WO2022113523A1 - Epoxy resin composition, cured product, and complex - Google Patents

Epoxy resin composition, cured product, and complex Download PDF

Info

Publication number
WO2022113523A1
WO2022113523A1 PCT/JP2021/036599 JP2021036599W WO2022113523A1 WO 2022113523 A1 WO2022113523 A1 WO 2022113523A1 JP 2021036599 W JP2021036599 W JP 2021036599W WO 2022113523 A1 WO2022113523 A1 WO 2022113523A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
component
elastic modulus
storage elastic
Prior art date
Application number
PCT/JP2021/036599
Other languages
French (fr)
Japanese (ja)
Inventor
侑紀 佐藤
Original Assignee
株式会社スリーボンド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社スリーボンド filed Critical 株式会社スリーボンド
Priority to JP2022565094A priority Critical patent/JPWO2022113523A1/ja
Publication of WO2022113523A1 publication Critical patent/WO2022113523A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used

Definitions

  • the present invention relates to epoxy resin compositions, cured products and composites.
  • epoxy resin compositions have excellent adhesive strength, sealing properties, high strength, heat resistance, electrical properties, and chemical resistance, and therefore have been excellent in adhesives, sealing agents, potting agents, coating agents, conductive pastes, etc. It has been used for various purposes. However, it is known that many of the above characteristics have temperature dependence, and the characteristics generally deteriorate significantly above the glass transition temperature.
  • Japanese Patent Application Laid-Open No. 2006-63154 contains a cured product containing an epoxy compound and an anionic polymerization initiator such as potassium acetate, which can suppress deterioration of characteristics due to heating.
  • the resulting epoxy resin composition is disclosed.
  • Composition [2] The epoxy resin composition according to [1], wherein the tan ⁇ peak value (25 to 350 ° C.) of the cured product cured by heating in an atmosphere of 120 ° C. for 120 minutes is 0.19 or less.
  • the storage elastic modulus maintenance rate 250 ° C storage elastic modulus (GPa) / 25 ° C.
  • the compound of the general formula (1) of the component (B) is contained in a ratio of 0.001 to 5.0 mol with respect to 1 mol (total amount) of the epoxy group of the component (A) [5]. ]
  • the epoxy resin composition according to. [7] The epoxy resin composition according to [5] or [6], wherein M of the general formula (1) of the component (B) is potassium.
  • the epoxy resin composition according to any one of [1] to [7] which does not contain a curing agent for epoxy resin or a curing accelerator for epoxy resin.
  • the epoxy resin composition according to any one of [1] to [8] which does not contain a monofunctional epoxy resin.
  • the tan ⁇ peak value (25 to 350 ° C.) of the cured product cured by heating for 120 minutes in an atmosphere of 120 ° C. is 0.19 or less, and the storage elastic modulus maintenance rate (storage elastic modulus at 250 ° C. (250 ° C.)
  • the present invention comprises an epoxy resin having a glycidyl group bifunctional or higher in one molecule as a component (A), and a polymerization initiator having a butoxy group and an alkali metal in one molecule as a component (B).
  • X to Y is used in the meaning which includes the numerical values (X and Y) described before and after it as the lower limit value and the upper limit value, and means "X or more and Y or less”.
  • any epoxy resin having two or more functional glycidyl groups in one molecule can be used without particular limitation.
  • the component (A) can be used as a liquid or a solid at 25 ° C., but a liquid component (A) is preferably liquid at 25 ° C. from the viewpoint of obtaining handleability.
  • the handling property means that the epoxy resin composition has a low viscosity and is easy to apply.
  • the component (A) may have two or more glycidyl groups in one molecule, but preferably has two glycidyl groups in one molecule (two glycidyl groups in one molecule). The group is present) is preferred.
  • the content (A) is not particularly limited, but for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type, bisphenol AD type epoxy resin and other bisphenol type epoxy resin, hydrided bisphenol type epoxy resin, and the like.
  • the commercially available product of the component (A) is not particularly limited, but for example, jER (registered trademark) 828, 1001, 801, 806, 807, 152, 604, 630, 871, YX8000, YX8034, YX4000 (Mitsubishi Chemical Co., Ltd.).
  • jER registered trademark
  • Epicron registered trademarks 830, 850, 830LVP, 850CRP, 835LV, HP4032D, 703, 720, 726, 820 (manufactured by DIC Corporation)
  • EP4920 (manufactured by ADEKA CORPORATION); TEPIC (registered trademark) series (manufactured by Nissan Chemical Industry Co., Ltd.); KF-101, KF-1001, KF-105, X-22-163B, X-22-9002 (Shinetsu Chemical Co., Ltd.) (Manufactured by Kogyo Co., Ltd.); Denacol EX411, 314, 201, 212, 252 (manufactured by Nagase ChemteX Corporation); DER-331, 332, 334, 431, 542 (manufactured by Dow Chemical Co., Ltd.); YH-434, YH-434L (Manufactured by Nippon Steel Sumitomo Chemical Co., Ltd.), etc., but are not limited to these.
  • the component (B) according to the present invention is not particularly limited as long as it is a polymerization initiator having a butoxy group and an alkali metal in one molecule.
  • it is intended to provide an epoxy resin composition capable of obtaining a cured product having low temperature curability and suppressing deterioration of characteristics due to heating by selecting the component (B) of the present invention among the polymerization initiators.
  • the butoxy groups include an n-butoxy group (CH 3 CH 2 CH 2 CH 2 -O-), an isobutoxy group ((CH 3 ) 2 CHCH 2 -O-), and a sec-butoxy group (CH 3 CH 2 ).
  • the tert-butoxy group is preferable from the viewpoint of low-temperature curability and further improvement of the effect of suppressing deterioration of characteristics due to heating.
  • examples of the component (B) include the polymerization initiator of the general formula (1).
  • M represents an alkali metal.
  • the alkali metal include lithium, sodium, potassium, rubidium and the like, preferably sodium and potassium, and particularly preferably potassium.
  • the component (A) is three-dimensionally crosslinked at the time of curing (for example, by a curing catalyst), but this reaction leaves many uncrosslinked portions. There is a problem that this uncrosslinked portion contributes to a sharp decrease in the storage elastic modulus and leads to a change in the characteristics of the epoxy resin composition due to a temperature change.
  • the present invention has found an epoxy resin composition that can obtain a cured product that is less affected by the glass transition point by using the component (B) according to the present invention among the polymerization initiators. The reason why the cured product of the epoxy resin composition is less affected by the glass transition point by the component (B) according to the present invention is not clear, but the component (B) according to the present invention is the component (A) according to the present invention.
  • an epoxy resin composition having an extremely small tan ⁇ peak value can be obtained by controlling the polymerization reaction of the above and suppressing or eliminating the rapid decrease in the storage elastic coefficient by reducing the number of uncrosslinked portions.
  • the technical scope of the present invention is not limited by the above reasoning.
  • the component (B) can further improve low temperature curability, it is preferable to dilute it with an organic solvent having a boiling point of 50 to 150 ° C., and more preferably, an organic substance having a boiling point of 55 to 100 ° C. It is a solvent.
  • the organic solvent is not particularly limited, and examples thereof include THF (tetrahydrofuran, boiling point 66 ° C.), n-hexane (boiling point 69 ° C.), 2-methyl-2-propanol (boiling point 83 ° C.), and the like.
  • the concentration is not particularly specified, but for example, the component (B) is 1 to 99% by mass, more preferably 5 to 50% by mass.
  • component (B) examples include lithium tert-butoxide, sodium tert-butoxide, potassium tert-butoxide, rubidium tert-butoxide and the like, with sodium tert-butoxide and potassium tert-butoxide being particularly preferable. Further, it is potassium tert-butoxide because it is possible to provide an epoxy resin composition capable of obtaining a cured product having low temperature curability and suppressing deterioration of characteristics due to heating. These may be used alone or in combination of two or more.
  • the amount of the component (B) added is not particularly limited, but is preferably 0.1 to 20 parts by mass, more preferably 0.3 to 10 parts by mass with respect to 100 parts by mass of the component (A). More preferably, it is 0.5 to 5 parts by mass.
  • the amount of the component (B) added is 0.7 with respect to 100 parts by mass of the component (A). It is preferably about 2.8 parts by mass, and particularly preferably more than 0.7 parts by mass and less than 2.8 parts by mass.
  • the above-mentioned addition amount means the amount of the active ingredient.
  • the compound of the general formula (1) of the component (B) is contained in 0.001 to 5.0 mol. , More preferably 0.003 to 1.0 mol, and particularly preferably 0.003 to 0.5 mol.
  • an epoxy resin composition capable of further obtaining a cured product having low temperature curability and capable of suppressing deterioration of characteristics due to heating.
  • the addition amount of the compound of the general formula (1) of the component (B) is the amount of the component (A).
  • the total amount of the epoxy group (or glycidyl group) is 1 mol, it is preferably 0.01 to 0.05 mol, and more preferably more than 0.01 mol and less than 0.05 mol.
  • any additive component can be further contained as long as the characteristics of the epoxy resin composition are not impaired.
  • the component include an adhesive improving component such as a filler, a plasticizer, a solvent, a monofunctional epoxy resin, a curing agent for an epoxy resin, a curing accelerator for an epoxy resin, a photoinitiator, and a silane coupling agent, and a dispersant.
  • an adhesive improving component such as a filler, a plasticizer, a solvent, a monofunctional epoxy resin, a curing agent for an epoxy resin, a curing accelerator for an epoxy resin, a photoinitiator, and a silane coupling agent, and a dispersant.
  • Leveling agents, wetting agents, surfactants such as defoaming agents, antistatic agents, surface lubricants, rust preventives, preservatives, storage stabilizers such as borate esters, leology adjusters, colorants, UV absorbers , Antioxidant and the like may be contained.
  • the epoxy resin composition of the present invention does not contain a curing agent for epoxy resin, a curing accelerator for epoxy resin, and a monofunctional epoxy resin.
  • the epoxy resin composition does not contain a curing agent for epoxy resin or a curing accelerator for epoxy resin. In a preferred embodiment of the present invention, the epoxy resin composition does not contain a curing agent for epoxy resin and a curing accelerator for epoxy resin.
  • the epoxy resin composition does not contain a monofunctional epoxy resin (an epoxy resin in which one glycidyl group is present in one molecule).
  • Examples of the filler include organic powder, inorganic powder, metallic powder and the like.
  • Examples of the filler of the inorganic powder include silica, glass, alumina, mica, ceramics, silicone rubber powder, calcium carbonate, aluminum nitride, carbon powder, kaolin clay, clay minerals, diatomaceous earth and the like.
  • the addition of the inorganic powder is not particularly limited, but is preferably 0.01 to 500 parts by mass, more preferably 0.1 to 300 parts by mass, and particularly preferably 0.1 to 300 parts by mass with respect to 100 parts by mass of the component (A). 3 to 150 parts by mass. These may be used alone or in combination of two or more.
  • the silica can be blended for the purpose of adjusting the viscosity of the epoxy resin composition or improving the mechanical strength of the cured product.
  • those hydrophobized with organochlorosilanes, polyorganosiloxane, hexamethyldisilazane and the like can be used.
  • Specific examples of silica include, for example, trade names Aerosil (registered trademark) R974, R972, R972V, R972CF, R805, R812, R812S, R816, R8200, RY200, RX200, RY200S, R202 and the like (manufactured by Nippon Aerosil Co., Ltd.). Commercially available products can be mentioned. These may be used alone or in combination of two or more.
  • Examples of the organic powder include polyethylene, polypropylene, nylon, crosslinked acrylic, crosslinked polystyrene, polyester, polyvinyl alcohol, polyvinyl butyral, and polycarbonate.
  • the amount of the organic powder added is preferably 0.01 to 500 parts by mass, more preferably 0.1 to 300 parts by mass, and particularly preferably 3 to 3 parts by mass with respect to 100 parts by mass of the component (A). It is 150 parts by mass. These may be used alone or in combination of two or more.
  • the metallic powder is not particularly limited, and examples thereof include gold powder, silver powder, copper powder, nickel powder, palladium powder, tungsten powder, plating powder, and alumina powder.
  • the amount of the metallic powder added is preferably 0.01 to 500 parts by mass, more preferably 0.1 to 300 parts by mass, and particularly preferably 3 with respect to 100 parts by mass of the component (A). ⁇ 150 parts by mass. These may be used alone or in combination of two or more.
  • the epoxy resin composition of the present invention can be produced by a conventionally known method. For example, a predetermined amount of the component (A), the component (B), and other optional components are blended, and a mixing means such as a mixer such as a planetary mixer is used, preferably at a temperature of 10 to 70 ° C., more preferably. It can be produced by mixing at 20 to 50 ° C., particularly preferably at room temperature (25 ° C.), preferably for 0.1 to 5 hours, more preferably for 30 minutes to 3 hours, and particularly preferably for about 60 minutes.
  • a mixing means such as a mixer such as a planetary mixer is used, preferably at a temperature of 10 to 70 ° C., more preferably. It can be produced by mixing at 20 to 50 ° C., particularly preferably at room temperature (25 ° C.), preferably for 0.1 to 5 hours, more preferably for 30 minutes to 3 hours, and particularly preferably for about 60 minutes.
  • the epoxy resin composition of the present invention can be suitably used as an adhesive. That is, a complex adhered using the epoxy resin composition of the present invention is also an embodiment of the present invention.
  • ⁇ Applying method> As a method for applying the epoxy resin composition of the present invention to a substrate, a known adhesive method is used. For example, methods such as dispensing, spraying, inkjet printing, screen printing, gravure printing, dipping, and spin coating using an automatic coating machine can be used.
  • a cured product obtained by curing the epoxy resin composition of the present invention is also an embodiment of the present invention.
  • a cured product obtained by heat-curing the epoxy resin composition of the present invention is also a form of the present invention.
  • the temperature and time for heating may be as long as they can be sufficiently cured, but for example, at 75 to 160 ° C., for example, 10 seconds to 300 minutes, preferably 20 seconds to 180 minutes, and more preferably 30 seconds to 150 minutes. It is appropriate to heat under the condition of minutes. Preferably, the conditions of 75 to 160 ° C. for 20 seconds to 180 minutes are suitable.
  • the main curing may be carried out after preheating at a temperature of 40 to 75 ° C. for 30 to 90 minutes.
  • the epoxy resin composition contains an organic solvent (for example, ethanol), the preheating is preferable because the organic solvent can be volatilized.
  • the epoxy resin composition of the present invention preferably has a storage elastic modulus of 5% or more, more preferably 5 to 99%, and even more preferably 5 to 99%, from the viewpoint of less deterioration of characteristics due to heating. It is 7 to 95%, particularly preferably 10 to 80%. That is, in a preferred embodiment of the present invention, the epoxy resin composition has a storage elastic modulus retention rate (250 ° C. storage elastic modulus (GPa) / 25 ° C.) of the cured product cured by heating in an atmosphere of 120 ° C. for 120 minutes.
  • the storage elastic modulus (GPa) ⁇ 100) is 5% or more (more preferably 5 to 99%, still more preferably 7 to 95%, particularly preferably 10 to 80%).
  • the storage elastic modulus retention rate of the epoxy resin composition adopts the value measured according to the following method. Specifically, the test method is as follows.
  • the epoxy resin composition of the present invention was preheated in an atmosphere of 70 ° C. for 60 minutes and then heated in an atmosphere of 120 ° C. for 120 minutes to be cured to obtain a strip-shaped test piece of 10 mm ⁇ 50 mm ⁇ 0.5 mm. rice field.
  • This test piece was measured using a dynamic viscoelasticity measuring device DMS6100 (manufactured by Hitachi High-Tech Science Co., Ltd.) in a tensile mode with a temperature range of 25 to 350 ° C., a heating rate of 5 ° C./min, and a frequency of 1 Hz.
  • the storage elastic modulus E'(GPa) at 25 ° C. and the storage elastic modulus E'(GPa) at 250 ° C. were measured, and the storage elastic modulus maintenance rate (%) was determined by the following formula.
  • Storage elastic modulus maintenance rate (%) (Storage modulus E'at 250 ° C / storage elastic modulus E'at 25 ° C) x 100
  • the epoxy resin composition of the present invention preferably has a tan ⁇ peak value of 0.19 or less, more preferably 0.18 or less, and particularly preferably 0.14, from the viewpoint of less deterioration of characteristics due to heating. It is as follows. That is, in a preferred embodiment of the present invention, the epoxy resin composition has a tan ⁇ peak value (25 to 350 ° C.) of 0.19 or less (more preferably) of the cured product cured by heating in an atmosphere of 120 ° C. for 120 minutes. Is 0.18 or less, particularly preferably 0.14 or less). Since the lower the tan ⁇ peak value is, the more preferable it is, the lower limit is not particularly limited, and it is usually more than 0, but for example, it is more than 0.02, preferably 0.05 or more.
  • the tan ⁇ peak value of the epoxy resin composition adopts the value measured according to the following method. Specifically, the test method is as follows.
  • the epoxy resin composition of the present invention was preheated in an atmosphere of 70 ° C. for 60 minutes and then heated in an atmosphere of 120 ° C. for 120 minutes to be cured to obtain a strip-shaped test piece of 10 mm ⁇ 50 mm ⁇ 0.5 mm. rice field.
  • This test piece was measured using a dynamic viscoelasticity measuring device DMS6100 (manufactured by Hitachi High-Tech Science Co., Ltd.) in a tensile mode with a temperature range of 25 to 350 ° C., a heating rate of 5 ° C./min, and a frequency of 1 Hz.
  • the tan ⁇ peak value in the temperature range of 25 to 350 ° C. was calculated.
  • a cured product that is less affected by the glass transition point means that the tan ⁇ peak value is 0.19 or less. Further, the smaller the tan ⁇ peak value, the less the deterioration of physical properties due to heating. Specifically, the tan ⁇ peak value is preferably 0.18 or less, and more preferably 0.14 or less.
  • the tan ⁇ peak value (25 to 350 ° C.) of the cured product cured by heating in an atmosphere of 120 ° C. for 120 minutes is 0.19 or less, and the storage elastic modulus maintenance rate (250 ° C.) is maintained.
  • the present invention relates to a cured product obtained by curing the epoxy resin composition of the present invention, which has a storage elastic modulus (GPa) / 25 ° C. storage elastic modulus (GPa) ⁇ 100) of 5% or more.
  • reaction start temperature by differential scanning calorimetry is preferably 75 to 160 ° C., more preferably.
  • the temperature is 80 to 140 ° C, particularly preferably 85 to 120 ° C.
  • the value measured according to the following method is adopted as the reaction start temperature by the differential scanning calorimetry of the epoxy resin composition.
  • the test method is as follows.
  • the reaction start temperature was measured using differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • a DSC110 manufactured by Seiko Instruments Inc. was used for the DSC measurement, and the temperature was raised from 30 to 200 ° C. at a heating rate of 10 ° C./min under a nitrogen atmosphere.
  • the reaction start temperature was defined as the temperature at the intersection of the baseline of the graph of the DSC measurement result and the tangent at the inflection of the peak.
  • the epoxy resin composition of the present invention can be used in various fields (for example, as an adhesive) such as an automobile field, a railroad vehicle field, an aerospace field, an electric / electronic component field, a construction field, and a civil engineering field, but is preferable. , In the automotive field.
  • Adhesive applications in the automobile field are not particularly limited, but may include caulking (hemming) adhesion for fixing the outer panel and the inner panel, and more specifically, panels constituting automobile doors, pillars, and roofs. Adhesion, adhesion between the body and the roof, etc.
  • ⁇ Ingredient (A)> a1 Bisphenol A type diglycidyl ether having an epoxy equivalent of 189 (jER (registered trademark) 828 manufactured by Mitsubishi Chemical Corporation, liquid at 25 ° C., having bifunctional glycidyl group in one molecule)
  • a'1 Monoglycidyl phenyl ether (molecular weight 150) (reagent) (having one functional glycidyl group in one molecule)
  • b1 Potassium tert-butoxide (molecular weight 112) (solution consisting of 12% by mass of active ingredient and 88% by mass of THF) (reagent)
  • b'2 Aluminum secondary butoxide (molecular weight 246) (Organix AL-3001 manufactured by Matsumoto Fine Chemical Co., Ltd.)
  • b'3 Epoxy adduct-type latent curing agent obtained using an imidazole compound (Ajinomoto Fine-Techno Co., Ltd. Amicure PN-23)
  • b'4 Potassium acetate (molecular weight 98) (reagent)
  • the epoxy resin composition obtained above was evaluated for low temperature curability, reaction start temperature (° C.), storage elastic modulus maintenance rate (%), and tan ⁇ peak value according to the following method.
  • the test methods of the tests (1) to (4) used in the examples and comparative examples in Table 1 are as follows. The results are shown in Table 1. In addition, "-" in the table means not evaluated.
  • reaction start temperature was measured using differential scanning calorimetry (DSC), and the results are shown in Table 1.
  • DSC110 manufactured by Seiko Instruments Inc. was used for the DSC measurement, and the temperature was raised from 30 to 200 ° C. at a heating rate of 10 ° C./min under a nitrogen atmosphere.
  • the reaction start temperature was defined as the temperature at the intersection of the baseline of the graph of the DSC measurement result and the tangent at the inflection of the peak. Further, "-" in the table means unevaluated, and Comparative Examples 1, 2, 4, and 5 are unevaluated.
  • the reaction starting temperature is preferably 75 to 160 ° C., more preferably 75 to 160 ° C., using differential scanning calorimetry (DSC) from the viewpoint that it can be applied to applications requiring low temperature curability.
  • the temperature is 80 to 140 ° C, particularly preferably 85 to 120 ° C.
  • Storage elastic modulus maintenance rate (%) (Storage modulus E'at 250 ° C / storage elastic modulus E'at 25 ° C) x 100
  • "-" in the table means not evaluated.
  • the storage elastic modulus maintenance rate is preferably 5 to 99%, more preferably 7 to 95%, and particularly preferably 10 to 80% from the viewpoint of less deterioration of characteristics due to heating. be.
  • the tan ⁇ peak value is preferably 0.19 or less, more preferably 0.18 or less, and particularly preferably 0.14 or less, from the viewpoint that the characteristic deterioration due to heating is small.
  • Comparative Examples 1 and 2 in Table 1 are compositions using the b'1 component or the b'2 component instead of the component (B) of the present invention, but the result was that the low temperature curability was inferior. ..
  • Comparative Example 3 is a composition using the b'3 component instead of the component (B) of the present invention, but the storage elastic modulus retention rate is due to the tan ⁇ peak value of 0.20. Was an inferior result.
  • Comparative Example 5 was a composition in which the a'1 component was used instead of the component (A) of the present invention, but the result was that the low temperature curability was inferior.
  • Example 1 The epoxy resin composition of Example 1 was placed in a metal container (diameter 5 cm) and placed in a hot air drying oven set at 70 ° C. for 60 minutes to volatilize the THF in the epoxy resin composition. Then, the epoxy resin composition is applied to a test piece made of SPCC-SD having a width of 25 mm, a length of 100 mm, and a thickness of 1 mm. Then, another SPCC-SD test piece was attached and fixed with a clip so that the overlapping surface was 25 mm ⁇ 10 mm. Then, it was cured in a hot air drying oven set at 120 ° C. for 120 minutes to obtain a test piece.
  • the shear adhesion strength (unit: MPa) was measured at 25 ° C. with a universal tensile tester (tensile speed 10 mm / min.) According to JIS K6850: 1999. The result of Example 1 was 6.9 MPa.
  • the tensile shear adhesive strength is preferably 4 MPa or more, more preferably 5 MPa or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)

Abstract

The objective of the present invention is to provide an epoxy resin composition which has a low temperature curability (75-160 °C), and from which a cured product that can suppress deterioration of characteristics due to heating can be obtained. An epoxy resin composition according to the present invention includes: as a component (A), an epoxy resin having at least two functional glycidyl groups in one molecule; and as a component (B), a polymerization initiator having a butoxy group and an alkali metal in one molecule.

Description

エポキシ樹脂組成物、硬化物および複合体Epoxy resin compositions, cured products and complexes
 本発明は、エポキシ樹脂組成物、硬化物および複合体に関する。 The present invention relates to epoxy resin compositions, cured products and composites.
 従来より、エポキシ樹脂組成物は、接着力、封止性、高強度、耐熱性、電気特性、耐薬品性に優れることから、接着剤、封止剤、ポッティング剤、コーティング剤、導電性ペーストなどの様々な用途で用いられてきた。しかし、上記の特性の多くは温度依存性を持ち、一般的にガラス転移温度以上においてその特性は著しく低下してしまうことが知られている。 Conventionally, epoxy resin compositions have excellent adhesive strength, sealing properties, high strength, heat resistance, electrical properties, and chemical resistance, and therefore have been excellent in adhesives, sealing agents, potting agents, coating agents, conductive pastes, etc. It has been used for various purposes. However, it is known that many of the above characteristics have temperature dependence, and the characteristics generally deteriorate significantly above the glass transition temperature.
 特開2006-63154号公報(米国特許出願公報第2008/0139758号公報に相当)には、エポキシ化合物と、酢酸カリウム等のアニオン重合開始剤とを含む、加熱による特性低下を抑制できる硬化物が得られるエポキシ樹脂組成物が開示されている。 Japanese Patent Application Laid-Open No. 2006-63154 (corresponding to US Patent Application Publication No. 2008/0139758) contains a cured product containing an epoxy compound and an anionic polymerization initiator such as potassium acetate, which can suppress deterioration of characteristics due to heating. The resulting epoxy resin composition is disclosed.
 しかしながら、特開2006-63154号公報(米国特許出願公報第2008/0139758号公報に相当)に開示されたエポキシ樹脂組成物は、反応開始温度が170℃以上と極めて高温であることから用途が限られるという問題があった(本願明細書の表1の比較例4参照)。 However, the epoxy resin composition disclosed in Japanese Patent Application Laid-Open No. 2006-63154 (corresponding to US Patent Application Publication No. 2008/0139758) has an extremely high reaction start temperature of 170 ° C. or higher, and therefore its use is limited. (See Comparative Example 4 in Table 1 of the present specification).
 本発明は、上記の状況に鑑みてなされたものであり、低温硬化性(反応開始温度=75~160℃)を有し、加熱による特性低下を抑制できる硬化物が得られるエポキシ樹脂組成物を提供することである。 The present invention has been made in view of the above circumstances, and is an epoxy resin composition capable of obtaining a cured product having low temperature curability (reaction start temperature = 75 to 160 ° C.) and capable of suppressing deterioration of characteristics due to heating. To provide.
 本発明の要旨を次に説明する。
[1](A)成分として、1分子中にグリシジル基を2官能以上有するエポキシ樹脂と、(B)成分として、1分子中にブトキシ基およびアルカリ金属を有する重合開始剤と、を含むエポキシ樹脂組成物。
[2]120℃雰囲気で120分間の加熱を行い硬化させた硬化物のtanδピーク値(25~350℃)が0.19以下である、[1]に記載のエポキシ樹脂組成物。
[3]120℃雰囲気で120分間の加熱を行い硬化させた硬化物の貯蔵弾性率維持率(250℃の貯蔵弾性率(GPa)/25℃の貯蔵弾性率(GPa)×100)が5%以上である、[1]又は[2]に記載のエポキシ樹脂組成物。
[4]示差走査熱量測定による反応開始温度が75~160℃である、[1]~[3]のいずれか1項に記載のエポキシ樹脂組成物。
[5]前記(B)成分が、一般式(1)の重合開始剤である、[1]~[4]のいずれか1項に記載のエポキシ樹脂組成物。
The gist of the present invention will be described below.
[1] An epoxy resin containing, as a component (A), an epoxy resin having two or more glycidyl groups in one molecule, and as a component (B), a polymerization initiator having a butoxy group and an alkali metal in one molecule. Composition.
[2] The epoxy resin composition according to [1], wherein the tan δ peak value (25 to 350 ° C.) of the cured product cured by heating in an atmosphere of 120 ° C. for 120 minutes is 0.19 or less.
[3] The storage elastic modulus maintenance rate (250 ° C storage elastic modulus (GPa) / 25 ° C. storage elastic modulus (GPa) x 100) of the cured product cured by heating in an atmosphere of 120 ° C. for 120 minutes is 5%. The epoxy resin composition according to [1] or [2] as described above.
[4] The epoxy resin composition according to any one of [1] to [3], wherein the reaction start temperature by differential scanning calorimetry is 75 to 160 ° C.
[5] The epoxy resin composition according to any one of [1] to [4], wherein the component (B) is the polymerization initiator of the general formula (1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
[6]前記(B)成分の一般式(1)の化合物が、前記(A)成分のエポキシ基 1mol(合計量)に対して、0.001~5.0molの割合で含まれる、[5]に記載のエポキシ樹脂組成物。
[7]前記(B)成分の一般式(1)のMが、カリウムである、[5]または[6]に記載のエポキシ樹脂組成物。
[8]エポキシ樹脂用硬化剤またはエポキシ樹脂用硬化促進剤を含まない[1]~[7]のいずれか1項に記載のエポキシ樹脂組成物。
[9]単官能性エポキシ樹脂を含まない[1]~[8]のいずれか1項に記載のエポキシ樹脂組成物。
[10]120℃雰囲気で120分間の加熱を行い硬化させた硬化物のtanδピーク値(25~350℃)が、0.19以下であり、貯蔵弾性率維持率(250℃の貯蔵弾性率(GPa)/25℃の貯蔵弾性率(GPa)×100)が5%以上である、[1]~[9]のいずれか1項に記載のエポキシ樹脂組成物を硬化させて得られた硬化物。
[11][1]~[9]のいずれか1項に記載のエポキシ樹脂組成物を用いて接着された複合体。
[6] The compound of the general formula (1) of the component (B) is contained in a ratio of 0.001 to 5.0 mol with respect to 1 mol (total amount) of the epoxy group of the component (A) [5]. ] The epoxy resin composition according to.
[7] The epoxy resin composition according to [5] or [6], wherein M of the general formula (1) of the component (B) is potassium.
[8] The epoxy resin composition according to any one of [1] to [7], which does not contain a curing agent for epoxy resin or a curing accelerator for epoxy resin.
[9] The epoxy resin composition according to any one of [1] to [8], which does not contain a monofunctional epoxy resin.
[10] The tan δ peak value (25 to 350 ° C.) of the cured product cured by heating for 120 minutes in an atmosphere of 120 ° C. is 0.19 or less, and the storage elastic modulus maintenance rate (storage elastic modulus at 250 ° C. (250 ° C.) A cured product obtained by curing the epoxy resin composition according to any one of [1] to [9], which has a storage elastic modulus (GPa) × 100) at GPa) / 25 ° C. of 5% or more. ..
[11] A complex bonded using the epoxy resin composition according to any one of [1] to [9].
 本発明は、(A)成分として、1分子中にグリシジル基を2官能以上有するエポキシ樹脂と、(B)成分として、1分子中にブトキシ基およびアルカリ金属を有する重合開始剤と、を含むエポキシ樹脂組成物を提供する。本発明によると、低温硬化性(反応開始温度=75~160℃)を有し、加熱による特性低下を抑制できる硬化物が得られるエポキシ樹脂組成物を提供できる。 The present invention comprises an epoxy resin having a glycidyl group bifunctional or higher in one molecule as a component (A), and a polymerization initiator having a butoxy group and an alkali metal in one molecule as a component (B). A resin composition is provided. According to the present invention, it is possible to provide an epoxy resin composition capable of obtaining a cured product having low temperature curability (reaction start temperature = 75 to 160 ° C.) and capable of suppressing deterioration of characteristics due to heating.
 以下に発明の詳細を説明する。なお、本明細書において、「X~Y」は、その前後に記載される数値(XおよびY)を下限値および上限値として含む意味で使用し、「X以上Y以下」を意味する。 The details of the invention will be described below. In addition, in this specification, "X to Y" is used in the meaning which includes the numerical values (X and Y) described before and after it as the lower limit value and the upper limit value, and means "X or more and Y or less".
 <(A)成分>
 本発明に係る(A)成分としては、1分子中にグリシジル基を2官能以上有するエポキシ樹脂であれば、特に限定なく使用することができる。前記(A)成分は、25℃で液状でも固体でも使用可能であるが、ハンドリング性が得られるという観点から、25℃で液状のものが好ましい。なお、前記ハンドリング性とは、エポキシ樹脂組成物の粘度が低く塗布作業がしやすいことを意味する。
<Ingredient (A)>
As the component (A) according to the present invention, any epoxy resin having two or more functional glycidyl groups in one molecule can be used without particular limitation. The component (A) can be used as a liquid or a solid at 25 ° C., but a liquid component (A) is preferably liquid at 25 ° C. from the viewpoint of obtaining handleability. The handling property means that the epoxy resin composition has a low viscosity and is easy to apply.
 また、前記(A)成分は、1分子中に2個以上のグリシジル基が存在するものであればよいが、好ましくは1分子中にグリシジル基を2官能有する(1分子中に2個のグリシジル基が存在する)ことが好ましい。 The component (A) may have two or more glycidyl groups in one molecule, but preferably has two glycidyl groups in one molecule (two glycidyl groups in one molecule). The group is present) is preferred.
 前記(A)分としては、特に限定されないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型、ビスフェノールAD型エポキシ樹脂などのビスフェノール型エポキシ樹脂、水素化ビスフェノール型エポキシ樹脂、1,2-ブタンジオールジグリシジルエーテル、1,3-ブタンジオールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、2,3-ブタンジオールジグリシジルエーテル、1,5-ペンタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,4-シクロヘキサンジメタノールジグリシジルエーテルなどのアルキレングリコール型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂;N,N-ジグリシジル-4-グリシジルオキシアニリン、4,4’-メチレンビス(N,N-ジグリシジルアニリン)、テトラグリシジルジアミノジフェニルメタン、テトラグリシジル-m-キシリレンジアミン等のグリシジルアミン化合物;グリシジル基を4つ有するナフタレン型エポキシ樹脂などを挙げることができる。これらの中でも、接着性に優れるという観点から、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂が好ましく用いられ、ビスフェノールA型ジグリシジルエーテルがより好ましく用いられる。また、これらは単独あるいは混合で使用してもよい。 The content (A) is not particularly limited, but for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type, bisphenol AD type epoxy resin and other bisphenol type epoxy resin, hydrided bisphenol type epoxy resin, and the like. 1,2-Butanediol diglycidyl ether, 1,3-butanediol diglycidyl ether, 1,4-butanediol diglycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, 2,3-butanediol diglycidyl Alkylene glycol type epoxy resin such as ether, 1,5-pentanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,4-cyclohexanedimethanol diglycidyl ether; phenol novolac type Novolak type epoxy resins such as epoxy resin and cresol novolak type epoxy resin; N, N-diglycidyl-4-glycidyloxyaniline, 4,4'-methylenebis (N, N-diglycidylaniline), tetraglycidyldiaminodiphenylmethane, tetraglycidyl Diglycidyl amine compounds such as -m-xylylene diamine; naphthalene-type epoxy resins having four glycidyl groups and the like can be mentioned. Among these, bisphenol A type epoxy resin and bisphenol F type epoxy resin are preferably used, and bisphenol A type diglycidyl ether is more preferably used from the viewpoint of excellent adhesiveness. Moreover, these may be used alone or mixed.
 前記(A)成分の市販品としては、特に限定されないが、例えばjER(登録商標)828、1001、801、806、807、152、604、630、871、YX8000、YX8034、YX4000(三菱ケミカル株式会社製);エピクロン(登録商標830、850、830LVP、850CRP、835LV、HP4032D、703、720、726、820(DIC株式会社製);EP4100、EP4000、EP4080,EP4085、EP4088、EPU6、EPU7N、EPR4023、EPR1309、EP4920(株式会社ADEKA製);TEPIC(登録商標)シリーズ(日産化学工業株式会社製);KF-101、KF-1001、KF-105、X-22-163B、X-22-9002(信越化学工業株式会社製);デナコールEX411、314、201、212、252(ナガセケムテックス株式会社製);DER-331、332、334、431、542(ダウケミカル社製);YH-434、YH-434L(新日鉄住友化学株式会社製)等が挙げられるが、これらに限定されるものではない。 The commercially available product of the component (A) is not particularly limited, but for example, jER (registered trademark) 828, 1001, 801, 806, 807, 152, 604, 630, 871, YX8000, YX8034, YX4000 (Mitsubishi Chemical Co., Ltd.). (Made); Epicron (registered trademarks 830, 850, 830LVP, 850CRP, 835LV, HP4032D, 703, 720, 726, 820 (manufactured by DIC Corporation); EP4100, EP4000, EP4080, EP4085, EP4088, EPU6, EPU7N, EPR4023, EPR1309. , EP4920 (manufactured by ADEKA CORPORATION); TEPIC (registered trademark) series (manufactured by Nissan Chemical Industry Co., Ltd.); KF-101, KF-1001, KF-105, X-22-163B, X-22-9002 (Shinetsu Chemical Co., Ltd.) (Manufactured by Kogyo Co., Ltd.); Denacol EX411, 314, 201, 212, 252 (manufactured by Nagase ChemteX Corporation); DER-331, 332, 334, 431, 542 (manufactured by Dow Chemical Co., Ltd.); YH-434, YH-434L (Manufactured by Nippon Steel Sumitomo Chemical Co., Ltd.), etc., but are not limited to these.
 <(B)成分>
 本発明に係る(B)成分は、1分子中にブトキシ基およびアルカリ金属を有する重合開始剤であれば、特に制限されない。本発明では、重合開始剤の中でも、本発明の(B)成分を選択することで、低温硬化性を有し、加熱による特性低下を抑制できる硬化物が得られるエポキシ樹脂組成物を提供することができるという顕著な効果を有する。ここで、ブトキシ基としては、n-ブトキシ基(CHCHCHCH-O-)、イソブトキシ基((CHCHCH-O-)、sec-ブトキシ基(CHCHCH(CH)-O-)、tert-ブトキシ基((CHC-O-)がある。これらのうち、低温硬化性および加熱による特性低下抑制効果のさらなる向上などの観点から、tert-ブトキシ基が好ましい。すなわち、前記(B)成分としては例えば、一般式(1)の重合開始剤などが挙げられる。
<Ingredient (B)>
The component (B) according to the present invention is not particularly limited as long as it is a polymerization initiator having a butoxy group and an alkali metal in one molecule. In the present invention, it is intended to provide an epoxy resin composition capable of obtaining a cured product having low temperature curability and suppressing deterioration of characteristics due to heating by selecting the component (B) of the present invention among the polymerization initiators. Has the remarkable effect of being able to. Here, the butoxy groups include an n-butoxy group (CH 3 CH 2 CH 2 CH 2 -O-), an isobutoxy group ((CH 3 ) 2 CHCH 2 -O-), and a sec-butoxy group (CH 3 CH 2 ). There are CH (CH 3 ) -O-) and tert-butoxy group ((CH 3 ) 3CO- ). Of these, the tert-butoxy group is preferable from the viewpoint of low-temperature curability and further improvement of the effect of suppressing deterioration of characteristics due to heating. That is, examples of the component (B) include the polymerization initiator of the general formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 前記一般式(1)中、Mは、アルカリ金属を示す。アルカリ金属とは、例えば、リチウム、ナトリウム、カリウム、ルビジウムなどが挙げられ、好ましくは、ナトリウム、カリウムであり、特に好ましくはカリウムである。 In the general formula (1), M represents an alkali metal. Examples of the alkali metal include lithium, sodium, potassium, rubidium and the like, preferably sodium and potassium, and particularly preferably potassium.
 前記(A)成分は、(例えば、硬化触媒により)硬化時に3次元的に架橋するが、この反応は未架橋部分も多く残る。この未架橋部分は貯蔵弾性率の急激な低下に寄与し、温度変化によってエポキシ樹脂組成物の特性の変化に繋がってしまうという問題があった。本発明は、重合開始剤の中でも、本発明に係る(B)成分を用いることで、ガラス転移点による影響が少ない硬化物が得られるエポキシ樹脂組成物を見出した。本発明に係る(B)成分により、エポキシ樹脂組成物の硬化物がガラス転移点による影響が少ない理由は、定かではないが、本発明に係る(B)成分は本発明に係る(A)成分の重合反応を制御し、未架橋部分を少なくすることで貯蔵弾性率の急激な減少を抑制しまたはなくし、かつtanδピーク値が極めて小さいエポキシ樹脂組成物を得ることができると推測している。ただし、本発明の技術的範囲が、上記推論によって限定されるものではない。 The component (A) is three-dimensionally crosslinked at the time of curing (for example, by a curing catalyst), but this reaction leaves many uncrosslinked portions. There is a problem that this uncrosslinked portion contributes to a sharp decrease in the storage elastic modulus and leads to a change in the characteristics of the epoxy resin composition due to a temperature change. The present invention has found an epoxy resin composition that can obtain a cured product that is less affected by the glass transition point by using the component (B) according to the present invention among the polymerization initiators. The reason why the cured product of the epoxy resin composition is less affected by the glass transition point by the component (B) according to the present invention is not clear, but the component (B) according to the present invention is the component (A) according to the present invention. It is speculated that an epoxy resin composition having an extremely small tan δ peak value can be obtained by controlling the polymerization reaction of the above and suppressing or eliminating the rapid decrease in the storage elastic coefficient by reducing the number of uncrosslinked portions. However, the technical scope of the present invention is not limited by the above reasoning.
 また、前記(B)成分は、より低温硬化性を向上できることから、沸点が50~150℃の有機溶剤で希釈して使用することが好ましく、より好ましくは、沸点が55~100℃である有機溶剤である。前記有機溶剤としては、特に制限されないが、例えば、THF(テトラヒドロフラン、沸点66℃)、n-ヘキサン(沸点69℃)、2-メチル-2-プロパノール(沸点83℃)などが挙げられる。また、有機溶剤で希釈する場合は、濃度は特に規定されないが、例えば、(B)成分は1~99質量%、より好ましくは、5~50質量%である。 Further, since the component (B) can further improve low temperature curability, it is preferable to dilute it with an organic solvent having a boiling point of 50 to 150 ° C., and more preferably, an organic substance having a boiling point of 55 to 100 ° C. It is a solvent. The organic solvent is not particularly limited, and examples thereof include THF (tetrahydrofuran, boiling point 66 ° C.), n-hexane (boiling point 69 ° C.), 2-methyl-2-propanol (boiling point 83 ° C.), and the like. When diluted with an organic solvent, the concentration is not particularly specified, but for example, the component (B) is 1 to 99% by mass, more preferably 5 to 50% by mass.
 前記(B)成分としては、例えば、リチウムtert-ブトキシド、ナトリウムtert-ブトキシド、カリウムtert-ブトキシド、ルビジウムtert-ブトキシドなどが挙げられ、中でもナトリウムtert-ブトキシド、カリウムtert-ブトキシドが好ましく、特に好ましくは、より一層、低温硬化性を有し、加熱による特性低下を抑制できる硬化物が得られるエポキシ樹脂組成物を提供できることから、カリウムtert-ブトキシドである。これらは単独で使用されてもよく、又は複数併用されてもよい。 Examples of the component (B) include lithium tert-butoxide, sodium tert-butoxide, potassium tert-butoxide, rubidium tert-butoxide and the like, with sodium tert-butoxide and potassium tert-butoxide being particularly preferable. Further, it is potassium tert-butoxide because it is possible to provide an epoxy resin composition capable of obtaining a cured product having low temperature curability and suppressing deterioration of characteristics due to heating. These may be used alone or in combination of two or more.
 前記(B)成分の添加量は、特に制限されないが、前記(A)成分100質量部に対し、0.1~20質量部が好ましく、より好ましくは、0.3~10質量部であり、さらに好ましくは、0.5~5質量部である。特に加熱による物性低下抑制効果(より高い貯蔵弾性率維持率およびより低いtanδピーク値)の観点から、前記(B)成分の添加量は、前記(A)成分100質量部に対し、0.7~2.8質量部であることが好ましく、0.7質量部を超え2.8質量部未満であることが特に好ましい。なお、(B)成分が有機溶剤等で希釈されていた場合は、上記の添加量は有効成分量を意味する。また、前記(A)成分のエポキシ基(またはグリシジル基)の合計量を1molとした場合、前記(B)成分の一般式(1)の化合物を0.001~5.0molで含むことが好ましく、より好ましくは、0.003~1.0molであり、特に好ましくは、0.003~0.5molの範囲である。上記の範囲内であることで、より一層に、低温硬化性を有し、加熱による特性低下を抑制できる硬化物が得られるエポキシ樹脂組成物を提供できる。特に加熱による物性低下抑制効果(より高い貯蔵弾性率維持率およびより低いtanδピーク値)の観点から、前記(B)成分の一般式(1)の化合物の添加量は、前記(A)成分のエポキシ基(またはグリシジル基)の合計量を1molとした場合、0.01~0.05molであることが好ましく、0.01molを超え0.05mol未満であることが特に好ましい。 The amount of the component (B) added is not particularly limited, but is preferably 0.1 to 20 parts by mass, more preferably 0.3 to 10 parts by mass with respect to 100 parts by mass of the component (A). More preferably, it is 0.5 to 5 parts by mass. In particular, from the viewpoint of the effect of suppressing deterioration of physical properties due to heating (higher storage elastic modulus maintenance rate and lower tan δ peak value), the amount of the component (B) added is 0.7 with respect to 100 parts by mass of the component (A). It is preferably about 2.8 parts by mass, and particularly preferably more than 0.7 parts by mass and less than 2.8 parts by mass. When the component (B) is diluted with an organic solvent or the like, the above-mentioned addition amount means the amount of the active ingredient. When the total amount of the epoxy group (or glycidyl group) of the component (A) is 1 mol, it is preferable that the compound of the general formula (1) of the component (B) is contained in 0.001 to 5.0 mol. , More preferably 0.003 to 1.0 mol, and particularly preferably 0.003 to 0.5 mol. Within the above range, it is possible to provide an epoxy resin composition capable of further obtaining a cured product having low temperature curability and capable of suppressing deterioration of characteristics due to heating. In particular, from the viewpoint of the effect of suppressing deterioration of physical properties due to heating (higher storage elastic modulus maintenance rate and lower tan δ peak value), the addition amount of the compound of the general formula (1) of the component (B) is the amount of the component (A). When the total amount of the epoxy group (or glycidyl group) is 1 mol, it is preferably 0.01 to 0.05 mol, and more preferably more than 0.01 mol and less than 0.05 mol.
 <任意成分>
 また本発明においては、エポキシ樹脂組成物の特性を損なわない範囲において任意の添加成分をさらに含ませることができる。前記成分としては例えば、充填剤、可塑剤、溶剤、単官能性エポキシ樹脂、エポキシ樹脂用硬化剤、エポキシ樹脂用硬化促進剤、光開始剤、シランカップリング剤等の接着性向上成分、分散剤、レベリング剤、湿潤剤、消泡剤等の界面活性剤、帯電防止剤、表面潤滑剤、防錆剤、防腐剤、ホウ酸エステル等の保存安定剤、レオロジー調整剤、着色剤、紫外線吸収剤、酸化防止剤等を含有させてもよい。任意の添加成分として上記に列挙した成分は、特に制限されず、エポキシ樹脂組成物に通常使用される公知の成分が同様にして使用できる。
<Arbitrary ingredient>
Further, in the present invention, any additive component can be further contained as long as the characteristics of the epoxy resin composition are not impaired. Examples of the component include an adhesive improving component such as a filler, a plasticizer, a solvent, a monofunctional epoxy resin, a curing agent for an epoxy resin, a curing accelerator for an epoxy resin, a photoinitiator, and a silane coupling agent, and a dispersant. , Leveling agents, wetting agents, surfactants such as defoaming agents, antistatic agents, surface lubricants, rust preventives, preservatives, storage stabilizers such as borate esters, leology adjusters, colorants, UV absorbers , Antioxidant and the like may be contained. The components listed above as optional additive components are not particularly limited, and known components usually used in epoxy resin compositions can be used in the same manner.
 なお、本発明のエポキシ樹脂組成物において、エポキシ樹脂用硬化剤、エポキシ樹脂用硬化促進剤、単官能性エポキシ樹脂は、含まないことが好ましい。 It is preferable that the epoxy resin composition of the present invention does not contain a curing agent for epoxy resin, a curing accelerator for epoxy resin, and a monofunctional epoxy resin.
 すなわち、本発明の好ましい実施形態では、エポキシ樹脂組成物は、エポキシ樹脂用硬化剤またはエポキシ樹脂用硬化促進剤を含まない。本発明の好ましい実施形態では、エポキシ樹脂組成物は、エポキシ樹脂用硬化剤およびエポキシ樹脂用硬化促進剤を含まない。 That is, in a preferred embodiment of the present invention, the epoxy resin composition does not contain a curing agent for epoxy resin or a curing accelerator for epoxy resin. In a preferred embodiment of the present invention, the epoxy resin composition does not contain a curing agent for epoxy resin and a curing accelerator for epoxy resin.
 また、本発明の好ましい実施形態では、エポキシ樹脂組成物は、単官能性エポキシ樹脂(1分子中に1個のグリシジル基が存在するエポキシ樹脂)を含まない。 Further, in a preferred embodiment of the present invention, the epoxy resin composition does not contain a monofunctional epoxy resin (an epoxy resin in which one glycidyl group is present in one molecule).
 前記充填材としては、例えば、有機質粉体、無機質粉体、金属質粉体等が挙げられる。無機質粉体の充填材としては、シリカ、ガラス、アルミナ、マイカ、セラミックス、シリコーンゴム粉体、炭酸カルシウム、窒化アルミ、カーボン粉、カオリンクレー、粘土鉱物、珪藻土等が挙げられる。無機質粉体の添加は、特に制限されないが、前記(A)成分100質量部に対し、0.01~500質量部が好ましく、より好ましくは、0.1~300質量部であり、特に好ましくは、3~150質量部である。これらは単独で使用されてもよく、又は複数併用されてもよい。 Examples of the filler include organic powder, inorganic powder, metallic powder and the like. Examples of the filler of the inorganic powder include silica, glass, alumina, mica, ceramics, silicone rubber powder, calcium carbonate, aluminum nitride, carbon powder, kaolin clay, clay minerals, diatomaceous earth and the like. The addition of the inorganic powder is not particularly limited, but is preferably 0.01 to 500 parts by mass, more preferably 0.1 to 300 parts by mass, and particularly preferably 0.1 to 300 parts by mass with respect to 100 parts by mass of the component (A). 3 to 150 parts by mass. These may be used alone or in combination of two or more.
 前記シリカは、エポキシ樹脂組成物の粘度調整又は硬化物の機械的強度を向上させる目的で配合することができる。好ましくは、オルガノクロロシラン類、ポリオルガノシロキサン、ヘキサメチルジシラザンなどで疎水化処理したものなどが用いることができる。シリカの具体例としては、例えば、商品名アエロジル(登録商標)R974、R972、R972V、R972CF、R805、R812、R812S、R816、R8200、RY200、RX200、RY200S、R202等(日本アエロジル株式会社製)の市販品が挙げられる。これらは単独で使用されてもよく、又は複数併用されてもよい。 The silica can be blended for the purpose of adjusting the viscosity of the epoxy resin composition or improving the mechanical strength of the cured product. Preferably, those hydrophobized with organochlorosilanes, polyorganosiloxane, hexamethyldisilazane and the like can be used. Specific examples of silica include, for example, trade names Aerosil (registered trademark) R974, R972, R972V, R972CF, R805, R812, R812S, R816, R8200, RY200, RX200, RY200S, R202 and the like (manufactured by Nippon Aerosil Co., Ltd.). Commercially available products can be mentioned. These may be used alone or in combination of two or more.
 前記有機質粉体としては、例えば、ポリエチレン、ポリプロピレン、ナイロン、架橋アクリル、架橋ポリスチレン、ポリエステル、ポリビニルアルコール、ポリビニルブチラール、ポリカーボネートが挙げられる。前記有機質粉体の添加量は、前記(A)成分100質量部に対し、0.01~500質量部が好ましく、より好ましくは、0.1~300質量部であり、特に好ましくは、3~150質量部である。これらは単独で使用されてもよく、又は複数併用されてもよい。 Examples of the organic powder include polyethylene, polypropylene, nylon, crosslinked acrylic, crosslinked polystyrene, polyester, polyvinyl alcohol, polyvinyl butyral, and polycarbonate. The amount of the organic powder added is preferably 0.01 to 500 parts by mass, more preferably 0.1 to 300 parts by mass, and particularly preferably 3 to 3 parts by mass with respect to 100 parts by mass of the component (A). It is 150 parts by mass. These may be used alone or in combination of two or more.
 前記金属質粉体としては特に制限されないが、金粉、銀粉、銅粉、ニッケル粉、パラジウム粉、タングステン粉、メッキ粉、アルミナ粉などが挙げられる。前記金属質粉体の添加量は、前記(A)成分100質量部に対し、0.01~500質量部が好ましく、より好ましくは、0.1~300質量部であり、特に好ましくは、3~150質量部である。これらは単独で使用されてもよく、又は複数併用されてもよい。 The metallic powder is not particularly limited, and examples thereof include gold powder, silver powder, copper powder, nickel powder, palladium powder, tungsten powder, plating powder, and alumina powder. The amount of the metallic powder added is preferably 0.01 to 500 parts by mass, more preferably 0.1 to 300 parts by mass, and particularly preferably 3 with respect to 100 parts by mass of the component (A). ~ 150 parts by mass. These may be used alone or in combination of two or more.
 <製造方法>
 本発明のエポキシ樹脂組成物は、従来公知の方法により製造することができる。例えば、(A)成分と(B)成分並びにその他の任意成分の所定量を配合して、プラネタリミキサー等のミキサー等の混合手段を使用して、好ましくは10~70℃の温度、より好ましくは20~50℃、特に好ましくは常温(25℃)で、好ましくは0.1~5時間、より好ましくは30分~3時間、特に好ましくは60分前後混合することにより製造することができる。
<Manufacturing method>
The epoxy resin composition of the present invention can be produced by a conventionally known method. For example, a predetermined amount of the component (A), the component (B), and other optional components are blended, and a mixing means such as a mixer such as a planetary mixer is used, preferably at a temperature of 10 to 70 ° C., more preferably. It can be produced by mixing at 20 to 50 ° C., particularly preferably at room temperature (25 ° C.), preferably for 0.1 to 5 hours, more preferably for 30 minutes to 3 hours, and particularly preferably for about 60 minutes.
 <複合体>
 本発明のエポキシ樹脂組成物は接着剤として好適に使用できる。すなわち、本発明のエポキシ樹脂組成物を用いて接着された複合体もまた、本発明の一形態である。
<Complex>
The epoxy resin composition of the present invention can be suitably used as an adhesive. That is, a complex adhered using the epoxy resin composition of the present invention is also an embodiment of the present invention.
 <塗布方法>
 本発明のエポキシ樹脂組成物を基材へ塗布する方法としては、公知の接着剤の方法が用いられる。例えば、自動塗布機を用いたディスペンシング、スプレー、インクジェット、スクリーン印刷、グラビア印刷、ディッピング、スピンコートなどの方法を用いることができる。
<Applying method>
As a method for applying the epoxy resin composition of the present invention to a substrate, a known adhesive method is used. For example, methods such as dispensing, spraying, inkjet printing, screen printing, gravure printing, dipping, and spin coating using an automatic coating machine can be used.
 <硬化物および硬化方法>
 本発明のエポキシ樹脂組成物を硬化させることで得られる硬化物もまた、本発明の一形態である。また、本発明のエポキシ樹脂組成物を加熱硬化させることで得られる硬化物もまた、本発明の一形態である。加熱に際しての温度及び時間は、十分に硬化できる条件であればよいが、例えば、75~160℃で、例えば、10秒~300分、好ましくは20秒~180分、より好ましくは30秒~150分の条件で加熱することが適当である。好ましくは、75~160℃で20秒~180分の条件が適切である。なお、40~75℃の温度で30~90分間予備加熱を行ってから本硬化させてもよい。前記予備加熱はエポキシ樹脂組成物中に有機溶剤(例えば、エタノール)を含んでいる場合、有機溶剤を揮発できることから好ましい。
<Curing product and curing method>
A cured product obtained by curing the epoxy resin composition of the present invention is also an embodiment of the present invention. Further, a cured product obtained by heat-curing the epoxy resin composition of the present invention is also a form of the present invention. The temperature and time for heating may be as long as they can be sufficiently cured, but for example, at 75 to 160 ° C., for example, 10 seconds to 300 minutes, preferably 20 seconds to 180 minutes, and more preferably 30 seconds to 150 minutes. It is appropriate to heat under the condition of minutes. Preferably, the conditions of 75 to 160 ° C. for 20 seconds to 180 minutes are suitable. It should be noted that the main curing may be carried out after preheating at a temperature of 40 to 75 ° C. for 30 to 90 minutes. When the epoxy resin composition contains an organic solvent (for example, ethanol), the preheating is preferable because the organic solvent can be volatilized.
 <貯蔵弾性率維持率評価>
 本発明のエポキシ樹脂組成物は、加熱による特性低下が少ないという観点から、貯蔵弾性率維持率は、5%以上であることが好ましく、5~99%であることがより好ましく、さらに好ましくは、7~95%であり、特に好ましくは10~80%である。すなわち、本発明の好ましい実施形態では、エポキシ樹脂組成物は、120℃雰囲気で120分間の加熱を行い硬化させた硬化物の貯蔵弾性率維持率(250℃の貯蔵弾性率(GPa)/25℃の貯蔵弾性率(GPa)×100)が、5%以上(より好ましくは5~99%、さらに好ましくは7~95%、特に好ましくは10~80%)である。
<Evaluation of storage elastic modulus maintenance rate>
The epoxy resin composition of the present invention preferably has a storage elastic modulus of 5% or more, more preferably 5 to 99%, and even more preferably 5 to 99%, from the viewpoint of less deterioration of characteristics due to heating. It is 7 to 95%, particularly preferably 10 to 80%. That is, in a preferred embodiment of the present invention, the epoxy resin composition has a storage elastic modulus retention rate (250 ° C. storage elastic modulus (GPa) / 25 ° C.) of the cured product cured by heating in an atmosphere of 120 ° C. for 120 minutes. The storage elastic modulus (GPa) × 100) is 5% or more (more preferably 5 to 99%, still more preferably 7 to 95%, particularly preferably 10 to 80%).
 本明細書において、エポキシ樹脂組成物の貯蔵弾性率維持率は、下記方法に従って測定された値を採用する。具体的には、試験方法は次の通りである。 In the present specification, the storage elastic modulus retention rate of the epoxy resin composition adopts the value measured according to the following method. Specifically, the test method is as follows.
 本発明のエポキシ樹脂組成物を70℃雰囲気で60分間の予備加熱を行った後に、120℃雰囲気で120分間の加熱を行い硬化させ、10mm×50mm×0.5mmの短冊状の試験片を得た。この試験片を動的粘弾性測定装置DMS6100(株式会社日立ハイテクサイエンス製)を用いて温度範囲を25~350℃、昇温速度5℃/min、周波数1Hzの引張りモードで測定を行った。25℃の貯蔵弾性率E’(GPa)と、250℃の貯蔵弾性率E’(GPa)を測定し、次式により、貯蔵弾性率維持率(%)を求めた。 The epoxy resin composition of the present invention was preheated in an atmosphere of 70 ° C. for 60 minutes and then heated in an atmosphere of 120 ° C. for 120 minutes to be cured to obtain a strip-shaped test piece of 10 mm × 50 mm × 0.5 mm. rice field. This test piece was measured using a dynamic viscoelasticity measuring device DMS6100 (manufactured by Hitachi High-Tech Science Co., Ltd.) in a tensile mode with a temperature range of 25 to 350 ° C., a heating rate of 5 ° C./min, and a frequency of 1 Hz. The storage elastic modulus E'(GPa) at 25 ° C. and the storage elastic modulus E'(GPa) at 250 ° C. were measured, and the storage elastic modulus maintenance rate (%) was determined by the following formula.
 貯蔵弾性率維持率(%)
=(250℃の貯蔵弾性率E’/25℃の貯蔵弾性率E’)×100
Storage elastic modulus maintenance rate (%)
= (Storage modulus E'at 250 ° C / storage elastic modulus E'at 25 ° C) x 100
 <tanδピーク値の測定>
 本発明のエポキシ樹脂組成物は、加熱による特性低下が少ないという観点から、tanδピーク値は、0.19以下であることが好ましく、より好ましくは0.18以下であり、特に好ましくは0.14以下である。すなわち、本発明の好ましい実施形態では、エポキシ樹脂組成物は、120℃雰囲気で120分間の加熱を行い硬化させた硬化物のtanδピーク値(25~350℃)が、0.19以下(より好ましくは0.18以下、特に好ましくは0.14以下)である。なお、tanδピーク値は、低いほど好ましいため、下限は特に制限されず、通常、0超であるが、例えば、0.02超、好ましくは0.05以上である。
<Measurement of tanδ peak value>
The epoxy resin composition of the present invention preferably has a tan δ peak value of 0.19 or less, more preferably 0.18 or less, and particularly preferably 0.14, from the viewpoint of less deterioration of characteristics due to heating. It is as follows. That is, in a preferred embodiment of the present invention, the epoxy resin composition has a tan δ peak value (25 to 350 ° C.) of 0.19 or less (more preferably) of the cured product cured by heating in an atmosphere of 120 ° C. for 120 minutes. Is 0.18 or less, particularly preferably 0.14 or less). Since the lower the tan δ peak value is, the more preferable it is, the lower limit is not particularly limited, and it is usually more than 0, but for example, it is more than 0.02, preferably 0.05 or more.
 本明細書において、エポキシ樹脂組成物のtanδピーク値は下記方法に従って測定された値を採用する。具体的には、試験方法は次の通りである。 In the present specification, the tan δ peak value of the epoxy resin composition adopts the value measured according to the following method. Specifically, the test method is as follows.
 本発明のエポキシ樹脂組成物を70℃雰囲気で60分間の予備加熱を行った後に、120℃雰囲気で120分間の加熱を行い硬化させ、10mm×50mm×0.5mmの短冊状の試験片を得た。この試験片を動的粘弾性測定装置DMS6100(株式会社日立ハイテクサイエンス製)を用いて温度範囲を25~350℃、昇温速度5℃/min、周波数1Hzの引張りモードで測定を行った。25~350℃の温度範囲内のtanδピーク値を算出した。本発明においてガラス転移点による影響が少ない硬化物であることは、tanδピーク値が0.19以下であることを意味する。また、tanδピーク値が小さいほど、加熱による物性低下が少ない。具体的には、tanδピーク値は、0.18以下であることが好ましく、0.14以下であることがより好ましい。 The epoxy resin composition of the present invention was preheated in an atmosphere of 70 ° C. for 60 minutes and then heated in an atmosphere of 120 ° C. for 120 minutes to be cured to obtain a strip-shaped test piece of 10 mm × 50 mm × 0.5 mm. rice field. This test piece was measured using a dynamic viscoelasticity measuring device DMS6100 (manufactured by Hitachi High-Tech Science Co., Ltd.) in a tensile mode with a temperature range of 25 to 350 ° C., a heating rate of 5 ° C./min, and a frequency of 1 Hz. The tan δ peak value in the temperature range of 25 to 350 ° C. was calculated. In the present invention, a cured product that is less affected by the glass transition point means that the tan δ peak value is 0.19 or less. Further, the smaller the tan δ peak value, the less the deterioration of physical properties due to heating. Specifically, the tan δ peak value is preferably 0.18 or less, and more preferably 0.14 or less.
 本発明の好ましい実施形態は、120℃雰囲気で120分間の加熱を行い硬化させた硬化物のtanδピーク値(25~350℃)が、0.19以下であり、貯蔵弾性率維持率(250℃の貯蔵弾性率(GPa)/25℃の貯蔵弾性率(GPa)×100)が5%以上である、本発明のエポキシ樹脂組成物を硬化させて得られた硬化物に関する。 In a preferred embodiment of the present invention, the tan δ peak value (25 to 350 ° C.) of the cured product cured by heating in an atmosphere of 120 ° C. for 120 minutes is 0.19 or less, and the storage elastic modulus maintenance rate (250 ° C.) is maintained. The present invention relates to a cured product obtained by curing the epoxy resin composition of the present invention, which has a storage elastic modulus (GPa) / 25 ° C. storage elastic modulus (GPa) × 100) of 5% or more.
 <反応開始温度の測定>
 本発明のエポキシ樹脂組成物は、低温硬化性が要求される用途に適用可能であるとの観点から、示差走査熱量測定による反応開始温度は、75~160℃であることが好ましく、より好ましくは80~140℃であり、特に好ましくは85~120℃である。
<Measurement of reaction start temperature>
From the viewpoint that the epoxy resin composition of the present invention can be applied to applications requiring low temperature curability, the reaction start temperature by differential scanning calorimetry is preferably 75 to 160 ° C., more preferably. The temperature is 80 to 140 ° C, particularly preferably 85 to 120 ° C.
 本明細書において、エポキシ樹脂組成物の示差走査熱量測定による反応開始温度は下記方法に従って測定された値を採用する。具体的には、試験方法は次の通りである。 In the present specification, the value measured according to the following method is adopted as the reaction start temperature by the differential scanning calorimetry of the epoxy resin composition. Specifically, the test method is as follows.
 本発明のエポキシ樹脂組成物について、示差走査熱量測定(DSC)を用いて反応開始温度を測定した。DSC測定にはセイコーインスツルメント社製DSC110を用い、窒素雰囲気下昇温速度10℃/minで30~200℃まで昇温測定した。反応開始温度とは、DSC測定結果のグラフのベースラインとピークの変曲点における接線との交点の温度とした。 For the epoxy resin composition of the present invention, the reaction start temperature was measured using differential scanning calorimetry (DSC). A DSC110 manufactured by Seiko Instruments Inc. was used for the DSC measurement, and the temperature was raised from 30 to 200 ° C. at a heating rate of 10 ° C./min under a nitrogen atmosphere. The reaction start temperature was defined as the temperature at the intersection of the baseline of the graph of the DSC measurement result and the tangent at the inflection of the peak.
 <用途>
本発明のエポキシ樹脂組成物は、自動車分野、鉄道車両分野、航空宇宙分野、電気電子部品分野、建築分野、土木分野等様々な分野で(例えば、接着剤として)使用可能であるが、好ましくは、自動車分野である。自動車分野における接着用途としては、特に制限されないが、アウターパネルとインナーパネルを固定するカシメ部(ヘミング)接着などが挙げられ、より具体的には、自動車のドア、ピラー、ルーフを構成するパネル同士の接着、ボディとルーフとの接着などが挙げられる。
<Use>
The epoxy resin composition of the present invention can be used in various fields (for example, as an adhesive) such as an automobile field, a railroad vehicle field, an aerospace field, an electric / electronic component field, a construction field, and a civil engineering field, but is preferable. , In the automotive field. Adhesive applications in the automobile field are not particularly limited, but may include caulking (hemming) adhesion for fixing the outer panel and the inner panel, and more specifically, panels constituting automobile doors, pillars, and roofs. Adhesion, adhesion between the body and the roof, etc.
 以下に実施例をあげて本発明を更に詳細の説明をするが、本発明はこれら実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.
 <エポキシ樹脂組成物の調製>
 各成分を表1に示す質量部で採取し、常温(25℃)にてミキサーで60分混合し、エポキシ樹脂組成物を得た。なお、詳細な添加量は表1に従い、数値は全て質量部で表記するものとする。
<Preparation of epoxy resin composition>
Each component was sampled by mass as shown in Table 1 and mixed at room temperature (25 ° C.) for 60 minutes with a mixer to obtain an epoxy resin composition. The detailed addition amount shall be in accordance with Table 1, and all the numerical values shall be expressed in parts by mass.
 <(A)成分>
a1:エポキシ当量が189であるビスフェノールA型ジグリシジルエーテル(三菱ケミカル株式会社製jER(登録商標)828、25℃で液状、1分子中にグリシジル基を2官能有する)
 <(A)成分の比較成分>
a’1:モノグリシジルフェニルエーテル(分子量150)(試薬)(1分子中にグリシジル基を1官能有する)
 <(B)成分>
b1:カリウムtert-ブトキシド(分子量112)(有効性成分が12質量%、THFが88質量%からなる溶液)(試薬)
 <(B)成分の比較成分>
b’1:25℃で粉体であるナトリウムメトキシド(分子量54)(試薬)
b’2:アルミニウムセカンダリーブトキシド(分子量246)(マツモトファインケミカル株式会社製オルガチックスAL-3001)
b’3:イミダゾール化合物を用いて得られたエポキシアダクト型潜在性硬化剤(味の素ファインテクノ株式会社製アミキュアPN-23)
b’4:酢酸カリウム(分子量98)(試薬)
<Ingredient (A)>
a1: Bisphenol A type diglycidyl ether having an epoxy equivalent of 189 (jER (registered trademark) 828 manufactured by Mitsubishi Chemical Corporation, liquid at 25 ° C., having bifunctional glycidyl group in one molecule)
<Comparison component of (A) component>
a'1: Monoglycidyl phenyl ether (molecular weight 150) (reagent) (having one functional glycidyl group in one molecule)
<Ingredient (B)>
b1: Potassium tert-butoxide (molecular weight 112) (solution consisting of 12% by mass of active ingredient and 88% by mass of THF) (reagent)
<Comparison component of (B) component>
b '1: Sodium methoxide (molecular weight 54) (reagent) powdered at 25 ° C.
b'2: Aluminum secondary butoxide (molecular weight 246) (Organix AL-3001 manufactured by Matsumoto Fine Chemical Co., Ltd.)
b'3: Epoxy adduct-type latent curing agent obtained using an imidazole compound (Ajinomoto Fine-Techno Co., Ltd. Amicure PN-23)
b'4: Potassium acetate (molecular weight 98) (reagent)
 上記にて得られたエポキシ樹脂組成物につき、下記方法に従って、低温硬化性、反応開始温度(℃)、貯蔵弾性率維持率(%)およびtanδピーク値を評価した。表1の実施例、比較例において使用した試験(1)~(4)の試験方法は下記の通りである。結果を表1に示す。また、表中の「-」は未評価を意味する。 The epoxy resin composition obtained above was evaluated for low temperature curability, reaction start temperature (° C.), storage elastic modulus maintenance rate (%), and tan δ peak value according to the following method. The test methods of the tests (1) to (4) used in the examples and comparative examples in Table 1 are as follows. The results are shown in Table 1. In addition, "-" in the table means not evaluated.
 <(1)低温硬化性試験>
 120℃に設定したホットプレート上に各エポキシ樹脂組成物を0.1g滴下して、30分後に先端が尖った木製棒で接触し、エポキシ樹脂組成物の硬化有無を下記基準に基づき評価した。下記基準において「硬化」であれば、低温硬化性が良好であると言える。結果を表1に示す。
[評価基準]
硬化:棒に付着物がない。
未硬化:棒に付着物があり。
<(1) Low temperature curability test>
0.1 g of each epoxy resin composition was dropped onto a hot plate set at 120 ° C., and after 30 minutes, the epoxy resin composition was contacted with a wooden stick having a sharp tip, and the presence or absence of curing of the epoxy resin composition was evaluated based on the following criteria. If it is "cured" according to the following criteria, it can be said that the low temperature curability is good. The results are shown in Table 1.
[Evaluation criteria]
Hardening: No deposits on the rod.
Uncured: There are deposits on the rod.
 <(2)反応開始温度の測定>
 各エポキシ樹脂組成物について、示差走査熱量測定(DSC)を用いて反応開始温度を測定し、その結果を表1に示す。なお、DSC測定にはセイコーインスツルメント社製DSC110を用い、窒素雰囲気下昇温速度10℃/minで30~200℃まで昇温測定した。反応開始温度とは、DSC測定結果のグラフのベースラインとピークの変曲点における接線との交点の温度とした。また、表中の「-」は未評価を意味し、比較例1、2、4、5は、未評価である。本発明において、低温硬化性が要求される用途に適用可能であるとの観点から、示差走査熱量測定(DSC)を用いて反応開始温度は、75~160℃であることが好ましく、より好ましくは80~140℃であり、特に好ましくは85~120℃である。
<(2) Measurement of reaction start temperature>
For each epoxy resin composition, the reaction initiation temperature was measured using differential scanning calorimetry (DSC), and the results are shown in Table 1. A DSC110 manufactured by Seiko Instruments Inc. was used for the DSC measurement, and the temperature was raised from 30 to 200 ° C. at a heating rate of 10 ° C./min under a nitrogen atmosphere. The reaction start temperature was defined as the temperature at the intersection of the baseline of the graph of the DSC measurement result and the tangent at the inflection of the peak. Further, "-" in the table means unevaluated, and Comparative Examples 1, 2, 4, and 5 are unevaluated. In the present invention, the reaction starting temperature is preferably 75 to 160 ° C., more preferably 75 to 160 ° C., using differential scanning calorimetry (DSC) from the viewpoint that it can be applied to applications requiring low temperature curability. The temperature is 80 to 140 ° C, particularly preferably 85 to 120 ° C.
 <(3)貯蔵弾性率維持率評価>
 各エポキシ樹脂組成物を70℃雰囲気で60分間の予備加熱を行った後に、120℃雰囲気で120分間の加熱を行い硬化させ、10mm×50mm×0.5mmの短冊状の試験片を得た。この試験片を動的粘弾性測定装置DMS6100(株式会社日立ハイテクサイエンス製)を用いて温度範囲を25~350℃、昇温速度5℃/min、周波数1Hzの引張りモードで測定を行った。25℃の貯蔵弾性率E’(GPa)と、250℃の貯蔵弾性率E’(GPa)を測定し、次式により、貯蔵弾性率維持率(%)を求めた。
<(3) Evaluation of storage elastic modulus maintenance rate>
Each epoxy resin composition was preheated in an atmosphere of 70 ° C. for 60 minutes and then heated in an atmosphere of 120 ° C. for 120 minutes to be cured to obtain a strip-shaped test piece having a size of 10 mm × 50 mm × 0.5 mm. This test piece was measured using a dynamic viscoelasticity measuring device DMS6100 (manufactured by Hitachi High-Tech Science Co., Ltd.) in a tensile mode with a temperature range of 25 to 350 ° C., a heating rate of 5 ° C./min, and a frequency of 1 Hz. The storage elastic modulus E'(GPa) at 25 ° C. and the storage elastic modulus E'(GPa) at 250 ° C. were measured, and the storage elastic modulus maintenance rate (%) was determined by the following formula.
 貯蔵弾性率維持率(%)
=(250℃の貯蔵弾性率E’/25℃の貯蔵弾性率E’)×100
 また、表中の「-」は未評価を意味する。
Storage elastic modulus maintenance rate (%)
= (Storage modulus E'at 250 ° C / storage elastic modulus E'at 25 ° C) x 100
In addition, "-" in the table means not evaluated.
 本発明において、加熱による特性低下が少ないという観点から、貯蔵弾性率維持率は、5~99%であることが好ましく、より好ましくは、7~95%であり、特に好ましくは10~80%である。 In the present invention, the storage elastic modulus maintenance rate is preferably 5 to 99%, more preferably 7 to 95%, and particularly preferably 10 to 80% from the viewpoint of less deterioration of characteristics due to heating. be.
 <(4)tanδピーク値の測定>
 各エポキシ樹脂組成物を70℃雰囲気で60分間の予備加熱を行った後に、120℃雰囲気で120分間の加熱を行い硬化させ、10mm×50mm×0.5mmの短冊状の試験片を得た。この試験片を動的粘弾性測定装置DMS6100(株式会社日立ハイテクサイエンス製)を用いて温度範囲を25~350℃、昇温速度5℃/min、周波数1Hzの引張りモードで測定を行った。25~350℃の温度範囲内のtanδピーク値を算出した。また、表中の「-」は未評価を意味する。
<(4) Measurement of tanδ peak value>
Each epoxy resin composition was preheated in an atmosphere of 70 ° C. for 60 minutes and then heated in an atmosphere of 120 ° C. for 120 minutes to be cured to obtain a strip-shaped test piece having a size of 10 mm × 50 mm × 0.5 mm. This test piece was measured using a dynamic viscoelasticity measuring device DMS6100 (manufactured by Hitachi High-Tech Science Co., Ltd.) in a tensile mode with a temperature range of 25 to 350 ° C., a heating rate of 5 ° C./min, and a frequency of 1 Hz. The tan δ peak value in the temperature range of 25 to 350 ° C. was calculated. In addition, "-" in the table means not evaluated.
 本発明において、加熱による特性低下が少ないという観点から、tanδピーク値は、0.19以下であることが好ましく、より好ましくは0.18以下であり、特に好ましくは0.14以下である。 In the present invention, the tan δ peak value is preferably 0.19 or less, more preferably 0.18 or less, and particularly preferably 0.14 or less, from the viewpoint that the characteristic deterioration due to heating is small.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1の実施例1~3によれば、本発明は、低温硬化性(反応開始温度=75~160℃)を有し、加熱による特性低下を抑制できる硬化物が得られるエポキシ樹脂組成物を提供するものであることがわかる。 According to Examples 1 to 3 in Table 1, the present invention provides an epoxy resin composition capable of obtaining a cured product having low temperature curability (reaction start temperature = 75 to 160 ° C.) and capable of suppressing deterioration of characteristics due to heating. It turns out that it is what it provides.
 また、表1の比較例1、2は、本願発明の(B)成分の代わりに、b’1成分またはb’2成分を用いた組成物であるが、低温硬化性が劣る結果であった。また、比較例3は、本願発明の(B)成分の代わりに、b’3成分を用いた組成物であるが、tanδピーク値が0.20であることに起因して貯蔵弾性率維持率が劣る結果であった。また、比較例4は、本願発明の(B)成分の代わりに、b’4成分を用いた組成物であるが、低温硬化性(反応開始温度=120℃)が劣る結果であった。また、比較例5は、本願発明の(A)成分の代わりに、a’1成分を用いた組成物であるが、低温硬化性が劣る結果であった。 Further, Comparative Examples 1 and 2 in Table 1 are compositions using the b'1 component or the b'2 component instead of the component (B) of the present invention, but the result was that the low temperature curability was inferior. .. Further, Comparative Example 3 is a composition using the b'3 component instead of the component (B) of the present invention, but the storage elastic modulus retention rate is due to the tan δ peak value of 0.20. Was an inferior result. Further, Comparative Example 4 was a composition using the b'4 component instead of the component (B) of the present invention, but the result was that the low temperature curability (reaction start temperature = 120 ° C.) was inferior. Further, Comparative Example 5 was a composition in which the a'1 component was used instead of the component (A) of the present invention, but the result was that the low temperature curability was inferior.
 さらに、(5)引張せん断接着強さ試験について試験を行った。 Furthermore, (5) a tensile shear adhesive strength test was conducted.
 <(5)引張せん断接着強さ試験>
 実施例1のエポキシ樹脂組成物を金属製容器(直径5cm)に入れて、70℃に設定した熱風乾燥炉にて60分置き、エポキシ樹脂組成物中のTHFを揮発させた。その後、幅25mm×長さ100mm×厚さ1mmのSPCC-SD製テストピースに、前記エポキシ樹脂組成物を塗布する。その後、別のSPCC-SD製テストピースをオーバーラップ面が25mm×10mmになるように貼り合わせてクリップで固定した。そして、120℃に設定した熱風乾燥炉にて120分硬化させ試験片を得た。そして、試験片を用いて25℃にて万能引張試験機(引っ張り速度10mm/min.)にてせん断接着強さ(単位はMPa)をJIS K6850:1999に従い測定した。実施例1の結果は、6.9MPaであった。なお、本発明において接着剤として使用するためには、引張せん断接着強さは4MPa以上が好ましく、5MPa以上がより好ましい。
<(5) Tensile Shear Adhesive Strength Test>
The epoxy resin composition of Example 1 was placed in a metal container (diameter 5 cm) and placed in a hot air drying oven set at 70 ° C. for 60 minutes to volatilize the THF in the epoxy resin composition. Then, the epoxy resin composition is applied to a test piece made of SPCC-SD having a width of 25 mm, a length of 100 mm, and a thickness of 1 mm. Then, another SPCC-SD test piece was attached and fixed with a clip so that the overlapping surface was 25 mm × 10 mm. Then, it was cured in a hot air drying oven set at 120 ° C. for 120 minutes to obtain a test piece. Then, using the test piece, the shear adhesion strength (unit: MPa) was measured at 25 ° C. with a universal tensile tester (tensile speed 10 mm / min.) According to JIS K6850: 1999. The result of Example 1 was 6.9 MPa. In addition, in order to use it as an adhesive in the present invention, the tensile shear adhesive strength is preferably 4 MPa or more, more preferably 5 MPa or more.
 本発明は、低温硬化性(反応開始温度=75~160℃)を有し、加熱による特性低下を抑制できる硬化物が得られるエポキシ樹脂組成物なので、自動車分野をはじめとする様々な分野で接着剤として使用することが可能であるので産業上有用である。 The present invention is an epoxy resin composition that has low-temperature curability (reaction start temperature = 75 to 160 ° C.) and can obtain a cured product that can suppress deterioration of characteristics due to heating, and thus adheres in various fields including the automobile field. It is industrially useful because it can be used as an agent.
 本出願は、2020年11月24日に出願された日本特許出願番号2020-194074号に基づいており、その開示内容は、参照され、全体として、組み入れられている。 This application is based on Japanese Patent Application No. 2020-194074 filed on November 24, 2020, the disclosure of which is referenced and incorporated as a whole.

Claims (11)

  1.  (A)成分として、1分子中にグリシジル基を2官能以上有するエポキシ樹脂と、(B)成分として、1分子中にブトキシ基とアルカリ金属を有する重合開始剤を含むエポキシ樹脂組成物。 An epoxy resin composition containing an epoxy resin having two or more glycidyl groups in one molecule as a component (A) and a polymerization initiator having a butoxy group and an alkali metal in one molecule as a component (B).
  2.  120℃雰囲気で120分間の加熱を行い硬化させた硬化物のtanδピーク値(25~350℃)が、0.19以下であることを特徴とする請求項1に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein the tan δ peak value (25 to 350 ° C.) of the cured product cured by heating in an atmosphere of 120 ° C. for 120 minutes is 0.19 or less.
  3.  120℃雰囲気で120分間の加熱を行い硬化させた硬化物の貯蔵弾性率維持率(250℃の貯蔵弾性率(GPa)/25℃の貯蔵弾性率(GPa)×100)が、5%以上であることを特徴とする請求項1または2に記載のエポキシ樹脂組成物。 When the storage elastic modulus maintenance rate (250 ° C storage elastic modulus (GPa) / 25 ° C storage elastic modulus (GPa) x 100) of the cured product cured by heating in an atmosphere of 120 ° C. for 120 minutes is 5% or more. The epoxy resin composition according to claim 1 or 2, wherein there is.
  4.  示差走査熱量測定による反応開始温度が75~160℃であることを特徴とする請求項1~3のいずれか1項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 3, wherein the reaction start temperature by differential scanning calorimetry is 75 to 160 ° C.
  5.  前記(B)成分が、一般式(1)の重合開始剤であることを特徴とする請求項1~4のいずれか1項に記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

    (Mは、アルカリ金属を示す)
    The epoxy resin composition according to any one of claims 1 to 4, wherein the component (B) is a polymerization initiator of the general formula (1).
    Figure JPOXMLDOC01-appb-C000001

    (M indicates an alkali metal)
  6.  前記(A)成分のエポキシ基の合計量を1molとした場合、前記(B)成分の一般式(1)の化合物が0.001~5.0molであることを特徴とする請求項5に記載のエポキシ樹脂組成物。 The fifth aspect of claim 5, wherein the compound of the general formula (1) of the component (B) is 0.001 to 5.0 mol, where 1 mol is the total amount of the epoxy groups of the component (A). Epoxy resin composition.
  7.  前記(B)成分の一般式(1)のMが、カリウムであることを特徴とする請求項5または6に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 5 or 6, wherein M of the general formula (1) of the component (B) is potassium.
  8.  エポキシ樹脂用硬化剤またはエポキシ樹脂用硬化促進剤を含まない請求項1~7のいずれか1項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 7, which does not contain a curing agent for epoxy resin or a curing accelerator for epoxy resin.
  9.  単官能性エポキシ樹脂を含まない請求項1~8のいずれか1項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 8, which does not contain a monofunctional epoxy resin.
  10.  120℃雰囲気で120分間の加熱を行い硬化させた硬化物のtanδピーク値(25~350℃)が、0.19以下であり、貯蔵弾性率維持率(250℃の貯蔵弾性率(GPa)/25℃の貯蔵弾性率(GPa)×100)が5%以上であることを特徴とする、請求項1~9のいずれか1項に記載のエポキシ樹脂組成物を硬化させて得られた硬化物。 The tan δ peak value (25 to 350 ° C.) of the cured product cured by heating in a 120 ° C. atmosphere for 120 minutes is 0.19 or less, and the storage elastic modulus maintenance rate (storage elastic modulus (GPa) at 250 ° C.) / A cured product obtained by curing the epoxy resin composition according to any one of claims 1 to 9, wherein the storage elastic modulus (GPa) × 100) at 25 ° C. is 5% or more. ..
  11.  請求項1~9のいずれか1項に記載のエポキシ樹脂組成物を用いて接着された複合体。 A complex bonded using the epoxy resin composition according to any one of claims 1 to 9.
PCT/JP2021/036599 2020-11-24 2021-10-04 Epoxy resin composition, cured product, and complex WO2022113523A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022565094A JPWO2022113523A1 (en) 2020-11-24 2021-10-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020194074 2020-11-24
JP2020-194074 2020-11-24

Publications (1)

Publication Number Publication Date
WO2022113523A1 true WO2022113523A1 (en) 2022-06-02

Family

ID=81755549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036599 WO2022113523A1 (en) 2020-11-24 2021-10-04 Epoxy resin composition, cured product, and complex

Country Status (2)

Country Link
JP (1) JPWO2022113523A1 (en)
WO (1) WO2022113523A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000053760A (en) * 1998-08-10 2000-02-22 Toagosei Co Ltd Production of high molecular weight polymer having oxetanyl group
WO2012070387A1 (en) * 2010-11-25 2012-05-31 旭化成イーマテリアルズ株式会社 Epoxy resin and resin composition
JP2014034680A (en) * 2012-08-10 2014-02-24 Asahi Kasei E-Materials Corp Epoxy resin composition, cured article and electronic component
JP2019151682A (en) * 2018-02-28 2019-09-12 株式会社Adeka Anion polymerization initiator and polymerizable composition containing the anion polymerization initiator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000053760A (en) * 1998-08-10 2000-02-22 Toagosei Co Ltd Production of high molecular weight polymer having oxetanyl group
WO2012070387A1 (en) * 2010-11-25 2012-05-31 旭化成イーマテリアルズ株式会社 Epoxy resin and resin composition
JP2014034680A (en) * 2012-08-10 2014-02-24 Asahi Kasei E-Materials Corp Epoxy resin composition, cured article and electronic component
JP2019151682A (en) * 2018-02-28 2019-09-12 株式会社Adeka Anion polymerization initiator and polymerizable composition containing the anion polymerization initiator

Also Published As

Publication number Publication date
JPWO2022113523A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
JP4991575B2 (en) Two-component epoxy adhesive composition
US6015865A (en) Hot melt adhesive from epoxy resin/amine-terminated polyalkylene glycol adduct
KR102052389B1 (en) Structural adhesive and bonding application thereof
EP2223966B1 (en) Epoxy adhesive compositions with high mechanical strength over a wide temperature range
JP6612498B2 (en) Epoxy adhesive, automobile member and method for producing the same
CN105121498B (en) Multiple accelerator system for epoxy adhesives
KR20100016407A (en) Heat-resistant structural epoxy resins
US20180044565A1 (en) One-part curable adhesive composition and the use thereof
KR102155006B1 (en) Two part adhesive composition and cured product thereof and vehicle material adhesive method
WO2012042543A2 (en) Adhesive composition and uses thereof
KR20100080906A (en) Flexible epoxy-based compositions
JPWO2013183303A1 (en) Curable resin composition, resin composition, resin sheet using these, and cured products thereof
WO2021024597A1 (en) Adhesive composition, cured product, and joined body
WO2019005800A1 (en) Curable composition
WO2022113523A1 (en) Epoxy resin composition, cured product, and complex
CN115427529A (en) Two-part thermally conductive epoxy adhesive composition
JP2012172054A (en) Liquid epoxy resin composition and electronic component using the same
KR102445303B1 (en) Thermal curable adhesive composition, composite structure having adhesive layer and its preparation method
KR102445300B1 (en) Thermal curable adhesive composition, composite structure having adhesive layer and its preparation method
WO2021019488A1 (en) Fast curing oil tolerant adhesive compositions
JP2017052922A (en) Adhesive for automobile
JP7397322B2 (en) Epoxy resin adhesives, cured products and motors
KR102445302B1 (en) Thermal curable adhesive composition, composite structure having adhesive layer and its preparation method
KR102441468B1 (en) Thermal curable adhesive composition, composite structure having adhesive layer and its preparation method
JPH075866B2 (en) Sheet-like adhesive composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897501

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565094

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897501

Country of ref document: EP

Kind code of ref document: A1