JPH08283379A - Semiconductor sealing material - Google Patents

Semiconductor sealing material

Info

Publication number
JPH08283379A
JPH08283379A JP9064995A JP9064995A JPH08283379A JP H08283379 A JPH08283379 A JP H08283379A JP 9064995 A JP9064995 A JP 9064995A JP 9064995 A JP9064995 A JP 9064995A JP H08283379 A JPH08283379 A JP H08283379A
Authority
JP
Japan
Prior art keywords
alkylglycidyl
compound
encapsulating material
group
semiconductor encapsulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9064995A
Other languages
Japanese (ja)
Other versions
JP3579959B2 (en
Inventor
Ichiro Ogura
一郎 小椋
Katsuji Takahashi
勝治 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP09064995A priority Critical patent/JP3579959B2/en
Publication of JPH08283379A publication Critical patent/JPH08283379A/en
Application granted granted Critical
Publication of JP3579959B2 publication Critical patent/JP3579959B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE: To obtain a semiconductor sealing material which can cope with higher mounting densities because of very good flowability and also has good shelf stability by using as the principal component a polyepoxy compound having specified groups as the epoxy groups. CONSTITUTION: This material is composed essentially of a polyepoxy compound having β-alkylglycidyl groups as the epoxy groups, a curing agent, and an inorganic filler. Examples of preferable polyepoxy compounds having β- alkylglycidyl groups include di-β-alkylglycidyl ethers of bisphenols and β- alkylglylcidyl ethers of naphthols, among which di-β-alkylglycidyl ethers of hydroxynaphthalene are preferable in particular. A preferable β-alkylglycidyl group is a β-methylglycidyl group. The polyepoxy compound is obtained by, for example, the condensation of a β-methylepihalohydrin and a polyhydric phenol compound.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は新規な特に保存安定性と
流動性とに優れた半導体封止材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel semiconductor encapsulating material having excellent storage stability and fluidity.

【0002】[0002]

【従来の技術】近年、半導体パッケージは、高実装密度
化に対応し薄型化する傾向にあり、厚さ1mm以下のT
SOP型パッケージも使用される様になっている。これ
に対応して半導体封止材料も、より流動性が高い材料が
求められている。
2. Description of the Related Art In recent years, semiconductor packages have tended to be thinned in response to higher packaging density, and have a thickness of 1 mm or less.
SOP type packages are also being used. Correspondingly, as the semiconductor sealing material, a material having higher fluidity is required.

【0003】これまで、半導体封止材料用のエポキシ樹
脂として、オルソクレゾールノボラック型エポキシ樹脂
(以下「ECN」という)を使用した半導体封止材用エ
ポキシ組成物が広く用いられているが、当該樹脂を使用
した半導体封止材は、耐熱性には優れるものの、溶融粘
度が高いため、流動性が著しく悪く、前記高実装密度化
への対応が困難になるという欠陥を有していた。一方、
液状型ビスフェノール型エポキシ樹脂を使用した半導体
封止材も知られているが、低溶融粘度のため、流動性の
良好な封止材料が提供可能なものの、耐熱性が悪く実用
に供し得ないものでり、また、保存安定性が極めて悪い
ものであった。
Up to now, an epoxy composition for a semiconductor encapsulating material using an ortho-cresol novolac type epoxy resin (hereinafter referred to as "ECN") has been widely used as an epoxy resin for a semiconductor encapsulating material. Although the semiconductor encapsulant using (1) has excellent heat resistance, it has a drawback that it has a high melt viscosity and therefore has a markedly poor fluidity, making it difficult to cope with the high packaging density. on the other hand,
Semiconductor encapsulants that use liquid bisphenol epoxy resin are also known, but due to their low melt viscosity, encapsulants with good fluidity can be provided, but they have poor heat resistance and cannot be put to practical use. In addition, the storage stability was extremely poor.

【0004】そこで従来より、流動性並びに耐熱性に優
れ高実装密度化に対応し得る半導体封止材料としては、
例えば、1,6−ジヒドロキシナフタレンにエピクロル
ヒドリンを反応させて得られるナフタレン系エポキシ樹
脂を主剤として用いた半導体封止材料が知られている。
Therefore, conventionally, as a semiconductor encapsulating material which is excellent in fluidity and heat resistance and can cope with high packaging density,
For example, a semiconductor sealing material using a naphthalene-based epoxy resin obtained by reacting 1,6-dihydroxynaphthalene with epichlorohydrin as a main component is known.

【0005】[0005]

【解決しようとする課題】しかし、上記1,6−ジヒド
ロキシナフタレンにエピクロルヒドリンを反応させて得
られるナフタレン系エポキシ樹脂を主剤として用いた半
導体封止材料は、溶融粘度が低くく流動性に優れるもの
の、半導体封止材料の保存安定性が極めて悪く、そのた
め実用時に、設計当時よりも速硬化性となりフローが短
縮され、成形性に不具合を引き起こすことという大きな
課題を有していた。
However, a semiconductor encapsulating material using a naphthalene-based epoxy resin obtained by reacting 1,6-dihydroxynaphthalene with epichlorohydrin as a main component has a low melt viscosity and excellent fluidity, The storage stability of the semiconductor encapsulating material is extremely poor. Therefore, in practical use, there is a major problem that the curing becomes faster than at the time of design and the flow is shortened, causing a problem in moldability.

【0006】本発明が解決しようとする課題は、優れた
保存安定性と、流動性とを兼備した半導体封止材料を提
供することにある。
The problem to be solved by the present invention is to provide a semiconductor encapsulating material having both excellent storage stability and fluidity.

【0007】[0007]

【課題を解決するための手段】本発明者等は鋭意検討し
た結果、エポキシ基としてβ−アルキルグリシジル基を
有する多価エポキシ化合物を主剤として用いることによ
り、上記課題を見いだし本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies by the present inventors, the inventors have found the above-mentioned problems and completed the present invention by using a polyvalent epoxy compound having a β-alkylglycidyl group as an epoxy group as a main agent. I arrived.

【0008】即ち、本発明は、β−アルキルグリシジル
基をエポキシ基として有する多価エポキシ化合物
(A)、硬化剤(B)及び無機充填材(C)を必須成分
とすることを特徴とする半導体封止材料に関する。
That is, the present invention is characterized in that a polyvalent epoxy compound (A) having a β-alkylglycidyl group as an epoxy group, a curing agent (B), and an inorganic filler (C) are essential components. The present invention relates to a sealing material.

【0009】β−アルキルグリシジル基をエポキシ基と
して有する多価エポキシ化合物(A)において、β−ア
ルキルグリシジル基としては特に限定されるものではな
いが、例えば、β−メチルグリシジル基、β−エチルグ
リシジル基、β−プロピルグリシジル基、β−ブチルグ
リシジル基等が挙げられるが、なかでも保存安定性が著
しく良好である点からβ−メチルグリシジル基が好まし
い。
In the polyvalent epoxy compound (A) having a β-alkylglycidyl group as an epoxy group, the β-alkylglycidyl group is not particularly limited, but for example, β-methylglycidyl group and β-ethylglycidyl group. Group, a β-propylglycidyl group, a β-butylglycidyl group, and the like. Among them, the β-methylglycidyl group is preferable from the viewpoint of excellent storage stability.

【0010】上記したβ−アルキルグリシジル基を有す
る多価エポキシ樹脂としては、具体的には、ビスフェノ
ールAのジ−β−アルキルグリシジルエーテル、ビスフ
ェノールFのジ−β−アルキルグリシジルエーテル、ビ
スフェノールSのジ−β−アルキルグリシジルエーテル
に代表される、ビスフェノール類のジ−β−アルキルグ
リシジルエーテル;ビフェノールのジ−β−アルキルグ
リシジルエーテル、テトラメチルビフェノールのジ−β
−アルキルグリシジルエーテルに代表されるビフェノー
ル類のジ−β−アルキルグリシジルエーテル;ジヒドロ
キシナフタレンのジ−β−アルキルグリシジルエーテ
ル、ビナフトールのジ−β−アルキルグリシジルエーテ
ルに代表されるナフトール類のβ−アルキルグリシジル
エーテル;フェノール−ホルムアルデヒド重縮合物のポ
リ−β−アルキルグリシジルエーテル;クレゾール−ホ
ルムアルデヒド重縮合物のポリ−β−アルキルグリシジ
ルエーテルに代表されるC1〜C10のモノアルキル置換
フェノール−ホルムアルデヒド重縮合物のポリ−β−ア
ルキルグリシジルエーテル;キシレノール−ホルムアル
デヒド重縮合物のポリ−β−アルキルグリシジルエーテ
ルに代表されるC1〜C10のジアルキル置換フェノール
−ホルムアルデヒド重縮合物のポリ−β−アルキルグリ
シジルエーテル;ビスフェノールA−ホルムアルデヒド
重縮合物のポリ−β−アルキルグリシジルエーテルに代
表されるビスフェノール類−ホルムアルデヒド重縮合物
のポリ−β−アルキルグリシジルエーテル;フェノール
類とジシクロペンタジエン、リモネン、ピネン等の環状
ジエンとの重付加物のポリ−β−アルキルグリシジルエ
ーテル;フェノール類とジビニルベンゼンの重付加物の
ポリ−β−アルキルグリシジルエーテル等が挙げられ
る。
Specific examples of the above-mentioned polyepoxy resin having a β-alkylglycidyl group include di-β-alkylglycidyl ether of bisphenol A, di-β-alkylglycidyl ether of bisphenol F and diphenol of bisphenol S. Represented by -β-alkyl glycidyl ether, bisphenol di-β-alkyl glycidyl ether; biphenol di-β-alkyl glycidyl ether, tetramethyl biphenol di-β
-Di-β-alkyl glycidyl ethers of biphenols represented by alkyl glycidyl ethers; β-alkyl glycidyl ethers of naphthols represented by di-β-alkyl glycidyl ethers of dihydroxynaphthalene and di-β-alkyl glycidyl ethers of binaphthol Ether; poly-β-alkyl glycidyl ether of phenol-formaldehyde polycondensate; poly-β-alkyl glycidyl ether of cresol-formaldehyde polycondensate C1-C10 monoalkyl-substituted phenol-formaldehyde polycondensate typified by poly-β-alkyl glycidyl ether -Β-alkyl glycidyl ether; C1 to C10 dialkyl-substituted phenol-formaldehyde polycondensate typified by poly-β-alkyl glycidyl ether of xylenol-formaldehyde polycondensate Poly-β-alkyl glycidyl ethers; bisphenols represented by poly-β-alkyl glycidyl ethers of bisphenol A-formaldehyde polycondensates-Poly-β-alkyl glycidyl ethers of formaldehyde polycondensates; phenols and dicyclopentadiene, Examples thereof include poly-β-alkylglycidyl ethers which are polyaddition products of cyclic dienes such as limonene and pinene; poly-β-alkylglycidyl ethers which are polyaddition products of phenols and divinylbenzene.

【0011】なかでも流動性及び保存安定性が良好であ
る点からビスフェノール類のジ−β−アルキルグリシジ
ルエーテル、並びに、ナフトール類のβ−アルキルグリ
シジルエーテルが好ましく、特に、耐熱性が著しく良好
であり、耐熱性、流動性及び保存安定性の何れも良好と
なる点からジヒドロキシナフタレンのジ−β−アルキル
グリシジルエーテルが好ましい。ジヒドロキシナフタレ
ンのジ−β−アルキルグリシジルエーテルには数種の異
性体があるが、その中でも耐熱性が優れる点から1,6
−ジヒドロキシナフタレンのジ−β−アルキルグリシジ
ルエーテルが好ましい。
Among them, di-β-alkyl glycidyl ethers of bisphenols and β-alkyl glycidyl ethers of naphthols are preferable from the viewpoints of good fluidity and storage stability, and particularly excellent heat resistance. The di-β-alkyl glycidyl ether of dihydroxynaphthalene is preferable from the viewpoints of good heat resistance, fluidity and storage stability. There are several isomers of di-β-alkyl glycidyl ether of dihydroxynaphthalene, but among them, 1,6 from the viewpoint of excellent heat resistance.
Di-β-alkyl glycidyl ethers of dihydroxynaphthalene are preferred.

【0012】上記した多価エポキシ化合物(A)は、上
掲した化合物の如く、その全てのエポキシ基がβ−アル
キルグリシジル基の化合物である必要はなく、その一部
がグリシジル基のものであってもよい。また、グリシジ
ル基のみを有するエポキシ化合物との共存下に使用する
こともできる。
The above-mentioned polyvalent epoxy compound (A) does not need to be a compound in which all epoxy groups are β-alkylglycidyl groups, as in the above-mentioned compounds, and a part of them is a glycidyl group. May be. It can also be used in the coexistence with an epoxy compound having only a glycidyl group.

【0013】この様な多価エポキシ化合物(A)を得る
方法としては、特に制限されるものではないが、β−メ
チルエピハロヒドリンと多価フェノール化合物の縮合反
応させる方法が挙げられ、この縮合反応物(A’)を多
価エポキシ化合物(A)を含有するエポキシ樹脂成分と
して使用することが好ましい。
A method for obtaining such a polyhydric epoxy compound (A) is not particularly limited, but a method of condensing β-methylepihalohydrin and a polyhydric phenol compound can be mentioned. It is preferable to use (A ′) as the epoxy resin component containing the polyvalent epoxy compound (A).

【0014】ここで用いるβ−アルキルエピハロヒドリ
ンとしては、特に制限されるものではないが、β−メチ
ルエピクロロヒドリン、β−メチルエピブロモヒドリ
ン、β−メチルエピフロロヒドリン等のβ−メチルエピ
ハロヒドリン、β−エチルエピクロロヒドリン、β−エ
チルエピブロモヒドリン、β−エチルエピフロロヒドリ
ン等のβ−エチルエピハロヒドリン、β−プロピルエピ
クロロヒドリン、β−プロピルエピブロモヒドリン、β
−プロピルエピフロロヒドリン等のβ−プロピルエピハ
ロヒドリン、β−ブチルエピクロロヒドリン、β−ブチ
ルエピブロモヒドリン、β−ブチルエピフロロヒドリン
等のβ−ブチルエピハロヒドリン等が挙げられるが、な
かでも多価フェノールとの反応性並びに流動性の点から
β−メチルエピハロヒドリンが好ましい。
The β-alkyl epihalohydrin used here is not particularly limited, but β-methyl epichlorohydrin, β-methyl epibromohydrin, β-methyl epifluorohydrin, and other β-methyl epichlorohydrin are used. Β-ethyl epihalohydrin such as epihalohydrin, β-ethylepichlorohydrin, β-ethylepibromohydrin, β-ethylepifluorohydrin, β-propylepichlorohydrin, β-propylepibromohydrin, β
-Β-propyl epihalohydrin such as propyl epifluorohydrin, β-butyl epichlorohydrin, β-butyl epibromohydrin, β-butyl epihalohydrin such as β-butyl epifluorohydrin, and the like. Β-Methylepihalohydrin is preferred from the viewpoint of reactivity with polyhydric phenol and fluidity.

【0015】また、多価フェノール化合物としては、1
分子中に2個以上の芳香族性水酸基を含有した化合物で
あれば、種類は限定されないが、例示するならばビスフ
ェノールA、ビスフェノールF、ビスフェノールS等の
ビスフェノール類、ビフェノール、テトラメチルビフェ
ノール等のビフェノール類、ジヒドロキシナフタレン、
ビナフトール等のナフトール類、フェノール−ホルムア
ルデヒド重縮合物に代表されるフェノールノボラック樹
脂、クレゾール−ホルムアルデヒド重縮合物に代表され
るC1〜C10のモノアルキル置換フェノール−ホルムア
ルデヒド重縮合物、キシレノール−ホルムアルデヒド重
縮合物に代表されるC1〜C10のジアルキル置換フェノ
ール−ホルムアルデヒド重縮合物、ビスフェノールA−
ホルムアルデヒド重縮合物に代表されるビスフェノール
類−ホルムアルデヒド重縮合物、その他、フェノールと
C1〜C10のモノアルキル置換フェノールとホルムアル
デヒドとの共重縮合物、フェノール類とジシクロペンタ
ジエン、リモネン、ピネン等の環状ジエンとの重付加
物、フェノール類とジビニルベンゼンの重付加物等が挙
げられる。なかでも流動性及び保存安定性の点からビス
フェノール類、ナフトール類が好ましく、特に耐熱性が
良好となって、耐熱性、流動性及び保存安定性の何れも
良好となる点からジヒドロキシナフタレンが好ましい。
また、多価エポキシ化合物(A)の具体例における場合
と同様にジヒドロキシナフタレンには数種の異性体があ
るが、その中でも耐熱性が優れる点から1,6−ジヒド
ロキシナフタレンが好ましい。
As the polyphenol compound, 1
The kind is not limited as long as it is a compound containing two or more aromatic hydroxyl groups in the molecule, but exemplarily includes bisphenols such as bisphenol A, bisphenol F and bisphenol S, and biphenols such as biphenol and tetramethylbiphenol. , Dihydroxynaphthalene,
Naphthols such as binaphthol, phenol novolac resins represented by phenol-formaldehyde polycondensates, C1 to C10 monoalkyl-substituted phenol-formaldehyde polycondensates represented by cresol-formaldehyde polycondensates, xylenol-formaldehyde polycondensates C1 to C10 dialkyl-substituted phenol-formaldehyde polycondensate, bisphenol A-
Bisphenols-formaldehyde polycondensates typified by formaldehyde polycondensates, other copolycondensates of phenol with C1 to C10 monoalkyl-substituted phenols and formaldehyde, phenols with dicyclopentadiene, limonene, pinene, etc. Examples thereof include polyaddition products with diene and polyaddition products with phenols and divinylbenzene. Among them, bisphenols and naphthols are preferable from the viewpoints of fluidity and storage stability, and dihydroxynaphthalene is preferable from the viewpoint that heat resistance is particularly good and heat resistance, fluidity and storage stability are good.
In addition, although dihydroxynaphthalene has several isomers as in the case of the specific examples of the polyvalent epoxy compound (A), 1,6-dihydroxynaphthalene is preferable from the viewpoint of excellent heat resistance.

【0016】また、縮合反応物(A’)を製造する際、
β−アルキルエピハロヒドリンのみを用いて反応を行っ
てもよいが、目的に応じてエピハロヒドリンを一部併用
するにより流動性をより向上させることができる。然し
乍ら、β−アルキルエピハロヒドリンの使用割合を高め
ることにより、保存安定性が極めて優れたものとなる
他、更にエポキシ樹脂に含まれる不純物塩素量がより低
減されるという効果を発現するため、その混合比率を用
途、要求特性に応じて適宜調整することができる。
When producing the condensation reaction product (A '),
The reaction may be performed using only β-alkylepihalohydrin, but the fluidity can be further improved by partially using epihalohydrin together depending on the purpose. However, by increasing the use ratio of β-alkyl epihalohydrin, the storage stability becomes extremely excellent, and further, the effect that the amount of impurity chlorine contained in the epoxy resin is further reduced is expressed, so the mixing ratio thereof Can be appropriately adjusted depending on the application and required characteristics.

【0017】特にこれらの特性バランスが良好となる点
からβ−アルキルエピハロヒドリン/エピハロヒドリン
のモル比で90/10〜30/70の範囲が好ましく、
特に80/20〜40/60の範囲が好ましい。
From the viewpoint of achieving a good balance of these characteristics, the β-alkyl epihalohydrin / epihalohydrin molar ratio is preferably in the range of 90/10 to 30/70,
Especially, the range of 80/20 to 40/60 is preferable.

【0018】尚、上記の如く、β−アルキルエピハロヒ
ドリンとエピハロヒドリンとを併用して多価フェノール
と反応させた場合、得られる縮合反応物(A’)は、エ
ポキシ基の全てがβ−アルキルグリシジル基の化合物
(化合物(A))、化合物中にβ−アルキルグリシジル
基とグリシジル基とが共存しているもの(化合物
(A))、エポキシ基の全てがグリシジル基の化合物、
とが混在したものとなる。
When the β-alkyl epihalohydrin and epihalohydrin are used in combination with the polyhydric phenol as described above, the condensation reaction product (A ') obtained has all the epoxy groups of the β-alkylglycidyl group. (Compound (A)), a compound in which a β-alkylglycidyl group and a glycidyl group coexist in the compound (Compound (A)), a compound in which all epoxy groups are glycidyl groups,
And are mixed.

【0019】また、縮合反応物(A’)は、その原料成
分としてβ−アルキルエピハロヒドリンを使用するた
め、該縮合反応物(A’)中の全塩素量を低減できると
いう効果をも奏する。即ち、全塩素量が多い場合には半
導体パッケージとした場合の配線腐食を招来するという
問題を生ずるが、本発明においては全塩素量を低減し、
信頼性を高めることができる。具体的な全塩素量は、特
に制限されないが、縮合反応物(A’)中、全塩素量が
800ppm以下となることが好ましい。
Further, since the condensation reaction product (A ') uses β-alkylepihalohydrin as a raw material component thereof, it also has an effect of reducing the total chlorine content in the condensation reaction product (A'). That is, when the total chlorine content is large, there is a problem of causing wiring corrosion in a semiconductor package, but in the present invention, the total chlorine content is reduced,
The reliability can be increased. The specific total chlorine amount is not particularly limited, but the total chlorine amount in the condensation reaction product (A ′) is preferably 800 ppm or less.

【0020】上記の縮合反応物(A’)の製造方法は、
特に制限されるものではないが、具体的には、以下の方
法が挙げられる。先ず、多価フェノール化合物中の水酸
基に対して2〜15当量のβ−メチルエピクロルヒドリ
ン或いはβ−メチルエピクロロヒドリンとエピクロロヒ
ドリンの混合物を添加して溶解し、その後、多価フェノ
ール化合物中の水酸基に対して0.8〜1.2当量の1
0〜50%NaOH水溶液を50〜80℃の温度で3〜
5時間要して適下する。適下後その温度で0.5〜2時
間程度攪拌を続けて、静置後下層の食塩水を棄却する。
次いで過剰のエピハロヒドリンを蒸留回収し祖樹脂を得
る。これにトルエン、MIBK等の有機溶媒を加え、水
洗−脱水−濾過−脱溶媒工程を経て、目的の樹脂を得る
ことができる。また不純物塩素量の低減等を目的に、反
応の際ジオキサン、DMSO等の溶媒を併用しても良
い。
The above-mentioned method for producing the condensation reaction product (A ') is
Although not particularly limited, the following methods are specifically mentioned. First, 2 to 15 equivalents of β-methylepichlorohydrin or a mixture of β-methylepichlorohydrin and epichlorohydrin with respect to the hydroxyl group in the polyhydric phenol compound are added and dissolved, and then in the polyhydric phenol compound. 0.8 to 1.2 equivalent of 1 with respect to the hydroxyl group of
0 to 50% NaOH aqueous solution at a temperature of 50 to 80 ° C. for 3 to
It takes 5 hours and is suitable. After a suitable temperature, stirring is continued for 0.5 to 2 hours at that temperature, and after standing, the lower layer saline is discarded.
Then, excess epihalohydrin is recovered by distillation to obtain a crude resin. To this, an organic solvent such as toluene or MIBK is added, and the desired resin can be obtained through the steps of washing with water, dehydration, filtration and desolvation. A solvent such as dioxane or DMSO may be used together during the reaction for the purpose of reducing the amount of impurity chlorine.

【0021】本発明のおける化合物(A)或いは縮合反
応物(A’)は、それ自体の溶融粘度が著しく低いた
め、無機充填材を高充填でき、成形物の耐熱性、耐水性
を著しく向上でき、耐ハンダクラック性が著しく良好と
なる。また、無機充填材を高充填しても得られた材料が
優れた流動性を有するため薄型化した半導体パッケージ
への成形も容易である他、一般的に高流動性と相反する
特性である保存安定性も兼備したものとなる。更に、既
述の通り、エポキシ樹脂の低全塩素量化も達成できる為
に、配線腐食防止等の高信頼性をも合わせ持つ半導体封
止材料となる。
Since the compound (A) or the condensation reaction product (A ') in the present invention has a remarkably low melt viscosity, the inorganic filler can be highly filled, and the heat resistance and water resistance of the molded product are remarkably improved. The solder crack resistance is remarkably improved. In addition, even if highly filled with an inorganic filler, the obtained material has excellent fluidity, so that it can be easily molded into a thin semiconductor package. In addition, it is a property that contradicts high fluidity. It also has stability. Further, as described above, since a low total chlorine content of the epoxy resin can be achieved, it becomes a semiconductor encapsulating material that also has high reliability such as prevention of wiring corrosion.

【0022】以上詳述した化合物(A)を含む縮合反応
物(A’)は、更に硬化剤(B)及び無機充填材(C)
と配合することにより、目的とする半導体封止材料を得
ることができる。
The condensation reaction product (A ') containing the compound (A) detailed above further comprises a curing agent (B) and an inorganic filler (C).
By blending with, the intended semiconductor encapsulating material can be obtained.

【0023】ここで、硬化剤(B)としては、エポキシ
基と反応し得る活性水素原子を有する化合物であればよ
く、特に制限されるものではないが、1分子中にフェノ
ール性水酸基を2個以上含有する化合物であることが、
硬化特性並びに耐熱性等の点から好ましく、例示するな
らばフェノール−ホルムアルデヒド重縮合物に代表され
るフェノールノボラック樹脂、クレゾール−ホルムアル
デヒド重縮合物に代表されるC1〜C10のモノアルキル
置換フェノール−ホルムアルデヒド重縮合物、キシレノ
ール−ホルムアルデヒド重縮合物に代表されるC1〜C1
0のジアルキル置換フェノール−ホルムアルデヒド重縮
合物、ビスフェノールA−ホルムアルデヒド重縮合物に
代表されるビスフェノール類−ホルムアルデヒド重縮合
物、その他、フェノールとC1〜C10のモノアルキル置
換フェノールとホルムアルデヒドとの共重縮合物、フェ
ノール類とジシクロペンタジエン、リモネン、ピネン等
の環状ジエンとの重付加物、フェノール類とジビニルベ
ンゼンの重付加物等が挙げられる。
Here, the curing agent (B) is not particularly limited as long as it is a compound having an active hydrogen atom capable of reacting with an epoxy group, and is not particularly limited, but two phenolic hydroxyl groups are contained in one molecule. It is a compound containing the above,
It is preferable in terms of curing characteristics and heat resistance, and if it is exemplified, it is a phenol novolac resin typified by a phenol-formaldehyde polycondensate, or a C1 to C10 monoalkyl-substituted phenol-formaldehyde polycondensate typified by a cresol-formaldehyde polycondensate. C1 to C1 represented by condensate and xylenol-formaldehyde polycondensate
0 dialkyl-substituted phenol-formaldehyde polycondensate, bisphenol-formaldehyde polycondensate typified by bisphenol A-formaldehyde polycondensate, and other copolycondensates of phenol and C1 to C10 monoalkyl-substituted phenol and formaldehyde , Polycycloaddition products of phenols with cyclic dienes such as dicyclopentadiene, limonene, and pinene, and polyaddition products of phenols with divinylbenzene.

【0024】中でも硬化性、耐熱性等が優れることか
ら、フェノール−ホルムアルデヒド重縮合物、クレゾー
ルノボラック−ホルムアルデヒド重縮合物、ジシクロペ
ンタジエン−フェノール重付加物が特に好ましい。
Among them, phenol-formaldehyde polycondensate, cresol novolac-formaldehyde polycondensate and dicyclopentadiene-phenol polyadduct are particularly preferable because they have excellent curability and heat resistance.

【0025】上記された如き各化合物を硬化剤として用
いる際は、硬化促進剤を適宜使用することができる。硬
化促進剤としては公知慣用のものがいずれも使用できる
が、例えば、第3級アミン類、イミダゾール類、有機酸
金属塩類、アミン錯塩、トリフェニルホスフィン等のリ
ン系化合物等が挙げられ、これらは単独のみならず2種
以上の併用も可能である。
When each of the compounds described above is used as a curing agent, a curing accelerator can be used appropriately. As the curing accelerator, any conventionally known one can be used, and examples thereof include tertiary amines, imidazoles, organic acid metal salts, amine complex salts, phosphorus compounds such as triphenylphosphine, and the like. Not only alone but also two or more kinds can be used in combination.

【0026】本発明で用いる無機充填材(C)は、硬化
物の機械強度を高めることのみならず、低吸水率、低線
膨張係数を達成し、ハンダクラック防止効果を高めるた
めの必須の成分であり、具体的には限定されるものでは
ないが、例えば粉末シリカ、アルミナ、タルク、クレ
ー、ガラス繊維等が挙げられるが、特に耐湿性及び耐ハ
ンダクラック性に優れる点から粉末シリカが好ましい。
The inorganic filler (C) used in the present invention is an essential component for not only enhancing the mechanical strength of the cured product, but also achieving low water absorption and low linear expansion coefficient and enhancing the solder crack preventing effect. Although not specifically limited, examples thereof include powdered silica, alumina, talc, clay, and glass fiber, and powdered silica is particularly preferable from the viewpoint of excellent moisture resistance and solder crack resistance.

【0027】また、粉末シリカとしては、更に具体的に
は溶融シリカ、結晶シリカ、球状シリカ、粉砕シリカ等
が挙げられるが、なかでも流動性に優れる点から溶融シ
リカが好ましい。
Specific examples of the powdered silica include fused silica, crystalline silica, spherical silica, pulverized silica and the like. Among them, fused silica is preferable from the viewpoint of excellent fluidity.

【0028】無機充填材(C)の粒径としては、特に限
定されないが、5ミクロン以下等の小粒径が好ましい。
また、流動性を良くするために、種々の粒径分布を持っ
たものを使用することができる。
The particle size of the inorganic filler (C) is not particularly limited, but a small particle size such as 5 microns or less is preferable.
Further, those having various particle size distributions can be used in order to improve the fluidity.

【0029】また、無機充填材(C)の配合量は特に制
限されるものではないが、その配合量が多ければ多い
程、機械強度並びにハンダクラック防止効果が顕著なも
のとなる点から好ましく、具体的には、組成物中80〜
95重量%の範囲で用いることが、それらの特性が際立
つものとなる点から好ましい。
The compounding amount of the inorganic filler (C) is not particularly limited, but the larger the compounding amount is, the more preferable the mechanical strength and the effect of preventing solder cracks are. Specifically, in the composition 80-
It is preferable to use it in the range of 95% by weight from the viewpoint that those characteristics will be outstanding.

【0030】また本発明の組成物は、必須成分である上
述した化合物(A)或いは該化合物(A)を含む縮合反
応物(A’)の他に、さらに本発明の組成物の特性を損
なわない範囲で、その他のエポキシ樹脂を併用しても構
わない。
The composition of the present invention further impairs the properties of the composition of the present invention in addition to the above-mentioned compound (A) or condensation reaction product (A ') containing the compound (A) which is an essential component. Other epoxy resins may be used in combination as long as there is no range.

【0031】この際に用いられるその他エポキシ樹脂と
しては、公知慣用のものが何れも使用でき、例えばビス
フェノールAジグリシジルエーテル型エポキシ樹脂、フ
ェノールノボラック型エポキシ樹脂、オルソクレゾール
ノボラック型エポキシ樹脂、ビスフェノールAノボラッ
ク型エポキシ樹脂、ビスフェノールFノボラック型エポ
キシ樹脂、臭素化フェノールノボラック型エポキシ樹
脂、ナフトールノボラック型エポキシ樹脂、ビフェニル
型2官能エポキシ樹脂、ヒドロキシベンズアルデヒドと
フェノール類との縮合物のポリグリシジルエーテル等が
挙げられるが、これらに限定されるものではない。これ
らの中でも、特に耐熱性に優れる点からオルソクレゾー
ルノボラック型エポキシ樹脂が、また流動性に優れる点
からビフェニル型2官能エポキシ樹脂が好ましい。
As the other epoxy resin used at this time, any of the known and commonly used ones can be used. For example, bisphenol A diglycidyl ether type epoxy resin, phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, bisphenol A novolac. Type epoxy resin, bisphenol F novolac type epoxy resin, brominated phenol novolac type epoxy resin, naphthol novolac type epoxy resin, biphenyl type bifunctional epoxy resin, polyglycidyl ether of a condensate of hydroxybenzaldehyde and phenols, and the like. However, the present invention is not limited to these. Among these, the orthocresol novolac type epoxy resin is preferable because of its excellent heat resistance, and the biphenyl type bifunctional epoxy resin is preferable because of its excellent fluidity.

【0032】また必要に応じて、着色剤、難燃剤、離型
剤、シリコーンオイルあるいはシリコーン樹脂等の低応
力化剤、カップリング剤等の公知慣用の各種の添加剤成
分も適宜配合せしめることができる。
Further, if necessary, various well-known and commonly used additive components such as a colorant, a flame retardant, a release agent, a stress-reducing agent such as silicone oil or silicone resin, a coupling agent and the like may be appropriately blended. it can.

【0033】次に、上記した各成分から目的とする半導
体封止材料を調製するには、多価エポキシ化合物(A)
若しくは縮合反応物(A’)、硬化剤(B)及び無機充
填材(C)、更に必要に応じ、硬化促進剤、添加剤、そ
の他のエポキシ樹脂をミキサー等によって十分に均一に
混合した後、更に熱ロールまたはニーダ−等で溶融混練
し、冷却後粉砕し、さらに成形機でタブレット状に成形
する事により為される。
Next, in order to prepare a desired semiconductor encapsulating material from the above-mentioned components, the polyvalent epoxy compound (A) is used.
Alternatively, after the condensation reaction product (A ′), the curing agent (B) and the inorganic filler (C), and if necessary, the curing accelerator, the additive, and the other epoxy resin are sufficiently and uniformly mixed by a mixer or the like, Further, it is carried out by melt-kneading with a hot roll or a kneader, cooling and pulverizing, and further forming into tablets by a forming machine.

【0034】この様にして得られる本発明の半導体封止
材料は、保存安定性が優れ、不純物塩素量が少ない高純
度物であり、半導体チップへ成形したものは耐ハンダク
ラック性に著しく優れる。また、エポキシ樹脂自体の低
溶融粘度の特性により、無機充填材の高充填率化を可能
にし、優れた耐ハンダクラック性を有す。
The semiconductor encapsulating material of the present invention thus obtained is a high-purity material having excellent storage stability and a small amount of impurity chlorine, and a molded semiconductor chip has remarkably excellent solder crack resistance. In addition, the low melting viscosity of the epoxy resin itself enables a high filling rate of the inorganic filler, and has excellent solder crack resistance.

【0035】尚、本発明における保存安定性は、半導体
封止材料を室温(20〜35℃)に3〜5日間放置した
場合における安定性がとりわけ良好であり、この際の、
硬化時間の短縮及び流動性の低下の程度が小さく優れた
成形性を発現するものである。
The storage stability in the present invention is particularly good when the semiconductor sealing material is left at room temperature (20 to 35 ° C.) for 3 to 5 days.
The degree of reduction in curing time and the decrease in fluidity are small, and excellent moldability is exhibited.

【0036】[0036]

【実施例】次に本発明を製造例、実施例およびその比較
例により具体的に説明する。尚、例中において部は特に
断りのない限りすべて重量部である。
EXAMPLES Next, the present invention will be specifically described with reference to production examples, examples and comparative examples. In the examples, all parts are parts by weight unless otherwise specified.

【0037】尚、溶融粘度は50HzのもとにおいてRe
seach equipment LTD.製「ICI CONE & PLATE VISCOMET
ER」で測定した。
The melt viscosity is Re at 50 Hz.
seach equipment LTD. `` ICI CONE & PLATE VISCOMET
ER ”.

【0038】全塩素含有量は次の測定法で測定した。樹
脂0.3gをn−BuOH20mlで溶解後、金属ナト
リウム1gを添加し、120℃で3時間加熱処理をす
る。それを硝酸銀水溶液を用い適定法して、その適定量
から、全塩素含有量を算出した。ゲルタイムは、配合物
を175℃で加熱攪拌し、流動性が失われた時点とし
た。
The total chlorine content was measured by the following measuring method. After dissolving 0.3 g of the resin in 20 ml of n-BuOH, 1 g of metallic sodium is added and heat treatment is performed at 120 ° C. for 3 hours. The total content of chlorine was calculated from the appropriate quantity of the solution, which was determined by an appropriate titration method using an aqueous silver nitrate solution. The gel time was defined as the time when the mixture was heated and stirred at 175 ° C. and the fluidity was lost.

【0039】製造例1 攪拌機、温度計、冷却器付きデカンターを付した4つ口
フラスコにビスフェノールA228g(1モル)にβ−
メチルエピクロルヒドリン1065g(10モル)を入
れ溶解する。それに減圧下、80℃で48%NaOH水
溶液147g(1.8モル)を3時間かけて攪拌しなが
ら滴下した。その間、フラスコを加熱してβ−メチルエ
ピクロルヒドリンと水を蒸留し、デカンターで冷却器で
凝縮したβ−メチルエピクロルヒドリンと水を分離し、
β−メチルエピクロルヒドリンをフラスコ内に戻し続け
た。さらに30分間攪拌を続けてその後、水を180g
を加え静置した。下層の食塩水を棄却し、β−メチルエ
ピクロルヒドリンを150℃で蒸留回収した後、粗樹脂
にMIBK400gを加え、さらに3%NaOH水溶液
水200gを加え80℃にて1時間攪拌した。そして下
層の水層を棄却した。その後、さらにMIBK層を水2
00gで水洗し、水を棄却した後、脱水、濾過を経てM
IBKを150℃で脱溶剤して目的のエポキシ樹脂
(A)352gを得た。150℃での溶融粘度0.08
ポイズ、エポキシ当量は210g/eq、全塩素量が6
40ppmであった。
Production Example 1 228 g (1 mol) of bisphenol A was placed in a 4-necked flask equipped with a stirrer, a thermometer, and a decanter equipped with a condenser, and β-.
1065 g (10 mol) of methyl epichlorohydrin was added and dissolved. Under reduced pressure, 147 g (1.8 mol) of 48% NaOH aqueous solution was added dropwise at 80 ° C. over 3 hours while stirring. Meanwhile, the flask is heated to distill β-methylepichlorohydrin and water, and the decanter separates β-methylepichlorohydrin condensed in the condenser and water,
The β-methylepichlorohydrin was kept back in the flask. Continue stirring for another 30 minutes and then add 180g of water.
Was added and allowed to stand. The lower layer saline was discarded, and β-methylepichlorohydrin was distilled and collected at 150 ° C, then MIBK 400g was added to the crude resin, 3% NaOH aqueous solution 200g was further added, and the mixture was stirred at 80 ° C for 1 hour. Then, the lower water layer was discarded. After that, further the MIBK layer with water 2
After washing with 00 g of water and discarding the water, it is dehydrated and filtered, and then M
IBK was desolvated at 150 ° C. to obtain 352 g of the target epoxy resin (A). Melt viscosity at 150 ° C 0.08
Poise, epoxy equivalent 210g / eq, total chlorine 6
It was 40 ppm.

【0040】製造例2 β−メチルエピクロルヒドリンをβ−メチルエピクロル
ヒドリン533g(5モル)とエピクロルヒドリン46
1g(5モル)の混合物に変更した以外は製造例1と同
様にして、エポキシ樹脂300gを得た。この樹脂は1
50℃での溶融粘度0.06ポイズ、エポキシ当量は2
02g/eq、全塩素が790ppmであった。
Production Example 2 β-Methylepichlorohydrin was mixed with 533 g (5 mol) of β-methylepichlorohydrin and epichlorohydrin 46.
300 g of epoxy resin was obtained in the same manner as in Production Example 1 except that the mixture was changed to 1 g (5 mol). This resin is 1
Melt viscosity at 50 ° C 0.06 poise, epoxy equivalent is 2
02 g / eq and total chlorine were 790 ppm.

【0041】製造例3 ビスフェノールAの代わりに1,6−ジヒドロキシナフ
タレン160gを使用する以外は製造例1と同様にし
て、エポキシ樹脂(C)299gを得た。この樹脂は1
50℃での溶融粘度0.12ポイズ、エポキシ当量は1
76g/eq、全塩素含有量は650ppmであった。
Production Example 3 An epoxy resin (C) of 299 g was obtained in the same manner as in Production Example 1 except that 160 g of 1,6-dihydroxynaphthalene was used instead of bisphenol A. This resin is 1
Melt viscosity at 50 ° C 0.12 poise, epoxy equivalent is 1
The total chlorine content was 76 g / eq and 650 ppm.

【0042】製造例4 β−メチルエピクロルヒドリンをβ−メチルエピクロル
ヒドリン852g(8モル)とエピクロルヒドリン18
5g(2モル)の混合物に変更した以外は製造例3と同
様にして、エポキシ樹脂296gを得た。この樹脂は1
50℃での溶融粘度0.10ポイズ、エポキシ当量は1
69g/eq、全塩素が690ppmであった。
Production Example 4 β-Methylepichlorohydrin was replaced with 852 g (8 mol) of β-methylepichlorohydrin and 18 epichlorohydrin.
296 g of an epoxy resin was obtained in the same manner as in Production Example 3 except that the mixture was changed to 5 g (2 mol). This resin is 1
Melt viscosity at 50 ° C 0.10 poise, epoxy equivalent is 1
It was 69 g / eq and total chlorine was 690 ppm.

【0043】実施例1〜7及び比較例1〜3 比較にオルソクレゾールノボラック型エポキシ樹脂であ
るであるEPICLON N−665(大日本インキ化
学工業(株)製:150℃の溶融粘度3.0ポイズ,エ
ポキシ当量208g/eq,全塩素1080ppm)
と、ビスフェノールAとエピクロルヒドリンの縮合型エ
ポキシ樹脂であるEPICLON 850S(大日本イ
ンキ化学工業(株)製:150℃の溶融粘度0.04ポ
イズ,エポキシ当量188g/eq,全塩素1450p
pm)と、1,6−ジヒドロキシナフタレンとエピクロ
ルヒドリンの縮合型エポキシ樹脂であるEPICLON
HP−4032(大日本インキ化学工業(株)製:1
50℃の溶融粘度0.08ポイズ,エポキシ当量150
g/eq,全塩素1720ppm)にして以下の評価を
行った。
Examples 1 to 7 and Comparative Examples 1 to 3 For comparison, EPICLON N-665 (Dainippon Ink and Chemicals, Inc.), which is an ortho-cresol novolac type epoxy resin, has a melt viscosity of 3.0 poise at 150 ° C. , Epoxy equivalent 208g / eq, total chlorine 1080ppm)
And EPICLON 850S, a condensation type epoxy resin of bisphenol A and epichlorohydrin (manufactured by Dainippon Ink and Chemicals, Inc .: melt viscosity at 150 ° C 0.04 poise, epoxy equivalent 188 g / eq, total chlorine 1450 p).
pm) and EPICLON which is a condensation type epoxy resin of 1,6-dihydroxynaphthalene and epichlorohydrin
HP-4032 (manufactured by Dainippon Ink and Chemicals, Inc .: 1
Melt viscosity at 50 ° C 0.08 poise, epoxy equivalent 150
g / eq, total chlorine 1720 ppm), and the following evaluation was performed.

【0044】第1表及び第2表で表される配合に従って
調製した混合物を熱ロールにて100℃・8分間混練り
し、その後粉砕したものをプレス成形機にて30Kg/
cm2、金型温度175℃、成形時間100秒の条件下
にて封止し、厚さ2mmの評価用試験片を作成した。そ
の後175℃で8時間の後硬化を施した。尚、溶融シリ
カの配合量は、得られた配合物の流動性が同一になるよ
うに調整された。また、フェノールノボラック硬化剤と
して、フェノライトTD−2131(大日本インキ化学
工業(株)製:水酸基当量:104g/eq.)を使用し
た。
The mixture prepared according to the formulations shown in Tables 1 and 2 was kneaded with a hot roll at 100 ° C. for 8 minutes and then pulverized to obtain 30 kg / m of a press molding machine.
The test piece for evaluation having a thickness of 2 mm was prepared by sealing under conditions of cm2, mold temperature 175 ° C, and molding time 100 seconds. Then, post-curing was performed at 175 ° C. for 8 hours. The blended amount of fused silica was adjusted so that the resulting blends had the same fluidity. In addition, as a phenol novolac curing agent, Phenolite TD-2131 (manufactured by Dainippon Ink and Chemicals, Inc .: hydroxyl group equivalent: 104 g / eq.) Was used.

【0045】この評価用試験片を用い、175℃のスパ
イラルフローと85℃・85%RH条件下での吸水率、
及び動的粘弾性測定器によるガラス転移温度を測定し
た。また保存安定性試験として、封止材料を30℃で7
2時間保存した後のスパイラルフローを測定し、その保
持率を求めた。さらに160℃×20時間、4気圧の条
件下におけるプレッシャークッカーテストを行い抽出水
中の塩素イオン量を測定した。また試験片を85℃・8
5%RHの雰囲気下中72時間放置し、吸湿処理を行っ
た後、これを260℃のハンダ浴に10秒浸せきし、そ
の際のクラック発生率を調べて耐ハンダクラック性を評
価した。試験片数は20個。この結果を同じく第1表に
示す。
Using this test piece for evaluation, the water absorption under the conditions of spiral flow of 175 ° C. and 85 ° C. and 85% RH,
And the glass transition temperature was measured by a dynamic viscoelasticity measuring instrument. In addition, as a storage stability test, the sealing material at
The spiral flow after storage for 2 hours was measured to determine the retention rate. Furthermore, a pressure cooker test was performed under the conditions of 160 ° C. × 20 hours and 4 atmospheres to measure the amount of chlorine ions in the extracted water. In addition, the test piece is 85 ℃ ・ 8
After being left for 72 hours in an atmosphere of 5% RH and subjected to a moisture absorption treatment, this was immersed in a solder bath at 260 ° C. for 10 seconds, and the crack occurrence rate at that time was examined to evaluate the solder crack resistance. 20 test pieces. The results are also shown in Table 1.

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【表2】 [Table 2]

【0048】[0048]

【発明の効果】本発明によれば、流動性が著しく良好で
高実装密度化に充分対応可能であって、かつ、保存安定
性をも兼備した半導体封止材料を提供できる。
According to the present invention, it is possible to provide a semiconductor encapsulating material which has excellent fluidity, can sufficiently cope with high packaging density, and has storage stability.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 β−アルキルグリシジル基をエポキシ基
として有する多価エポキシ化合物(A)、硬化剤(B)
及び無機充填材(C)を必須成分とすることを特徴とす
る半導体封止材料。
1. A polyvalent epoxy compound (A) having a β-alkylglycidyl group as an epoxy group and a curing agent (B).
And a semiconductor encapsulating material, which comprises an inorganic filler (C) as an essential component.
【請求項2】 β−アルキルグリシジル基が、β−メチ
ルグリシジル基である請求項1記載の半導体封止材料。
2. The semiconductor encapsulating material according to claim 1, wherein the β-alkylglycidyl group is a β-methylglycidyl group.
【請求項3】 多価エポキシ化合物(A)が、ビスフェ
ノール類のβ−アルキルグリシジルエーテル、又は、ナ
フトール類のβ−アルキルグリシジルエーテルである請
求項1または2記載の半導体封止材料。
3. The semiconductor encapsulating material according to claim 1, wherein the polyepoxy compound (A) is a β-alkyl glycidyl ether of a bisphenol or a β-alkyl glycidyl ether of a naphthol.
【請求項4】 多価エポキシ化合物(A)を、β−アル
キルエピハロヒドリンと多価フェノール化合物との縮合
反応物(A’)として用いる請求項1、2又は3記載の
半導体封止材料。
4. The semiconductor encapsulating material according to claim 1, 2 or 3, wherein the polyvalent epoxy compound (A) is used as a condensation reaction product (A ′) of β-alkylepihalohydrin and a polyvalent phenol compound.
【請求項5】 縮合反応物(A’)が、β−アルキルエ
ピハロヒドリンとエピハロヒドリンと多価フェノール化
合物とを反応させたものである請求項4記載の半導体封
止材料。
5. The semiconductor encapsulating material according to claim 4, wherein the condensation reaction product (A ′) is a reaction product of β-alkylepihalohydrin, epihalohydrin and a polyhydric phenol compound.
【請求項6】 β−アルキルエピハロヒドリンとエピハ
ロヒドリンとの使用割合が、前者/後者のモル比で90
/10〜30/70である請求項5記載の半導体封止材
料。
6. The ratio of β-alkyl epihalohydrin to epihalohydrin used is 90 in terms of the former / latter molar ratio.
The semiconductor sealing material according to claim 5, which is / 10 to 30/70.
【請求項7】 縮合反応物(A’)中の全塩素量が、8
00ppm以下である請求項4、5又は6記載の半導体
封止材料。
7. The total amount of chlorine in the condensation reaction product (A ′) is 8
The semiconductor encapsulating material according to claim 4, 5 or 6, wherein the content is 00 ppm or less.
【請求項8】 無機充填材(C)の含有率が、材料中8
0〜95重量%である請求項1〜7の何れか1つに記載
の半導体封止材料。
8. The content of the inorganic filler (C) is 8 in the material.
The semiconductor encapsulating material according to claim 1, which is 0 to 95% by weight.
JP09064995A 1995-04-17 1995-04-17 Semiconductor sealing material Expired - Fee Related JP3579959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09064995A JP3579959B2 (en) 1995-04-17 1995-04-17 Semiconductor sealing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09064995A JP3579959B2 (en) 1995-04-17 1995-04-17 Semiconductor sealing material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004091791A Division JP4093199B2 (en) 2004-03-26 2004-03-26 Semiconductor sealing material

Publications (2)

Publication Number Publication Date
JPH08283379A true JPH08283379A (en) 1996-10-29
JP3579959B2 JP3579959B2 (en) 2004-10-20

Family

ID=14004369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09064995A Expired - Fee Related JP3579959B2 (en) 1995-04-17 1995-04-17 Semiconductor sealing material

Country Status (1)

Country Link
JP (1) JP3579959B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10186652A (en) * 1996-12-20 1998-07-14 Hitachi Chem Co Ltd Resin composition for hardened coated film, color filter protective film, color filter, and liquid crystal display element each using same
WO2004029126A1 (en) * 2002-09-26 2004-04-08 Toagosei Co., Ltd. Hardening accelerator for cationic polymerization type composition
US6780898B2 (en) 2000-01-26 2004-08-24 Sony Chemicals Corporation Adhesive composition
JP2005307031A (en) * 2004-04-22 2005-11-04 Dainippon Ink & Chem Inc Epoxy resin composition and cured product thereof
JP2006137825A (en) * 2004-11-11 2006-06-01 Dainippon Ink & Chem Inc One pack-type epoxy resin composition and its hardened article
JP2007197518A (en) * 2006-01-24 2007-08-09 Fujifilm Corp Epoxy resin compound, thermosetting resin composition, and photosensitive composition
JP2007269979A (en) * 2006-03-31 2007-10-18 Dainippon Ink & Chem Inc Epoxy resin composition, its cured product, semiconductor sealing material and semiconductor device
JP2008094896A (en) * 2006-10-06 2008-04-24 Sumitomo Bakelite Co Ltd Resin composition for sealing semiconductor and semiconductor device
US7671114B2 (en) 2004-01-26 2010-03-02 Henkel Corporation Adhesive of substituted oxirane or oxetane compound with silver-based, lead-free solder
US7718741B2 (en) 2005-03-18 2010-05-18 Dainippon Ink And Chemicals, Inc. Epoxy resin composition and cured article thereof, novel epoxy resin and production method thereof, and novel phenol resin
JP4772675B2 (en) * 2003-08-13 2011-09-14 ハンツマン・アドヴァンスト・マテリアルズ・(スイッツランド)・ゲーエムベーハー Nanocomposites based on polyurethane resins or polyurethane-epoxy hybrid resins produced without using isocyanates
US8729192B2 (en) * 2006-02-28 2014-05-20 Dic Corporation Epoxy resin composition, cured article thereof, novel epoxy resin, novel phenol resin and semiconductor-encapsulating material
JP2014205732A (en) * 2013-04-10 2014-10-30 旭化成イーマテリアルズ株式会社 Resin composition and cured product

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10186652A (en) * 1996-12-20 1998-07-14 Hitachi Chem Co Ltd Resin composition for hardened coated film, color filter protective film, color filter, and liquid crystal display element each using same
US6780898B2 (en) 2000-01-26 2004-08-24 Sony Chemicals Corporation Adhesive composition
WO2004029126A1 (en) * 2002-09-26 2004-04-08 Toagosei Co., Ltd. Hardening accelerator for cationic polymerization type composition
JP4772675B2 (en) * 2003-08-13 2011-09-14 ハンツマン・アドヴァンスト・マテリアルズ・(スイッツランド)・ゲーエムベーハー Nanocomposites based on polyurethane resins or polyurethane-epoxy hybrid resins produced without using isocyanates
US7671114B2 (en) 2004-01-26 2010-03-02 Henkel Corporation Adhesive of substituted oxirane or oxetane compound with silver-based, lead-free solder
JP2005307031A (en) * 2004-04-22 2005-11-04 Dainippon Ink & Chem Inc Epoxy resin composition and cured product thereof
JP4716082B2 (en) * 2004-04-22 2011-07-06 Dic株式会社 Epoxy resin composition and cured product thereof
JP2006137825A (en) * 2004-11-11 2006-06-01 Dainippon Ink & Chem Inc One pack-type epoxy resin composition and its hardened article
US7718741B2 (en) 2005-03-18 2010-05-18 Dainippon Ink And Chemicals, Inc. Epoxy resin composition and cured article thereof, novel epoxy resin and production method thereof, and novel phenol resin
US8084567B2 (en) 2005-03-18 2011-12-27 Dainippon Ink & Chemicals, Inc. Epoxy resin composition and cured article thereof, novel epoxy resin and production method thereof, and novel phenol resin
JP2007197518A (en) * 2006-01-24 2007-08-09 Fujifilm Corp Epoxy resin compound, thermosetting resin composition, and photosensitive composition
US8729192B2 (en) * 2006-02-28 2014-05-20 Dic Corporation Epoxy resin composition, cured article thereof, novel epoxy resin, novel phenol resin and semiconductor-encapsulating material
JP2007269979A (en) * 2006-03-31 2007-10-18 Dainippon Ink & Chem Inc Epoxy resin composition, its cured product, semiconductor sealing material and semiconductor device
JP2008094896A (en) * 2006-10-06 2008-04-24 Sumitomo Bakelite Co Ltd Resin composition for sealing semiconductor and semiconductor device
JP2014205732A (en) * 2013-04-10 2014-10-30 旭化成イーマテリアルズ株式会社 Resin composition and cured product

Also Published As

Publication number Publication date
JP3579959B2 (en) 2004-10-20

Similar Documents

Publication Publication Date Title
JPH08283379A (en) Semiconductor sealing material
US6713589B2 (en) Phenyl, naphthly or fluorene cyclopentyl epoxy resins
JP3509236B2 (en) Epoxy resin composition and semiconductor encapsulating material
JPH08100049A (en) Epoxy resin composition for semiconductor-sealing material
JP4093199B2 (en) Semiconductor sealing material
JPH0948839A (en) Epoxy resin composition and semiconductor sealer
JPH07258240A (en) Glycidyl ether compound and epoxy resin composition
JP3484681B2 (en) Epoxy resin composition, method for producing epoxy resin mixture, and semiconductor encapsulating material
JP3770343B2 (en) Epoxy resin composition and semiconductor sealing material
JPH07206995A (en) Epoxy resin composition and sealing material for semiconductor
JP2004190040A5 (en)
JP3940945B2 (en) Epoxy resin composition for sealing electronic parts
JPH10324733A (en) Epoxy resin composition, production of epoxy resin and semiconductor-sealing material
JP3731585B2 (en) Production method of epoxy resin
JP3986025B2 (en) Epoxy resin composition and semiconductor sealing material
JP2726483B2 (en) High heat-resistant flame-retardant resin composition
JP3118763B2 (en) Epoxy resin composition and semiconductor encapsulating material
JP4765135B2 (en) Epoxy resin composition and semiconductor device
JPH07216052A (en) Epoxy resin and epoxy resin composition
JP2927222B2 (en) Resin-sealed semiconductor device
JPH0343412A (en) High heat-resistant and low water-absorbing resin composition
JPH06100656A (en) Epoxy resin composition for semiconductor sealing
JPH07242727A (en) Epoxy resin and epoxy resin composition
JP2001261790A (en) Epoxy resin composition and semiconductor device
JPH10130370A (en) Epoxy resin composition and semiconductor sealing material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040712

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees