JP3579959B2 - Semiconductor sealing material - Google Patents

Semiconductor sealing material Download PDF

Info

Publication number
JP3579959B2
JP3579959B2 JP09064995A JP9064995A JP3579959B2 JP 3579959 B2 JP3579959 B2 JP 3579959B2 JP 09064995 A JP09064995 A JP 09064995A JP 9064995 A JP9064995 A JP 9064995A JP 3579959 B2 JP3579959 B2 JP 3579959B2
Authority
JP
Japan
Prior art keywords
epihalohydrin
alkyl
epoxy resin
compound
fluidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09064995A
Other languages
Japanese (ja)
Other versions
JPH08283379A (en
Inventor
一郎 小椋
勝治 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP09064995A priority Critical patent/JP3579959B2/en
Publication of JPH08283379A publication Critical patent/JPH08283379A/en
Application granted granted Critical
Publication of JP3579959B2 publication Critical patent/JP3579959B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【0001】
【産業上の利用分野】
本発明は新規な特に保存安定性と流動性とに優れた半導体封止材料に関する。
【0002】
【従来の技術】
近年、半導体パッケージは、高実装密度化に対応し薄型化する傾向にあり、厚さ1mm以下のTSOP型パッケージも使用される様になっている。これに対応して半導体封止材料も、より流動性が高い材料が求められている。
【0003】
これまで、半導体封止材料用のエポキシ樹脂として、オルソクレゾールノボラック型エポキシ樹脂(以下「ECN」という)を使用した半導体封止材用エポキシ組成物が広く用いられているが、当該樹脂を使用した半導体封止材は、耐熱性には優れるものの、溶融粘度が高いため、流動性が著しく悪く、前記高実装密度化への対応が困難になるという欠陥を有していた。一方、液状型ビスフェノール型エポキシ樹脂を使用した半導体封止材も知られているが、低溶融粘度のため、流動性の良好な封止材料が提供可能なものの、耐熱性が悪く実用に供し得ないものでり、また、保存安定性が極めて悪いものであった。
【0004】
そこで従来より、流動性並びに耐熱性に優れ高実装密度化に対応し得る半導体封止材料としては、例えば、1,6−ジヒドロキシナフタレンにエピクロルヒドリンを反応させて得られるナフタレン系エポキシ樹脂を主剤として用いた半導体封止材料が知られている。
【0005】
【解決しようとする課題】
しかし、上記1,6−ジヒドロキシナフタレンにエピクロルヒドリンを反応させて得られるナフタレン系エポキシ樹脂を主剤として用いた半導体封止材料は、溶融粘度が低くく流動性に優れるものの、半導体封止材料の保存安定性が極めて悪く、そのため実用時に、設計当時よりも速硬化性となりフローが短縮され、成形性に不具合を引き起こすことという大きな課題を有していた。
【0006】
本発明が解決しようとする課題は、優れた保存安定性と、流動性とを兼備した半導体封止材料を提供することにある。
【0007】
【課題を解決するための手段】
本発明者等は鋭意検討した結果、β−アルキルエピハロヒドリンとエピハロヒドリンと多価フェノール化合物とを、β−アルキルエピハロヒドリン/エピハロヒドリンのモル比で90/10〜30/70となる割合で反応させた縮合反応物(A’)を主剤として用いることにより、上記課題を見いだし本発明を完成するに至った。
【0008】
即ち、本発明は、β−アルキルエピハロヒドリンとエピハロヒドリンとビスフェノール類とを、β−アルキルエピハロヒドリン/エピハロヒドリンのモル比で90/10〜30/70となる割合で反応させた縮合反応物(A’)、硬化剤(B)及び無機充填材(C)を必須成分とすることを特徴とする半導体封止材料に関する。
【0009】
前記縮合反応物(A’)中のβ−アルキルグリシジル基としては特に限定されるものではないが、例えば、β−メチルグリシジル基、β−エチルグリシジル基、β−プロピルグリシジル基、β−ブチルグリシジル基等が挙げられるが、なかでも保存安定性が著しく良好である点からβ−メチルグリシジル基が好ましい。
【0010】
前記縮合反応物(A’)は、エポキシ基の全てがβ−アルキルグリシジル基の化合物(a1)、β−アルキルグリシジル基とグリシジル基とが共存する化合物 ( a2 ) 、エポキシ基の全てがグリシジル基の化合物(a3)、とが混在したものとなる。ここで、エポキシ基の全てがβ−アルキルグリシジル基の化合物(a1)について例示すると、ビスフェノールAのジ−β−アルキルグリシジルエーテル、ジグリシジルエーテル、又はビスフェノールFのジ−β−アルキルグリシジルエーテル、ビスフェノールSのジ−β−アルキルグリシジルエーテルに代表される、ビスフェノール類のジ−β−アルキルグリシジルエーテル;ビフェノールのジ−β−アルキルグリシジルエーテル、テトラメチルビフェノールのジ−β−アルキルグリシジルエーテルに代表されるビフェノール類のジ−β−アルキルグリシジルエーテル;ジヒドロキシナフタレンのジ−β−アルキルグリシジルエーテル、ビナフトールのジ−β−アルキルグリシジルエーテルに代表されるナフトール類のβ−アルキルグリシジルエーテル;フェノール−ホルムアルデヒド重縮合物のポリ−β−アルキルグリシジルエーテル;クレゾール−ホルムアルデヒド重縮合物のポリ−β−アルキルグリシジルエーテルに代表されるC1〜C10のモノアルキル置換フェノール−ホルムアルデヒド重縮合物のポリ−β−アルキルグリシジルエーテル;キシレノール−ホルムアルデヒド重縮合物のポリ−β−アルキルグリシジルエーテルに代表されるC1〜C10のジアルキル置換フェノール−ホルムアルデヒド重縮合物のポリ−β−アルキルグリシジルエーテル;ビスフェノールA−ホルムアルデヒド重縮合物のポリ−β−アルキルグリシジルエーテルに代表されるビスフェノール類−ホルムアルデヒド重縮合物のポリ−β−アルキルグリシジルエーテル;フェノール類とジシクロペンタジエン、リモネン、ピネン等の環状ジエンとの重付加物のポリ−β−アルキルグリシジルエーテル;フェノール類とジビニルベンゼンの重付加物のポリ−β−アルキルグリシジルエーテル等が挙げられる。また、前記化合物(a2)及び化合物(a3)の具体例は、化合物(a1)と原料多価フェノール化合物を共通にするβ−アルキルグリシジル基とグリシジル基とが共存する化合物、及び化合物(a1)と原料多価フェノール化合物を共通にするエポキシ基の全てがグリシジル基の化合物が挙げられる。
【0011】
なかでも流動性及び保存安定性が良好である点からビスフェノール類を原料多価フェノール化合物とする化合物(a1)、化合物(a2)及び化合物(a3)、並びに、ナフトール類を原料多価フェノール化合物とする化合物(a1)、化合物(a2)及び化合物(a3)が好ましく、特に、耐熱性が著しく良好であり、耐熱性、流動性及び保存安定性の何れも良好となる点からジヒドロキシナフタレンを原料多価フェノール化合物とする化合物(a1)、化合物(a2)及び化合物(a3)が好ましい。ジヒドロキシナフタレンのジ−β−アルキルグリシジルエーテルには数種の異性体があるが、その中でも耐熱性が優れる点から1,6−ジヒドロキシナフタレンを原料多価フェノール化合物とする化合物(a1)、化合物(a2)及び化合物(a3)が好ましい。
【0014】
本発明で用いるβ−アルキルエピハロヒドリンとしては、特に制限されるものではないが、β−メチルエピクロロヒドリン、β−メチルエピブロモヒドリン、β−メチルエピフロロヒドリン等のβ−メチルエピハロヒドリン、β−エチルエピクロロヒドリン、β−エチルエピブロモヒドリン、β−エチルエピフロロヒドリン等のβ−エチルエピハロヒドリン、β−プロピルエピクロロヒドリン、β−プロピルエピブロモヒドリン、β−プロピルエピフロロヒドリン等のβ−プロピルエピハロヒドリン、β−ブチルエピクロロヒドリン、β−ブチルエピブロモヒドリン、β−ブチルエピフロロヒドリン等のβ−ブチルエピハロヒドリン等が挙げられるが、なかでも多価フェノールとの反応性並びに流動性の点からβ−メチルエピハロヒドリンが好ましい。
【0015】
また、多価フェノール化合物としては、1分子中に2個以上の芳香族性水酸基を含有した化合物であれば、種類は限定されないが、例示するならばビスフェノールA、ビスフェノールF、ビスフェノールS等のビスフェノール類、ビフェノール、テトラメチルビフェノール等のビフェノール類、ジヒドロキシナフタレン、ビナフトール等のナフトール類、フェノール−ホルムアルデヒド重縮合物に代表されるフェノールノボラック樹脂、クレゾール−ホルムアルデヒド重縮合物に代表されるC1〜C10のモノアルキル置換フェノール−ホルムアルデヒド重縮合物、キシレノール−ホルムアルデヒド重縮合物に代表されるC1〜C10のジアルキル置換フェノール−ホルムアルデヒド重縮合物、ビスフェノールA−ホルムアルデヒド重縮合物に代表されるビスフェノール類−ホルムアルデヒド重縮合物、その他、フェノールとC1〜C10のモノアルキル置換フェノールとホルムアルデヒドとの共重縮合物、フェノール類とジシクロペンタジエン、リモネン、ピネン等の環状ジエンとの重付加物、フェノール類とジビニルベンゼンの重付加物等が挙げられる。なかでも流動性及び保存安定性の点からビスフェノール類、ナフトール類が好ましく、特に耐熱性が良好となって、耐熱性、流動性及び保存安定性の何れも良好となる点からジヒドロキシナフタレンが好ましい。また、多価エポキシ化合物(A)の具体例における場合と同様にジヒドロキシナフタレンには数種の異性体があるが、その中でも耐熱性が優れる点から1,6−ジヒドロキシナフタレンが好ましい。
【0016】
本発明では、縮合反応物(A')を製造する際、β−アルキルエピハロヒドリンのみならず、エピハロヒドリンを一部併用するにより流動性をより向上させることができる。然し乍ら、β−アルキルエピハロヒドリンの使用割合を高めることにより、保存安定性が極めて優れたものとなる他、更にエポキシ樹脂に含まれる不純物塩素量がより低減されるという効果を発現するため、その混合比率を用途、要求特性に応じて適宜調整することができる。
【0017】
従って、本発明におけるβ−アルキルエピハロヒドリンとのエピハロヒドリンとの使用割合は、これらの特性バランスが良好となる点からβ−アルキルエピハロヒドリン/エピハロヒドリンのモル比で90/10〜30/70の範囲であり、特に80/20〜40/60の範囲が好ましい。
【0019】
また、縮合反応物(A’)は、その原料成分としてβ−アルキルエピハロヒドリンを使用するため、該縮合反応物(A’)中の全塩素量を低減できるという効果をも奏する。即ち、全塩素量が多い場合には半導体パッケージとした場合の配線腐食を招来するという問題を生ずるが、本発明においては全塩素量を低減し、信頼性を高めることができる。具体的な全塩素量は、特に制限されないが、縮合反応物(A’)中、全塩素量が800ppm以下となることが好ましい。
【0020】
上記の縮合反応物(A')の製造方法は、特に制限されるものではないが、具体的には、以下の方法が挙げられる。先ず、多価フェノール化合物中の水酸基に対して2〜15当量β−メチルエピクロロヒドリンとエピクロロヒドリンの混合物を添加して溶解し、その後、多価フェノール化合物中の水酸基に対して0.8〜1.2当量の10〜50%NaOH水溶液を50〜80℃の温度で3〜5時間要して適下する。適下後その温度で0.5〜2時間程度攪拌を続けて、静置後下層の食塩水を棄却する。次いで過剰のエピハロヒドリンを蒸留回収し祖樹脂を得る。これにトルエン、MIBK等の有機溶媒を加え、水洗−脱水−濾過−脱溶媒工程を経て、目的の樹脂を得ることができる。また不純物塩素量の低減等を目的に、反応の際ジオキサン、DMSO等の溶媒を併用しても良い。
【0021】
本発明における縮合反応物(A')は、それ自体の溶融粘度が著しく低いため、無機充填材を高充填でき、成形物の耐熱性、耐水性を著しく向上でき、耐ハンダクラック性が著しく良好となる。また、無機充填材を高充填しても得られた材料が優れた流動性を有するため薄型化した半導体パッケージへの成形も容易である他、一般的に高流動性と相反する特性である保存安定性も兼備したものとなる。更に、既述の通り、エポキシ樹脂の低全塩素量化も達成できる為に、配線腐食防止等の高信頼性をも合わせ持つ半導体封止材料となる。
【0022】
以上詳述した化合物(A)を含む縮合反応物(A’)は、更に硬化剤(B)及び無機充填材(C)と配合することにより、目的とする半導体封止材料を得ることができる。
【0023】
ここで、硬化剤(B)としては、エポキシ基と反応し得る活性水素原子を有する化合物であればよく、特に制限されるものではないが、1分子中にフェノール性水酸基を2個以上含有する化合物であることが、硬化特性並びに耐熱性等の点から好ましく、例示するならばフェノール−ホルムアルデヒド重縮合物に代表されるフェノールノボラック樹脂、クレゾール−ホルムアルデヒド重縮合物に代表されるC1〜C10のモノアルキル置換フェノール−ホルムアルデヒド重縮合物、キシレノール−ホルムアルデヒド重縮合物に代表されるC1〜C10のジアルキル置換フェノール−ホルムアルデヒド重縮合物、ビスフェノールA−ホルムアルデヒド重縮合物に代表されるビスフェノール類−ホルムアルデヒド重縮合物、その他、フェノールとC1〜C10のモノアルキル置換フェノールとホルムアルデヒドとの共重縮合物、フェノール類とジシクロペンタジエン、リモネン、ピネン等の環状ジエンとの重付加物、フェノール類とジビニルベンゼンの重付加物等が挙げられる。
【0024】
中でも硬化性、耐熱性等が優れることから、フェノール−ホルムアルデヒド重縮合物、クレゾールノボラック−ホルムアルデヒド重縮合物、ジシクロペンタジエン−フェノール重付加物が特に好ましい。
【0025】
上記された如き各化合物を硬化剤として用いる際は、硬化促進剤を適宜使用することができる。
硬化促進剤としては公知慣用のものがいずれも使用できるが、例えば、第3級アミン類、イミダゾール類、有機酸金属塩類、アミン錯塩、トリフェニルホスフィン等のリン系化合物等が挙げられ、これらは単独のみならず2種以上の併用も可能である。
【0026】
本発明で用いる無機充填材(C)は、硬化物の機械強度を高めることのみならず、低吸水率、低線膨張係数を達成し、ハンダクラック防止効果を高めるための必須の成分であり、具体的には限定されるものではないが、例えば粉末シリカ、アルミナ、タルク、クレー、ガラス繊維等が挙げられるが、特に耐湿性及び耐ハンダクラック性に優れる点から粉末シリカが好ましい。
【0027】
また、粉末シリカとしては、更に具体的には溶融シリカ、結晶シリカ、球状シリカ、粉砕シリカ等が挙げられるが、なかでも流動性に優れる点から溶融シリカが好ましい。
【0028】
無機充填材(C)の粒径としては、特に限定されないが、5ミクロン以下等の小粒径が好ましい。また、流動性を良くするために、種々の粒径分布を持ったものを使用することができる。
【0029】
また、無機充填材(C)の配合量は特に制限されるものではないが、その配合量が多ければ多い程、機械強度並びにハンダクラック防止効果が顕著なものとなる点から好ましく、具体的には、組成物中80〜95重量%の範囲で用いることが、それらの特性が際立つものとなる点から好ましい。
【0030】
また本発明の組成物は、必須成分である上述した縮合反応物(A ' の他に、さらに本発明の組成物の特性を損なわない範囲で、その他のエポキシ樹脂を併用しても構わない。
【0031】
この際に用いられるその他エポキシ樹脂としては、公知慣用のものが何れも使用でき、例えばビスフェノールAジグリシジルエーテル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ビフェニル型2官能エポキシ樹脂、ヒドロキシベンズアルデヒドとフェノール類との縮合物のポリグリシジルエーテル等が挙げられるが、これらに限定されるものではない。これらの中でも、特に耐熱性に優れる点からオルソクレゾールノボラック型エポキシ樹脂が、また流動性に優れる点からビフェニル型2官能エポキシ樹脂が好ましい。
【0032】
また必要に応じて、着色剤、難燃剤、離型剤、シリコーンオイルあるいはシリコーン樹脂等の低応力化剤、カップリング剤等の公知慣用の各種の添加剤成分も適宜配合せしめることができる。
【0033】
次に、上記した各成分から目的とする半導体封止材料を調製するには、多価エポキシ化合物(A)若しくは縮合反応物(A’)、硬化剤(B)及び無機充填材(C)、更に必要に応じ、硬化促進剤、添加剤、その他のエポキシ樹脂をミキサー等によって十分に均一に混合した後、更に熱ロールまたはニーダ−等で溶融混練し、冷却後粉砕し、さらに成形機でタブレット状に成形する事により為される。
【0034】
この様にして得られる本発明の半導体封止材料は、保存安定性が優れ、不純物塩素量が少ない高純度物であり、半導体チップへ成形したものは耐ハンダクラック性に著しく優れる。また、エポキシ樹脂自体の低溶融粘度の特性により、無機充填材の高充填率化を可能にし、優れた耐ハンダクラック性を有す。
【0035】
尚、本発明における保存安定性は、半導体封止材料を室温(20〜35℃)に3〜5日間放置した場合における安定性がとりわけ良好であり、この際の、硬化時間の短縮及び流動性の低下の程度が小さく優れた成形性を発現するものである。
【0036】
【実施例】
次に本発明を製造例、実施例およびその比較例により具体的に説明する。尚、例中において部は特に断りのない限りすべて重量部である。
【0037】
尚、溶融粘度は50HzのもとにおいてReseach equipment LTD.製「ICI CONE & PLATE VISCOMETER」で測定した。
【0038】
全塩素含有量は次の測定法で測定した。樹脂0.3gをn−BuOH20mlで溶解後、金属ナトリウム1gを添加し、120℃で3時間加熱処理をする。それを硝酸銀水溶液を用い適定法して、その適定量から、全塩素含有量を算出した。
ゲルタイムは、配合物を175℃で加熱攪拌し、流動性が失われた時点とした。
【0040】
製造例1
攪拌機、温度計、冷却器付きデカンターを付した4つ口フラスコにビスフェノールA228g(1モル)に、β−メチルエピクロルヒドリン533g(5モル)とエピクロルヒドリン461g(5モル)の混合物を入れ溶解する。それに減圧下、80℃で48%NaOH水溶液147g(1.8モル)を3時間かけて攪拌しながら滴下した。その間、フラスコを加熱してβ−メチルエピクロルヒドリンと水を蒸留し、デカンターで冷却器で凝縮したβ−メチルエピクロルヒドリンと水を分離し、β−メチルエピクロルヒドリンをフラスコ内に戻し続けた。さらに30分間攪拌を続けてその後、水を180gを加え静置した。下層の食塩水を棄却し、β−メチルエピクロルヒドリンを150℃で蒸留回収した後、粗樹脂にMIBK400gを加え、さらに3%NaOH水溶液水200gを加え80℃にて1時間攪拌した。そして下層の水層を棄却した。その後、さらにMIBK層を水200gで水洗し、水を棄却した後、脱水、濾過を経てMIBKを150℃で脱溶剤して目的のエポキシ樹脂(A)エポキシ樹脂300gを得た。この樹脂は150℃での溶融粘度0.06ポイズ、エポキシ当量は202g/eq、全塩素が790ppmであった。
【0042】
製造例2
ビスフェノールAの代わりに1,6−ジヒドロキシナフタレン160gを使用し、かつ、β−メチルエピクロルヒドリン533g(5モル)とエピクロルヒドリン461g(5モル)の混合物の代わりに、β−メチルエピクロルヒドリンをβ−メチルエピクロルヒドリン852g(8モル)とエピクロルヒドリン185g(2モル)の混合物に変更した以外は製造例と同様にして、エポキシ樹脂(B)296gを得た。この樹脂は150℃での溶融粘度0.10ポイズ、エポキシ当量は169g/eq、全塩素が690ppmであった。
【0043】
実施例1〜2及び比較例1〜3
比較にオルソクレゾールノボラック型エポキシ樹脂であるであるEPICLON N−665(大日本インキ化学工業(株)製:150℃の溶融粘度3.0ポイズ,エポキシ当量208g/eq,全塩素1080ppm)と、ビスフェノールAとエピクロルヒドリンの縮合型エポキシ樹脂であるEPICLON 850S(大日本インキ化学工業(株)製:150℃の溶融粘度0.04ポイズ,エポキシ当量188g/eq,全塩素1450ppm)と、1,6−ジヒドロキシナフタレンとエピクロルヒドリンの縮合型エポキシ樹脂であるEPICLON HP−4032(大日本インキ化学工業(株)製:150℃の溶融粘度0.08ポイズ,エポキシ当量150g/eq,全塩素1720ppm)にして以下の評価を行った。
【0044】
第1表及び第2表で表される配合に従って調製した混合物を熱ロールにて100℃・8分間混練りし、その後粉砕したものをプレス成形機にて30Kg/cm2、金型温度175℃、成形時間100秒の条件下にて封止し、厚さ2mmの評価用試験片を作成した。その後175℃で8時間の後硬化を施した。尚、溶融シリカの配合量は、得られた配合物の流動性が同一になるように調整された。また、フェノールノボラック硬化剤として、フェノライトTD−2131(大日本インキ化学工業(株)製:水酸基当量:104g/eq.)を使用した。
【0045】
この評価用試験片を用い、175℃のスパイラルフローと85℃・85%RH条件下での吸水率、及び動的粘弾性測定器によるガラス転移温度を測定した。また保存安定性試験として、封止材料を30℃で72時間保存した後のスパイラルフローを測定し、その保持率を求めた。さらに160℃×20時間、4気圧の条件下におけるプレッシャークッカーテストを行い抽出水中の塩素イオン量を測定した。また試験片を85℃・85%RHの雰囲気下中72時間放置し、吸湿処理を行った後、これを260℃のハンダ浴に10秒浸せきし、その際のクラック発生率を調べて耐ハンダクラック性を評価した。試験片数は20個。この結果を同じく第1表に示す。
【0046】
【表1】

Figure 0003579959
【0047】
【表2】
Figure 0003579959
【0048】
【発明の効果】
本発明によれば、流動性が著しく良好で高実装密度化に充分対応可能であって、かつ、保存安定性をも兼備した半導体封止材料を提供できる。[0001]
[Industrial applications]
The present invention relates to a novel semiconductor encapsulating material having excellent storage stability and fluidity.
[0002]
[Prior art]
In recent years, semiconductor packages have tended to be thinner in response to higher packaging densities, and TSOP type packages having a thickness of 1 mm or less have been used. Correspondingly, a semiconductor encapsulating material is required to have a higher fluidity.
[0003]
Until now, an epoxy composition for a semiconductor encapsulant using an orthocresol novolak type epoxy resin (hereinafter referred to as “ECN”) has been widely used as an epoxy resin for a semiconductor encapsulation material. Although the semiconductor encapsulant is excellent in heat resistance, it has a defect that the melt viscosity is high, so that the fluidity is extremely poor, and it is difficult to cope with the high packaging density. On the other hand, a semiconductor encapsulant using a liquid-type bisphenol-type epoxy resin is also known, but because of its low melt viscosity, an encapsulant with good fluidity can be provided, but the heat resistance is poor and it can be put to practical use. And storage stability was extremely poor.
[0004]
Therefore, conventionally, as a semiconductor encapsulating material which is excellent in fluidity and heat resistance and can respond to high mounting density, for example, a naphthalene-based epoxy resin obtained by reacting 1,6-dihydroxynaphthalene with epichlorohydrin is used as a main ingredient. Semiconductor sealing materials have been known.
[0005]
[Problem to be solved]
However, a semiconductor encapsulating material using a naphthalene-based epoxy resin obtained by reacting epichlorohydrin with 1,6-dihydroxynaphthalene as a main component has a low melt viscosity and excellent fluidity, but the storage stability of the semiconductor encapsulating material is low. It is extremely poor in moldability, and therefore has a major problem that, in practical use, it has a faster curing property than at the time of design, shortens the flow, and causes problems in moldability.
[0006]
It is an object of the present invention to provide a semiconductor encapsulating material having both excellent storage stability and fluidity.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies and found that a β-alkyl epihalohydrin, an epihalohydrin, and a polyhydric phenol compound were reacted at a molar ratio of β-alkyl epihalohydrin / epihalohydrin of 90/10 to 30/70. By using the product (A ') as a main agent, the above-mentioned problems were found, and the present invention was completed.
[0008]
That is, the present invention provides a condensation reaction product (A ′) obtained by reacting β-alkyl epihalohydrin, epihalohydrin and bisphenol at a molar ratio of β-alkyl epihalohydrin / epihalohydrin of 90/10 to 30/70, The present invention relates to a semiconductor encapsulating material comprising a curing agent (B) and an inorganic filler (C) as essential components.
[0009]
The β-alkyl glycidyl group in the condensation reaction product (A ′) is not particularly limited. For example, β-methyl glycidyl group, β-ethyl glycidyl group, β-propyl glycidyl group, β-butyl glycidyl group Among them, a β-methylglycidyl group is preferable because the storage stability is extremely good.
[0010]
The condensation reaction product (A '), all the epoxy groups are compounds of the beta-alkyl glycidyl group (a1), beta-alkyl glycidyl group and compounds and coexist glycidyl group (a2), all the glycidyl group of the epoxy groups And the compound (a3) are mixed. Here, when the compound (a1) in which all epoxy groups are β-alkyl glycidyl groups is exemplified , di-β-alkyl glycidyl ether of bisphenol A, diglycidyl ether, or di-β-alkyl glycidyl ether of bisphenol F, bisphenol Di-β-alkyl glycidyl ethers of bisphenols represented by di-β-alkyl glycidyl ethers of S; di-β-alkyl glycidyl ethers of biphenols and di-β-alkyl glycidyl ethers of tetramethylbiphenol Di-β-alkyl glycidyl ether of biphenols; β-alkyl glycidyl ether of naphthols represented by di-β-alkyl glycidyl ether of dihydroxynaphthalene and di-β-alkyl glycidyl ether of binaphthol Ter; poly-β-alkyl glycidyl ether of phenol-formaldehyde polycondensate; C1-C10 monoalkyl-substituted phenol-formaldehyde polycondensate represented by poly-β-alkyl glycidyl ether of cresol-formaldehyde polycondensate -Β-alkyl glycidyl ether; poly-β-alkyl glycidyl ether of C1-C10 dialkyl-substituted phenol-formaldehyde polycondensate represented by poly-β-alkyl glycidyl ether of xylenol-formaldehyde polycondensate; bisphenol A-formaldehyde Bisphenols represented by poly-β-alkyl glycidyl ethers of polycondensates; poly-β-alkyl glycidyl ethers of formaldehyde polycondensates; phenols and dicyclopentadiene, Nene, polyadducts of polyethylene -β- alkyl glycidyl ether with a cyclic diene pinene; poly -β- alkyl glycidyl ethers of phenols and polyaddition products of divinylbenzene. Specific examples of the compound (a2) and the compound (a3) include a compound in which a β-alkylglycidyl group and a glycidyl group coexisting with the compound (a1) and the starting polyhydric phenol compound, and the compound (a1) And a compound in which all of the epoxy groups sharing the same starting polyhydric phenol compound are glycidyl groups.
[0011]
Above all , compounds (a1), (a2) and (a3), which use bisphenols as a raw material polyhydric phenol compound, and naphthols as raw material polyhydric phenol compounds in terms of good fluidity and storage stability. (A1), (a2) and (a3) are preferred, and in particular, dihydroxynaphthalene is used as a starting material in view of the fact that heat resistance is remarkably good, and heat resistance, fluidity and storage stability are all good. The compound (a1), the compound (a2) and the compound (a3) which are used as the polyhydric phenol compound are preferred. Di-β-alkyl glycidyl ether of dihydroxynaphthalene has several types of isomers. Among them , compounds (a1) and compounds (1) using 1,6-dihydroxynaphthalene as a raw material polyhydric phenol compound from the viewpoint of excellent heat resistance a2) and compound (a3) are preferred.
[0014]
The β-alkyl epihalohydrin used in the present invention is not particularly limited, but β-methyl epihalohydrin such as β-methyl epichlorohydrin, β-methyl epibromohydrin, β-methyl epifluorohydrin, β-ethyl epihalohydrin such as β-ethyl epichlorohydrin, β-ethyl epibromohydrin, β-ethyl epifluorohydrin, β-propyl epichlorohydrin, β-propyl epibromohydrin, β-propyl epi Β-propyl epihalohydrin such as fluorohydrin, β-butyl epichlorohydrin, β-butyl epibromohydrin, β-butyl epihalohydrin such as β-butyl epifluorohydrin, etc., among which polyhydric phenols. Β-Methylepihalohydrin is preferred from the viewpoints of reactivity and fluidity.
[0015]
The type of the polyhydric phenol compound is not limited as long as it is a compound containing two or more aromatic hydroxyl groups in one molecule. Examples thereof include bisphenols such as bisphenol A, bisphenol F, and bisphenol S. , A phenol novolak resin represented by a phenol-formaldehyde polycondensate, a phenol novolak resin represented by a phenol-formaldehyde polycondensate, and a C1-C10 mono represented by a cresol-formaldehyde polycondensate. C1-C10 dialkyl-substituted phenol-formaldehyde polycondensates represented by alkyl-substituted phenol-formaldehyde polycondensates and xylenol-formaldehyde polycondensates, bisphenol A-formaldehyde polycondensates Representative bisphenol-formaldehyde polycondensates, other copolycondensates of phenol with C1-C10 monoalkyl-substituted phenols and formaldehyde, polyaddition of phenols with cyclic dienes such as dicyclopentadiene, limonene, and pinene And polyaddition products of phenols and divinylbenzene. Of these, bisphenols and naphthols are preferable from the viewpoint of fluidity and storage stability, and dihydroxynaphthalene is particularly preferable because heat resistance is improved and heat resistance, fluidity and storage stability are all improved. Further, as in the specific example of the polyvalent epoxy compound (A), dihydroxynaphthalene has several isomers, and among them, 1,6-dihydroxynaphthalene is preferable from the viewpoint of excellent heat resistance.
[0016]
In the present invention, when the condensation reaction product (A ′) is produced, fluidity can be further improved by partially using not only β-alkyl epihalohydrin but also epihalohydrin. However, by increasing the use ratio of β-alkyl epihalohydrin, the storage stability becomes extremely excellent, and furthermore, the effect that the amount of impurity chlorine contained in the epoxy resin is further reduced is exhibited. Can be appropriately adjusted according to the application and required characteristics.
[0017]
Therefore, the ratio of β-alkyl epihalohydrin to epihalohydrin used in the present invention is in the range of 90/10 to 30/70 in terms of the molar ratio of β-alkyl epihalohydrin / epihalohydrin from the viewpoint of achieving a good balance of these properties . Particularly, the range of 80/20 to 40/60 is preferable.
[0019]
In addition, the condensation reaction product (A ') also has an effect that the total chlorine content in the condensation reaction product (A') can be reduced because β-alkyl epihalohydrin is used as a raw material component thereof. In other words, when the total chlorine content is large, there is a problem that wiring corrosion occurs in a semiconductor package. However, in the present invention, the total chlorine content can be reduced and the reliability can be improved. Although the specific amount of total chlorine is not particularly limited, it is preferable that the total chlorine amount in the condensation reaction product (A ′) be 800 ppm or less.
[0020]
The method for producing the condensation reaction product (A ′) is not particularly limited, but specific examples include the following methods. First, a mixture of β-methyl epichlorohydrin and epichlorohydrin in an amount of 2 to 15 equivalents based on the hydroxyl groups in the polyhydric phenol compound is added and dissolved. 0.8-1.2 equivalents of a 10-50% aqueous NaOH solution are added at a temperature of 50-80 ° C for 3-5 hours. After lowering, stirring is continued at that temperature for about 0.5 to 2 hours, and after standing still, the lower saline solution is discarded. Then, the excess epihalohydrin is recovered by distillation to obtain a crude resin. To this, an organic solvent such as toluene or MIBK is added, and the desired resin can be obtained through a water washing-dehydration-filtration-desolvation step. In addition, a solvent such as dioxane or DMSO may be used in the reaction for the purpose of reducing the amount of impurity chlorine.
[0021]
Since the condensation reaction product (A ′) in the present invention has a very low melt viscosity itself, it can be highly filled with an inorganic filler, and the heat resistance and water resistance of the molded product can be significantly improved, and the solder crack resistance is extremely good. It becomes. In addition, even if the inorganic filler is highly filled, the obtained material has excellent fluidity, so that it can be easily formed into a thin semiconductor package. It also has stability. Further, as described above, since a low total chlorine content of the epoxy resin can be achieved, the semiconductor sealing material has high reliability such as prevention of wiring corrosion.
[0022]
The condensation reaction product (A ') containing the compound (A) described above in detail can be mixed with a curing agent (B) and an inorganic filler (C) to obtain a desired semiconductor encapsulating material. .
[0023]
Here, the curing agent (B) may be any compound having an active hydrogen atom capable of reacting with an epoxy group, and is not particularly limited, but contains two or more phenolic hydroxyl groups in one molecule. Compounds are preferred from the viewpoint of curing properties and heat resistance. For example, a phenol novolak resin represented by a phenol-formaldehyde polycondensate and a C1-C10 mono represented by a cresol-formaldehyde polycondensate are exemplified. C1-C10 dialkyl-substituted phenol-formaldehyde polycondensates represented by alkyl-substituted phenol-formaldehyde polycondensates and xylenol-formaldehyde polycondensates; bisphenols-formaldehyde polycondensates represented by bisphenol A-formaldehyde polycondensates , Other, phenol and Copolycondensates of 1 to C10 monoalkyl-substituted phenols with formaldehyde; polyadducts of phenols with cyclic dienes such as dicyclopentadiene, limonene and pinene; and polyadducts of phenols with divinylbenzene. .
[0024]
Among them, phenol-formaldehyde polycondensate, cresol novolak-formaldehyde polycondensate, and dicyclopentadiene-phenol polyadduct are particularly preferable because of excellent curability and heat resistance.
[0025]
When each of the compounds as described above is used as a curing agent, a curing accelerator can be appropriately used.
As the curing accelerator, any known and commonly used curing accelerators can be used, and examples thereof include tertiary amines, imidazoles, organic acid metal salts, amine complex salts, phosphorus compounds such as triphenylphosphine, and the like. Not only one kind but also two or more kinds can be used in combination.
[0026]
The inorganic filler (C) used in the present invention is an essential component for not only increasing the mechanical strength of the cured product, but also achieving a low water absorption and a low coefficient of linear expansion, and enhancing a solder crack preventing effect. Specific examples include, but are not limited to, powdered silica, alumina, talc, clay, glass fiber, and the like. Powdered silica is particularly preferred because of its excellent moisture resistance and solder crack resistance.
[0027]
Further, as the powdered silica, more specifically, fused silica, crystalline silica, spherical silica, pulverized silica and the like can be mentioned. Among them, fused silica is preferable because of its excellent fluidity.
[0028]
The particle size of the inorganic filler (C) is not particularly limited, but a small particle size such as 5 microns or less is preferable. In order to improve fluidity, those having various particle size distributions can be used.
[0029]
The blending amount of the inorganic filler (C) is not particularly limited. However, the larger the blending amount is, the more the mechanical strength and the effect of preventing solder cracks become remarkable. Is preferably used in the range of 80 to 95% by weight in the composition, since these characteristics become remarkable.
[0030]
In addition, the composition of the present invention may use, in addition to the above-described condensation reaction product (A ) , which is an essential component, other epoxy resins in a range that does not impair the properties of the composition of the present invention. .
[0031]
As the other epoxy resin used at this time, any known epoxy resin can be used. For example, bisphenol A diglycidyl ether type epoxy resin, phenol novolak type epoxy resin, orthocresol novolak type epoxy resin, bisphenol A novolak type epoxy resin , Bisphenol F novolak type epoxy resin, brominated phenol novolak type epoxy resin, naphthol novolak type epoxy resin, biphenyl type bifunctional epoxy resin, polyglycidyl ether of condensate of hydroxybenzaldehyde and phenols, and the like. It is not limited. Of these, orthocresol novolak epoxy resin is particularly preferable from the viewpoint of excellent heat resistance, and biphenyl type bifunctional epoxy resin is preferable from the viewpoint of excellent fluidity.
[0032]
If necessary, various known and commonly used additive components such as a coloring agent, a flame retardant, a release agent, a low-stressing agent such as silicone oil or silicone resin, and a coupling agent can also be appropriately compounded.
[0033]
Next, in order to prepare a target semiconductor encapsulating material from the above-described components, a polyvalent epoxy compound (A) or a condensation reaction product (A ′), a curing agent (B), an inorganic filler (C), Further, if necessary, a curing accelerator, an additive, and other epoxy resins are sufficiently and uniformly mixed by a mixer or the like, then further melt-kneaded by a hot roll or a kneader, cooled, pulverized, and further tableted by a molding machine. This is done by molding into a shape.
[0034]
The semiconductor encapsulant of the present invention obtained in this way is excellent in storage stability, is a high-purity substance with a small amount of impurity chlorine, and is extremely excellent in solder crack resistance when molded into a semiconductor chip. In addition, due to the low melt viscosity characteristics of the epoxy resin itself, it is possible to increase the filling rate of the inorganic filler and to have excellent solder crack resistance.
[0035]
The storage stability in the present invention is particularly good when the semiconductor encapsulating material is left at room temperature (20 to 35 ° C.) for 3 to 5 days. In this case, the curing time is shortened and the fluidity is reduced. The degree of decrease is small and excellent moldability is exhibited.
[0036]
【Example】
Next, the present invention will be specifically described with reference to Production Examples, Examples and Comparative Examples. In the examples, all parts are by weight unless otherwise specified.
[0037]
The melt viscosity was measured at 50 Hz using Research equipment LTD. Was measured by “ICI CONE & PLATE VISCOMMETER” manufactured by FUJITSU LIMITED.
[0038]
The total chlorine content was measured by the following measurement method. After dissolving 0.3 g of the resin in 20 ml of n-BuOH, 1 g of metallic sodium is added, and heat treatment is performed at 120 ° C. for 3 hours. It was subjected to an appropriate method using an aqueous solution of silver nitrate, and the total amount of chlorine was calculated from the appropriate amount.
The gel time was defined as the point at which the formulation was heated and stirred at 175 ° C. and lost fluidity.
[0040]
Production Example 1
A mixture of 533 g (5 mol) of β-methylepichlorohydrin and 461 g (5 mol) of epichlorohydrin is put into 228 g (1 mol) of bisphenol A and dissolved in a four-necked flask equipped with a decanter equipped with a stirrer, a thermometer and a condenser . Under reduced pressure, 147 g (1.8 mol) of a 48% aqueous NaOH solution was added dropwise at 80 ° C. with stirring over 3 hours. During that time, the flask was heated to distill β-methyl epichlorohydrin and water, the β-methyl epichlorohydrin condensed in the condenser with a decanter and water were separated, and β-methyl epichlorohydrin was continuously returned to the flask. Stirring was further continued for 30 minutes, after which 180 g of water was added and allowed to stand. After the lower saline solution was discarded and β-methylepichlorohydrin was distilled and collected at 150 ° C., 400 g of MIBK was added to the crude resin, 200 g of a 3% aqueous NaOH solution was added, and the mixture was stirred at 80 ° C. for 1 hour. The lower aqueous layer was discarded. Thereafter, the MIBK layer was further washed with 200 g of water, the water was discarded, and after dehydration and filtration, MIBK was desolvated at 150 ° C. to obtain 300 g of the desired epoxy resin (A) epoxy resin. This resin had a melt viscosity of 0.06 poise at 150 ° C., an epoxy equivalent of 202 g / eq, and total chlorine of 790 ppm.
[0042]
Production Example 2
160 g of 1,6-dihydroxynaphthalene was used in place of bisphenol A, and instead of a mixture of 533 g (5 mol) of β-methylepichlorohydrin and 461 g (5 mol) of epichlorohydrin, β-methylepichlorohydrin was replaced by 852 g of β-methylepichlorohydrin. 296 g of an epoxy resin (B) was obtained in the same manner as in Production Example 1 except that the mixture was changed to a mixture of (8 mol) and 185 g (2 mol) of epichlorohydrin. This resin had a melt viscosity of 0.10 poise at 150 ° C., an epoxy equivalent of 169 g / eq, and a total chlorine of 690 ppm.
[0043]
Examples 1-2 and Comparative Examples 1-3
For comparison, EPICLON N-665 (manufactured by Dainippon Ink and Chemicals, Inc .: melt viscosity at 150 ° C .: 3.0 poise, epoxy equivalent: 208 g / eq, total chlorine: 1080 ppm), which is an orthocresol novolac epoxy resin, and bisphenol EPICLON 850S (manufactured by Dainippon Ink and Chemicals, Inc .: melt viscosity at 150 ° C. 0.04 poise, epoxy equivalent 188 g / eq, total chlorine 1450 ppm), which is a condensation type epoxy resin of A and epichlorohydrin, and 1,6-dihydroxy EPICLON HP-4032, a condensed epoxy resin of naphthalene and epichlorohydrin (manufactured by Dainippon Ink and Chemicals, Inc .: melt viscosity at 150 ° C. 0.08 poise, epoxy equivalent 150 g / eq, total chlorine 1720 ppm), and the following evaluation Was done.
[0044]
The mixture prepared according to the formulations shown in Tables 1 and 2 was kneaded with a hot roll at 100 ° C. for 8 minutes, and then pulverized at 30 kg / cm 2 with a press molding machine, at a mold temperature of 175 ° C. It sealed under the conditions of molding time 100 seconds, and produced the test piece for evaluation of 2 mm in thickness. Thereafter, post-curing was performed at 175 ° C. for 8 hours. The blended amount of the fused silica was adjusted so that the fluidity of the resulting blend was the same. In addition, phenolite TD-2131 (manufactured by Dainippon Ink and Chemicals, Inc .: hydroxyl equivalent: 104 g / eq.) Was used as a phenol novolak curing agent.
[0045]
Using the test piece for evaluation, the water absorption under a spiral flow of 175 ° C. and 85 ° C./85% RH, and a glass transition temperature with a dynamic viscoelasticity meter were measured. In addition, as a storage stability test, a spiral flow after the sealing material was stored at 30 ° C. for 72 hours was measured, and its retention was determined. Further, a pressure cooker test was performed at 160 ° C. for 20 hours at 4 atm, and the amount of chloride ions in the extraction water was measured. Further, the test piece was left in an atmosphere of 85 ° C. and 85% RH for 72 hours to perform a moisture absorption treatment. Then, the test piece was immersed in a solder bath at 260 ° C. for 10 seconds. The crack property was evaluated. The number of test pieces is 20 pieces. The results are also shown in Table 1.
[0046]
[Table 1]
Figure 0003579959
[0047]
[Table 2]
Figure 0003579959
[0048]
【The invention's effect】
According to the present invention, it is possible to provide a semiconductor encapsulating material which has remarkably good fluidity, can sufficiently cope with high packaging density, and also has storage stability.

Claims (4)

β−アルキルエピハロヒドリンとエピハロヒドリンと多価フェノール化合物とを、β−アルキルエピハロヒドリン/エピハロヒドリンのモル比で90/10〜30/70となる割合で反応させた縮合反応物(A’)、硬化剤(B)及び無機充填材(C)を必須成分とすることを特徴とする半導体封止材料。 a condensation reaction product (A ′) obtained by reacting β-alkyl epihalohydrin, epihalohydrin and a polyhydric phenol compound at a molar ratio of β-alkyl epihalohydrin / epihalohydrin of 90/10 to 30/70, a curing agent (B ) ) And an inorganic filler (C) as essential components. β−アルキルグリシジル基が、β−メチルグリシジル基である請求項1記載の半導体封止材料。The semiconductor encapsulating material according to claim 1, wherein the β-alkyl glycidyl group is a β-methyl glycidyl group. 縮合反応物(A')中の全塩素量が、800ppm以下である請求項1又は2記載の半導体封止材料。The semiconductor sealing material according to claim 1 or 2 , wherein the total chlorine content in the condensation reaction product (A ') is 800 ppm or less. 無機充填材(C)の含有率が、材料中80〜95重量%である請求項1〜の何れか1つに記載の半導体封止材料。The semiconductor encapsulating material according to any one of claims 1 to 3 , wherein the content of the inorganic filler (C) is 80 to 95% by weight of the material.
JP09064995A 1995-04-17 1995-04-17 Semiconductor sealing material Expired - Fee Related JP3579959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09064995A JP3579959B2 (en) 1995-04-17 1995-04-17 Semiconductor sealing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09064995A JP3579959B2 (en) 1995-04-17 1995-04-17 Semiconductor sealing material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004091791A Division JP4093199B2 (en) 2004-03-26 2004-03-26 Semiconductor sealing material

Publications (2)

Publication Number Publication Date
JPH08283379A JPH08283379A (en) 1996-10-29
JP3579959B2 true JP3579959B2 (en) 2004-10-20

Family

ID=14004369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09064995A Expired - Fee Related JP3579959B2 (en) 1995-04-17 1995-04-17 Semiconductor sealing material

Country Status (1)

Country Link
JP (1) JP3579959B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10186652A (en) * 1996-12-20 1998-07-14 Hitachi Chem Co Ltd Resin composition for hardened coated film, color filter protective film, color filter, and liquid crystal display element each using same
JP2001207150A (en) 2000-01-26 2001-07-31 Sony Chem Corp Adhesive composition
AU2003275534A1 (en) * 2002-09-26 2004-04-19 Toagosei Co., Ltd. Hardening accelerator for cationic polymerization type composition
EP1506975A1 (en) * 2003-08-13 2005-02-16 Vantico GmbH Nanocomposites based on polyurethane or polyurethane-epoxy hybrid resins prepared avoiding isocyanates
US7671114B2 (en) 2004-01-26 2010-03-02 Henkel Corporation Adhesive of substituted oxirane or oxetane compound with silver-based, lead-free solder
JP4716082B2 (en) * 2004-04-22 2011-07-06 Dic株式会社 Epoxy resin composition and cured product thereof
JP4844796B2 (en) * 2004-11-11 2011-12-28 Dic株式会社 1-pack type epoxy resin composition and cured product thereof
CN101495533B (en) 2005-03-18 2012-02-29 大日本油墨化学工业株式会社 Epoxy resin composition and cured article thereof, novel epoxy resin and production method thereof, and novel phenol resin
JP2007197518A (en) * 2006-01-24 2007-08-09 Fujifilm Corp Epoxy resin compound, thermosetting resin composition, and photosensitive composition
JP4285491B2 (en) * 2006-02-28 2009-06-24 Dic株式会社 Epoxy resin composition, cured product thereof, novel epoxy resin, novel phenol resin, and semiconductor sealing material
JP5135702B2 (en) * 2006-03-31 2013-02-06 Dic株式会社 Epoxy resin composition, cured product thereof, semiconductor sealing material, and semiconductor device
JP2008094896A (en) * 2006-10-06 2008-04-24 Sumitomo Bakelite Co Ltd Resin composition for sealing semiconductor and semiconductor device
JP2014205732A (en) * 2013-04-10 2014-10-30 旭化成イーマテリアルズ株式会社 Resin composition and cured product

Also Published As

Publication number Publication date
JPH08283379A (en) 1996-10-29

Similar Documents

Publication Publication Date Title
JP3579959B2 (en) Semiconductor sealing material
US6713589B2 (en) Phenyl, naphthly or fluorene cyclopentyl epoxy resins
JP3509236B2 (en) Epoxy resin composition and semiconductor encapsulating material
JPH08109242A (en) Epoxy resin composition for sealing of semiconductor
JPH0948839A (en) Epoxy resin composition and semiconductor sealer
JP4093199B2 (en) Semiconductor sealing material
JP3484681B2 (en) Epoxy resin composition, method for producing epoxy resin mixture, and semiconductor encapsulating material
JPH08100049A (en) Epoxy resin composition for semiconductor-sealing material
JP3770343B2 (en) Epoxy resin composition and semiconductor sealing material
JP3915938B2 (en) Epoxy resin composition, method for producing epoxy resin, and semiconductor sealing material
JPH07206995A (en) Epoxy resin composition and sealing material for semiconductor
JP2004190040A5 (en)
US6812318B2 (en) Epoxy resins, epoxy resin mixtures, epoxy resin compositions and products of curing of the same
JP3731585B2 (en) Production method of epoxy resin
JP3118763B2 (en) Epoxy resin composition and semiconductor encapsulating material
JP2002128868A (en) Epoxy resin composition for sealing semiconductor
JPH111546A (en) Epoxy resin composition and electronic component
JP2001151856A (en) Epoxy resin composition for sealing electronic part
JP2927222B2 (en) Resin-sealed semiconductor device
JP3986025B2 (en) Epoxy resin composition and semiconductor sealing material
JP3517961B2 (en) Epoxy resin composition and semiconductor encapsulating material
JPH07216052A (en) Epoxy resin and epoxy resin composition
JPH06100656A (en) Epoxy resin composition for semiconductor sealing
JPH1081731A (en) Production of epoxy resin, epoxy resin composition and sealing medium for semiconductor
JPH07150013A (en) Epoxy resin composition and semiconductor sealing material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040712

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees