JP3915938B2 - Epoxy resin composition, method for producing epoxy resin, and semiconductor sealing material - Google Patents

Epoxy resin composition, method for producing epoxy resin, and semiconductor sealing material Download PDF

Info

Publication number
JP3915938B2
JP3915938B2 JP13351797A JP13351797A JP3915938B2 JP 3915938 B2 JP3915938 B2 JP 3915938B2 JP 13351797 A JP13351797 A JP 13351797A JP 13351797 A JP13351797 A JP 13351797A JP 3915938 B2 JP3915938 B2 JP 3915938B2
Authority
JP
Japan
Prior art keywords
epoxy resin
phenol
mixture
weight
melt viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13351797A
Other languages
Japanese (ja)
Other versions
JPH10324733A (en
Inventor
一郎 小椋
未希 平井
和之 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP13351797A priority Critical patent/JP3915938B2/en
Publication of JPH10324733A publication Critical patent/JPH10324733A/en
Application granted granted Critical
Publication of JP3915938B2 publication Critical patent/JP3915938B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は新規な特に成形時の流動性、硬化性、硬化物の耐熱性、耐水性、耐湿信頼性のバランスに優れ、成型材料、注型材料、積層部品材料、電気絶縁材料、繊維強化複合材料、塗装材料、接着材料などに極めて有用なエポキシ樹脂の製造方法、エポキシ樹脂組成物、及び、それらの諸特性に加え薄型パッケージの成形性が優れ、かつ表面実装時の耐ハンダクラック性に優れ、さらには耐湿信頼性にも優れた半導体封止材料に関する。
【0002】
【従来の技術】
エポキシ樹脂は、種々の硬化剤で硬化させることにより、一般的に機械的性質、耐水性、耐薬品性、耐熱性、電気的性質などの優れた硬化物となり、接着剤、塗料、積層板、成型材料、注型材料等、幅広い分野に使用されている。
【0003】
特に半導体封止材料用途においては、近年、高集積度化によって、耐ヒートサイクル性の一層の向上が要求されている。更に、高実装密度化に対応するため半導体のパッケージが薄型化する傾向にあり、厚さが1mm以下のTSOP型パッケージも使用される様になっており、これらに対応するため、優れた耐ハンダクラック性を有する材料が要求されている。
【0004】
また、半導体の生産性向上のため、成形サイクルを短縮する傾向にあり、硬化性が高い半導体封止材料が要求されている。
従来より、半導体封止材料用途には、オルソクレゾールノボラック型エポキシ樹脂(以下「ECN」という)が広く使用されているが、当該樹脂は耐熱性には優れるものの、流動性と耐ハンダクラック性に劣るという欠陥を有していた。一方、流動性に優れるエポキシ樹脂としては、結晶性エポキシ樹脂である、ビフェニル型エポキシ樹脂も使用されているが、当該樹脂は耐ハンダクラック性はある程度改善されるものの、硬化性と耐熱性が低いという欠点があり、上記要求を十分満足する水準にはない。
【0005】
そこで高性能半導体封止材料としてジシクロペンタジエン型エポキシ樹脂を用いた封止材が、例えば特開昭61−293219号公報、特開昭61−168618号公報、米国特許公報第4701481号等に記載されている。
【0006】
【解決しようとする課題】
これらの公報に記載されたエポキシ樹脂は吸湿率が低く、耐熱性も高いという特長を有しているものの、溶融粘度が高く、無機充填材の充填率を高めることができないため、耐ハンダクラック性、耐湿信頼性の改善効果にも限界があり、現在要求される性能を満足させることができず、また、溶融粘度が高く硬化性に劣ることから成形サイクルの短縮化に充分対応できないものであった。
【0007】
本発明が解決しようとする課題は、低吸湿率、高耐熱性といった性能を低下させることなく、優れた流動性を有し、無機充填材の高充填化が可能で半導体封止材料として従来になく優れた耐ハンダクラック性を発現すると共に、硬化性に著しく優れ、半導体等の成形品の生産性を著しく向上できる、エポキシ樹脂の製造方法、エポキシ樹脂組成物及び半導体封止材料を提供することにある。
【0008】
【課題を解決するための手段】
本発明者等は鋭意検討した結果、1分子中に二重結合を2個含有する不飽和脂肪族環状炭化水素化合物とフェノール類との重付加反応物のグリシジルエーテル化混合物であって、かつ、該混合物中の2核体含有量が80〜95重量%で、かつ、150℃における溶融粘度が0.3ポイズ以下、エポキシ当量が220〜260g/eqの範囲であって、かつ、全塩素濃度が800ppm以下であるエポキシ樹脂を主剤として使用することにより、上記課題を解決できることを見出し、本発明を完成するに至った。
【0009】
即ち、本発明は、1分子中に二重結合を2個含有する不飽和脂肪族環状炭化水素化合物とフェノール類との重付加反応物のグリシジルエーテル化混合物であって、かつ、該混合物中の2核体含有量が80〜95重量%で、かつ、150℃における溶融粘度が0.3ポイズ以下、エポキシ当量が220〜260g/eqの範囲であって、かつ、全塩素濃度が800ppm以下であるエポキシ樹脂(A)と、硬化剤(B)とを必須成分として含有することを特徴とするエポキシ樹脂組成物、及び、1分子中に二重結合を2個含有する不飽和脂肪族環状炭化水素化合物とフェノール類との重付加反応物のグリシジルエーテル化混合物であって、かつ、該混合物中の2核体含有量が80〜95重量%で、かつ、150℃における溶融粘度が0.3ポイズ以下、エポキシ当量が220〜260g/eqの範囲であって、かつ、全塩素濃度が800ppm以下であるエポキシ樹脂(A)、硬化剤(B)、及び、無機充填材(C)を必須成分として含有することを特徴とする半導体封止材料に関する。
【0010】
本発明で使用するエポキシ樹脂(A)は、1分子中に二重結合を2個含有する不飽和脂肪族環状炭化水素化合物とフェノール類との重付加反応物のグリシジルエーテル化混合物であって、かつ、該混合物中の2核体含有量が80〜95重量%で、かつ、150℃における溶融粘度が0.3ポイズ以下、エポキシ当量が220〜260g/eqの範囲であって、かつ、全塩素濃度が800ppm以下であるものである。ここで、2核体とは、脂肪族環状炭化水素基で結節された芳香族炭化水素核を2個有するグリシジルエーテル化合物であり、例えば、以下の構造が挙げられる。
【0011】
【化1】

Figure 0003915938
【0012】
(一般式1中、Xは脂肪族炭化水素基、R1は水素原子またはメチル基、R2およびR3はそれぞれ独立的に、ハロゲン原子若しくは炭化水素数1〜10のアルキル基を表す。)また、この2核体の含有量は、ゲルパーミュエーションクロマトグラフィー(GPC)によって分析された重量割合で表される値である。
【0013】
本発明は、この様な2核体を、エポキシ樹脂(A)中80重量%以上含有させることにより、ジシクロペンタジエン型エポキシ樹脂の高耐熱性、高耐水性を兼備したまま、溶融粘度を低減させることに成功したものであるが、同時に硬化性も著しく改善できることを特長としている。一般に、熱硬化性樹脂は流動性の向上に伴って、硬化性は低下する傾向にあるが、本発明におけるエポキシ樹脂(A)は、流動性が著しく優れると共に硬化性も極めて優れるという特異な性能を発現するものである。これらの流動性、硬化性の改善効果がより顕著になる点から、エポキシ樹脂(A)中の2核体の含有量は80〜95重量%の範囲である
【0014】
また、エポキシ樹脂(A)を構成するグリシジルエーテル化合物は、1分子中に二重結合を2個含有する不飽和脂肪族環状炭化水素化合物とフェノール類との重付加反応物のグリシジルエーテル化混合物であるが、ここで、フェノール類としては、フェノール、及びアルキル基、アルケニル基、アリル基、アリール基、アラルキル基或いはハロゲン基等が1個または複数個置換した置換フェノール類が挙げられる。具体的に例示すると、クレゾール、キシレノール、エチルフェノール、イソプロピルフェノール、ブチルフェノール、オクチルフェノール、ノニルフェノール、ビニルフェノール、イソプロペニルフェノール、アリルフェノール、フェニルフェノール、ベンジルフェノール、クロルフェノール、ブロムフェノール、ナフトール、ジヒドロキシナフタレン等が例示されるが、これらに限定されるものではない。またこれらの混合物を用いても構わない。これらの中でも流動性および硬化性が優れる点からフェノールが特に好ましい。
【0015】
また、不飽和脂環族環状炭化水素化合物としては、1分子中に不飽和二重結合を2つ以上有する不飽和脂肪族環状炭化水素化合物であれば、特に限定されないが、例示するならばジシクロペンタジエン、テトラヒドロインデン、4−ビニルシクロヘキセン、5−ビニルノルボナ−2−エン、α−ピネン、β−ピネン、リモネン等が挙げられる。これらの中でも特性バランス、特に耐熱性、吸湿性の点からジシクロペンタジエンが好ましい。またジシクロペンタジエンは石油留分中に含まれることから、工業用ジシクロペンタジエンには他の脂肪族或いは芳香族性ジエン類等が不純物として含有されることがあるが、耐熱性、硬化性、成形性等を考慮すると、ジシクロペンタジエンの純度90重量%以上の製品であることが望ましい。
【0016】
エポキシ樹脂(A)は、既述の通り、150℃における溶融粘度が、0.3ポイズ以下であり、これによって流動性に著しく優れたものとなる。また、エポキシ樹脂(A)のエポキシ当量は耐熱性、耐水性等が良好になる点から220〜260g/eqの範囲であり、更に、エポキシ樹脂(A)中の全塩素濃度が800ppm以下であることから特に半導体封止材料用途における電気特性、耐ハンダクラック性が良好となる。
【0017】
即ち、本発明で用いるエポキシ樹脂(A)としては、フェノールとジシクロペンタジエンとの重付加反応物のグリシジルエーテル化混合物であって、かつ、該混合物中の2核体含有量が80〜95重量%の範囲内、150℃の溶融粘度が0.3ポイズ以下、エポキシ当量が220〜260g/eq、及び、全塩素濃度が800ppm以下の範囲内にあるエポキシ樹脂が一層優れた性能を発現するため最も好ましい。
【0018】
この様なエポキシ樹脂(A)を製造する方法としては、特に制限されるものではないが、下記の製造方法によって容易に得ることができる。
【0019】
即ち、1分子中に二重結合を2個含有する不飽和脂肪族環状炭化水素化合物とフェノール類との重付加反応物であって、かつ、該重付加反応物中の2核体含有量が95重量%以上である多価フェノール類混合物(a)と、エピハロヒドリン(b)とを反応させることにより、容易にエポキシ樹脂(A)を得ることができる。
【0020】
ここで使用される1分子中に二重結合を2個含有する不飽和脂肪族環状炭化水素化合物、及び、フェノール類としては前述したものが何れも使用できる。
【0021】
また、ここで2核体とは、脂肪族環状炭化水素基で結節された芳香族炭化水素核を2個有するフェノール化合物であり、例えば、以下の構造が挙げられる。
【0022】
【化2】
Figure 0003915938
【0023】
(一般式2中、Xは脂肪族炭化水素基、R2およびR3はそれぞれ独立的に、ハロゲン原子若しくは炭化水素数1〜10のアルキル基を表す。)また、この2核体の含有量は、前記のグリシジルエーテル化合物の場合と同様にゲルパーミュエーションクロマトグラフィー(GPC)によって分析された重量割合で表される値である。
【0024】
また、2核体含有量が95重量%以上である多価フェノール類混合物(a)を得る為には、特にその製造方法が限定されるものでないが、例えば(1)不飽和脂肪族環状炭化水素化合物とフェノール類を重付加反応させる際のフェノール類/不飽和脂肪族環状炭化水素化合物のモル比を高める方法と、(2)従来製造法で得られた該多価フェノール化合物を分子蒸留する方法が挙げられるが、該多価フェノール化合物中の2核体含有量を効率良く95重量%以上に高めるためには、(2)の方法が好ましい。
即ち、本発明の製造方法として、不飽和脂肪族環状炭化水素化合物とフェノール類を重付加反応させ、得られた該多価フェノール化合物を分子蒸留して、2核体含有量95重量%以上である多価フェノール類混合物(a)を得、次いで、これとエピハロヒドリン(b)とを反応させる方法が好ましい。
【0025】
この好ましい方法を更に詳述すれば、多価フェノール類混合物(a)は、不飽和脂肪族環状炭化水素化合物とフェノール類を前者/後者=1/(5以上)のモル比率で、重付加反応させる。この際、重付加触媒としては、塩酸、硫酸などの無機酸或いはパラトルエンスルホン酸等の有機酸或いはAlCl3、BF3等のルイス酸等を用いる。こうして重付加反応させて得られた分子量が高い多価フェノール化合物を、分子蒸留することにより、目的の多価フェノール類混合物(a)を得ることができる。分子蒸留の方法としては、250℃以上/0.5Torr以下の高温減圧条件下で、薄膜蒸留器などを用いて、低分子量域を選択的に分離させればよい。
【0026】
次いで、この様にして得られた重付加反応物とエピハロヒドリンとを反応させることによって、目的とするエポキシ樹脂(A)を得ることができるが、この反応は公知の方法に従って行えばよく、例えば次の方法が挙げられる。
【0027】
即ち、先ず、多価フェノール化合物(a)の水酸基に対して2〜15当量、中でもの溶融粘度の低減効果に優れる点から好ましくは3〜10当量のエピハロヒドリンを添加して溶解し、その後、重付加反応物中の水酸基に対して0.8〜1.2当量の10〜50%NaOH水溶液を50〜80℃の温度で3〜5時間要して適下する。適下後その温度で0.5〜2時間程度撹拌を続けて、静置後下層の食塩水を棄却する。次いで過剰のエピハロヒドリンを蒸留回収し祖樹脂を得る。これにトルエン、MIBK等の有機溶媒を加え、水洗−脱水−濾過−脱溶媒工程を経て、目的の樹脂を得ることができる。また不純物塩素量の低減等を目的に、反応の際ジオキサン、DMSO等の溶媒を併用しても良い。
【0028】
ここで用いるエピハロヒドリン(b)としては、エピクロルヒドリンが最も一般的であるが、他にエピヨードヒドリン、エピブロムヒドリン、β−メチルエピクロルヒドリン等も用いることができる。
【0029】
この様にして得られるエポキシ樹脂は本発明のエポキシ樹脂組成物の主剤たるエポキシ樹脂(A)として好ましく使用し得るが、また高分子タイプエポキシ樹脂を得るための2段法反応の原料樹脂として使用することも可能である。
【0030】
次に、本発明のエポキシ樹脂組成物において、必須成分として使用される硬化剤(B)としては、通常エポキシ樹脂の硬化剤として常用されている化合物はすべて使用することができ、特に限定されるものではないが、例えばフェノールノボラック樹脂、オルソクレゾールノボラック樹脂、ビスフェノールAノボラック樹脂、ビスフェノールFノボラック樹脂、フェノール類−ジシクロペンタジエン重付加型樹脂、ジヒドロキシナフタレンノボラック樹脂、キシリデン基を結接基とした多価フェノール類、フェノール−アラルキル樹脂、ナフトール類樹脂ジエチレントリアミン、トリエチレンテトラミンなどの脂肪族アミン類、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホンなどの芳香族アミン類、ポリアミド樹脂およびこれらの変性物、無水マレイン酸、無水フタル酸、無水ヘキサヒドロフタル酸、無水ピロメリット酸などの酸無水物系硬化剤、ジシアンジアミド、イミダゾール、BF3 −アミン錯体、グアニジン誘導体等の潜在性硬化剤等が挙げられる。中でも半導体封止材用としては、上記フェノールノボラック樹脂等の芳香族炭化水素−ホルムアルデヒド樹脂が硬化性、成形性、耐熱性に優れること、またフェノール−アラルキル樹脂が硬化性、成形性、低吸水率に優れる点から好ましい。
【0031】
これらの硬化剤(B)の使用量は、エポキシ樹脂(A)を硬化せしめる量であれば何れでもよく、特に限定されないが、好ましくは用いるエポキシ樹脂の一分子中に含まれるエポキシ基の数と、硬化剤中の活性水素の数が当量付近となる量である。
【0032】
上掲された如き各化合物を硬化剤(B)として用いる際は、硬化促進剤を適宜使用することができる。硬化促進剤としては公知慣用のものがいずれも使用できるが、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩、等が挙げられ、これらは単独のみならず2種以上の併用も可能である。
【0033】
また本発明のエポキシ樹脂組成物は、必須成分である上述したエポキシ樹脂(A)に加え、さらにその他のエポキシ樹脂を併用しても構わない。
この際に用いられるエポキシ樹脂としては、公知慣用のものが何れも使用でき、例えばビスフェノールAジグリシジルエーテル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ビフェニル型2官能エポキシ樹脂等が挙げられるが、これらに限定されるものではない。
【0034】
また必要に応じて、着色剤、難燃剤、離型剤、またはカップリング剤などの公知慣用の各種の添加剤成分も適宜配合せしめることができる。
【0035】
また、本発明のエポキシ樹脂組成物から成型材料を調製するには、エポキシ樹脂、硬化剤、硬化促進剤、その他の添加剤をミキサー等によって十分に均一に混合した後、更に熱ロールまたはニーダ−等で溶融混練し、射出あるいは冷却後粉砕するなどして得ることができる。
【0036】
この様にして得られる本発明のエポキシ樹脂組成物は、特にその用途が限定されるものではなく、例えば、半導体封止材料や、エポキシ樹脂の溶剤溶解性に優れるために電気積層板用途でのワニス等が挙げられる。また、本発明のエポキシ樹脂(A)を臭素化多価フェノール類で変性を施したオリゴマー型エポキシ樹脂を積層板用途に用いることもできる。さらにはこれに多官能型エポキシ樹脂を配合或いは変性し耐熱性を付与させて使用してもよい。
【0037】
これらの用途の中でも、特に耐ハンダクラック性に著しく優れる等の利点から半導体封止材料用途が極めて有用である。
以下に本発明の半導体封止材料について詳述すると、上述したエポキシ樹脂(A)、硬化剤(B)に加え、更に無機充填材(C)を必須成分として含有するものである。
【0038】
本発明の半導体封止材料は、半導体を封止する際の成形時の流動性、硬化性、成形性や封止硬化後の耐熱性、さらにはプリント基板へ実装する際の耐ハンダクラック性等の全ての要求特性を満足している。
【0039】
本発明で用いる無機充填剤(C)は、硬化物の機械強度、硬度を高めることのみならず、低吸水率、低線膨張係数を達成し、耐ハンダクラック性を高めるための必須成分である。
【0040】
無機充填剤(C)の配合量は、特に限定されるものではないが、エポキシ樹脂(A)の流動性に優れる為に、従来になく高充填することができ、具体的には、80〜95重量%の範囲であることが耐ハンダクラック性の点から好ましい。
【0041】
また、ここで特筆すべき点は、本発明において85重量%以上無機充填剤を添加しても流動性、成形性を全く損なうことがないことである。。
【0042】
この様な無機充填剤(C)の種類としては、特に限定されないが破砕シリカ、球状シリカ、アルミナ、タルク、クレー、ガラス繊維等が挙げられる。これらの中でも、特に半導体封止材料用途においては破砕シリカ、球状シリカが一般的に用いられており、その中でも特に流動性に優れる点から球状シリカを配合することが好ましい。特に平均粒径が10〜50μmの範囲のものを用いると、より優れた流動性が得られる。
【0043】
また上述したエポキシ樹脂組成物の各成分の他にテトラブロモビスフェノールA型エポキシ樹脂、ブロム化フェノールノボラック型エポキシ樹脂等の臭素化エポキシ樹脂、三酸化アンチモン、ヘキサブロモベンゼン等の難燃剤、カ−ボンブラック、ベンガラ等の着色剤、天然ワックス、合成ワックス等の離型剤及びシリコンオイル、合成ゴム、シリコーンゴム等の低応力添加剤等の種々の添加剤を適宜配合してもよい。
【0044】
また本発明の半導体封止材料は、必須成分である上述したエポキシ樹脂(A)に加え、さらにその他のエポキシ樹脂を併用しても構わない。
この際に用いられるエポキシ樹脂としては、公知慣用のものが何れも使用でき、例えばビスフェノールAジグリシジルエーテル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ビフェニル型2官能エポキシ樹脂等が挙げられるが、これらに限定されるものではない。これらの中でも、特に耐熱性に優れる点からオルソクレゾールノボラック型エポキシ樹脂が、また流動性に優れる点からビフェニル型2官能エポキシ樹脂が好ましい。
【0045】
また必要に応じて、着色剤、難燃剤、離型剤、またはカップリング剤などの公知慣用の各種の添加剤成分も適宜配合せしめることができる。
また、本発明のエポキシ樹脂組成物から半導体封止材料を調製するには、エポキシ樹脂(A)、硬化剤(B)、無機充填材(C)並びに必要に応じ、硬化促進剤、その他の添加剤及び(A)以外のエポキシ樹脂をミキサー等によって十分に均一に混合した後、更に熱ロールまたはニーダ−等で溶融混練し、冷却後粉砕し、タブレット化するなどして得ることができる。
【0046】
本発明の半導体封止材料は、前述のECNを用いた半導体封止材料よりも耐ハンダクラック性、耐ヒートサイクル性が優れることは勿論の上、従来のジシクロペンタジエン型エポキシ樹脂と比較しても、一層溶融粘度が低いため、流動性を損なうことなくビフェニル型と同程度の無機充填材を充填することができる。しかもビフェニル型よりも吸湿率が低いため、耐ハンダクラック性が極めて優れるものである。またビフェニル型よりも優れた硬化性と耐熱性も有する。従って、本発明のエポキシ樹脂は、流動性、硬化性、耐ハンダクラック性、耐ヒートサイクル性の特性を高いレベルでしかもバランス良く半導体封止材料に兼備させることができるものである。
【0047】
【実施例】
次に本発明を製造例、実施例およびその比較例により具体的に説明する。尚、例中において部は特に断りのない限りすべて重量部である。
【0048】
尚、全塩素含有量は各実施例及び比較例で得られたエポキシ樹脂0.2gをn−ブタノール20mlに溶解し、金属ナトリウム1gを添加した後、120℃で2時間加熱処理した溶液を硝酸銀を用いて電位差滴定することによって測定した。尚、溶融粘度は50HzのもとにおいてReseach equipmentLTD.製「ICI CONE & PLATE VISCOMETER」で測定した。また2核体成分含有量は、東ソー(株)製「ゲルパーミュエーションクロマトグラフィー(GPC)」(測定条件:流速=1.0ml/分間,圧力=92Kg/cm2,カラム=G4,3,2,2HXL,検出器=RI 32×10−6RIUFS)で測定した。軟化点は明峰社製作所(株)製「軟化点測定器」(加熱器:HU−MK,検出器ASP−M2)測定した。
【0049】
実施例1
撹拌機、温度計、コンデンサーが装着された2リットルの4つ口フラスコにフェノール1222gを、BF3・フェノール錯体17gを添加し充分混合した。その後クルードのジシクロペンタジエンを主成分とした混合物192gを系内温度を110〜120℃に保ちながら4時間要して添加した。このクルードのジシクロペンタジエンの純度は、ジシクロペンタジエン95.2重量%、メチルジシクロペンタジエン2.8重量%、プロペニルノルボルネン0.1重量%、イソペニルノルボルネン0.1重量%、その他二重結合を有していない化合物1.8重量%であった。その後系内温度を120℃に保ち、3時間加熱撹拌し、得られた反応生成物溶液にマグネシウム化合物「KW-1000」(商品名;協和化学工業(株)社製)52gを添加し、1時間撹拌して触媒を失活させた後、反応溶液を濾過した。得られた透明溶液を未反応フェノールを蒸留回収しながら230℃に昇温し、1Torrの減圧下で4時間ホールドした。その結果褐色の固形樹脂368gを得た。この樹脂の軟化点は91℃、水酸基当量は169g/eqであった。
【0050】
この固形樹脂350gを280℃/0.1Torrの条件で、薄膜式分子蒸留器で分子蒸留を行い淡い褐色固形樹脂185gを得た。この固形樹脂中の2核体含有量は98重量%であった。
【0051】
撹拌機、温度計、ディーンスタークトラップ、コンデンサーが装着された2リットルの4つ口フラスコに、この樹脂150g、エピクロルヒドリン338gを加え溶解する。それを55℃に加熱し、減圧下それに49%NaOH76gを4時間要して滴下した。その際共沸して留出された液体をディーンスタークトラップで水とエピクロルヒドリンに分離し、エピクロルヒドリンのみを反応系内に戻しながら反応を行った。滴下後さらに1時間その温度で撹拌した後、120℃まで加熱し、未反応のエピクロルヒドリンを蒸留回収した。次いで得られた粗樹脂溶液にMIBK300g、水100gを加えて、無機塩を水洗にて除去した。この溶液に5%NaOH10gを添加し、85℃で3時間撹拌した。その後静置分液して、下層を除去し、さらに水洗を2回繰り返した。次いで共沸脱水、濾過を経て、MIBKを150℃で脱溶剤して目的のエポキシ樹脂(I)179gを得た。この樹脂は褐色半固体で、150℃での溶融粘度0.15ポイズ、2核体成分含有量81重量%、エポキシ当量は242g/eq、全塩素量は870ppmであった。
【0052】
実施例2
エポキシ化反応の際にジメチルスルホキシド150gを加えた以外は、製造実施例1と同様にして、目的のエポキシ樹脂(II)178gを得た。この樹脂は褐色半固体で、150℃での溶融粘度0.10ポイズ、2核体成分含有量85重量%、エポキシ当量は237g/eq、全塩素量は620ppmであった。
【0053】
比較例1
原料フェノール樹脂を分子蒸留しない以外は、製造実施例1と同様にして、目的のエポキシ樹脂(III)165gを得た。この樹脂は褐色固体で、150℃での溶融粘度0.57ポイズ、2核体成分含有量57重量%、エポキシ当量は259g/eq、全塩素量は1190ppmであった。
【0054】
実施例3〜4及び比較例2〜4
第1表で表される配合に従って調製した混合物を熱ロールにて100℃・8分間混練りしてエポキシ樹脂組成物を得た。
【0055】
その際、組成物175℃でのゲルタイムを、また流動性の指標として、試験用金型を用い175℃/70kg/cm2、120秒の条件でスパイラルフロー値を測定した。
【0056】
次いで、得られたエポキシ樹脂組成物を粉砕したものを1200〜1400Kg/cm2の圧力にてタブレットを作製し、それを用いてトランスファー成形機にてプランジャー圧力80kg/cm2、金型温度175℃、成形時間100秒の条件下にて封止し、厚さ2mmの20pinのフラットパッケージを評価用試験片として作成した。
【0057】
その後、評価用試験片作成後175℃で8時間の後硬化を施した。
その際、硬化性の指標として同一試験片で後硬化開始2時間経過時、4時間経過時、8時間経過時のガラス転移点をDMA法にて測定し、そのTgの変化を観測した。
【0058】
この様にして得られた評価用試験片を用い、85℃・85%RH,300時間条件下での吸湿率、及び20個の試験片を85℃・85%RHの雰囲気下中168時間放置し、吸湿処理を行った後、これを260℃のハンダ浴に10秒浸せきた際のクラック発生率を耐ハンダクラック性の指標とした。
【0059】
尚、表中、N−665はオルソクレゾールノボラック型エポキシ樹脂(大日本インキ化学工業(株)製 商品名:EPICLON N−665、軟化点68℃、エポキシ当量208g/eq、150℃の溶融粘度3.0ポイズ)、ビフェニル型エポキシ樹脂(油化シェルエポキシ(株)製 商品名:エピコート YX−4000H、融点104℃、エポキシ当量195g/eq、150℃の溶融粘度0.1ポイズ)、153はテトラブロモビスフェノールA型エポキシ樹脂(大日本インキ化学工業(株)製、商品名:EPICLON 153、軟化点70℃、エポキシ当量401g/eq)、TD−2131はフェノールノボラック樹脂(大日本インキ化学工業(株)製 商品名:フェノライトTD−2131、軟化点80℃、水酸基当量104g/eq)を示す。シリカ粉末は、平均粒径が25μmの球状シリカを用いた。
【0060】
【表1】
Figure 0003915938
【0061】
【発明の効果】
本発明によれば、低吸湿率、高耐熱性といった性能を低下させることなく、優れた流動性を有し、無機充填材の高充填化が可能となり、その結果、特に半導体封止材料として、従来になく優れた耐ハンダクラック性を発現すると共に、硬化性に著しく優れ、半導体等の成形品の生産性を著しく向上できるエポキシ樹脂組成物及び半導体封止材料を提供できる。[0001]
BACKGROUND OF THE INVENTION
The present invention is excellent in the balance of fluidity, curability during molding, heat resistance, water resistance, moisture resistance reliability, especially molding materials, molding materials, casting materials, laminated parts materials, electrical insulating materials, fiber reinforced composites Epoxy resin manufacturing method, epoxy resin composition, extremely useful for materials, coating materials, adhesive materials, etc., in addition to their characteristics, excellent moldability of thin packages, and excellent resistance to solder cracks during surface mounting Furthermore, the present invention relates to a semiconductor sealing material having excellent moisture resistance reliability.
[0002]
[Prior art]
Epoxy resins are generally cured with various curing agents, resulting in cured products with excellent mechanical properties, water resistance, chemical resistance, heat resistance, electrical properties, etc., adhesives, paints, laminates, Used in a wide range of fields such as molding materials and casting materials.
[0003]
In particular, in semiconductor encapsulating material applications, in recent years, further improvement in heat cycle resistance has been required due to higher integration. Furthermore, semiconductor packages tend to be thinner in order to cope with higher mounting density, and TSOP type packages with a thickness of 1 mm or less are also being used. A material having cracking properties is required.
[0004]
In addition, in order to improve the productivity of semiconductors, there is a tendency to shorten the molding cycle, and a semiconductor sealing material having high curability is required.
Conventionally, ortho-cresol novolac type epoxy resin (hereinafter referred to as “ECN”) has been widely used for semiconductor sealing materials. However, although the resin is excellent in heat resistance, it has excellent fluidity and solder crack resistance. It had the defect of being inferior. On the other hand, a biphenyl type epoxy resin, which is a crystalline epoxy resin, is also used as an epoxy resin excellent in fluidity, but the resin has a low degree of curability and heat resistance, although the solder crack resistance is improved to some extent. However, it is not at a level that sufficiently satisfies the above requirements.
[0005]
Therefore, a sealing material using a dicyclopentadiene type epoxy resin as a high performance semiconductor sealing material is described in, for example, Japanese Patent Application Laid-Open Nos. 61-293219, 61-168618, and US Pat. No. 4,701,481. Has been.
[0006]
[Problems to be solved]
Although the epoxy resins described in these publications have the features of low moisture absorption and high heat resistance, they have high melt viscosity and cannot increase the filling rate of inorganic fillers, so solder crack resistance However, there is a limit to the improvement effect of moisture resistance reliability, it cannot satisfy the currently required performance, and the melt viscosity is high and the curability is inferior, so it cannot sufficiently cope with shortening of the molding cycle. It was.
[0007]
The problem to be solved by the present invention is that it has excellent fluidity without degrading performance such as low moisture absorption and high heat resistance, and can be highly filled with an inorganic filler, which is conventionally used as a semiconductor sealing material. To provide an epoxy resin production method, an epoxy resin composition, and a semiconductor encapsulating material that exhibit excellent solder crack resistance and are extremely excellent in curability and can significantly improve the productivity of molded products such as semiconductors. It is in.
[0008]
[Means for Solving the Problems]
  As a result of intensive studies, the present inventors have obtained a glycidyl etherification mixture of a polyaddition reaction product of an unsaturated aliphatic cyclic hydrocarbon compound containing two double bonds in one molecule and a phenol, and The binuclear content in the mixture is 80~ 95weight%so,And the melt viscosity at 150 ° C is 0.3 poise or lessThe epoxy equivalent is in the range of 220 to 260 g / eq, and the total chlorine concentration is 800 ppm or less.By using an epoxy resin as a main agent, it discovered that the said subject could be solved and came to complete this invention.
[0009]
  That is, the present invention is a glycidyl etherification mixture of a polyaddition reaction product of an unsaturated aliphatic cyclic hydrocarbon compound containing two double bonds in one molecule and a phenol, and in the mixture, The binuclear content is 80 to 95% by weight, the melt viscosity at 150 ° C. is 0.3 poise or less, the epoxy equivalent is 220 to 260 g / eq, and the total chlorine concentration is 800 ppm or less. An epoxy resin composition comprising an epoxy resin (A) and a curing agent (B) as essential components,as well as,A glycidyl etherification mixture of a polyaddition reaction product of an unsaturated aliphatic cyclic hydrocarbon compound containing two double bonds in one molecule and a phenol, and the dinuclear content in the mixture is Epoxy resin (A) having a melt viscosity of 80 to 95% by weight, a melt viscosity at 150 ° C. of 0.3 poise or less, an epoxy equivalent of 220 to 260 g / eq, and a total chlorine concentration of 800 ppm or less Further, the present invention relates to a semiconductor sealing material comprising a curing agent (B) and an inorganic filler (C) as essential components.
[0010]
  The epoxy resin (A) used in the present invention is a glycidyl etherification mixture of a polyaddition reaction product of an unsaturated aliphatic cyclic hydrocarbon compound containing two double bonds in one molecule and a phenol, And the binuclear content in the mixture is 80~ 95weight%so,And the melt viscosity at 150 ° C is 0.3 poise or lessThe epoxy equivalent is in the range of 220 to 260 g / eq, and the total chlorine concentration is 800 ppm or less.Is. Here, the binuclear body is a glycidyl ether compound having two aromatic hydrocarbon nuclei knotted by an aliphatic cyclic hydrocarbon group, and examples thereof include the following structures.
[0011]
[Chemical 1]
Figure 0003915938
[0012]
(In General Formula 1, X is an aliphatic hydrocarbon group, R1Is a hydrogen atom or a methyl group, R2And RThreeEach independently represents a halogen atom or an alkyl group having 1 to 10 hydrocarbons. In addition, the content of the binuclear body is a value represented by a weight ratio analyzed by gel permeation chromatography (GPC).
[0013]
  In the present invention, by containing 80% by weight or more of such a binuclear substance in the epoxy resin (A), the melt viscosity is reduced while combining the high heat resistance and high water resistance of the dicyclopentadiene type epoxy resin. Although it has been successfully achieved, it is characterized in that the curability can be remarkably improved at the same time. In general, thermosetting resins tend to decrease in curability with improvement in fluidity, but the epoxy resin (A) in the present invention has a unique performance that fluidity is remarkably excellent and curability is extremely excellent. Is expressed. From the point that the improvement effect of these fluidity and curability becomes more remarkable, the content of the binuclear substance in the epoxy resin (A) is,80 to 95% by weight.
[0014]
The glycidyl ether compound constituting the epoxy resin (A) is a glycidyl etherification mixture of a polyaddition reaction product of an unsaturated aliphatic cyclic hydrocarbon compound containing two double bonds in one molecule and a phenol. Here, examples of the phenols include phenol and substituted phenols in which one or more alkyl groups, alkenyl groups, allyl groups, aryl groups, aralkyl groups, or halogen groups are substituted. Specific examples include cresol, xylenol, ethylphenol, isopropylphenol, butylphenol, octylphenol, nonylphenol, vinylphenol, isopropenylphenol, allylphenol, phenylphenol, benzylphenol, chlorophenol, bromophenol, naphthol, dihydroxynaphthalene and the like. Although illustrated, it is not limited to these. Moreover, you may use these mixtures. Among these, phenol is particularly preferable from the viewpoint of excellent fluidity and curability.
[0015]
The unsaturated alicyclic hydrocarbon compound is not particularly limited as long as it is an unsaturated aliphatic cyclic hydrocarbon compound having two or more unsaturated double bonds in one molecule. Examples thereof include cyclopentadiene, tetrahydroindene, 4-vinylcyclohexene, 5-vinylnorbona-2-ene, α-pinene, β-pinene, limonene and the like. Among these, dicyclopentadiene is preferred from the viewpoint of property balance, particularly heat resistance and hygroscopicity. In addition, since dicyclopentadiene is contained in petroleum fractions, industrial dicyclopentadiene may contain other aliphatic or aromatic dienes as impurities, but heat resistance, curability, Considering moldability and the like, a product having a purity of 90% by weight or more of dicyclopentadiene is desirable.
[0016]
  As described above, the epoxy resin (A) has a melt viscosity at 150 ° C. of not more than 0.3 poise, and thereby has excellent fluidity. The epoxy equivalent of the epoxy resin (A) is,The range of 220-260 g / eq from the point that heat resistance, water resistance, etc. become goodAndFurthermore, the total chlorine concentration in the epoxy resin (A) is 800 ppm or less.FromElectrical characteristics and solder crack resistance especially for semiconductor encapsulant applicationsBecomes better.
[0017]
That is, the epoxy resin (A) used in the present invention is a glycidyl etherification mixture of a polyaddition reaction product of phenol and dicyclopentadiene, and the binuclear content in the mixture is 80 to 95 wt. %, An epoxy resin having a melt viscosity at 150 ° C. of 0.3 poise or less, an epoxy equivalent of 220 to 260 g / eq, and a total chlorine concentration of 800 ppm or less exhibits better performance. Most preferred.
[0018]
  The method for producing such an epoxy resin (A) is not particularly limited,belowIt can be easily obtained by a manufacturing method.
[0019]
That is, a polyaddition reaction product of an unsaturated aliphatic cyclic hydrocarbon compound containing two double bonds in one molecule and a phenol, and the dinuclear content in the polyaddition reaction product is The epoxy resin (A) can be easily obtained by reacting the polyphenol mixture (a) which is 95% by weight or more with the epihalohydrin (b).
[0020]
As the unsaturated aliphatic cyclic hydrocarbon compound containing two double bonds in one molecule and the phenols, any of those described above can be used.
[0021]
Here, the dinuclear body is a phenol compound having two aromatic hydrocarbon nuclei knotted by an aliphatic cyclic hydrocarbon group, and examples thereof include the following structures.
[0022]
[Chemical 2]
Figure 0003915938
[0023]
(In General Formula 2, X is an aliphatic hydrocarbon group, R2And RThreeEach independently represents a halogen atom or an alkyl group having 1 to 10 hydrocarbons. In addition, the content of the binuclear body is a value represented by a weight ratio analyzed by gel permeation chromatography (GPC) as in the case of the glycidyl ether compound.
[0024]
Moreover, in order to obtain the polyhydric phenol mixture (a) having a dinuclear content of 95% by weight or more, the production method is not particularly limited. For example, (1) unsaturated aliphatic cyclic carbonization A method of increasing the molar ratio of phenols / unsaturated aliphatic cyclic hydrocarbon compounds when polyaddition reaction of a hydrogen compound and phenols, and (2) molecular distillation of the polyhydric phenol compound obtained by the conventional production method Although there is a method, the method (2) is preferable in order to efficiently increase the dinuclear content in the polyhydric phenol compound to 95% by weight or more.
That is, as a production method of the present invention, an unsaturated aliphatic cyclic hydrocarbon compound and a phenol are subjected to a polyaddition reaction, and the resulting polyhydric phenol compound is subjected to molecular distillation to obtain a binuclear content of 95% by weight or more. A method in which a polyhydric phenol mixture (a) is obtained and then reacted with epihalohydrin (b) is preferred.
[0025]
More specifically, the polyhydric phenol mixture (a) is a polyaddition reaction of an unsaturated aliphatic cyclic hydrocarbon compound and a phenol in a molar ratio of the former / the latter = 1 / (5 or more). Let At this time, as the polyaddition catalyst, an inorganic acid such as hydrochloric acid or sulfuric acid, an organic acid such as paratoluenesulfonic acid, or a Lewis acid such as AlCl 3 or BF 3 is used. The target polyhydric phenol mixture (a) can be obtained by molecular distillation of the polyhydric phenol compound having a high molecular weight obtained by the polyaddition reaction. As a molecular distillation method, a low molecular weight region may be selectively separated using a thin film distiller or the like under a high-temperature reduced pressure condition of 250 ° C. or higher / 0.5 Torr or lower.
[0026]
Subsequently, the target epoxy resin (A) can be obtained by reacting the polyaddition reaction product thus obtained with epihalohydrin. This reaction may be carried out according to a known method. The method is mentioned.
[0027]
That is, first, 2 to 15 equivalents with respect to the hydroxyl group of the polyhydric phenol compound (a), preferably 3 to 10 equivalents of epihalohydrin is added and dissolved from the viewpoint of excellent melt viscosity reduction effect. 0.8 to 1.2 equivalents of 10 to 50% NaOH aqueous solution with respect to the hydroxyl group in the addition reaction product is required for 3 to 5 hours at a temperature of 50 to 80 ° C. Stirring is continued for about 0.5 to 2 hours at that temperature after appropriate reduction, and the lower-layer saline solution is discarded after standing. Then, excess epihalohydrin is recovered by distillation to obtain the resin. To this, an organic solvent such as toluene or MIBK is added, and a target resin can be obtained through a water washing-dehydration-filtration-desolvation step. For the purpose of reducing the amount of impurity chlorine, a solvent such as dioxane or DMSO may be used in the reaction.
[0028]
As the epihalohydrin (b) used here, epichlorohydrin is the most common, but epiiodohydrin, epibromohydrin, β-methylepichlorohydrin, etc. can also be used.
[0029]
The epoxy resin thus obtained can be preferably used as the epoxy resin (A) which is the main component of the epoxy resin composition of the present invention, but is also used as a raw resin for a two-step reaction for obtaining a polymer type epoxy resin. It is also possible to do.
[0030]
Next, in the epoxy resin composition of the present invention, as the curing agent (B) used as an essential component, all compounds that are usually used as curing agents for epoxy resins can be used, and are particularly limited. For example, phenol novolak resin, orthocresol novolak resin, bisphenol A novolak resin, bisphenol F novolak resin, phenols-dicyclopentadiene polyaddition type resin, dihydroxynaphthalene novolak resin, and many having xylidene group as a linking group Polyhydric phenols, phenol-aralkyl resins, naphthol resins, aliphatic amines such as diethylenetriamine and triethylenetetramine, aromatic amines such as metaphenylenediamine, diaminodiphenylmethane and diaminodiphenylsulfone, poly Potential of polyimide resins and their modified products, anhydrides such as maleic anhydride, phthalic anhydride, hexahydrophthalic anhydride, pyromellitic anhydride, dicyandiamide, imidazole, BF3 -amine complex, guanidine derivatives Examples thereof include a curing agent. Above all, for semiconductor encapsulants, aromatic hydrocarbon-formaldehyde resins such as phenol novolac resins are excellent in curability, moldability, and heat resistance, and phenol-aralkyl resins are curable, moldability, low water absorption. From the point which is excellent in it.
[0031]
The amount of these curing agents (B) used is not particularly limited as long as it is an amount capable of curing the epoxy resin (A), but preferably the number of epoxy groups contained in one molecule of the epoxy resin used. The amount of active hydrogen in the curing agent is an amount that is in the vicinity of the equivalent.
[0032]
When each compound as listed above is used as the curing agent (B), a curing accelerator can be appropriately used. As the curing accelerator, any known and conventional ones can be used. Examples thereof include phosphorus compounds, tertiary amines, imidazoles, organic acid metal salts, Lewis acids, amine complex salts, and the like. Two or more types can be used in combination.
[0033]
Moreover, in addition to the epoxy resin (A) which is an essential component, the epoxy resin composition of the present invention may be used in combination with other epoxy resins.
As the epoxy resin used in this case, any known and commonly used epoxy resins can be used. For example, bisphenol A diglycidyl ether type epoxy resin, phenol novolac type epoxy resin, orthocresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, Examples include, but are not limited to, bisphenol F novolac type epoxy resins, brominated phenol novolac type epoxy resins, naphthol novolac type epoxy resins, biphenyl type bifunctional epoxy resins, and the like.
[0034]
Further, if necessary, various known and commonly used additive components such as a colorant, a flame retardant, a release agent, or a coupling agent can be appropriately blended.
[0035]
Moreover, in order to prepare a molding material from the epoxy resin composition of the present invention, an epoxy resin, a curing agent, a curing accelerator, and other additives are sufficiently uniformly mixed by a mixer or the like, and then further heated roll or kneader. For example, it can be obtained by melt-kneading, etc., or by pulverizing after injection or cooling.
[0036]
The epoxy resin composition of the present invention obtained in this way is not particularly limited in its use. For example, it is excellent in semiconductor sealing materials and epoxy resin solvent solubility, so that it can be used in electrical laminates. A varnish etc. are mentioned. Moreover, the oligomer type epoxy resin which modified | denatured the epoxy resin (A) of this invention with brominated polyhydric phenols can also be used for a laminated board use. Furthermore, it may be used by adding or modifying a polyfunctional epoxy resin to impart heat resistance thereto.
[0037]
Among these uses, a semiconductor encapsulating material application is extremely useful due to advantages such as remarkably excellent solder crack resistance.
The semiconductor sealing material of the present invention will be described in detail below. In addition to the epoxy resin (A) and the curing agent (B) described above, an inorganic filler (C) is further contained as an essential component.
[0038]
The semiconductor sealing material of the present invention has fluidity, curability, moldability, heat resistance after sealing and curing, and solder crack resistance when mounted on a printed circuit board when sealing a semiconductor. All the required characteristics are satisfied.
[0039]
The inorganic filler (C) used in the present invention is an essential component not only for increasing the mechanical strength and hardness of the cured product, but also for achieving a low water absorption rate and a low linear expansion coefficient, and improving solder crack resistance. .
[0040]
Although the compounding quantity of an inorganic filler (C) is not specifically limited, In order to be excellent in the fluidity | liquidity of an epoxy resin (A), it can be filled with high conventionally, Specifically, 80- A range of 95% by weight is preferred from the viewpoint of solder crack resistance.
[0041]
In addition, the point to be noted here is that the flowability and moldability are not impaired at all even if an inorganic filler of 85% by weight or more is added in the present invention. .
[0042]
The kind of the inorganic filler (C) is not particularly limited, and examples thereof include crushed silica, spherical silica, alumina, talc, clay, and glass fiber. Among these, pulverized silica and spherical silica are generally used particularly for semiconductor sealing material applications. Among these, spherical silica is preferably blended from the viewpoint of excellent fluidity. In particular, when a material having an average particle size in the range of 10 to 50 μm is used, more excellent fluidity can be obtained.
[0043]
In addition to the components of the epoxy resin composition described above, brominated epoxy resins such as tetrabromobisphenol A type epoxy resin, brominated phenol novolac type epoxy resin, flame retardant such as antimony trioxide, hexabromobenzene, carbon Various additives such as colorants such as black and bengara, mold release agents such as natural wax and synthetic wax, and low-stress additives such as silicone oil, synthetic rubber and silicone rubber may be appropriately blended.
[0044]
Moreover, in addition to the above-described epoxy resin (A), which is an essential component, the semiconductor sealing material of the present invention may further use other epoxy resins in combination.
As the epoxy resin used in this case, any known and commonly used epoxy resins can be used. For example, bisphenol A diglycidyl ether type epoxy resin, phenol novolac type epoxy resin, orthocresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, Examples include, but are not limited to, bisphenol F novolac type epoxy resins, brominated phenol novolac type epoxy resins, naphthol novolac type epoxy resins, biphenyl type bifunctional epoxy resins, and the like. Among these, an ortho-cresol novolak type epoxy resin is particularly preferable from the viewpoint of excellent heat resistance, and a biphenyl type bifunctional epoxy resin is preferable from the viewpoint of excellent fluidity.
[0045]
Further, if necessary, various known and commonly used additive components such as a colorant, a flame retardant, a release agent, or a coupling agent can be appropriately blended.
Moreover, in order to prepare a semiconductor sealing material from the epoxy resin composition of the present invention, an epoxy resin (A), a curing agent (B), an inorganic filler (C) and, if necessary, a curing accelerator and other additives After the agent and the epoxy resin other than (A) are sufficiently uniformly mixed with a mixer or the like, they can be obtained by further melt-kneading with a hot roll or a kneader, pulverizing after cooling, and tableting.
[0046]
The semiconductor encapsulating material of the present invention is superior in solder crack resistance and heat cycle resistance to the above-described semiconductor encapsulating material using ECN, as well as in comparison with conventional dicyclopentadiene type epoxy resins. However, since the melt viscosity is lower, it is possible to fill an inorganic filler equivalent to the biphenyl type without impairing fluidity. Moreover, since the moisture absorption rate is lower than that of the biphenyl type, the solder crack resistance is extremely excellent. It also has better curability and heat resistance than the biphenyl type. Therefore, the epoxy resin of the present invention can combine the properties of fluidity, curability, solder crack resistance, and heat cycle resistance with a high level and well-balanced semiconductor sealing material.
[0047]
【Example】
Next, the present invention will be specifically described with reference to production examples, examples and comparative examples. In the examples, all parts are parts by weight unless otherwise specified.
[0048]
The total chlorine content was obtained by dissolving 0.2 g of the epoxy resin obtained in each Example and Comparative Example in 20 ml of n-butanol, adding 1 g of metallic sodium, and then heating the solution heated at 120 ° C. for 2 hours with silver nitrate. Was measured by potentiometric titration using. The melt viscosity is 50% at Research Equipment LTD. It was measured by “ICI CONE & PLATE VISCOMTER” manufactured by the manufacturer. The dinuclear component content was “Gel permeation chromatography (GPC)” manufactured by Tosoh Corporation (measuring conditions: flow rate = 1.0 ml / min, pressure = 92 Kg / cm 2, column = G 4, 3, 2 , 2HXL, detector = RI 32 × 10 −6 RIUFS). The softening point was measured by “Softening point measuring device” (heater: HU-MK, detector ASP-M2) manufactured by Meihosha Mfg. Co., Ltd.
[0049]
Example 1
To a 2 liter four-necked flask equipped with a stirrer, thermometer, and condenser, 1222 g of phenol and 17 g of BF3 / phenol complex were added and mixed well. Thereafter, 192 g of a mixture mainly composed of crude dicyclopentadiene was added over 4 hours while maintaining the system temperature at 110 to 120 ° C. The purity of this cyclodicyclopentadiene is 95.2% by weight dicyclopentadiene, 2.8% by weight methyl dicyclopentadiene, 0.1% by weight propenyl norbornene, 0.1% by weight isophenyl norbornene, and other doubles. The amount of the compound having no bond was 1.8% by weight. Thereafter, the system temperature was kept at 120 ° C., and the mixture was heated and stirred for 3 hours, and 52 g of a magnesium compound “KW-1000” (trade name; manufactured by Kyowa Chemical Industry Co., Ltd.) was added to the resulting reaction product solution. After stirring for a period of time to deactivate the catalyst, the reaction solution was filtered. The obtained transparent solution was heated to 230 ° C. while distilling and recovering unreacted phenol, and held under a reduced pressure of 1 Torr for 4 hours. As a result, 368 g of a brown solid resin was obtained. The softening point of this resin was 91 ° C., and the hydroxyl equivalent was 169 g / eq.
[0050]
350 g of this solid resin was subjected to molecular distillation with a thin film molecular distiller under the conditions of 280 ° C./0.1 Torr to obtain 185 g of a light brown solid resin. The dinuclear content in this solid resin was 98% by weight.
[0051]
150 g of this resin and 338 g of epichlorohydrin are added and dissolved in a 2 liter four-necked flask equipped with a stirrer, thermometer, Dean-Stark trap, and condenser. It was heated to 55 ° C. and 76 g of 49% NaOH was added dropwise over 4 hours under reduced pressure. At that time, the liquid distilled azeotropically was separated into water and epichlorohydrin by a Dean Stark trap, and the reaction was carried out while returning only epichlorohydrin to the reaction system. After the dropwise addition, the mixture was further stirred at that temperature for 1 hour, and then heated to 120 ° C. to recover unreacted epichlorohydrin by distillation. Next, 300 g of MIBK and 100 g of water were added to the obtained crude resin solution, and the inorganic salt was removed by washing with water. To this solution, 10 g of 5% NaOH was added and stirred at 85 ° C. for 3 hours. Thereafter, the mixture was allowed to stand for liquid separation, the lower layer was removed, and washing with water was repeated twice. Next, after azeotropic dehydration and filtration, MIBK was removed at 150 ° C. to obtain 179 g of the desired epoxy resin (I). This resin was a brown semi-solid having a melt viscosity at 150 ° C. of 0.15 poise, a binuclear component content of 81% by weight, an epoxy equivalent of 242 g / eq, and a total chlorine content of 870 ppm.
[0052]
Example 2
178 g of the desired epoxy resin (II) was obtained in the same manner as in Production Example 1 except that 150 g of dimethyl sulfoxide was added during the epoxidation reaction. This resin was a brown semi-solid having a melt viscosity at 150 ° C. of 0.10 poise, a dinuclear component content of 85% by weight, an epoxy equivalent of 237 g / eq, and a total chlorine content of 620 ppm.
[0053]
Comparative Example 1
165 g of the target epoxy resin (III) was obtained in the same manner as in Production Example 1 except that the raw material phenol resin was not subjected to molecular distillation. This resin was a brown solid and had a melt viscosity at 150 ° C. of 0.57 poise, a dinuclear component content of 57% by weight, an epoxy equivalent of 259 g / eq, and a total chlorine content of 1190 ppm.
[0054]
Examples 3-4 and Comparative Examples 2-4
A mixture prepared according to the formulation shown in Table 1 was kneaded with a hot roll at 100 ° C. for 8 minutes to obtain an epoxy resin composition.
[0055]
At that time, the spiral flow value was measured under the conditions of 175 ° C./70 kg / cm 2 and 120 seconds using a test mold as a gel time at the composition 175 ° C. and as an index of fluidity.
[0056]
Next, a tablet obtained by pulverizing the obtained epoxy resin composition at a pressure of 1200 to 1400 kg / cm 2 was used, and a plunger pressure of 80 kg / cm 2 using a transfer molding machine, a mold temperature of 175 ° C., Sealing was performed under conditions of a molding time of 100 seconds, and a 20-pin flat package having a thickness of 2 mm was prepared as an evaluation test piece.
[0057]
Thereafter, post-curing was performed at 175 ° C. for 8 hours after preparing the test specimen for evaluation.
At that time, as an index of curability, the glass transition point was measured by the DMA method when the post-curing start 2 hours elapsed, 4 hours elapsed, and 8 hours elapsed with the same test piece, and the change in Tg was observed.
[0058]
Using the test specimens thus obtained, the moisture absorption rate under conditions of 85 ° C./85% RH and 300 hours, and 20 test specimens were left in an atmosphere of 85 ° C./85% RH for 168 hours. Then, after the moisture absorption treatment was performed, the crack generation rate when this was immersed in a 260 ° C. solder bath for 10 seconds was used as an index of solder crack resistance.
[0059]
In the table, N-665 is an ortho-cresol novolak type epoxy resin (trade name: EPICLON N-665 manufactured by Dainippon Ink & Chemicals, Inc., softening point 68 ° C., epoxy equivalent 208 g / eq, melt viscosity 3 at 150 ° C. 0.0 poise), biphenyl type epoxy resin (manufactured by Yuka Shell Epoxy Co., Ltd.) Trade name: Epicoat YX-4000H, melting point 104 ° C., epoxy equivalent 195 g / eq, melt viscosity 0.1 poise at 150 ° C.), 153 is tetra Bromobisphenol A type epoxy resin (manufactured by Dainippon Ink and Chemicals, trade name: EPICLON 153, softening point 70 ° C., epoxy equivalent 401 g / eq), TD-2131 is a phenol novolac resin (Dainippon Ink Chemical Co., Ltd.) Product name: Phenolite TD-2131, softening point 80 ° C., hydroxyl group equivalent 104 g / eq). As the silica powder, spherical silica having an average particle diameter of 25 μm was used.
[0060]
[Table 1]
Figure 0003915938
[0061]
【The invention's effect】
  According to the present invention, it has excellent fluidity without lowering performance such as low moisture absorption and high heat resistance, and enables high filling of inorganic fillers. It exhibits unprecedented resistance to solder cracks and is extremely excellent in curability, which can significantly improve the productivity of molded products such as semiconductors.,An epoxy resin composition and a semiconductor sealing material can be provided.

Claims (2)

1分子中に二重結合を2個含有する不飽和脂肪族環状炭化水素化合物とフェノール類との重付加反応物のグリシジルエーテル化混合物であって、かつ、該混合物中の2核体含有量が80〜95重量%の範囲で、かつ、150℃における溶融粘度が0.3ポイズ以下、エポキシ当量が220〜260g/eqの範囲であって、かつ、全塩素濃度が800ppm以下であるエポキシ樹脂(A)と、硬化剤(B)とを必須成分として含有することを特徴とするエポキシ樹脂組成物。  A glycidyl etherification mixture of a polyaddition reaction product of an unsaturated aliphatic cyclic hydrocarbon compound containing two double bonds in one molecule and a phenol, and the dinuclear content in the mixture is An epoxy resin having a melt viscosity at 150 ° C. of 0.3 poise or less, an epoxy equivalent of 220 to 260 g / eq, and a total chlorine concentration of 800 ppm or less in the range of 80 to 95% by weight. An epoxy resin composition comprising A) and a curing agent (B) as essential components. 1分子中に二重結合を2個含有する不飽和脂肪族環状炭化水素化合物とフェノール類との重付加反応物のグリシジルエーテル化混合物であって、かつ、該混合物中の2核体含有量が80〜95重量%で、かつ、150℃における溶融粘度が0.3ポイズ以下、エポキシ当量が220〜260g/eqの範囲であって、かつ、全塩素濃度が800ppm以下であるエポキシ樹脂(A)、硬化剤(B)、及び、無機充填材(C)を必須成分として含有することを特徴とする半導体封止材料。  A glycidyl etherification mixture of a polyaddition reaction product of an unsaturated aliphatic cyclic hydrocarbon compound containing two double bonds in one molecule and a phenol, and the dinuclear content in the mixture is Epoxy resin (A) having a melt viscosity of 80 to 95% by weight, a melt viscosity at 150 ° C. of 0.3 poise or less, an epoxy equivalent of 220 to 260 g / eq, and a total chlorine concentration of 800 ppm or less A semiconductor sealing material comprising a curing agent (B) and an inorganic filler (C) as essential components.
JP13351797A 1997-05-23 1997-05-23 Epoxy resin composition, method for producing epoxy resin, and semiconductor sealing material Expired - Fee Related JP3915938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13351797A JP3915938B2 (en) 1997-05-23 1997-05-23 Epoxy resin composition, method for producing epoxy resin, and semiconductor sealing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13351797A JP3915938B2 (en) 1997-05-23 1997-05-23 Epoxy resin composition, method for producing epoxy resin, and semiconductor sealing material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006345745A Division JP2007077408A (en) 2006-12-22 2006-12-22 Method for producing epoxy resin

Publications (2)

Publication Number Publication Date
JPH10324733A JPH10324733A (en) 1998-12-08
JP3915938B2 true JP3915938B2 (en) 2007-05-16

Family

ID=15106637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13351797A Expired - Fee Related JP3915938B2 (en) 1997-05-23 1997-05-23 Epoxy resin composition, method for producing epoxy resin, and semiconductor sealing material

Country Status (1)

Country Link
JP (1) JP3915938B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8562055B2 (en) 2010-01-05 2013-10-22 Jtekt Corporation Machine tool

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237552A (en) * 2001-02-07 2002-08-23 Toray Ind Inc Resin-sealed semiconductor device and semiconductor sealing epoxy resin component
JP4210216B2 (en) * 2001-09-28 2009-01-14 新日本石油株式会社 Phenol resin, epoxy resin, method for producing the same, and epoxy resin composition
JP4844796B2 (en) * 2004-11-11 2011-12-28 Dic株式会社 1-pack type epoxy resin composition and cured product thereof
JP4945958B2 (en) * 2005-08-23 2012-06-06 三菱化学株式会社 Method for producing purified epoxy resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8562055B2 (en) 2010-01-05 2013-10-22 Jtekt Corporation Machine tool

Also Published As

Publication number Publication date
JPH10324733A (en) 1998-12-08

Similar Documents

Publication Publication Date Title
JP2769590B2 (en) Epoxy resin composition
JP3735896B2 (en) Epoxy resin composition and semiconductor sealing material
JP3719469B2 (en) Modified epoxy resin, epoxy resin composition and cured product thereof
JP3915938B2 (en) Epoxy resin composition, method for producing epoxy resin, and semiconductor sealing material
JP4210216B2 (en) Phenol resin, epoxy resin, method for producing the same, and epoxy resin composition
JPH0656964A (en) Epoxy resin composition for electronic component, epoxy resin, and production of epoxy resin
JPH09165433A (en) Production of epoxy resin, epoxy resin composition and semiconductor sealing material
JP3484681B2 (en) Epoxy resin composition, method for producing epoxy resin mixture, and semiconductor encapsulating material
JP4334446B2 (en) Semiconductor sealing material
US6812318B2 (en) Epoxy resins, epoxy resin mixtures, epoxy resin compositions and products of curing of the same
JP3770343B2 (en) Epoxy resin composition and semiconductor sealing material
JPH08100049A (en) Epoxy resin composition for semiconductor-sealing material
JP4435342B2 (en) Epoxy resin composition and epoxy resin composition for semiconductor encapsulation
JP3508289B2 (en) Epoxy resin composition and resin encapsulated semiconductor device
JP3118763B2 (en) Epoxy resin composition and semiconductor encapsulating material
JP3636409B2 (en) Phenolic resins, epoxy resins, epoxy resin compositions and cured products thereof
JP3940945B2 (en) Epoxy resin composition for sealing electronic parts
JP3907140B2 (en) Modified epoxy resin, epoxy resin composition and cured product thereof
JP3986025B2 (en) Epoxy resin composition and semiconductor sealing material
JPH1081731A (en) Production of epoxy resin, epoxy resin composition and sealing medium for semiconductor
JP3978242B2 (en) Epoxy resin composition and semiconductor sealing material
JP2007077408A (en) Method for producing epoxy resin
JP5252671B2 (en) Crystalline epoxy resin, epoxy resin composition and cured product thereof
JP2927222B2 (en) Resin-sealed semiconductor device
JPH07157546A (en) Novel cocondensed resin, epoxy resin produced by epoxidizing the cocondensed resin and the epoxy resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040216

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees