JP2726483B2 - High heat-resistant flame-retardant resin composition - Google Patents

High heat-resistant flame-retardant resin composition

Info

Publication number
JP2726483B2
JP2726483B2 JP1066690A JP6669089A JP2726483B2 JP 2726483 B2 JP2726483 B2 JP 2726483B2 JP 1066690 A JP1066690 A JP 1066690A JP 6669089 A JP6669089 A JP 6669089A JP 2726483 B2 JP2726483 B2 JP 2726483B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin
weight
phenol novolak
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1066690A
Other languages
Japanese (ja)
Other versions
JPH02245016A (en
Inventor
博美 森田
繁 茂木
和幸 村田
富好 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP1066690A priority Critical patent/JP2726483B2/en
Publication of JPH02245016A publication Critical patent/JPH02245016A/en
Application granted granted Critical
Publication of JP2726483B2 publication Critical patent/JP2726483B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は耐熱、難燃性に優れた硬化物を与える電気・
電子部品材として有用な高耐熱難燃性樹脂組成物に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an electric and / or thermoelectric material for providing a cured product having excellent heat resistance and flame retardancy.
The present invention relates to a high heat-resistant flame-retardant resin composition useful as an electronic component material.

[従来の技術] 従来、エポキシ樹脂は、その優れた特性から電気、電
子用の部品材料として使用され、特に近年においては、
ICの封止剤、積層板等の電気、電子部品材料として優れ
た硬化物を提供してきた。特に、クレゾールノボラック
エポキシ樹脂が、溶融粘度、又は得られる硬化物の耐熱
性といった面での使い易さから広く使用されている。
[Prior art] Conventionally, epoxy resins have been used as electric and electronic component materials because of their excellent properties.
We have provided excellent cured products as materials for electric and electronic components such as IC sealants and laminates. In particular, cresol novolak epoxy resins are widely used from the viewpoint of ease of use in terms of melt viscosity or heat resistance of a cured product obtained.

又、一方硬化物に難燃性を付与する目的から、一般に
ビスフェノールA型の臭素化エポキシ樹脂、フェノール
ノボラック型の臭素化エポキシ樹脂等の臭素化エポキシ
樹脂がクレゾールノボラック型エポキシ樹脂等のエポキ
シ樹脂とともに使用される。
On the other hand, for the purpose of imparting flame retardancy to the cured product, brominated epoxy resins such as bisphenol A type brominated epoxy resins and phenol novolak type brominated epoxy resins are generally used together with epoxy resins such as cresol novolak type epoxy resins. used.

[発明が解決しようとする課題] しかしながら、近年の半導体の集積密度の向上又は高
集積化は樹脂組成物に対して新たな課題を課することに
なった。
[Problems to be Solved by the Invention] However, recent improvements in the integration density or higher integration of semiconductors have imposed new problems on resin compositions.

すなわち、集積密度を向上させる為、近年、表面実装
方式による半導体の使用が要望され、その結果、封止剤
にはハンダ浸漬という苛酷な温度条件下(たとえば260
℃)でも耐え得る高耐熱性が要求されてきた。その為、
一般に、封止剤に配合される充填剤の使用量を増すこと
によって、耐熱性を上げる方法を採用している。これ
は、充填剤として一般的に使用されるシリカ粉末が無機
物であり、耐熱性を有していることを利用した、極めて
有効的な方法である。しかし、充填剤を増加させること
は、反面、封止剤の流れ特性を阻害する為、その増加量
にもおのずと限界があった。しかも、たとえ充填剤を可
能な限り増量しても、このハンダ浸漬という苛酷な温度
条件下(たとえば260℃)での耐熱性という観点から
は、クレゾールノボラック型エポキシ樹脂を使用してい
るかぎりにおいて、充分とはいえない。又、難燃性を付
与する目的で一般的に使用される臭素化エポキシ樹脂の
うち、ビススフェノールA型臭素化エポキシ樹脂(ETBA
と略称する)は耐熱性の点で極めて問題があり、又これ
を改善する目的で使用されるフェノールノボラック型臭
素化エポキシ樹脂は、粘度が高すぎるために流れ特性を
損う欠点があった。
That is, in order to improve the integration density, use of a semiconductor by a surface mounting method has recently been demanded, and as a result, the sealing agent is immersed in a severe temperature condition of solder immersion (for example, 260 ° C.).
C.) has been required. For that reason,
In general, a method of increasing heat resistance by increasing the amount of filler used in the sealant is employed. This is an extremely effective method utilizing the fact that silica powder generally used as a filler is an inorganic substance and has heat resistance. However, increasing the amount of the filler, on the other hand, impairs the flow characteristics of the sealant, so that the amount of the increase was naturally limited. Moreover, even if the filler is increased as much as possible, from the viewpoint of heat resistance under the severe temperature condition of this solder immersion (for example, 260 ° C.), as long as the cresol novolac type epoxy resin is used, Not enough. Among brominated epoxy resins generally used for imparting flame retardancy, bisphenol A type brominated epoxy resin (ETBA
Is abbreviated in terms of heat resistance, and the phenol novolac type brominated epoxy resin used for the purpose of improving the heat resistance has a drawback that flow properties are impaired because the viscosity is too high.

従って、充填剤を増量しても、流れ特性を損わない程
度に粘度が低く、しかも難燃性及び耐熱性を有する樹脂
組成物を提供することは、半導体の集積密度の向上又は
高集積化において、極めて重大な課題である。
Therefore, even if the amount of the filler is increased, providing a resin composition having a low viscosity so as not to impair the flow characteristics, and having flame retardancy and heat resistance can improve the integration density of the semiconductor or increase the integration. Is an extremely important issue.

[課題を解決する為の手段] 本発明者らは、流れ特性を損うことなくしかも耐熱性
を有する樹脂組成物について鋭意検討した結果、 ヒドロキシベンズアルデヒドとフェノール類を縮合し、
エポキシ化して得られるエポキシ樹脂と臭素含有率が30
重量%以上であり、軟化点が70℃以下である臭素化フェ
ノールノボラックエポキシ樹脂を特定の割合で配合して
なる樹脂組成物において、耐熱性が高く、難燃性を有
し、及び流れ特性が良好であることを見い出し本発明を
完成するに至った。
[Means for Solving the Problems] The present inventors have conducted intensive studies on a resin composition having heat resistance without impairing flow characteristics, and consequently condensing hydroxybenzaldehyde and phenols,
Epoxy resin obtained by epoxidation and bromine content of 30
% By weight, and a resin composition comprising a brominated phenol novolak epoxy resin having a softening point of 70 ° C. or less in a specific ratio, has high heat resistance, has flame retardancy, and has flow characteristics. The inventors have found that the present invention is good, and have completed the present invention.

即ち、本発明は、 a)ヒドロキシベンズアルデヒドとフェノール類との縮
合物のグリシジルエーテルであるエポキシ樹脂、 b)臭素含有率が30重量%以上であり、軟化点が70℃以
下である臭素化フェノールノボラックエポキシ樹脂、及
び c)硬化剤を含有し、 前記a)のエポキシ樹脂100重量部に対してb)の臭
素化フェノールノボラックエポキシ樹脂を10〜100重量
部配合し、a)とb)を合計したエポキシ樹脂1当量に
対してc)の硬化剤を0.5〜1.5当量配合して成る高耐熱
難燃性樹脂組成物であって、耐熱性、難燃性及び流れ特
性が良好であることを特徴とする樹脂組成物に関する。
That is, the present invention provides: a) an epoxy resin which is a glycidyl ether of a condensate of hydroxybenzaldehyde and a phenol; b) a brominated phenol novolak having a bromine content of 30% by weight or more and a softening point of 70 ° C or less. An epoxy resin, and c) a curing agent, and 10 to 100 parts by weight of a brominated phenol novolak epoxy resin of b) are blended with 100 parts by weight of the epoxy resin of a), and a) and b) are totaled. A highly heat-resistant and flame-retardant resin composition comprising 0.5 to 1.5 equivalents of a curing agent of c) with respect to 1 equivalent of an epoxy resin, characterized by good heat resistance, flame retardancy and flow characteristics. To a resin composition to be formed.

本発明において、ヒドロキシベンズアルデヒドとして
は、サリチルアルデヒド、パラヒドロキシベンズアルデ
ヒドが好ましく、又フェノール類としては、フェノー
ル、クレゾール、2,6−キシレノール、2,4−キシレノー
ルなどの置換又は無置換のフェノール類が挙げられ、特
にフェノール、クレゾール、2,6−キシレノールが好ま
しい。
In the present invention, salicylaldehyde and parahydroxybenzaldehyde are preferred as hydroxybenzaldehyde, and substituted or unsubstituted phenols such as phenol, cresol, 2,6-xylenol, and 2,4-xylenol are exemplified as phenols. And phenol, cresol and 2,6-xylenol are particularly preferred.

又、本発明において、エポキシ樹脂100重量部に対す
る臭素化フェノールノボラックエポキシ樹脂の使用量
は、10〜100重量部であるが、好ましくは20〜80重量部
である。このとき、臭素化フェノールノボラックエポキ
シ樹脂がより少ない場合には難燃性が付与されず、流れ
特性も悪くなり、又、より多い場合には耐熱性を損うこ
とになる。
In the present invention, the use amount of the brominated phenol novolak epoxy resin per 100 parts by weight of the epoxy resin is 10 to 100 parts by weight, preferably 20 to 80 parts by weight. At this time, when the amount of the brominated phenol novolak epoxy resin is smaller, the flame retardancy is not provided, the flow characteristics are deteriorated, and when the amount is larger, the heat resistance is impaired.

本発明によれば、特許請求の範囲a)に記載のエポキ
シ樹脂による耐熱性と、b)に記載の臭素化フェノール
ノボラックエポキシ樹脂による難燃性及び流れ特性の改
善と、良好な流れ特性によるICの封止剤に使用する充填
剤の使用量を増加させ得るという相乗効果とにより、耐
熱性の向上及び難燃性を硬化物に同時に付与し得る驚く
べき利点がある。
According to the present invention, the heat resistance by the epoxy resin according to claim a), the flame retardancy and flow characteristics by the brominated phenol novolak epoxy resin according to b), and the IC due to good flow characteristics There is a surprising advantage that the heat resistance and the flame retardancy can be simultaneously imparted to the cured product due to the synergistic effect that the amount of the filler used in the sealant can be increased.

本発明に使用するエポキシ樹脂は、ヒドロキシベンズ
アルデヒドとフェノール類を、公知の方法により酸性触
媒下、反応させることによって得られる縮合物を、さら
に公知の方法によりエポキシ化することによって得られ
る。又、本発明の臭素化フェノールノボラックエポキシ
樹脂は、軟化点75℃以下のフェノールノボラック樹脂を
公知の方法(例えば、特公昭50−10635号公報参照)に
より臭素化し、次いでエポキシ化することによって得ら
れる。
The epoxy resin used in the present invention can be obtained by epoxidizing a condensate obtained by reacting hydroxybenzaldehyde and a phenol with a known method in the presence of an acidic catalyst by a known method. Further, the brominated phenol novolak epoxy resin of the present invention can be obtained by brominating a phenol novolak resin having a softening point of 75 ° C. or lower by a known method (for example, see Japanese Patent Publication No. Sho 50-10635) and then epoxidizing it. .

本発明の組成物において重要なこれらのエポキシ樹脂
及び臭素化フェノールノボラックエポキシ樹脂以外の成
分として、脂肪族ポリアミン、芳香族ポリアミン、ポリ
アミドポリアミン等のポリアミン系硬化剤、無水ヘキサ
ヒドロフタル酸、無水メチルテトラヒドロフタル酸等の
酸無水物系硬化剤、フェノールノボラック、クレゾール
ノボラック等のフェノール系硬化剤、三フッ化ホウ素等
のルイス酸又はそれらの塩類、ジシアンジアミド類等の
硬化剤をエポキシ樹脂と臭素化フェノールノボラックエ
ポキシ樹脂を合計したエポキシ樹脂1当量に対して0.5
〜1.5当量配合し、必要に応じて硬化促進剤を前記エポ
キシ樹脂の合計100重量部に対して0.01〜10重量部添加
することにより、耐熱性及び難燃性に優れた硬化物を提
供し得る。又、前述の如く、本発明の重要な特徴である
良好な流れ特性によって、IC封止剤に使用する充填剤の
使用量を増加させることが可能となり、従って無機又は
有機の充填剤の配合もまた耐熱性の向上にとって極めて
有効である。
Components other than these epoxy resins and brominated phenol novolak epoxy resins important in the composition of the present invention include polyamine-based curing agents such as aliphatic polyamines, aromatic polyamines, and polyamide polyamines, hexahydrophthalic anhydride, and methyltetrahydroanhydride. An acid anhydride based curing agent such as phthalic acid, a phenol based curing agent such as phenol novolak and cresol novolac, a Lewis acid such as boron trifluoride or a salt thereof, a curing agent such as dicyandiamide, etc. are epoxy resin and brominated phenol novolak. 0.5 to 1 equivalent of epoxy resin in total of epoxy resin
~ 1.5 equivalents, and if necessary, by adding 0.01 to 10 parts by weight of a curing accelerator to 100 parts by weight of the epoxy resin in total, a cured product excellent in heat resistance and flame retardancy can be provided. . Also, as described above, the good flow characteristics, which is an important feature of the present invention, allows for an increase in the amount of filler used in IC encapsulants, and therefore, the mixing of inorganic or organic fillers is also possible. It is extremely effective for improving heat resistance.

以下に実施例を挙げて説明する。 An example will be described below.

合成例 1 温度計、撹拌機を取付けた四ツ口フラスコに、サリチ
ルアルデヒド122g(1モル)、フェノール752g(8モ
ル)及びp−トルエンスルホン酸3.8gを仕込んだ後、90
〜100℃で2時間反応し、更に120〜150℃で2時間反応
した。70℃に冷却後、メチルイソブチルケトン500mlを
加え、洗浄水が中性になるまで水洗した。有機層を分離
し、減圧下で濃縮して縮合物(A)280gを得た。縮合物
(A)の水酸基当量は98g/eq.であった。更に、得られ
た縮合物(A)98gを温度計、撹拌機、還流装置を取付
けた四ツ口フラスコに仕込み、エピクロルヒドリン650g
に溶解した。溶解後、48%水酸化ナトリウム水溶液87.5
gを6時間で滴下した。この間、水酸化ナトリウム水溶
液に含まれる水及び反応により生成する水を減圧下(15
0mmHg〜250mmHg)で共沸脱水しながら反応温度を75℃〜
80℃に保持した。水酸化ナトリウム水溶液の滴下終了
後、同温度で更に1時間撹拌した。反応終了後、副生し
た塩を別し、液を数回水洗して中性にした。次い
で、有機層を減圧下で濃縮して本発明で使用するエポキ
シ樹脂(A1)140gを得た。樹脂(A1)のエポキシ当量は
163g/eq.であった。
Synthesis Example 1 A four-necked flask equipped with a thermometer and a stirrer was charged with 122 g (1 mol) of salicylaldehyde, 752 g (8 mol) of phenol, and 3.8 g of p-toluenesulfonic acid.
The reaction was carried out at 100100 ° C. for 2 hours, and further at 120-150 ° C. for 2 hours. After cooling to 70 ° C., 500 ml of methyl isobutyl ketone was added, and the mixture was washed with water until the washing water became neutral. The organic layer was separated and concentrated under reduced pressure to obtain 280 g of a condensate (A). The hydroxyl equivalent of the condensate (A) was 98 g / eq. Further, 98 g of the obtained condensate (A) was charged into a four-necked flask equipped with a thermometer, a stirrer, and a reflux device, and 650 g of epichlorohydrin was added.
Was dissolved. After dissolution, 48% aqueous sodium hydroxide solution 87.5
g was added dropwise over 6 hours. During this time, the water contained in the aqueous sodium hydroxide solution and the water generated by the reaction are removed under reduced pressure (15
0mmHg ~ 250mmHg) while azeotropically dehydrating the reaction temperature to 75 ℃ ~
It was kept at 80 ° C. After the completion of the dropwise addition of the aqueous sodium hydroxide solution, the mixture was further stirred at the same temperature for 1 hour. After completion of the reaction, by-produced salts were separated, and the solution was washed several times with water to make it neutral. Next, the organic layer was concentrated under reduced pressure to obtain 140 g of the epoxy resin (A1) used in the present invention. The epoxy equivalent of resin (A1)
It was 163 g / eq.

合成例 2 合成例1においてフェノールの代りにオルトクレゾー
ル864g(8モル)を用いた以外は、合成例1と同様の操
作を行い縮合物(B)290gを得た。縮合物(B)の水酸
基当量は106g/eq.であった。この縮合物(B)106gを用
いた以外は、合成例1と同様にエピクロルヒドリンと反
応して本発明に使用するエポキシ樹脂(B1)145gを得
た。樹脂(B1)のエポキシ当量は170g/eq.であった。
Synthesis Example 2 290 g of a condensate (B) was obtained in the same manner as in Synthesis Example 1, except that 864 g (8 mol) of orthocresol was used instead of phenol. The hydroxyl equivalent of the condensate (B) was 106 g / eq. Except for using 106 g of this condensate (B), the reaction with epichlorohydrin was carried out in the same manner as in Synthesis Example 1 to obtain 145 g of an epoxy resin (B1) used in the present invention. The epoxy equivalent of the resin (B1) was 170 g / eq.

合成例 3 軟化点73℃のフェノールノボラック樹脂(水酸基当量
106g/eq.)106g及びメタノール200gを温度計、撹拌機を
取付けた四ツ口フラスコに仕込み、窒素ガスを吹込みな
がら溶解した。この中に、臭素176g(1.1モル)を25℃
〜30℃で滴下した後、同温度で30分間撹拌を続けた。次
に、30%水酸化ナトリウム水溶液を徐々に添加し、副生
した臭化水素を中和した。更に、この反応液を激しく撹
拌しながら水5中に滴下し、粒状の臭素化フェノール
ノボラック樹脂を得た。得られた臭素化フェノールノボ
ラック樹脂を撹拌機、還流装置を取付けた四ツ口フラス
コに仕込み、エピクロルヒドリン650gに溶解した。溶解
後、48%水酸化ナトリウム水溶液87.5gを6時間で滴下
した。この間、水酸化ナトリウム水溶液に含まれる水及
び反応により生成する水を減圧下(150mmHg〜250mmHg)
で共沸脱水しながら反応温度を75℃〜80℃に保持した。
水酸化ナトリウム水溶液の滴下終了後、同温度で更に1
時間撹拌した。反応終了後、副生した塩を別し、液
を数回水洗して中性にした。次いで、有機層を分離し、
減圧下で濃縮して本発明に使用する臭素化フェノールノ
ボラックエポキシ樹脂(C)215gを得た。得られたエポ
キシ樹脂(C)のエポキシ当量は275g/eq.、軟化点は66
℃、臭素含有率は35.2重量%であった。
Synthesis Example 3 Phenol novolak resin having a softening point of 73 ° C (hydroxyl equivalent weight)
106 g / eq.) 106 g and methanol 200 g were charged into a four-necked flask equipped with a thermometer and a stirrer, and dissolved while blowing nitrogen gas. In this, 176 g (1.1 mol) of bromine at 25 ° C
After dropwise addition at 3030 ° C., stirring was continued at the same temperature for 30 minutes. Next, a 30% aqueous sodium hydroxide solution was gradually added to neutralize by-produced hydrogen bromide. Further, the reaction solution was dropped into water 5 with vigorous stirring to obtain granular brominated phenol novolak resin. The obtained brominated phenol novolak resin was charged into a four-necked flask equipped with a stirrer and a reflux device, and dissolved in 650 g of epichlorohydrin. After dissolution, 87.5 g of a 48% aqueous sodium hydroxide solution was added dropwise over 6 hours. During this time, the water contained in the aqueous sodium hydroxide solution and the water generated by the reaction are reduced under reduced pressure (150 mmHg to 250 mmHg).
The reaction temperature was kept at 75 ° C to 80 ° C while azeotropic dehydration with.
After the completion of the dropping of the aqueous sodium hydroxide solution, one more
Stirred for hours. After completion of the reaction, by-produced salts were separated, and the solution was washed several times with water to make it neutral. Then the organic layer is separated,
It was concentrated under reduced pressure to obtain 215 g of a brominated phenol novolak epoxy resin (C) used in the present invention. The obtained epoxy resin (C) has an epoxy equivalent of 275 g / eq. And a softening point of 66.
° C, the bromine content was 35.2% by weight.

実施例 1〜7 第1表に示す割合で、合成例1,2及び3で得たエポキ
シ樹脂及び臭素化フェノールノボラックエポキシ樹脂を
配合し、硬化物のガラス転移温度を測定した。なお、硬
化剤としてフェノールノボラック樹脂(日本化薬(株)
製、水酸基当量106g/eq.、軟化点84℃)及び硬化促進剤
として2−メチルイミダゾールを第1表に示す割合で配
合し、70〜80℃で15分間ロール混練、冷却、粉砕し、タ
ブレット化し、更にトランスファー成形機により成形
後、ポストキュアを行ってガラス転移温度測定用の硬化
物を得た。
Examples 1 to 7 The epoxy resins obtained in Synthesis Examples 1, 2 and 3 and the brominated phenol novolak epoxy resin were mixed at the ratios shown in Table 1, and the glass transition temperature of the cured product was measured. As a curing agent, phenol novolak resin (Nippon Kayaku Co., Ltd.)
, A hydroxyl equivalent of 106 g / eq., A softening point of 84 ° C) and 2-methylimidazole as a curing accelerator in the proportions shown in Table 1, roll kneading at 70 to 80 ° C for 15 minutes, cooling, pulverizing, and tableting. After molding by a transfer molding machine, post-curing was performed to obtain a cured product for measuring a glass transition temperature.

硬化物の評価結果を第3表に示す。 Table 3 shows the evaluation results of the cured products.

なお、ガラス転移温度およびトランスファーの成形条
件及びポストキュアーの条件は次の通りである。
The glass transition temperature, transfer molding conditions and post cure conditions are as follows.

ガラス転移温度 熱機械測定装置(TMA):真空理工(株)TM−7000 昇温速度:2℃/min トランスファー成形条件 温 度:150℃ 成形圧力:50Kg/cm2 時 間:3分 ポストキュアの条件 温 度:180℃ 時 間:8時間 比較例 1〜4 第2表に示す割合で、従来使用のオルトクレゾールノ
ボラックエポキシ樹脂(EOCN1020、エポキシ当量200、
日本化薬(株)製)及び臭素化フェノールノボラックエ
ポキシ樹脂(BREN−S、エポキシ当量280、臭素含有率3
5.0重量%、軟化点85℃、日本化薬(株)製)又はETBA
(ETBA−100、エポキシ当量356、臭素含有率48.1重量
%、軟化点54℃、日本化薬(株)製)及び実施例1と同
様の硬化剤、硬化促進剤を配合し、トランスファー成形
により成形して硬化物を得た。
Glass transition temperature Thermomechanical analyzer (TMA): TM-7000, Vacuum Riko Co., Ltd. Heating rate: 2 ° C / min Transfer molding conditions Temperature: 150 ° C Molding pressure: 50 kg / cm 2 hours: 3 minutes Post-curing Conditions Temperature: 180 ° C Time: 8 hours Comparative Examples 1 to 4 Orthocresol novolak epoxy resin (EOCN1020, epoxy equivalent 200,
Nippon Kayaku Co., Ltd.) and brominated phenol novolak epoxy resin (BREN-S, epoxy equivalent 280, bromine content 3)
5.0% by weight, softening point 85 ℃, Nippon Kayaku Co., Ltd.) or ETBA
(ETBA-100, epoxy equivalent: 356, bromine content: 48.1% by weight, softening point: 54 ° C., manufactured by Nippon Kayaku Co., Ltd.) and the same curing agent and curing accelerator as in Example 1, and molded by transfer molding To obtain a cured product.

硬化物の評価結果を第3表に示す。 Table 3 shows the evaluation results of the cured products.

実施例 8〜11 実施例2,3,4及び比較例1,2に示した配合量で調製した
樹脂組成物に、第4表に示す配合量で、溶融シリカ、シ
ランカップリング剤(トーレ・シリコーンSH6040)、カ
ルナバワックスを配合し、70〜80℃で15分間ロール混
練、冷却、粉砕し、更にタブレット化した後、トランス
ファー成形機によりスパイラルフローでの流れ特性の評
価を行った。
Examples 8 to 11 The resin compositions prepared in the amounts shown in Examples 2, 3, and 4 and Comparative Examples 1 and 2 were mixed with fused silica and a silane coupling agent (Tore. Silicone SH6040) and carnauba wax were blended, roll-kneaded at 70 to 80 ° C for 15 minutes, cooled, pulverized, and further tableted, and the flow characteristics in a spiral flow were evaluated by a transfer molding machine.

なお、スパイラルフロー測定はEMMI 1−66の方法に従
って実施した。
The spiral flow measurement was performed according to the method of EMMI 1-66.

EMMI 1−66の方法によるスパイラルフロー測定の成形条
件 温 度:180±2℃ 成形圧力:70±2Kg/cm2 トランスファーラムスピード:2.5〜10cm/sec タブレット重量:20g(但し、カル厚み0.3〜0.35cmにな
るように重量調整する。) 予 熱:なし スパイラル値:連続スパイラルの先端0.25インチ単位で
読み取る スパイラルフロー:3回測定の平均値(上、下±2%以内 [発明の効果] 第3表から明らかなように、本発明の樹脂組成物によ
れば、耐熱性の指標であるガラス転移温度が、従来の樹
脂組成物(比較例1〜4)と較べて、より高い硬化物を
得ることができること、並びに第4表に示すように、溶
融シリカを多量に配合できる、すなわち高密度充填が可
能であることから表面実装方式などに使用し得る高耐熱
性組成物として極めて有用である。
Molding conditions for spiral flow measurement by the method of EMMI 1-66 Temperature: 180 ± 2 ° C Molding pressure: 70 ± 2 Kg / cm 2 Transfer ram speed: 2.5 to 10 cm / sec Tablet weight: 20 g (However, 0.3 to 0.35 cull thickness) Preheat: None Spiral value: Read in 0.25 inch increments of continuous spiral Spiral flow: Average of 3 measurements (up, down ± 2%) [Effects of the Invention] As is clear from Table 3, according to the resin composition of the present invention, the glass transition temperature, which is an index of heat resistance, is higher than that of conventional resin compositions (Comparative Examples 1 to 4). As shown in Table 4, a high heat-resistant composition that can be used in a surface mounting method because it can be blended with a large amount of fused silica, that is, it can be filled at a high density. Very useful as a product.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】a)ヒドロキシベンズアルデヒドとフェノ
ール類との縮合物のグリシジルエーテルであるエポキシ
樹脂、 b)臭素含有率が30重量%以上であり、軟化点が70℃以
下である臭素化フェノールノボラックエポキシ樹脂、及
び c)硬化剤を含有し、 前記a)のエポキシ樹脂100重量部に対してb)の臭素
化フェノールノボラックエポキシ樹脂を10〜100重量部
配合し、a)とb)を合計したエポキシ樹脂1当量に対
してc)の硬化剤を0.5〜1.5当量配合して成る高耐熱難
燃性樹脂組成物。
1. An epoxy resin which is a glycidyl ether of a condensate of hydroxybenzaldehyde and a phenol, and b) a brominated phenol novolak epoxy having a bromine content of 30% by weight or more and a softening point of 70 ° C. or less. An epoxy obtained by adding 10 to 100 parts by weight of a brominated phenol novolak epoxy resin of b) to 100 parts by weight of the epoxy resin of the above a), which contains a resin and c) a curing agent, and a) and b) are totaled. A highly heat-resistant and flame-retardant resin composition comprising 0.5 to 1.5 equivalents of the curing agent (c) based on 1 equivalent of the resin.
JP1066690A 1989-03-17 1989-03-17 High heat-resistant flame-retardant resin composition Expired - Fee Related JP2726483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1066690A JP2726483B2 (en) 1989-03-17 1989-03-17 High heat-resistant flame-retardant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1066690A JP2726483B2 (en) 1989-03-17 1989-03-17 High heat-resistant flame-retardant resin composition

Publications (2)

Publication Number Publication Date
JPH02245016A JPH02245016A (en) 1990-09-28
JP2726483B2 true JP2726483B2 (en) 1998-03-11

Family

ID=13323186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1066690A Expired - Fee Related JP2726483B2 (en) 1989-03-17 1989-03-17 High heat-resistant flame-retardant resin composition

Country Status (1)

Country Link
JP (1) JP2726483B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69610771T2 (en) * 1995-06-27 2001-02-22 Hitachi Chemical Co., Ltd. EPOXY RESIN COMPOSITION FOR PRINTED CIRCUIT BOARDS AND LAMINATE BOARDS PRODUCED THEREFOR
US11478753B2 (en) 2016-06-29 2022-10-25 Dic Corporation Hollow fiber membrane module and production method therefor, and epoxy resin used in hollow fiber membrane and production method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258523A (en) * 1988-08-25 1990-02-27 Mitsubishi Petrochem Co Ltd Epoxy resin composition for semiconductors sealing use
JPH02189326A (en) * 1989-01-18 1990-07-25 Mitsubishi Petrochem Co Ltd Epoxy resin composition for sealing electronic component

Also Published As

Publication number Publication date
JPH02245016A (en) 1990-09-28

Similar Documents

Publication Publication Date Title
JP3587570B2 (en) Benzylated polyphenols, their epoxy resins, their production methods and uses
JPH08283379A (en) Semiconductor sealing material
JP2726483B2 (en) High heat-resistant flame-retardant resin composition
JP4264769B2 (en) Epoxy resin composition and semiconductor sealing material
KR100539729B1 (en) Epoxy Resin Compositions and Resin-Enclosed Semiconductor Devices
JP2004059792A (en) Polyhydroxy resin, epoxy resin, method for producing the same, epoxy resin composition and cured product using the same
JP2004123859A (en) Polyhydric hydroxy resin, epoxy resin, method for producing the same, epoxy resin composition using the same and cured product
JPH07258240A (en) Glycidyl ether compound and epoxy resin composition
JP3933763B2 (en) Epoxy resin composition and electronic component
JPH08100049A (en) Epoxy resin composition for semiconductor-sealing material
JP4493748B2 (en) Epoxy resin, method for producing the same, epoxy resin composition and cured product thereof
JP3940945B2 (en) Epoxy resin composition for sealing electronic parts
JP2001114863A (en) Epoxy resin composition and its cured material
JPH07247409A (en) Epoxy resin composition, production of epoxy resin mixture and material for sealing semiconductor
JPH06145309A (en) Hydroxynaphthalene copolymer, epoxidized product thereof, and production and use thereof
JPH08157560A (en) Semiconductor-sealing epoxy resin composition
JPH0680598A (en) Polyhydroxynaphthalene and epoxy resin composition
JP3235672B2 (en) Epoxy resin composition for electronic parts
JPH07173235A (en) Allylnapththol cocondensate and epoxy resin composition
JPH0359020A (en) Epoxy resin composition
JP2004190040A (en) Semiconductor sealing material
JPH07173234A (en) Allylnaphthol cocondensate and epoxy resin composition
JPH0343412A (en) High heat-resistant and low water-absorbing resin composition
JPH04282331A (en) Novel compound, resin, resin composition and cured product
JPH07216052A (en) Epoxy resin and epoxy resin composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees