPIC-S (20 parts by mass) and HNA-100 (138.7 parts by mass) were mixed at 130 ° C. A solution was obtained by heating. After the solution was cooled to room temperature, NovaCure HX-3941HP (4.0 parts by mass) was mixed to prepare an epoxy resin composition. The viscosity, Tg, and storage stability of this epoxy resin composition at 23 ° C. were measured. The results are shown in Table 1.
 (実施例27)
 実施例5で得られた1,6-ビス(グリシジルオキシ)ナフタレン(70質量部)とTEPIC-S(30質量部)とHNA-100(143.4質量部)とを混合し、130℃で加熱することにより、溶液を得た。該溶液を室温まで冷却した後に、ノバキュアHX-3941HP(4.0質量部)を混合し、エポキシ樹脂組成物を調製した。このエポキシ樹脂組成物の23℃における粘度、Tgおよび保存安定性を測定した。その結果を表1に示す。
(Example 27)
1,6-bis (glycidyloxy) naphthalene obtained in Example 5 (70 parts by mass), TEPIC-S (30 parts by mass) and HNA-100 (143.4 parts by mass) were mixed, and at 130 ° C. A solution was obtained by heating. After the solution was cooled to room temperature, NovaCure HX-3941HP (4.0 parts by mass) was mixed to prepare an epoxy resin composition. The viscosity, Tg, and storage stability of this epoxy resin composition at 23 ° C. were measured. The results are shown in Table 1.
 (実施例28)
 LX-01(85質量部)とTEPIC-S(15質量部)とを混合し、130℃で加熱することにより、溶液を得た。該溶液を室温まで冷却した後に、ノバキュアHX-3941HP(4.0質量部)を混合し、エポキシ樹脂組成物を調製した。このエポキシ樹脂組成物の23℃における粘度、Tgおよび保存安定性を測定した。その結果を表1に示す。
(Example 28)
LX-01 (85 parts by mass) and TEPIC-S (15 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. After the solution was cooled to room temperature, NovaCure HX-3941HP (4.0 parts by mass) was mixed to prepare an epoxy resin composition. The viscosity, Tg, and storage stability of this epoxy resin composition at 23 ° C. were measured. The results are shown in Table 1.
 (実施例29)
 LX-01(70質量部)とTEPIC-S(30質量部)とHNA-100(124.2質量部)とを混合し、130℃で加熱することにより、溶液を得た。該溶液を室温まで冷却した後に、ノバキュアHX-3941HP(4.0質量部)を混合し、エポキシ樹脂組成物を調製した。このエポキシ樹脂組成物の23℃における粘度、Tgおよび保存安定性を測定した。その結果を表1に示す。
(Example 29)
LX-01 (70 parts by mass), TEPIC-S (30 parts by mass) and HNA-100 (124.2 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. After the solution was cooled to room temperature, NovaCure HX-3941HP (4.0 parts by mass) was mixed to prepare an epoxy resin composition. The viscosity, Tg, and storage stability of this epoxy resin composition at 23 ° C. were measured. The results are shown in Table 1.
 (比較例1)
 実施例1で得られたレゾルシノールジグリシジルエーテル(92質量部)とTEPIC-S(8質量部)とを混合し、130℃で加熱することにより、溶液を得た。該溶液を室温まで冷却した後に、しばらく室温で静置したところ、結晶化してしまい、液状組成物が得られなかった。
(Comparative Example 1)
Resorcinol diglycidyl ether (92 parts by mass) obtained in Example 1 and TEPIC-S (8 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. When the solution was cooled to room temperature and allowed to stand at room temperature for a while, it crystallized and a liquid composition could not be obtained.
 (比較例2)
 実施例1で得られたレゾルシノールジグリシジルエーテル(15質量部)とTEPIC-S(85質量部)とを混合し、130℃で加熱することにより、溶液を得た。該溶液を室温まで冷却した後に、しばらく室温で静置したところ、結晶化してしまい、液状組成物が得られなかった。
(Comparative Example 2)
Resorcinol diglycidyl ether (15 parts by mass) obtained in Example 1 and TEPIC-S (85 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. When the solution was cooled to room temperature and allowed to stand at room temperature for a while, it crystallized and a liquid composition could not be obtained.
 (比較例3)
 分子蒸留による低塩素化処理を実施していないレゾルシノールジグリシジルエーテル:RDGE-H(70質量部)とTEPIC-S(30質量部)とを混合し、130℃で加熱することにより、溶液を得た。該溶液を室温まで冷却した後に、ノバキュアHX-3941HP(4.0質量部)を混合し、エポキシ樹脂組成物を調製した。このエポキシ樹脂組成物の23℃における粘度、Tgおよび保存安定性を測定した。その結果を表1に示す。
(Comparative Example 3)
Resorcinol diglycidyl ether: RDGE-H (70 parts by mass) and TEPIC-S (30 parts by mass) not subjected to low chlorination treatment by molecular distillation are mixed and heated at 130 ° C. to obtain a solution. It was. After the solution was cooled to room temperature, NovaCure HX-3941HP (4.0 parts by mass) was mixed to prepare an epoxy resin composition. The viscosity, Tg, and storage stability of this epoxy resin composition at 23 ° C. were measured. The results are shown in Table 1.
 (比較例4)
 分子蒸留による低塩素化処理を実施していないレゾルシノールジグリシジルエーテル:RDGE-H(全塩素量3254ppm、全エポキシ樹脂中の単量体の割合は、93.6質量%であり、二量体を1.74質量%、三量体を3.54質量%、四量体を1.11質量%含有)70質量部に対して、TEPIC-S(30質量部)とHNA-100(160.8質量部)とを混合した後、130℃で加熱することによりTGICを溶解させ、溶液を得た。この溶液を25℃まで冷却した後に、ノバキュアHX-3941HP(4質量部)とアルミナフィラー(176.6質量部)とを更に混合し、エポキシ樹脂組成物を調製した。得られたエポキシ樹脂組成物の23℃における粘度、Tgおよび保存安定性を測定した。その結果を表1に示す。
(Comparative Example 4)
Resorcinol diglycidyl ether not subjected to low chlorination treatment by molecular distillation: RDGE-H (total chlorine amount 3254 ppm, the proportion of monomers in the total epoxy resin is 93.6% by mass, 1.74 mass%, trimer 3.54 mass% and tetramer 1.11 mass%) 70 parts by mass) TEPIC-S (30 parts by mass) and HNA-100 (160.8 (Mass parts) was mixed, and then TGIC was dissolved by heating at 130 ° C. to obtain a solution. After this solution was cooled to 25 ° C., Novacure HX-3941HP (4 parts by mass) and alumina filler (176.6 parts by mass) were further mixed to prepare an epoxy resin composition. The viscosity, Tg, and storage stability at 23 ° C. of the obtained epoxy resin composition were measured. The results are shown in Table 1.
 (比較例5)
 実施例5で得られた1,6-ビス(グリシジルオキシ)ナフタレン(92質量部)とTEPIC-S(8質量部)とを混合し、130℃で加熱することにより、溶液を得た。該溶液を室温まで冷却した後に、しばらく室温で静置したところ、結晶化してしまい、液状組成物が得られなかった。
(Comparative Example 5)
1,6-Bis (glycidyloxy) naphthalene (92 parts by mass) obtained in Example 5 and TEPIC-S (8 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. When the solution was cooled to room temperature and allowed to stand at room temperature for a while, it crystallized and a liquid composition could not be obtained.
 (比較例6)
 実施例5で得られた1,6-ビス(グリシジルオキシ)ナフタレン(15質量部)とTEPIC-S(85質量部)とを混合し、130℃で加熱することにより、溶液を得た。該溶液を室温まで冷却した後に、しばらく室温で静置したところ、結晶化してしまい、液状組成物が得られなかった。
(Comparative Example 6)
1,6-Bis (glycidyloxy) naphthalene (15 parts by mass) obtained in Example 5 and TEPIC-S (85 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. When the solution was cooled to room temperature and allowed to stand at room temperature for a while, it crystallized and a liquid composition could not be obtained.
 (比較例7)
 分子蒸留による低塩素化処理を実施していない1,6-ビス(グリシジルオキシ)ナフタレン:HP-4032(70質量部)とTEPIC-S(30質量部)とを混合し、130℃で加熱することにより、溶液を得た。該溶液を室温まで冷却した後に、ノバキュアHX-3941HP(4.0質量部)を混合し、エポキシ樹脂組成物を調製した。このエポキシ樹脂組成物の23℃における粘度、Tgおよび保存安定性を測定した。その結果を表1に示す。
(Comparative Example 7)
1,6-bis (glycidyloxy) naphthalene not subjected to low chlorination treatment by molecular distillation: HP-4032 (70 parts by mass) and TEPIC-S (30 parts by mass) are mixed and heated at 130 ° C. A solution was obtained. After the solution was cooled to room temperature, NovaCure HX-3941HP (4.0 parts by mass) was mixed to prepare an epoxy resin composition. The viscosity, Tg, and storage stability of this epoxy resin composition at 23 ° C. were measured. The results are shown in Table 1.
 (比較例8)
 分子蒸留による低塩素化処理を実施していない1,6-ビス(グリシジルオキシ)ナフタレン:HP-4032(70質量部)とTEPIC-S(30質量部)とHNA-100(136.8質量部)とを混合し、130℃で加熱することにより、溶液を得た。該溶液を室温まで冷却した後に、ノバキュアHX-3941HP(4.0質量部)を混合し、エポキシ樹脂組成物を調製した。このエポキシ樹脂組成物の23℃における粘度、Tgおよび保存安定性を測定した。その結果を表1に示す。
(Comparative Example 8)
1,6-bis (glycidyloxy) naphthalene not subjected to low chlorination treatment by molecular distillation: HP-4032 (70 parts by mass), TEPIC-S (30 parts by mass) and HNA-100 (136.8 parts by mass) ) And heated at 130 ° C. to obtain a solution. After the solution was cooled to room temperature, NovaCure HX-3941HP (4.0 parts by mass) was mixed to prepare an epoxy resin composition. The viscosity, Tg, and storage stability of this epoxy resin composition at 23 ° C. were measured. The results are shown in Table 1.
 (比較例9)
 AER260(85質量部)とTEPIC-S(15質量部)とを混合し、130℃で加熱することにより、溶液を得た。該溶液を室温まで冷却した後に、ノバキュアHX-3941HP(4.0質量部)を混合し、エポキシ樹脂組成物を調製した。このエポキシ樹脂組成物の23℃における粘度、Tgおよび保存安定性を測定した。その結果を表1に示す。
(Comparative Example 9)
AER260 (85 parts by mass) and TEPIC-S (15 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. After the solution was cooled to room temperature, NovaCure HX-3941HP (4.0 parts by mass) was mixed to prepare an epoxy resin composition. The viscosity, Tg, and storage stability of this epoxy resin composition at 23 ° C. were measured. The results are shown in Table 1.
 (比較例10)
 AER260(70質量部)とTEPIC-S(30質量部)とHNA-100(120.0質量部)とを混合し、130℃で加熱することにより、溶液を得た。該溶液を室温まで冷却した後に、ノバキュアHX-3941HP(4.0質量部)を混合し、エポキシ樹脂組成物を調製した。このエポキシ樹脂組成物の23℃における粘度、Tgおよび保存安定性を測定した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000085
(Comparative Example 10)
AER260 (70 parts by mass), TEPIC-S (30 parts by mass), and HNA-100 (120.0 parts by mass) were mixed and heated at 130 ° C. to obtain a solution. After the solution was cooled to room temperature, NovaCure HX-3941HP (4.0 parts by mass) was mixed to prepare an epoxy resin composition. The viscosity, Tg, and storage stability of this epoxy resin composition at 23 ° C. were measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000085
 実施例6~8と比較例1~2との比較により、低塩素化したレゾルシノールジグリシジルエーテルの含有量を特定の範囲内とした樹脂組成物が液状を保つことが確認された。 From comparison between Examples 6 to 8 and Comparative Examples 1 and 2, it was confirmed that the resin composition in which the content of resorcinol diglycidyl ether reduced in chlorine within a specific range was kept in a liquid state.
 実施例22~24と比較例5~6との比較により、低塩素化した1,6-ビス(グリシジルオキシ)ナフタレンの含有量を特定の範囲内とした樹脂組成物が液状を保つことが確認された。 Comparison between Examples 22 to 24 and Comparative Examples 5 to 6 confirms that the resin composition in which the content of low-chlorinated 1,6-bis (glycidyloxy) naphthalene is within a specific range remains liquid. It was done.
 実施例7、9、10および11と、比較例4との比較により、低塩素化したレゾルシノールジグリシジルエーテルを用いることにより、低塩素化していないレゾルシノールジグリシジルエーテルを用いた場合と比較して、組成物が低粘度であり、かつ硬化物のTgが高いことがわかった。 In comparison with Examples 7, 9, 10 and 11 and Comparative Example 4, the use of resorcinol diglycidyl ether which is less chlorinated by using less chlorinated resorcinol diglycidyl ether, It was found that the composition had a low viscosity and the cured product had a high Tg.
 実施例23と比較例7との比較、および実施例27と比較例8との比較により、低塩素化した1,6-ビス(グリシジルオキシ)ナフタレンを用いることにより、低塩素化していない1,6-ビス(グリシジルオキシ)ナフタレンを用いた場合と比較して、組成物が低粘度であり、かつ硬化物のTgが高いことがわかった。 According to the comparison between Example 23 and Comparative Example 7, and the comparison between Example 27 and Comparative Example 8, by using 1,6-bis (glycidyloxy) naphthalene having low chlorination, As compared with the case of using 6-bis (glycidyloxy) naphthalene, it was found that the composition had a low viscosity and the cured product had a high Tg.
 実施例28と比較例9との比較、および実施例29と比較例10との比較により、低塩素化したビスフェノールA型エポキシ樹脂を用いることにより、低塩素化していないビスフェノールA型エポキシ樹脂を用いた場合と比較して、組成物が低粘度であり、かつ硬化物のTgが高いことがわかった。 By comparing the comparison between Example 28 and Comparative Example 9 and the comparison between Example 29 and Comparative Example 10 with the use of a low chlorinated bisphenol A type epoxy resin, a chlorinated bisphenol A type epoxy resin was used. It was found that the composition had a low viscosity and the Tg of the cured product was high as compared with the case where it was.
 本出願は、2010年11月25日出願の日本特許出願(特願2010-262810号)および2011年11月7日出願の日本特許出願(特願2011-243399号)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on November 25, 2010 (Japanese Patent Application No. 2010-262810) and a Japanese patent application filed on November 7, 2011 (Japanese Patent Application No. 2011-243399). The contents are incorporated herein by reference.
 本発明に係るエポキシ樹脂および樹脂組成物は、低粘度であることから、電子部品用の接着剤等に好適に利用される。また、本発明に係るエポキシ樹脂や樹脂組成物は、粘度が低く、かつ硬化した後の硬化物の耐熱性が高いことから、アンダーフィル材、ダイアタッチ材や液状封止材、さらにエレクトロニクス分野で各種電子機器の操作パネル等に使用されるプリント配線板や回路基板の保護層形成、積層基板の絶縁層形成、半導体装置に使用されるシリコンウエハ、半導体チップ、半導体装置周辺の部材、半導体搭載用基板、放熱板、リードピン、半導体自身等の保護や絶縁および接着に使用するための電子部品への膜形成用途等に利用される。 Since the epoxy resin and the resin composition according to the present invention have low viscosity, they are suitably used for adhesives for electronic parts. In addition, the epoxy resin and resin composition according to the present invention have low viscosity and high heat resistance of the cured product after being cured. Therefore, in the underfill material, die attach material, liquid sealing material, and electronics field. Protective layer formation for printed wiring boards and circuit boards used for operation panels of various electronic devices, insulating layer formation for laminated substrates, silicon wafers used in semiconductor devices, semiconductor chips, members around semiconductor devices, and semiconductor mounting It is used to form films on electronic components for use in protecting, insulating and bonding substrates, heat sinks, lead pins, semiconductors, etc.

Claims (30)

  1.  含有全塩素量が0.01ppm以上1000ppm以下のエポキシ樹脂(A)と、
     融点または軟化点が50℃以上である樹脂(B)とを含有し、
     全樹脂中、エポキシ樹脂(A)の含有量が、20質量%以上90質量%以下である、樹脂組成物。
    An epoxy resin (A) having a total chlorine content of 0.01 ppm to 1000 ppm,
    A resin (B) having a melting point or softening point of 50 ° C. or higher,
    During the total resin content of the epoxy resin (A) is not less than 20% by mass to 90% by mass, the resin composition.
  2.  全樹脂中、前記樹脂(B)の含有量が、10質量%以上80質量%以下である、請求項1に記載の樹脂組成物。 2. The resin composition according to claim 1, wherein the content of the resin (B) is 10% by mass or more and 80% by mass or less in all resins.
  3.  前記エポキシ樹脂(A)の融点または軟化点が30℃以上である、請求項1または2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the melting point or softening point of the epoxy resin (A) is 30 ° C or higher.
  4.  前記エポキシ樹脂(A)が、芳香族エポキシ樹脂である、請求項1~3のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the epoxy resin (A) is an aromatic epoxy resin.
  5.  前記芳香族エポキシ樹脂が、芳香族ジグリシジルエーテル構造を有する、請求項4に記載の樹脂組成物。 The resin composition according to claim 4, wherein the aromatic epoxy resin has an aromatic diglycidyl ether structure.
  6.  前記芳香族エポキシ樹脂が、下記一般式(1)~(3)からなる群より選ばれる少なくとも1つである、請求項4に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (式(1)~(3)中、R~Rは、それぞれ独立に、水素原子または炭素数1~10の1価の有機基を表し、x、yおよびzは、0~10の整数を表す。)
    The resin composition according to claim 4, wherein the aromatic epoxy resin is at least one selected from the group consisting of the following general formulas (1) to (3).
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (In the formulas (1) to (3), R 1 to R 6 each independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, and x, y, and z represent 0 to 10 Represents an integer.)
  7.  前記芳香族エポキシ樹脂が、下記一般式(1)および(2)からなる群より選ばれる少なくとも1つである、請求項4に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    (式(1)および(2)中、RおよびRは、それぞれ独立に、水素原子または炭素数1~10の1価の有機基を表し、xおよびyは、0~5の整数を表す。)
    The resin composition according to claim 4, wherein the aromatic epoxy resin is at least one selected from the group consisting of the following general formulas (1) and (2).
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    (In the formulas (1) and (2), R 1 and R 2 each independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, and x and y represent an integer of 0 to 5) To express.)
  8.  前記樹脂(B)が、芳香族構造または複素環構造を有する、請求項1~7のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 7, wherein the resin (B) has an aromatic structure or a heterocyclic structure.
  9.  前記樹脂(B)が、エポキシ樹脂、フェノキシ樹脂、フェノールノボラック、ポリアミド酸、ポリイミド、ポリベンズオキサゾールおよび(メタ)アクリレート樹脂からなる群より選ばれる少なくとも1つである、請求項1~8のいずれか一項に記載の樹脂組成物。 The resin (B) is at least one selected from the group consisting of epoxy resin, phenoxy resin, phenol novolac, polyamic acid, polyimide, polybenzoxazole, and (meth) acrylate resin. The resin composition according to one item.
  10.  前記樹脂(B)が、下記一般式(4)~(8)からなる群より選ばれる少なくとも1つである、請求項1~9のいずれか一項に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
    (式(4)~(8)中、R8、、R11およびR12は、それぞれ独立に、水素原子または炭素数1~10の1価の有機基を表し、RおよびR10は、それぞれ独立に、炭素数1~10の2価の有機基を表す。)
    The resin composition according to any one of claims 1 to 9, wherein the resin (B) is at least one selected from the group consisting of the following general formulas (4) to (8).
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
    (In the formulas (4) to (8), R 8, R 9 , R 11 and R 12 each independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, and R 7 and R 10 Each independently represents a divalent organic group having 1 to 10 carbon atoms.)
  11.  前記樹脂(B)が、下記一般式(4)および(5)からなる群より選ばれる少なくとも1つである、請求項1~10のいずれか一項に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    (式(4)および(5)中、Rは、それぞれ独立に、炭素数1~10の2価の有機基を表し、Rは、それぞれ独立に、水素原子または炭素数1~10の1価の有機基を表す。)
    The resin composition according to any one of claims 1 to 10, wherein the resin (B) is at least one selected from the group consisting of the following general formulas (4) and (5).
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    (In the formulas (4) and (5), R 7 each independently represents a divalent organic group having 1 to 10 carbon atoms, and R 8 each independently represents a hydrogen atom or a carbon atom having 1 to 10 carbon atoms. Represents a monovalent organic group.)
  12.  下記一般式(1)~(3)からなる群より選ばれる少なくとも1つのエポキシ樹脂(A)と、
     下記一般式(4)~(8)からなる群より選ばれる少なくとも1つの樹脂(B)と、
     下記一般式(9)~(11)からなる群より選ばれる少なくとも1つの化合物および/またはアルカリ金属塩化物と
    を含有し、
     全樹脂中、エポキシ樹脂(A)の割合が20質量%以上90質量%以下であり、樹脂(B)の割合が10質量%以上80質量%以下であり、
     全樹脂組成物中に含まれる、下記一般式(9)~(11)で表される化合物の濃度と、アルカリ金属塩化物に由来する塩素濃度との総和が、0.01ppm以上1000ppm以下である、樹脂組成物。
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-C000015
    (式(1)~(3)中、R~Rは、それぞれ独立に、水素原子または炭素数1~10の1価の有機基を表し、x、yおよびzは、0~10の整数を表す。)
    Figure JPOXMLDOC01-appb-C000016
    Figure JPOXMLDOC01-appb-C000017
    Figure JPOXMLDOC01-appb-C000018
    Figure JPOXMLDOC01-appb-C000019
    Figure JPOXMLDOC01-appb-C000020
    (式(4)~(8)中、R8、、R11およびR12は、それぞれ独立に、水素原子または炭素数1~10の1価の有機基を表し、RおよびR10は、それぞれ独立に、炭素数1~10の2価の有機基を表す。)
    Figure JPOXMLDOC01-appb-C000021
    Figure JPOXMLDOC01-appb-C000022
    Figure JPOXMLDOC01-appb-C000023
    (式(9)~(11)中、R~Rは、それぞれ独立に、水素原子または炭素数1~10の1価の有機基を表し、x、yおよびzは、0~10の整数を表し、RxおよびRyは、それぞれ独立に、下記式(a)~(e)から選ばれるいずれかの構造である。ただし、RxとRyとは同時に下記式(a)であることは無い。)
    Figure JPOXMLDOC01-appb-C000024
    At least one epoxy resin (A) selected from the group consisting of the following general formulas (1) to (3);
    At least one resin (B) selected from the group consisting of the following general formulas (4) to (8);
    Containing at least one compound selected from the group consisting of the following general formulas (9) to (11) and / or an alkali metal chloride,
    In all the resins, the proportion of the epoxy resin (A) is 20% by mass or more and 90% by mass or less, and the proportion of the resin (B) is 10% by mass or more and 80% by mass or less.
    The total concentration of the compounds represented by the following general formulas (9) to (11) contained in the total resin composition and the chlorine concentration derived from the alkali metal chloride is 0.01 ppm or more and 1000 ppm or less. , Resin composition.
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-C000015
    (In the formulas (1) to (3), R 1 to R 6 each independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, and x, y, and z represent 0 to 10 Represents an integer.)
    Figure JPOXMLDOC01-appb-C000016
    Figure JPOXMLDOC01-appb-C000017
    Figure JPOXMLDOC01-appb-C000018
    Figure JPOXMLDOC01-appb-C000019
    Figure JPOXMLDOC01-appb-C000020
    (In the formulas (4) to (8), R 8, R 9 , R 11 and R 12 each independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, and R 7 and R 10 Each independently represents a divalent organic group having 1 to 10 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000021
    Figure JPOXMLDOC01-appb-C000022
    Figure JPOXMLDOC01-appb-C000023
    (In the formulas (9) to (11), R 1 to R 6 each independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, and x, y, and z are 0 to 10 Rx and Ry each independently represents any structure selected from the following formulas (a) to (e), provided that Rx and Ry are not simultaneously represented by the following formula (a) .)
    Figure JPOXMLDOC01-appb-C000024
  13.  エポキシ樹脂(A)が、前記一般式(1)および(2)からなる群から選ばれる少なくとも1つであり、
     樹脂(B)が、前記一般式(4)および(5)からなる群から選ばれる少なくとも1つであり、
     全樹脂組成物中に含まれる、前記一般式(9)および(10)で表される化合物の濃度と、アルカリ金属塩化物に由来する塩素濃度との総和が、0.01ppm以上1000ppm以下である、請求項12に記載の樹脂組成物。
    Epoxy resin (A), the general formula (1) and at least one selected from the group consisting of (2),
    The resin (B) is at least one selected from the group consisting of the general formulas (4) and (5),
    The sum total of the concentration of the compound represented by the general formulas (9) and (10) contained in the total resin composition and the chlorine concentration derived from the alkali metal chloride is 0.01 ppm or more and 1000 ppm or less. The resin composition according to claim 12.
  14.  エポキシ樹脂(A)が、前記一般式(1)で表される樹脂であり、
     樹脂(B)が、前記一般式(4)で表される樹脂であり、
     全樹脂組成物中に含まれる、前記一般式(9)で表される化合物の濃度と、塩化ナトリウムおよび塩化カリウムに由来する塩素濃度との総和が、0.01ppm以上1000ppm以下である、請求項12に記載の樹脂組成物。
    The epoxy resin (A) is a resin represented by the general formula (1),
    The resin (B) is a resin represented by the general formula (4),
    The sum total of the concentration of the compound represented by the general formula (9) contained in the total resin composition and the chlorine concentration derived from sodium chloride and potassium chloride is 0.01 ppm or more and 1000 ppm or less. 12. The resin composition according to 12.
  15.  全樹脂中、エポキシ樹脂(A)の割合が50質量%以上85質量%以下であり、樹脂(B)の割合が15質量%以上50質量%以下である、請求項12~14のいずれか一項に記載の樹脂組成物。 The proportion of the epoxy resin (A) is 50% by mass or more and 85% by mass or less in the total resin, and the proportion of the resin (B) is 15% by mass or more and 50% by mass or less. The resin composition according to item.
  16.  融点または軟化点が30℃以上であるエポキシ樹脂(A)と、
     融点または軟化点が50℃以上である樹脂(B)と、
     ジオキサン構造を有する化合物(C)と
    を含有し、
     該ジオキサン構造を有する化合物(C)の割合が、0.01ppm以上5000ppm以下である、封止用硬化物。
    An epoxy resin (A) having a melting point or softening point of 30 ° C. or higher;
    A resin (B) having a melting point or softening point of 50 ° C. or higher;
    Containing a compound (C) having a dioxane structure;
    Hardened | cured material for sealing whose ratio of the compound (C) which has this dioxane structure is 0.01 ppm or more and 5000 ppm or less.
  17.  前記エポキシ樹脂(A)が、下記一般式(1)であり、
     前記ジオキサン構造を有する化合物(C)が、下記一般式(12)であり、
     全硬化物中、ジオキサン構造を有する化合物(C)の割合が、0.035ppm以上3450ppm以下である、請求項16に記載の封止用硬化物。
    Figure JPOXMLDOC01-appb-C000025
    (式(1)中、Rは、水素原子または炭素数1~10の1価の有機基を表し、xは、0~5の整数を表す。)
    Figure JPOXMLDOC01-appb-C000026
    (式(12)中、Rはそれぞれ独立に水素原子または炭素数1~10の1価の有機基を表し、xは0~10の整数を表す。)
    The epoxy resin (A) is represented by the following general formula (1):
    The compound (C) having the dioxane structure is the following general formula (12),
    The hardened | cured material for sealing of Claim 16 whose ratio of the compound (C) which has a dioxane structure is 0.035 ppm or more and 3450 ppm or less in all the hardened | cured materials.
    Figure JPOXMLDOC01-appb-C000025
    (In Formula (1), R 1 represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, and x represents an integer of 0 to 5)
    Figure JPOXMLDOC01-appb-C000026
    (In Formula (12), each R 1 independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, and x represents an integer of 0 to 10)
  18.  前記エポキシ樹脂(A)が、下記一般式(2)であり、
     前記ジオキサン構造を有する化合物(C)が、下記一般式(13)であり、
     全硬化物中、ジオキサン構造を有する化合物(C)の割合が、0.04ppm以上4000ppm以下である、請求項16に記載の封止用硬化物。
    Figure JPOXMLDOC01-appb-C000027
    (式(2)中、Rは、水素原子または炭素数1~10の1価の有機基を表し、yは、0~5の整数を表す。)
    Figure JPOXMLDOC01-appb-C000028
    (式(13)中、Rはそれぞれ独立に水素原子または炭素数1~10の1価の有機基を表し、yは0~10の整数を表す。)
    The epoxy resin (A) is represented by the following general formula (2):
    The compound (C) having the dioxane structure is the following general formula (13),
    The hardened | cured material for sealing of Claim 16 whose ratio of the compound (C) which has a dioxane structure is 0.04 ppm or more and 4000 ppm or less in all the hardened | cured materials.
    Figure JPOXMLDOC01-appb-C000027
    (In Formula (2), R 2 represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, and y represents an integer of 0 to 5)
    Figure JPOXMLDOC01-appb-C000028
    (In Formula (13), each R 2 independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, and y represents an integer of 0 to 10)
  19.  一般式(1)で表されるエポキシ樹脂であって、
     前記エポキシ樹脂中に含まれる全塩素量が0.01ppm以上1000ppm以下である、エポキシ樹脂。
    Figure JPOXMLDOC01-appb-C000029
    (式(1)中、Rはそれぞれ独立に水素原子または炭素数1~10の1価の有機基を表し、xは0以上5以下の整数を表し、式(1)で表される全樹脂中に含まれるx=0で表される化合物の割合が99質量%以上である。)
    An epoxy resin represented by the general formula (1),
    The epoxy resin whose total chlorine amount contained in the said epoxy resin is 0.01 ppm or more and 1000 ppm or less.
    Figure JPOXMLDOC01-appb-C000029
    (In Formula (1), each R 1 independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, x represents an integer of 0 or more and 5 or less, and all represented by Formula (1) (The ratio of the compound represented by x = 0 contained in the resin is 99% by mass or more.)
  20.  一般式(2)で表されるエポキシ樹脂であって、
     前記エポキシ樹脂中に含まれる全塩素量が0.01ppm以上1000ppm以下である、エポキシ樹脂。
    Figure JPOXMLDOC01-appb-C000030
    (式(2)中、Rはそれぞれ独立に水素原子または炭素数1~10の1価の有機基を表し、yは0以上5以下の整数を表し、式(2)で表される全樹脂中に含まれるy=0で表される化合物の割合が95質量%以上である。)
    An epoxy resin represented by the general formula (2),
    The epoxy resin whose total chlorine amount contained in the said epoxy resin is 0.01 ppm or more and 1000 ppm or less.
    Figure JPOXMLDOC01-appb-C000030
    (In the formula (2), R 2 each independently represents a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms, y represents an integer of 0 or more and 5 or less, and all represented by the formula (2) (The ratio of the compound represented by y = 0 contained in the resin is 95% by mass or more.)
  21.  請求項1~15のいずれか一項に記載の樹脂組成物または請求項19~20のいずれか一項に記載のエポキシ樹脂(ア)と、
     硬化促進剤(イ)と
    を含有する、硬化性樹脂組成物。
    The resin composition according to any one of claims 1 to 15 or the epoxy resin (a) according to any one of claims 19 to 20,
    A curable resin composition containing a curing accelerator (I).
  22.  前記硬化促進剤(イ)が、窒素化合物または潜在性硬化促進剤である、請求項21に記載の硬化性樹脂組成物。 The curable resin composition according to claim 21, wherein the curing accelerator (I) is a nitrogen compound or a latent curing accelerator.
  23.  前記硬化促進剤(イ)が、マイクロカプセル化された潜在性硬化促進剤である、請求項21または22に記載の硬化性樹脂組成物。 The curable resin composition according to claim 21 or 22, wherein the curing accelerator (I) is a microencapsulated latent curing accelerator.
  24.  硬化剤(ウ)を更に含有する、請求項21~23のいずれか一項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 21 to 23, further comprising a curing agent (c).
  25.  前記硬化剤(ウ)が、酸無水物化合物、酸二無水物化合物、アミン化合物およびフェノール化合物からなる群より選ばれる少なくとも1つである、請求項24に記載の硬化性樹脂組成物。 25. The curable resin composition according to claim 24, wherein the curing agent (c) is at least one selected from the group consisting of an acid anhydride compound, an acid dianhydride compound, an amine compound, and a phenol compound.
  26.  無機充填材(エ)を更に含有する、請求項21~25のいずれか一項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 21 to 25, further comprising an inorganic filler (D).
  27.  請求項1~15のいずれか一項に記載の樹脂組成物または請求項21~26のいずれか一項に記載の硬化性樹脂組成物を含む、アンダーフィル材。 An underfill material comprising the resin composition according to any one of claims 1 to 15 or the curable resin composition according to any one of claims 21 to 26.
  28.  請求項1~15のいずれか一項に記載の樹脂組成物または請求項21~26のいずれか一項に記載の硬化性樹脂組成物を含む、ダイアタッチ材。 A die attach material comprising the resin composition according to any one of claims 1 to 15 or the curable resin composition according to any one of claims 21 to 26.
  29.  請求項1~15のいずれか一項に記載の樹脂組成物または請求項21~26のいずれか一項に記載の硬化性樹脂組成物を含む、液状封止材。 A liquid sealing material comprising the resin composition according to any one of claims 1 to 15 or the curable resin composition according to any one of claims 21 to 26.
  30.  請求項27に記載のアンダーフィル材、請求項28に記載のダイアタッチ材および請求項29に記載の液状封止材からなる群より選ばれる少なくとも1つを含む、電子部品。 An electronic component comprising at least one selected from the group consisting of the underfill material according to claim 27, the die attach material according to claim 28, and the liquid sealing material according to claim 29.
PCT/JP2011/075864 2010-11-25 2011-11-09 Epoxy resin and resin composition WO2012070387A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012545675A JPWO2012070387A1 (en) 2010-11-25 2011-11-09 Epoxy resin and resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-262810 2010-11-25
JP2010262810 2010-11-25
JP2011243399 2011-11-07
JP2011-243399 2011-11-07

Publications (1)

Publication Number Publication Date
WO2012070387A1 true WO2012070387A1 (en) 2012-05-31

Family

ID=46145735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075864 WO2012070387A1 (en) 2010-11-25 2011-11-09 Epoxy resin and resin composition

Country Status (3)

Country Link
JP (1) JPWO2012070387A1 (en)
TW (1) TW201226468A (en)
WO (1) WO2012070387A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016066614A (en) * 2014-09-18 2016-04-28 積水化学工業株式会社 Conductive paste, connection structure and method for producing connection structure
JP2016105456A (en) * 2015-09-17 2016-06-09 リンテック株式会社 Film for forming protective film
JP2018009065A (en) * 2016-07-11 2018-01-18 パナソニックIpマネジメント株式会社 Epoxy resin composition, prepreg, metal-clad laminate and printed wiring board
WO2021241288A1 (en) * 2020-05-27 2021-12-02 住友化学株式会社 Epoxy resin composition and cured object obtained therefrom
WO2022113523A1 (en) * 2020-11-24 2022-06-02 株式会社スリーボンド Epoxy resin composition, cured product, and complex
JP2022538726A (en) * 2019-05-15 2022-09-06 ダウ グローバル テクノロジーズ エルエルシー Two-component adhesive composition, article prepared therewith, and method of preparation thereof
JP7400714B2 (en) 2018-05-25 2023-12-19 株式会社レゾナック Underfill material, semiconductor package, and semiconductor package manufacturing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6106389B2 (en) * 2012-09-13 2017-03-29 ナミックス株式会社 Pre-installed semiconductor sealing film
TWI457357B (en) * 2012-10-29 2014-10-21 Plastics Industry Dev Ct Epoxy resin with low chloride content, manufacturing method thereof and application thereof
TWI575016B (en) * 2015-12-03 2017-03-21 財團法人工業技術研究院 Epoxy resin compositions and thermal interface materials comprising the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097255A (en) * 2000-09-26 2002-04-02 Matsushita Electric Works Ltd Epoxy resin composition and semiconductor device
JP2002194053A (en) * 2000-12-22 2002-07-10 Shin Etsu Chem Co Ltd Liquid epoxy resin composition for sealing semiconductor by screen printing
JP2002368233A (en) * 2001-06-07 2002-12-20 Nippon Kayaku Co Ltd Photoelectric converter
JP2004083711A (en) * 2002-08-26 2004-03-18 Nippon Steel Chem Co Ltd Liquid epoxy resin composition
JP2004331908A (en) * 2003-05-12 2004-11-25 Shin Etsu Chem Co Ltd Liquid state epoxy resin composition and flip chip type semiconductor device
JP2005330315A (en) * 2004-05-18 2005-12-02 Shin Etsu Chem Co Ltd Liquid epoxy resin composition and semiconductor device
JP2008013711A (en) * 2006-07-07 2008-01-24 Mitsubishi Rayon Co Ltd Epoxy resin composition for fiber-reinforced composite material and fiber-reinforced composite material intermediate
JP2008094896A (en) * 2006-10-06 2008-04-24 Sumitomo Bakelite Co Ltd Resin composition for sealing semiconductor and semiconductor device
WO2010035451A1 (en) * 2008-09-24 2010-04-01 積水化学工業株式会社 Semi-cured body, cured body, multilayer body, method for producing semi-cured body, and method for producing cured body

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306952A (en) * 2004-04-20 2005-11-04 Japan Epoxy Resin Kk Epoxy resin composition as sealing material for light-emitting element
JP5105974B2 (en) * 2007-07-03 2012-12-26 日東電工株式会社 Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097255A (en) * 2000-09-26 2002-04-02 Matsushita Electric Works Ltd Epoxy resin composition and semiconductor device
JP2002194053A (en) * 2000-12-22 2002-07-10 Shin Etsu Chem Co Ltd Liquid epoxy resin composition for sealing semiconductor by screen printing
JP2002368233A (en) * 2001-06-07 2002-12-20 Nippon Kayaku Co Ltd Photoelectric converter
JP2004083711A (en) * 2002-08-26 2004-03-18 Nippon Steel Chem Co Ltd Liquid epoxy resin composition
JP2004331908A (en) * 2003-05-12 2004-11-25 Shin Etsu Chem Co Ltd Liquid state epoxy resin composition and flip chip type semiconductor device
JP2005330315A (en) * 2004-05-18 2005-12-02 Shin Etsu Chem Co Ltd Liquid epoxy resin composition and semiconductor device
JP2008013711A (en) * 2006-07-07 2008-01-24 Mitsubishi Rayon Co Ltd Epoxy resin composition for fiber-reinforced composite material and fiber-reinforced composite material intermediate
JP2008094896A (en) * 2006-10-06 2008-04-24 Sumitomo Bakelite Co Ltd Resin composition for sealing semiconductor and semiconductor device
WO2010035451A1 (en) * 2008-09-24 2010-04-01 積水化学工業株式会社 Semi-cured body, cured body, multilayer body, method for producing semi-cured body, and method for producing cured body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016066614A (en) * 2014-09-18 2016-04-28 積水化学工業株式会社 Conductive paste, connection structure and method for producing connection structure
JP2016105456A (en) * 2015-09-17 2016-06-09 リンテック株式会社 Film for forming protective film
JP2018009065A (en) * 2016-07-11 2018-01-18 パナソニックIpマネジメント株式会社 Epoxy resin composition, prepreg, metal-clad laminate and printed wiring board
JP7400714B2 (en) 2018-05-25 2023-12-19 株式会社レゾナック Underfill material, semiconductor package, and semiconductor package manufacturing method
JP2022538726A (en) * 2019-05-15 2022-09-06 ダウ グローバル テクノロジーズ エルエルシー Two-component adhesive composition, article prepared therewith, and method of preparation thereof
JP7329623B2 (en) 2019-05-15 2023-08-18 ダウ グローバル テクノロジーズ エルエルシー Two-component adhesive composition, article prepared therewith, and method of preparation thereof
WO2021241288A1 (en) * 2020-05-27 2021-12-02 住友化学株式会社 Epoxy resin composition and cured object obtained therefrom
WO2022113523A1 (en) * 2020-11-24 2022-06-02 株式会社スリーボンド Epoxy resin composition, cured product, and complex

Also Published As

Publication number Publication date
JPWO2012070387A1 (en) 2014-05-19
TW201226468A (en) 2012-07-01

Similar Documents

Publication Publication Date Title
WO2012070387A1 (en) Epoxy resin and resin composition
KR101229854B1 (en) Epoxy resin, hardenable resin composition containing the same and use thereof
TWI577730B (en) Liquid resin composition for electronic component, method of producing the same, and electronic component device
WO2007061037A1 (en) Liquid resin composition for electronic component and electronic component device
JP6607009B2 (en) Tetramethylbiphenol type epoxy resin, epoxy resin composition, cured product, and semiconductor sealing material
JP2015000952A (en) Epoxy resin composition and cured product thereof
WO2017038954A1 (en) Epoxy resin, epoxy resin composition, cured product and electrical/electronic component
WO2009123058A1 (en) Epoxy resin composition and molded object
JP5760997B2 (en) Epoxy resin, epoxy resin composition and cured product
WO2008020594A1 (en) Modified liquid epoxy resin, epoxy resin composition using the same, and cured product thereof
JP6303627B2 (en) Epoxy resin composition and cured product
JP6379500B2 (en) Epoxy compound, epoxy compound-containing composition, cured product, and semiconductor encapsulant
JP2013072011A (en) Treatment curing catalyst, one-pack epoxy resin composition, and cured product
JP2017048387A (en) Epoxy resin, epoxy resin composition, cured product, and electric/electronic component
JP5716512B2 (en) Epoxy resin and method for producing the same
JP6740619B2 (en) Epoxy resin, method for producing the same, and epoxy resin composition based on the resin
TWI835960B (en) Sealing composition and semiconductor device
JP2017048388A (en) Epoxy resin, epoxy resin composition, cured product, and electric/electronic component
JP2017155127A (en) Curable epoxy resin composition and cured product of the same, and electric/electronic component
WO2011125962A1 (en) Epoxy resin composition and cured product thereof
JP2017149801A (en) Epoxy resin, curable epoxy resin composition based on the resin, cured product, and electric/electronic component
JP2023092965A (en) Bisphenol f type epoxy resin, epoxy resin composition, cured product, and electric/electronic component
JP2016125007A (en) Epoxy resin composition, cured product, electrical component and electronic component
JP6439612B2 (en) Epoxy resins, compositions, cured products, and electrical / electronic components
JP5716511B2 (en) Epoxy resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842814

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012545675

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11842814

Country of ref document: EP

Kind code of ref document: A1