JPH02189326A - Epoxy resin composition for sealing electronic component - Google Patents

Epoxy resin composition for sealing electronic component

Info

Publication number
JPH02189326A
JPH02189326A JP779489A JP779489A JPH02189326A JP H02189326 A JPH02189326 A JP H02189326A JP 779489 A JP779489 A JP 779489A JP 779489 A JP779489 A JP 779489A JP H02189326 A JPH02189326 A JP H02189326A
Authority
JP
Japan
Prior art keywords
epoxy resin
compound
reaction
polyhydroxynaphthalene
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP779489A
Other languages
Japanese (ja)
Inventor
Yoshitomo Nakano
中野 義知
Masumi Kada
加田 真澄
Satoshi Ito
慧 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP779489A priority Critical patent/JPH02189326A/en
Publication of JPH02189326A publication Critical patent/JPH02189326A/en
Pending legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Organic Insulating Materials (AREA)

Abstract

PURPOSE:To obtain the title composition having a high glass transition temperature, being lowly hygroscopic and difficultly causing package cracking due to soldering after moisture absorption by using an epoxy resin produced from a polyhydroxynaphthalene compound and an epihalohydrin. CONSTITUTION:The title composition is obtained by mixing an epoxy resin (A) produced from a polyhydroxynaphthalene compound obtained by the condensation of at least one hydroxynaphthalene compound selected from naphthol and dihydroxynaphthalene (e.g. 1,6-dihydroxynaphthalene) with an aldehyde and an epihalohydrin with a curing agent (B) comprising a compound having at least two phenolic hydroxyl groups (e.g. phenolic novolac), a cure accelerator (C) (e.g. triphenylphosphine) and an inorganic filler (e.g. fused silica powder). This composition has a high glass transition temperature of a cured resin, excellent heat resistance, high mechanical strengths, low hygroscopicity and difficulty causing package cracking due to soldering after moisture absorption.

Description

【発明の詳細な説明】 (IL)発明の目的 (産業上の利用分野) 本発明は、半導体等の電子部品封止用エポキシ樹脂組成
物に関する。詳しくは、ガラス転移温度(Tg )が高
くて、ハンダリフロー若しくはノ・ンダ浴浸漬温度での
強度が大で、しかも吸湿性が少なくて、吸湿後のハンダ
処理によるパッケージクラックの入りにくい電子部品封
止用エポキシ樹脂組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION (IL) Object of the Invention (Field of Industrial Application) The present invention relates to an epoxy resin composition for encapsulating electronic components such as semiconductors. Specifically, it is an electronic component seal that has a high glass transition temperature (Tg), has high strength at solder reflow or solder bath immersion temperatures, has low hygroscopicity, and is resistant to package cracks due to soldering after moisture absorption. The present invention relates to an epoxy resin composition for stopping use.

(従来の技術) 従来、コイル、コンデンサ、トランジスタ、ICなどの
電子部品対土用にエポキシ樹脂組成物が広く用いられて
いる。特に、ガラス転移温度が高く、すなわち耐熱性に
優れ九同樹脂組成物としては、フェノール類とホルムア
ルデヒドのノがラックをエポキシ化したエポキシ樹脂、
特にオルトクレゾールノデラックエIキシ樹脂が用いら
れてオリ、その硬化剤にはフェノール・ホルムアルデヒ
ドノビラック樹脂が用いられている。
(Prior Art) Epoxy resin compositions have been widely used for electronic parts such as coils, capacitors, transistors, and ICs. In particular, Kudo resin compositions with a high glass transition temperature, that is, excellent heat resistance, include epoxy resins in which lac is epoxidized with phenols and formaldehyde;
In particular, ortho-cresol nodelac I xy resin is used, and phenol-formaldehyde nobilac resin is used as the curing agent.

近年、半導体素子が高集積、大型化し、さらに多ピンの
フラットパッケージが実用化されて厚さが薄くなるにし
たがって、ノ臂ツケージ及び封止樹脂にかかる応力が大
きくなってきた。特に、封止樹脂が水分を吸収した状態
で、実装のためノ・ンダリフロー又はハンダ浴(215
〜260℃)を通す工程で熱応力を強くうけ、ノ9ツケ
ージクラックを発生する問題が生じてきた。
In recent years, as semiconductor devices have become more highly integrated and larger, and flat packages with more pins have been put into practical use and thinner, the stress applied to the arm cage and the sealing resin has increased. In particular, in a state where the sealing resin has absorbed moisture, it is necessary to use a no-dry flow or solder bath (215
In the process of passing the steel through the process (~260°C), it is subjected to strong thermal stress, resulting in the problem of cage cracks.

この問題を解決するには、樹脂のガラス転移温度を上げ
て、高温のハンダで処理されても充分な強度を保持する
こと、及び樹脂の吸水率を下げて、封止樹脂の水分吸湿
を少なくする必要があるが、従来から多用されているオ
ルトクレゾールノビラックエポキシ樹月旨とフェノール
ノボラック樹月旨の組合わせでは充分に高いガラス転移
温度が得られない。
To solve this problem, it is necessary to raise the glass transition temperature of the resin so that it maintains sufficient strength even when processed with high-temperature solder, and to lower the water absorption rate of the resin to reduce moisture absorption of the sealing resin. However, a sufficiently high glass transition temperature cannot be obtained with the combination of orthocresol novilac epoxy resin and phenol novolac resin, which have been widely used in the past.

上記の問題点を解決するために、ポリフェノールのグリ
シジルエーテルを用いてガラス転移温度を上げる試みが
ある。しかし、ポリフェノール類のグリシゾルエーテル
化物では吸水率が上って、吸湿後のハンダリフローテス
トでクラックが生じるし、一方、アルキルフェノール類
のグリシゾルエーテル化物を用いると、吸水率が低下す
るが、アルキルを挨基の炭素数が多いとガラス転移温度
が低下し、またアルキル置換基の立体障害のため反応性
が低下し、硬化時間が遅くなったり、未反応基が残った
り、さらに架橋密度が上がらないため吸湿後のハンダリ
フローテストでクラックが発生する等の欠点があった。
In order to solve the above problems, attempts have been made to increase the glass transition temperature using glycidyl ethers of polyphenols. However, when using glycisol ethers of polyphenols, the water absorption rate increases and cracks occur in the solder reflow test after moisture absorption.On the other hand, when using glycisol ethers of alkylphenols, the water absorption rate decreases, but the alkyl If the number of carbon atoms in the alkyl group is large, the glass transition temperature decreases, and the reactivity decreases due to steric hindrance of the alkyl substituent, slowing the curing time, leaving unreacted groups, and increasing the crosslink density. Because of this, there were drawbacks such as cracks occurring during solder reflow tests after moisture absorption.

(発明が解決しようとする課題) 本発明は、従来の半導体等の電子部品封止用エポキシ樹
脂組成物における前記の欠点の改良、特にガラス転移温
度が高く、吸湿性が少なくて、吸湿後のハンダ処理によ
るノ平ソケーノクラックの発生しにくい電子部品封止用
エポキシ樹脂組成物を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention aims to improve the above-mentioned drawbacks of conventional epoxy resin compositions for encapsulating electronic components such as semiconductors, and in particular, to improve the above-mentioned disadvantages in epoxy resin compositions for encapsulating electronic components such as semiconductors. The object of the present invention is to provide an epoxy resin composition for encapsulating electronic components that is less likely to cause cracks due to soldering.

(b)  発明の構成 (課題を解決するための手段) 本発明者等は、前記の問題点を解決するために種々研究
を蔦ねた結果、特定のエポキシ倒J信を用いてその目的
を達成することができたのである。
(b) Structure of the Invention (Means for Solving the Problems) As a result of various studies to solve the above-mentioned problems, the present inventors have solved the purpose by using a specific epoxy resin. I was able to accomplish this.

すなわち、本発明の成子部品封止用エポキシ樹脂組成物
は、下記の(N〜(lの各成分を含有してなることを特
徴とするものである。
That is, the epoxy resin composition for sealing a component of the present invention is characterized by containing each of the following components (N to (l).

(A):ナフトール及びジヒドロキシナフタレンから選
ばれた少なくとも1種のヒドロキシナフタレン化合物と
アルデヒドとの軸合反応によってmられたポリヒドロキ
シナフタレン系化合物とエピハロヒドリンとから製造さ
れたエポキシ樹脂。
(A): An epoxy resin produced from epihalohydrin and a polyhydroxynaphthalene-based compound prepared by a cross-linking reaction between at least one hydroxynaphthalene compound selected from naphthol and dihydroxynaphthalene and an aldehyde.

(Bl:1分子中に2個以上のフェノール性水酸基を有
する化合物からなる硬化剤。
(Bl: A curing agent consisting of a compound having two or more phenolic hydroxyl groups in one molecule.

(q:硬化促進剤。(q: hardening accelerator.

(日:無機充填材。(JP: Inorganic filler.

本発明における(Al−(lの各成分の配合割合は、(
B)硬化剤が(A)エポキシ樹脂のエポキシ基1当量に
対して硬化剤のOH基が0.5〜2.0当量になる割合
であり、(C)硬化促進剤が(Alエポキシ樹脂に対し
て0.01〜20重t%であり、(D)無機光桟材が全
樹脂組成物に対して50〜90重量%である。
In the present invention, the blending ratio of each component of (Al-(l) is (
B) The ratio of the curing agent is such that the OH group of the curing agent is 0.5 to 2.0 equivalents per 1 equivalent of the epoxy group of the (A) epoxy resin, and (C) the curing accelerator is The content of (D) inorganic optical beam material is 50 to 90% by weight based on the total resin composition.

本発明における(Nエポキシ樹脂製造用のポリヒドロキ
シナフタレン系化合物を得るための原料ヒドロキシナフ
タレン化合物としては、α−ナフトール、β−ナフトー
ル、1.5−ジヒドロキシナフタレン、1,6−ジヒド
ロキシナフタレン、1.7−ジヒドロキシナフタレン、
2.6−ジヒドロキシナフタレン、2,7−ジヒドロキ
シナフタレン、1.4−ジヒドロキシナフタレン、1.
2−・ジヒドロキシナフタレン、1.3−ジヒドロキシ
ナフタレン、2.3−ジヒドロキシナフタレンなどがあ
げられる。その中でも、1.6−シヒドロキシナフタレ
ン及ヒ2.7−ジヒドロキシナフタレンが好ましく 、
9K 1.6−ジヒドロキシナフタレンは、アルデヒド
との縮合物であるポリヒドロキシナフタレン系化合物が
エピハロヒドリンとの反応性に優れ、かつ得られるエポ
キシ樹脂の軟化点が低いので好ましい。
In the present invention, the raw material hydroxynaphthalene compounds for obtaining polyhydroxynaphthalene compounds for producing N-epoxy resins include α-naphthol, β-naphthol, 1.5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1. 7-dihydroxynaphthalene,
2.6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1.4-dihydroxynaphthalene, 1.
Examples include 2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, and 2,3-dihydroxynaphthalene. Among them, 1,6-dihydroxynaphthalene and 2,7-dihydroxynaphthalene are preferred.
9K 1,6-dihydroxynaphthalene is preferable because a polyhydroxynaphthalene compound, which is a condensate with an aldehyde, has excellent reactivity with epihalohydrin and the resulting epoxy resin has a low softening point.

これらのヒドロキシナフタレン化合物は、本発明のエポ
キシ樹脂製造原料のポリヒドロキシナフタレン系化合物
を製造するのに、1徨類を用いてアルデヒドと反応させ
てもよいし、2種以上を併用してアルデヒドと反応させ
てもよい。さらに。
These hydroxynaphthalene compounds may be reacted with aldehyde using one kind, or two or more kinds may be used in combination to react with aldehyde to produce the polyhydroxynaphthalene compound which is the raw material for producing the epoxy resin of the present invention. You may react. moreover.

これらのヒドロキシナフタレン化合物には、比較的少量
の、すなわち全芳香族ヒドロキシ化合物の合計量に対し
て30モモル以下、好ましくは20モルチ以下のフェノ
ール類(たとえばフェノール、クレゾール、キシレノー
ル、レゾルシンナト) t=併用して、アルデヒドと反
応させてもよい。
These hydroxynaphthalene compounds contain relatively small amounts of phenols (e.g. phenol, cresol, xylenol, resorcinato), i.e. 30 moles or less, preferably 20 moles or less relative to the total amount of wholly aromatic hydroxy compounds. It may be used in combination to react with an aldehyde.

本発明における(A)エポキシ樹脂製造用のポリヒドロ
キシナフタレン系化合物を得るための原料アルデヒドと
しては、たとえばホルムアルデヒド、アセトアルデヒド
、プロピルアルデヒド、ブチルアルデヒド等の脂肪族ア
ルデヒド、ペンズアkf”ヒト、p−ヒドロキシベンズ
アルデヒド、サリチルアルデヒド、バニリン、クロルベ
ンズアルデヒド。
In the present invention, the raw material aldehyde for obtaining the polyhydroxynaphthalene compound for producing the epoxy resin (A) includes, for example, aliphatic aldehydes such as formaldehyde, acetaldehyde, propylaldehyde, and butyraldehyde, penzakf"human, and p-hydroxybenzaldehyde. , salicylaldehyde, vanillin, chlorbenzaldehyde.

グロムペンズアルデヒドなどの芳香族アルf’と’fが
あげられる。その中でもホルムアルデヒド、p−ヒドロ
キシベンズアルデヒド、サリチルアルデヒド及びバニリ
ンが好ましい。これらのアルデヒドは1種類を用いて反
応させてもよいし、211以上を併用して反応させるこ
とも可能である。
Examples include aromatic alf' and 'f' such as glompenzaldehyde. Among them, formaldehyde, p-hydroxybenzaldehyde, salicylaldehyde and vanillin are preferred. One type of these aldehydes may be used for the reaction, or 211 or more may be used in combination for the reaction.

このポリヒドロキシナフタレン系化合物を得るためのヒ
ドロキシナフタレン化合物とアルデヒドとの反応(縮合
反応)は、アルデヒド1モルに対しビロキシナフタレン
化合物を1〜40モル、好ましくけ1.2〜10モル用
いて、酸性触媒の存在下で、かつ必要に応じて溶媒を存
在させて、50〜200℃、好ましくは脂肪族アルデヒ
ドの場合には60〜150℃、芳香族アルデヒドの場合
には60〜190℃の温度で、1〜8時間反応させるこ
とにより行なわせる。
The reaction (condensation reaction) between a hydroxynaphthalene compound and an aldehyde to obtain this polyhydroxynaphthalene compound uses 1 to 40 mol, preferably 1.2 to 10 mol, of a biloxinaphthalene compound per 1 mol of aldehyde. In the presence of an acidic catalyst and optionally in the presence of a solvent, a temperature of 50 to 200°C, preferably 60 to 150°C in the case of aliphatic aldehydes and 60 to 190°C in the case of aromatic aldehydes. The reaction is carried out by allowing the reaction to take place for 1 to 8 hours.

その反応終了後、触媒を留去させるか、水洗するか、ア
ルカリ(たとえば苛性ソーダ、苛性カリ、水酸化カルシ
ウム、炭酸ソーダ、炭酸水素ナトリウム等)で中和して
から、さらに蒸留等によシ水分、未反応ヒドロキシナフ
タレン化合物、溶媒等を除去すれば、目的のポリヒドロ
キシナフタレン系化合物が得られる。その蒸留は250
℃以下の温度で行なわせるのが望ましい。
After the reaction is complete, the catalyst is distilled off, washed with water, or neutralized with an alkali (e.g., caustic soda, caustic potash, calcium hydroxide, soda carbonate, sodium hydrogen carbonate, etc.), and then further distilled to remove moisture. By removing the unreacted hydroxynaphthalene compound, solvent, etc., the desired polyhydroxynaphthalene compound can be obtained. Its distillation is 250
It is desirable to carry out the process at a temperature below ℃.

前記の縮合反応における触媒としては、硫酸。Sulfuric acid is used as a catalyst in the above condensation reaction.

塩酸、硝酸、臭化水累酸、過塩素酸などの鉱酸。Mineral acids such as hydrochloric acid, nitric acid, bromic acid, and perchloric acid.

パラトルエンスルホンtRjベンゼンスルホン酸等のス
ルホンR類、シュウ酸、コハク酸、マロン酸。
Paratoluenesulfone tRj Sulfone R such as benzenesulfonic acid, oxalic acid, succinic acid, malonic acid.

モノクロ酢酸、ジクロル酢酸などのカルボン酸類が使用
される。これらの触媒の使用量は1反応条件等によって
も異なるが、通常、反応させる全芳香族ヒドロキシ化合
物に対して0.01〜20重量%、好ましくは0.1〜
10重fチである。
Carboxylic acids such as monochloroacetic acid and dichloroacetic acid are used. The amount of these catalysts used varies depending on the reaction conditions, etc., but is usually 0.01 to 20% by weight, preferably 0.1 to 20% by weight, based on the wholly aromatic hydroxy compound to be reacted.
It is 10 folds.

また、前記の縮合反応は、溶媒の存在を必須とするもの
ではないが、必要に応じてベンゼン、トルエン、キシレ
ン、ブチルエーテル、クライム、テトラヒドロフ、ラン
、クロルベンゼン、ジクルルベンゼン、ブチルアルコー
ル等の溶媒を用いて反応させることができる。
The above condensation reaction does not necessarily require the presence of a solvent, but if necessary, a solvent such as benzene, toluene, xylene, butyl ether, chlorine, tetrahydrof, ran, chlorobenzene, dichlorobenzene, butyl alcohol, etc. may be used. The reaction can be carried out using a solvent.

本発明における(A)エポキシ樹脂は、以上のようにし
て得られたポリヒドロキシナフタレン系化合物にエピハ
ロヒドリンを反応させることにより得られるが、その反
応には次の二つの代表的な方法がある。
The epoxy resin (A) in the present invention can be obtained by reacting the polyhydroxynaphthalene compound obtained as described above with epihalohydrin, and there are two typical methods for this reaction.

■ ポリヒドロキシナフタレン系化合物と過剰のエピハ
ロヒドリンとをアルカリ金属水酸化物の存在下では付加
反応させ、エピクロルヒドリンの付加反応とエポキシ環
を形成する閉環反応とを同時に行なわせる一段法。
■ A one-step method in which a polyhydroxynaphthalene compound and excess epihalohydrin are subjected to an addition reaction in the presence of an alkali metal hydroxide, and the addition reaction of epichlorohydrin and the ring-closing reaction to form an epoxy ring are performed simultaneously.

■ ポリヒドロキシナフタレン系化合物と過剰のエピハ
ロヒドリンとを塩基性触媒の存在下で付加反応させ、次
いでアルカリ金属水酸化物を添加して閉環反応させる二
段法。
(2) A two-step method in which a polyhydroxynaphthalene compound and excess epihalohydrin are subjected to an addition reaction in the presence of a basic catalyst, and then an alkali metal hydroxide is added to carry out a ring-closing reaction.

前記の反応におけるエピハロヒドリンとしテハ、エピク
ロルヒドリン、エビブロモヒドリン、β−メチルエ♂ク
ロルヒドリン、β−メチルエビブロモヒドリン、β−メ
チルエピヨードヒドリン等があげられるが、一般にはエ
ピクロルヒドリンが好ましい。
Examples of the epihalohydrin in the above reaction include Teha, epichlorohydrin, shrimp bromohydrin, β-methyl chlorohydrin, β-methyl shrimp bromohydrin, and β-methyl epiiodohydrin, but epichlorohydrin is generally preferred.

また、前記の反応におけるアルカリ金属水酸化物として
は、たとえば苛性ソーダ、苛性カリが使用され、これら
は固体のままで、又は40〜50重量−の水浴液として
反応系に添加される。
Further, as the alkali metal hydroxide in the above reaction, for example, caustic soda or caustic potash is used, and these are added to the reaction system as a solid or as a 40 to 50 weight water bath liquid.

また、前記の反応における塩基性触媒としては、たとえ
ばテトラメチルアンモニウムクロリド、テトラメチルア
ンモニウムプロミド、トリエチルメチルアンモニウムク
ロリド、テトラエチルアンモニウムアイオダイド、セチ
ルトリエチルアンモニウムプロミド等の四級アンモニウ
ム塩が使用される。
Further, as the basic catalyst in the above reaction, for example, quaternary ammonium salts such as tetramethylammonium chloride, tetramethylammonium bromide, triethylmethylammonium chloride, tetraethylammonium iodide, and cetyltriethylammonium bromide are used.

前記の一般法においては、60〜150℃、好ましくは
80〜120℃の温度で反応を行なわせる。アルカリ金
属水酸化物はポリヒドロキシナフタレン系化合物等の水
酸基1当量に対して0.8〜1.5モル倍量、好ましく
は0.9〜1.2モル倍量使用される。
In the above general method, the reaction is carried out at a temperature of 60 to 150°C, preferably 80 to 120°C. The alkali metal hydroxide is used in an amount of 0.8 to 1.5 moles, preferably 0.9 to 1.2 moles, per equivalent of hydroxyl group of the polyhydroxynaphthalene compound, etc.

また、前記の二段法においては、前段の反応は90〜1
50℃、好ましくは100〜140℃の温度テ行なわせ
る。エピハロヒドリンの使用量は、ポリヒドロキシナフ
タレン系化合物等の水酸基1当量に対して、1.3〜2
0倍モル量、好ましくは1.5〜14倍モル量であり、
過剰に使用したエピハロヒドリンは蒸留により回収して
再使用できる。
In addition, in the above two-stage method, the first stage reaction is 90 to 1
It is carried out at a temperature of 50°C, preferably 100-140°C. The amount of epihalohydrin used is 1.3 to 2 hydroxyl groups per equivalent of the polyhydroxynaphthalene compound, etc.
0 times the molar amount, preferably 1.5 to 14 times the molar amount,
Epihalohydrin used in excess can be recovered by distillation and reused.

また、塩基性触媒は、ポリヒドロキシナフタレン系化合
物等のフェノール性水酸基に対して0.002〜0.5
モル−0割合で使用される。
In addition, the basic catalyst has a 0.002 to 0.5
Used in mole-0 ratio.

後段の反応は、60〜150℃、好ましくは80〜12
0℃で行なわせ、アルカリ金篇水酸化物は生成ハロヒド
リンに対して等モル量〜1.1倍モル量用いられる。こ
れらの前段及び後段の反応は、無溶媒下で行なわせても
よいし、メチルインブチルケトン、シクロヘキサノン、
トルエン等の不活性有機溶媒の存在下で行なわせてもよ
い。
The subsequent reaction is carried out at 60-150°C, preferably 80-12°C.
The reaction is carried out at 0°C, and the alkali gold hydroxide is used in an equimolar amount to 1.1 times the molar amount of the halohydrin produced. These first-stage and second-stage reactions may be carried out without a solvent, or with methyl in butyl ketone, cyclohexanone,
The reaction may be carried out in the presence of an inert organic solvent such as toluene.

前記の一段法又は二段法の反応終了後に、反応生成物は
、温水で洗浄して、たとえば食塩等の生成アルカリ金属
塩を除去し、次いで水を留去させて精製する。或いは前
記の反応生成物を水に年齢性又は難溶性の有機溶媒、た
とえばメチルイソブチルケトン、シクロヘキサノン、ト
ルエン等に溶解し、その溶液を水又は温水と接触させて
、たとえば食塩等の無機不純物を水相に溶解させてから
、有機相を蒸発させて溶媒を除いて′!PI裂して、本
発明の(んエポキシ樹脂を得る。
After completion of the reaction in the one-step or two-step method, the reaction product is purified by washing with warm water to remove the alkali metal salts formed, such as common salt, and then distilling off the water. Alternatively, the above reaction product is dissolved in an organic solvent that is soluble or poorly soluble in water, such as methyl isobutyl ketone, cyclohexanone, toluene, etc., and the solution is brought into contact with water or hot water to remove inorganic impurities such as salt. After dissolving in the phase, evaporate the organic phase to remove the solvent′! The epoxy resin of the present invention is obtained by cleaving the PI.

次に、本発明における[B)硬化剤は、分子中に2個以
上のフェノール性水酸基を有するものであるが、好まし
くは3個以上のフェノール性水酸基を有するものである
。その具体例としては、フェノールや置換フェノール、
たとえば0.−クレゾール、p−ルゾール、t−ブチル
フェノール、クミルフェノール、ビニルフェノールなど
と、ホルムアルデヒドとを、酸性触媒の存在下で縮合し
て得られる。フェノールノボラック樹脂があげられる。
Next, the curing agent (B) in the present invention has two or more phenolic hydroxyl groups in its molecule, preferably three or more phenolic hydroxyl groups. Specific examples include phenol, substituted phenol,
For example 0. - Obtained by condensing cresol, p-lusol, t-butylphenol, cumylphenol, vinylphenol, etc. with formaldehyde in the presence of an acidic catalyst. Examples include phenolic novolac resins.

また、前記のフェノールや置換フェノールと、ホルムア
ルデヒド以外のアルデヒド、たとえばサリチルアルデヒ
ド、バニリン、テレフタルアルデヒド、ベンズアルデヒ
ド、クロトンアルデヒド、グリオキザール等とを、酸性
触媒の存在下で縮合させたポリフェノール化合物、レゾ
ルシンやノ・イドロキノンとホルムアルデヒドとを縮合
させたポリエノール化合物、ビニルフェノールやイソプ
ロペニルフェノールの重合物、ビニルフェノールやイン
プロペニルフェノールと重合性不飽和基を有する化合物
との共重合体である。ポリフェノールも本発明の(B)
硬化剤として使用することができる。
In addition, polyphenol compounds such as resorcinol, phenol, etc., which are obtained by condensing the above-mentioned phenol or substituted phenol with an aldehyde other than formaldehyde, such as salicylaldehyde, vanillin, terephthalaldehyde, benzaldehyde, crotonaldehyde, glyoxal, etc., in the presence of an acidic catalyst are also available. These are polyenol compounds obtained by condensing hydroquinone and formaldehyde, polymers of vinylphenol or isopropenylphenol, and copolymers of vinylphenol or impropenylphenol with compounds having polymerizable unsaturated groups. Polyphenols are also used as (B) of the present invention.
Can be used as a hardening agent.

さらに、前記の本発明の(A)エポキシ樹脂製造用の原
料であるポリヒドロキシナフタレン系化合物も、本発明
の(Bl硬化剤として使用することができる。
Furthermore, the polyhydroxynaphthalene compound which is a raw material for producing the epoxy resin (A) of the present invention can also be used as the (Bl curing agent) of the present invention.

本発明における(B)硬化剤の配合割合は、前記のとお
#)(A)エポキシ樹脂のエポキシ基1当量に対して硬
化剤化合物の0f−f基が0,5〜2.0当量、好まし
くけ0.7〜1゜5当量になる量である。
In the present invention, the blending ratio of the curing agent (B) is preferably 0.5 to 2.0 equivalents of Of-f groups in the curing agent compound to 1 equivalent of the epoxy group in the epoxy resin (A). The amount is 0.7 to 1.5 equivalents.

本発明における(Q硬化促進剤は、(A)エポキシ樹脂
とfB) 硬化剤との反応を促進させ、硬化を速める作
用をさせるものである。その硬化促進剤としては、たと
えば二級アミン、三級アミン、イミダゾール、1.8−
ジアザ−ビシクロ−(5,4,0)つ/デセン−7、こ
れらのカルボン酸、これらのBF5塩、有機ホスフィン
、有機ホスフィンアルキル?v−)、有91ホスファイ
ト、アミンアルキルボレート、シラン化合物などがあげ
られる。その具体例としては、2−(ジメチルアミノメ
チル)フェノール、 2,4.6− )リス(ツメチル
アミノメチル)フェノール、ベンジルツメチルアミン、
α−メチルベンジルジメチルアミンなどのような第三級
゛アミンー 2− メチルイミダゾール、2−フ二二ル
イミダゾール、2−ウンデシルイミダゾール、2−ヘプ
タデシルイミダゾール、2−エチル−4メチルイミダゾ
ール等のイミダゾール類、BF、・ピペリジン、BF 
 ・モノエチルアミン、  BF、・2−メチルイミダ
ゾール、2,4.6− )リス(ジメチルアミンメチル
)フェノールの2−エチルヘキサン酸塩、1.8−ジア
ザビシクロ−(5,4,0)ウンデセン−7の2−エチ
ルヘキサン酸塩、2−メチルイミダゾールアセテート、
トリフェニルホスフィン、テトラフェニルホスフィンテ
トラフェニル〆レート、1.8−ジアザビシクロ−(5
,4,0)ウンデセン−7(Dテトラフェニルビレート
、ピリジンのテトラフェニル?レート、トリフェニルホ
スフィンオキシト、トリフェニルホスファイト、テトラ
メトキシシラン、メチルトリメトキシシラン等のシラン
類、N−p−クロロフェニル−N、N’−ツメチル尿素
、イソプロピルトリドデシルベンゼンスルホニルチタネ
ート、テトラオクチルビス(ジトリデシルホスフィ アF))チタネート等があげられる。
In the present invention, the curing accelerator (Q) accelerates the reaction between the epoxy resin (A) and the curing agent (fB), thereby accelerating curing. Examples of the curing accelerator include secondary amines, tertiary amines, imidazole, 1.8-
Diaza-bicyclo-(5,4,0)/decene-7, these carboxylic acids, these BF5 salts, organic phosphines, organic phosphine alkyls? v-), 91 phosphites, amine alkyl borates, silane compounds, and the like. Specific examples include 2-(dimethylaminomethyl)phenol, 2,4.6-)lis(tumethylaminomethyl)phenol, benzyltumethylamine,
tertiary amines such as α-methylbenzyldimethylamine; imidazoles such as 2-methylimidazole, 2-phinidylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-ethyl-4methylimidazole; Class, BF, Piperidine, BF
・Monoethylamine, BF, ・2-methylimidazole, 2-ethylhexanoate of 2,4.6-)lis(dimethylaminemethyl)phenol, 1.8-diazabicyclo-(5,4,0)undecene-7 2-ethylhexanoate, 2-methylimidazole acetate,
Triphenylphosphine, tetraphenylphosphine tetraphenyl ester, 1,8-diazabicyclo-(5
, 4,0) undecene-7 (D tetraphenylpyrate, tetraphenylrate of pyridine, triphenylphosphine oxyto, triphenylphosphite, tetramethoxysilane, methyltrimethoxysilane and other silanes, N-p- Examples include chlorophenyl-N,N'-trimethylurea, isopropyl tridodecylbenzenesulfonyl titanate, tetraoctyl bis(ditridecyl phosphere F)) titanate, and the like.

これらの(C)硬化促進剤の配合割合は、前記のとおC
,tAlエポキシ樹脂に対して0.01〜20重量%、
好ましくは0.1〜5重量%である。
The blending ratio of these (C) curing accelerators is as described above.
, 0.01 to 20% by weight based on tAl epoxy resin,
Preferably it is 0.1 to 5% by weight.

本発明における(l無機充填材は、通常の無機質充填材
として使用されるものであれは何でもよい。
In the present invention, the inorganic filler may be any inorganic filler that is commonly used.

その無機充填材としては、たとえば溶融シリカ粉。Examples of the inorganic filler include fused silica powder.

結晶性シリカ粉1石英ガラス粉、タルク、ケイ酸カルシ
ウム粉、ケイ酸ジルコニウム粉、アルミナ粉、炭酸カル
シウム粉、クレー粉、硫酸バリウム粉及びがラス繊維等
があげられる。特に、溶媒シリ浦等のシリカ系のものが
好ましい。無機充填材は1種類を用いてもよいし、2種
以上を併用してもよい。
Crystalline silica powder 1 Examples include quartz glass powder, talc, calcium silicate powder, zirconium silicate powder, alumina powder, calcium carbonate powder, clay powder, barium sulfate powder, and glass fiber. In particular, silica-based solvents such as Shiriura are preferred. One type of inorganic filler may be used, or two or more types may be used in combination.

(n無機充填材の配合割合は、前記のとおり、全樹脂組
成物に対して50〜90重量%、好ましくは60〜85
重量%である。
(As mentioned above, the blending ratio of the inorganic filler is 50 to 90% by weight, preferably 60 to 85% by weight, based on the total resin composition.
Weight%.

本発明のエポキシ樹脂組成物は、前記の(N〜(D)の
各成分のほかに、必要に応じてさらに種々のものを配合
することができる。たとえば無機充填材と樹脂との接着
性向上のためのカップリング剤、流動性の増大や離型性
改良の九めの流動14贅剤や離型剤、難燃性を高めるた
めの離燃剤等を配合することができる。
In addition to the above-mentioned components (N to (D)), the epoxy resin composition of the present invention may further contain various other components as required. For example, to improve the adhesion between the inorganic filler and the resin. Coupling agents for increasing fluidity, flow additives and mold release agents for increasing fluidity and improving mold releasability, flame release agents for increasing flame retardancy, and the like can be blended.

そのカップリンク剤としては、たとえばβ−(3,4−
エポキシシクロヘキシル)エチルトリメトキシシラン、
γ−グリシドキシゾロビルメチルジェトキシシラン、N
−β−(アミノエチル)−γ−アミンメチルトリメトキ
シシランのようなシラン系カップリング剤、イソプロピ
ルトリドデシルベンゼンスルホニルチタネート、テトラ
イソグロピルビス(ジオクチルホスファイト)チタネー
トのようなチタン系カップリング剤等があげられる。こ
れらのカップリング剤は無機充填材に対して1重is以
下の割合で配合される。また、これらのカップリング剤
は、配合する代fiK、充填剤を予めこれらで処理して
おいてもよい。
Examples of the coupling agent include β-(3,4-
epoxycyclohexyl)ethyltrimethoxysilane,
γ-glycidoxyzorobyl methyljethoxysilane, N
- Silane coupling agents such as β-(aminoethyl)-γ-amine methyltrimethoxysilane, titanium coupling agents such as isopropyl tridodecylbenzenesulfonyl titanate, and tetraisoglopyrubis(dioctylphosphite) titanate. etc. can be mentioned. These coupling agents are mixed with the inorganic filler at a ratio of 1:1 or less. Furthermore, the filler and filler to be blended may be treated with these coupling agents in advance.

その流wJp4整剤や離凰剤としては、各糧ワックス類
、たとえばカルナバワックス、化石ワックスのモンタン
ワックス(エステル、カルがン酸、金属石けん型のもの
)、酸化ポリエチレンワックス。
Examples of the current wJp4 conditioner and release agent include various waxes, such as carnauba wax, fossil wax montan wax (ester, carboxylic acid, and metal soap type), and oxidized polyethylene wax.

オレイン酸やステアリン酸とそのアミド化合物等があげ
られる。これらは全樹脂組成物に対して5重tS以下の
割合で用いられる。
Examples include oleic acid, stearic acid, and their amide compounds. These are used in a proportion of 5 times tS or less based on the total resin composition.

その離燃剤としては、ホウ酸鉛、メタホウ酸・々リウム
等のホウ酸化合物、リン、トリフェニルホスフェ−)、
)IJス(ブロモプロピル)ホスフェート、トリフェニ
ルホスフィンオキシト等のリン化合物があげられ、これ
らは1通常、全樹脂組成物に対して80重i%以下の割
合で用いられる。
As the flame retardant, boric acid compounds such as lead borate, chlorium metaborate, phosphorus, triphenyl phosphate),
) IJ (bromopropyl) phosphate, triphenylphosphine oxyto, and other phosphorus compounds, which are usually used in a proportion of 80% by weight or less based on the total resin composition.

また、三酸化アンチモン、トリフェニルスチビン、トリ
メチルスチビン等のアンチモン化合物もその離燃剤とし
て用いることが°でき、これらは全樹脂組成物に対して
】5重量%以下の割合で用いられる。
Antimony compounds such as antimony trioxide, triphenylstibine, and trimethylstibine can also be used as the flame retardant, and these are used in an amount of 5% by weight or less based on the total resin composition.

さらに、本発明の樹脂組成物の離燃化には、使用するエ
ポキシ樹脂の一部を、芳香族環をハロゲン化したエポキ
シ樹脂、たとえ臭素化フェノールノブラック型エポキシ
樹脂、臭素化ビスフェノールA型エポキシ樹脂等で直装
する方法を用いることができる。
Furthermore, in order to make the resin composition of the present invention flame retardant, some of the epoxy resins used may be halogenated epoxy resins, such as brominated phenol black type epoxy resins, brominated bisphenol A type epoxy resins, etc. A method of directly mounting with resin or the like can be used.

本発明のニーキシ樹脂組成物には、IC等の封止材に可
撓性を付与し、Ic等の素子への応力を愉 低下させる作用をする可撓性付与成分を宜の方法によ)
含有せしめることができる。たとえば、その可撓性付与
成分を樹脂組成物に混合してもよい踵或いは使用エポキ
シ樹脂や硬化剤を可撓性付与成分と予め反応させておく
ことができる。その可撓性付与成分としては、たとえば
各種のシリコーン樹脂、ブタジェン−アクリロニトリル
共重合体樹脂、カルボキシル基含有ブタジェンーアクリ
ロニトリル共重合体樹脂などのコ゛ム成分があげられる
In the NIXY resin composition of the present invention, a flexibility imparting component which imparts flexibility to a sealing material such as an IC and reduces stress on an element such as an IC can be added (using a suitable method).
It can be made to contain. For example, the flexibility-imparting component may be mixed into the resin composition, or the epoxy resin or curing agent used can be reacted with the flexibility-imparting component in advance. Examples of the flexibility-imparting component include various silicone resins, butadiene-acrylonitrile copolymer resins, carboxyl group-containing butadiene-acrylonitrile copolymer resins, and other copolymer components.

さらに、本発明の樹脂組成物には、着色等の目的でカー
ゼンブラック等の顔料を配合することかで氏その配合割
合は全樹脂組成物に対して10重量%以下である。
Furthermore, the resin composition of the present invention may contain a pigment such as carzen black for the purpose of coloring, etc., and the proportion thereof is 10% by weight or less based on the total resin composition.

次に、本発明の樹脂組成物の製造は、常法にしたがって
行なわせることができる。たとえば、(A1−(鴎の各
成分を、必要に応じて配合される上記の他の成分ととも
に微粉砕してトライブレンドするか、又は熱ロールやエ
クストルーダー等を用いて解融混線した後に粉砕する方
法等の方法で製造することができる。また、その粉砕さ
れた本発明の樹脂組成物は、必袂に応じて成形用に使用
するタブレットに圧縮成形することができる。
Next, the resin composition of the present invention can be produced according to a conventional method. For example, (A1-(Each component of seaweed is finely pulverized and tri-blended together with the other ingredients listed above, which are blended as necessary), or pulverized after being melted and mixed using a heated roll or an extruder. In addition, the pulverized resin composition of the present invention can be compression molded into tablets used for molding, depending on necessity.

本発明の樹脂組成物を用いて半導体等の電子部品を封止
するには、通常、トランスファー底形法が最も代表的な
方法である。
The transfer bottom method is usually the most typical method for sealing electronic components such as semiconductors using the resin composition of the present invention.

(実施例等) 以下に、ポリヒドロキシナフタレン系化合物合成例、ポ
リヒドロキシフェノール系化合物合成例、エポキシ樹脂
製造例、実施例及び比較例をあげてさらに詳述する。
(Examples, etc.) The following is a detailed description of polyhydroxynaphthalene compound synthesis examples, polyhydroxyphenol compound synthesis examples, epoxy resin production examples, examples, and comparative examples.

ポリヒドロキシナフタレン系化合物合成側1還流冷却器
、撹拌装置、温度計及び部下P斗金備えた反応器内にα
−ナフトール1440g(10モル)、クロルベンゼン
1440g、シュウ酸20gを仕込み、90℃で35重
i%ホルマリン600.9(7モル)を徐々に滴下した
。次いで、徐々に昇温しなから1 ] QCまで加熱し
、8時間反応させ几のち、溶剤を留去し、さらに5 m
 Hgまで減圧しながら200℃まで加熱し、水及び未
反応物を留去してから、生成化合物を反応器より抜出し
、ポリヒドロキシナフタレン系化合物1500gを得た
。この化合物は軟化点が170℃で、水酸基当量が14
9であった。
Polyhydroxynaphthalene compound synthesis side
- 1,440 g (10 mol) of naphthol, 1,440 g of chlorobenzene, and 20 g of oxalic acid were charged, and 600.9 (7 mol) of 35% formalin was gradually added dropwise at 90°C. Next, the temperature was gradually raised to 1] QC, and after reacting for 8 hours, the solvent was distilled off, and the mixture was further heated to 5 m
The reaction mixture was heated to 200° C. while reducing the pressure to Hg, water and unreacted substances were distilled off, and the resulting compound was extracted from the reactor to obtain 1500 g of a polyhydroxynaphthalene compound. This compound has a softening point of 170°C and a hydroxyl equivalent of 14
It was 9.

ポリヒドロキシナフタレン系化合物合成例2合成例1で
用いたのと同様の反応器に、1,6−ジとドロキシナフ
タレン1600g(10モル)、シュウ酸20g及び水
200gを仕込み、35重量%ホルマリン6009を加
え、急激に反応しないように徐々に加熱し、約100〜
120℃の温度で8時間反応させた。反応後にさらに水
600gを加え、約100℃で攪拌したのち、上記みの
水をデカンテーションで除いてから、1.5 m Hg
tで減圧しながら200℃まで加熱したのち、生成物を
抜き出した。得られたポリヒドロキシナフタレン系化合
物は17001!であシ、軟化点が168℃、水酸基当
量が83であった。
Polyhydroxynaphthalene Compound Synthesis Example 2 Into a reactor similar to that used in Synthesis Example 1, 1,600 g (10 moles) of 1,6-di and droxynaphthalene, 20 g of oxalic acid, and 200 g of water were charged, and 35% by weight formalin was added. Add 6009 and heat gradually to avoid sudden reaction until about 100~
The reaction was carried out at a temperature of 120° C. for 8 hours. After the reaction, 600 g of water was added and stirred at about 100°C. After removing the above water by decantation, the mixture was heated to 1.5 m Hg.
After heating to 200° C. while reducing the pressure at t, the product was extracted. The obtained polyhydroxynaphthalene compound was 17001! It had a softening point of 168° C. and a hydroxyl equivalent of 83.

ポリヒドロキシナフタレン系化合物合成例3合成例1で
用いたのと同様の反応器に、α−ナフトール1440y
(10モル)、p−ヒドロキシベンズアルデヒド732
g(6モル)、p−)ルエンスルホン酸5Iを仕込み、
徐々に加熱して115℃で1時間反応させ、さらに18
0℃まで加熱して8時間反応させてから、生成物を抜出
し、冷却して粉砕した。得られた粉砕物に熱水4000
gを加えて攪拌洗浄したのち濾過し、5111 Hg、
100℃で減圧乾燥した。生成ポリヒドロキシナフタレ
ン系化合物は2080.9であり、軟化点が250℃以
上、水酸基当量が134であった。
Polyhydroxynaphthalene Compound Synthesis Example 3 In a reactor similar to that used in Synthesis Example 1, α-naphthol 1440y
(10 mol), p-hydroxybenzaldehyde 732
g (6 mol), p-) luenesulfonic acid 5I was charged,
Gradually heat the reaction at 115°C for 1 hour, and then continue to react for 18
After heating to 0°C and reacting for 8 hours, the product was extracted, cooled and ground. Add 4,000 ml of hot water to the resulting pulverized material.
5111 Hg, stirred and washed, filtered,
It was dried under reduced pressure at 100°C. The produced polyhydroxynaphthalene compound had a molecular weight of 2080.9, a softening point of 250° C. or higher, and a hydroxyl equivalent of 134.

ポリヒドロキシナフタレン系化合物合成例4合成例1で
用いたのと同様の反応器に、1.6−シヒドロキシナフ
タレン1600g(10モル)、p−ヒドロキシペンズ
アルデヒ)”67119 (5,5モル)、p−)ルエ
ンスルホンfi 5.9 を仕込ミ、徐々に加熱して1
40℃で1時間反応させ、さらに180℃まで加熱して
8時間反応させてから、生成物を抜き出し、冷却して粉
砕した。その粉砕物に熱水4000.9を加えて攪拌洗
浄した後濾過し、5mHg、100℃で減圧乾燥した。
Polyhydroxynaphthalene Compound Synthesis Example 4 Into the same reactor as used in Synthesis Example 1, 1,600 g (10 moles) of 1,6-hydroxynaphthalene, p-hydroxypenzaldehyde 67119 (5.5 moles), p-) Prepare luenesulfone fi 5.9 and gradually heat to 1
After reacting at 40°C for 1 hour, further heating to 180°C and reacting for 8 hours, the product was extracted, cooled and pulverized. The pulverized product was stirred and washed with 4,000.9 g of hot water, filtered, and dried under reduced pressure at 5 mHg and 100°C.

生成ポリヒドロキシナフタレン系化合物は2100.9
でおり、軟化点が175℃、水酸基当量が91でめった
The polyhydroxynaphthalene compound produced is 2100.9
It had a softening point of 175°C and a hydroxyl equivalent of 91.

ポリヒドロキシナフタレン系化合物合成例5p−ヒドロ
キシベンズアルデヒドの代りに、すリチルアルデヒド7
32.9(6モル)を用い、そのほかは合成例3と同様
にして反応させ、同様にして後処理してポリビトロキシ
ナフタレン系化合物2090.!i’を得た。その軟化
点が250℃以上、水酸基当量が132であった。
Polyhydroxynaphthalene compound synthesis example 5 Suritylaldehyde 7 instead of p-hydroxybenzaldehyde
32.9 (6 mol) was used, otherwise the reaction was carried out in the same manner as in Synthesis Example 3, and the post-treatment was carried out in the same manner to obtain a polybitroxynaphthalene compound 2090. ! I got i'. Its softening point was 250°C or higher, and its hydroxyl equivalent was 132.

ポリヒドロキシナフタレン系化合物合成例6p−ヒドロ
キシベンズアルデヒドの代りに、/9= IJン836
’(5,5モル)を用い、そのほかは合成例4と同様に
してポリヒドロキシナフタレン化合物2255.9を得
た。その軟化点が165℃であり、水酸基当量が109
であった。
Polyhydroxynaphthalene compound synthesis example 6 Instead of p-hydroxybenzaldehyde, /9=IJn836
Polyhydroxynaphthalene compound 2255.9 was obtained in the same manner as in Synthesis Example 4 except that '(5.5 mol) was used. Its softening point is 165°C, and its hydroxyl equivalent is 109
Met.

エポキシ樹脂製造例1 攪拌装置、還流冷却器を備えた反応器内に、合成例1で
得られた化合物300,9.エピクロルヒドリン222
0,9、テトラメチルアンモニウムクロリド1.8gを
仕込み、加熱還流下で2時間反応させた。次いで、内容
物を60℃に冷却し、水分除去装置を付けて水酸化ナト
リウム88gを加え、ら閉環反応させた。反応生成物を
濾過し、さらに水洗して副生じた食塩を除いて、エポキ
シ樹脂370gをイさた。そのエポキシ当量が2361
であり、軟化点が115℃であった。また、前記の涙液
を減圧蒸留して残存するエピクロルヒドリンを回収した
Epoxy resin production example 1 In a reactor equipped with a stirring device and a reflux condenser, compounds 300, 9. epichlorohydrin 222
1.8 g of 0,9, tetramethylammonium chloride was charged, and the mixture was reacted for 2 hours under heating and reflux. Next, the contents were cooled to 60° C., and a water removal device was attached, and 88 g of sodium hydroxide was added thereto to carry out a ring-closing reaction. The reaction product was filtered and further washed with water to remove by-produced common salt, and 370 g of epoxy resin was prepared. Its epoxy equivalent is 2361
The softening point was 115°C. In addition, the remaining epichlorohydrin was recovered by distilling the tear fluid under reduced pressure.

エポキシ樹脂製造例2 合成例】で得られた化合物の代υに、合成例2で得られ
た化合物170gを用い、そのほかは製造例1と同様に
してエポキシ樹脂245gを製造した。得られたエポキ
シ樹脂は、エポキシ当量が173、軟化点が80℃であ
った。
Epoxy Resin Production Example 2 245 g of an epoxy resin was produced in the same manner as in Production Example 1 except that 170 g of the compound obtained in Synthesis Example 2 was used as a substitute for the compound obtained in Synthesis Example]. The obtained epoxy resin had an epoxy equivalent of 173 and a softening point of 80°C.

エポキシ樹脂製造例3 合成例1で得られた化合物の代υに、合成例3で得られ
た化合物2709を用い、そのほかは製造例1と同様に
してエポキシ樹脂335gを製造した。七のエポキシ樹
脂はエポキシ当量が228であり、軟化点が105℃で
あった。
Epoxy Resin Production Example 3 335 g of an epoxy resin was produced in the same manner as in Production Example 1 except that Compound 2709 obtained in Synthesis Example 3 was used as a substitute for the compound obtained in Synthesis Example 1. The epoxy resin No. 7 had an epoxy equivalent of 228 and a softening point of 105°C.

エポキシ樹脂製造例4 合成例1で得られた化合物の代9に、合成例4で得られ
た化合物185yを用い、そのほかは製造例1と同様に
してエポキシ樹脂260Iを得た。
Epoxy resin production example 4 Epoxy resin 260I was obtained in the same manner as in production example 1 except that compound 185y obtained in synthesis example 4 was used as substitute 9 of the compound obtained in synthesis example 1.

でのエポキシ樹脂は、エポキシ当量が175、軟化点が
50℃であった。
The epoxy resin had an epoxy equivalent of 175 and a softening point of 50°C.

エポキシ樹脂製造例5 合成例1で得られた化合物の代りに、合成例5で得られ
た化合物270gを用い、そのほかは製造例1と同様に
してエポキシ樹脂333gを得た。
Epoxy Resin Production Example 5 In place of the compound obtained in Synthesis Example 1, 270 g of the compound obtained in Synthesis Example 5 was used, but in the same manner as in Production Example 1 except for that, 333 g of an epoxy resin was obtained.

そのエポキシ樹脂は、エポキシ当量が224、軟化点が
95℃であった。
The epoxy resin had an epoxy equivalent of 224 and a softening point of 95°C.

エポキシ樹脂製造例6 合成例1で得られた化合物の代りに、合成例6で得られ
た化合物2209を用い、そのほかは製造例1と同様に
してエポキシ樹脂290gを得た。
Epoxy Resin Production Example 6 In place of the compound obtained in Synthesis Example 1, compound 2209 obtained in Synthesis Example 6 was used, but in the same manner as in Production Example 1 except for that, 290 g of an epoxy resin was obtained.

そのエポキシ樹脂は、エポキシ当量が200.軟化点が
45℃であった。
The epoxy resin has an epoxy equivalent weight of 200. The softening point was 45°C.

ポリヒドロキシフェノール系化合物合成例!合成例1で
用いたと同様の反応器内に、フェノール1504.9(
16モル)、サリチルアルデヒド244.F(2モル)
を仕込み、内容物を攪拌しながら80℃に加熱した。次
いで、滴下F斗から濃塩酸26gを徐々に滴下し、激し
く発熱しないようにコントロールしながら100℃まで
昇温し、100℃で3時間反応させた。次いで、反応器
の還流冷却器を冷却分離器に取りかえ、系内を150℃
まで昇温し、さらに5 w Hgの減圧下で190℃ま
で加熱して塩酸、水、未反応フェノールを留去させ、r
f!リヒドロキシフェノール系化合物6089を得た。
Synthesis example of polyhydroxyphenol compound! In a reactor similar to that used in Synthesis Example 1, phenol 1504.9 (
16 mol), salicylaldehyde 244. F (2 moles)
was charged, and the contents were heated to 80°C while stirring. Next, 26 g of concentrated hydrochloric acid was gradually added dropwise from the dropping funnel, and the temperature was raised to 100° C. while controlling to prevent excessive heat generation, and the mixture was reacted at 100° C. for 3 hours. Next, the reflux condenser of the reactor was replaced with a cooling separator, and the inside of the system was heated to 150°C.
The mixture was further heated to 190°C under a reduced pressure of 5 w Hg to distill off hydrochloric acid, water, and unreacted phenol.
f! Rehydroxyphenol compound 6089 was obtained.

この化合物は、顕微鏡法による軟化点が110℃、水酸
基当量が96であった。
This compound had a softening point of 110° C. and a hydroxyl equivalent of 96 by microscopy.

エポキシ樹脂製造例I 合成例1で得られた化合物の代シに、合成例!で得られ
た化合物292gを用い、そのほかは製造例1と同様に
してエポキシ樹脂4049を得た。
Epoxy resin production example I In place of the compound obtained in synthesis example 1, a synthesis example! Epoxy resin 4049 was obtained in the same manner as in Production Example 1 except that 292 g of the compound obtained in Example 1 was used.

そのエポキシ樹脂は、エポキシ当量が167、軟化点が
43℃であった。
The epoxy resin had an epoxy equivalent of 167 and a softening point of 43°C.

実施例1〜6 比較例I〜■ エポキシ樹脂として、エポキシ樹脂製造例1〜6で得ら
れた各エポキシ樹脂、エポキシ樹脂製造例!で得られた
エポキシ樹脂、市販のO−クレゾールノメラックエデキ
シ樹脂、及び市販の臭素化フェノールノゲラックエポキ
シ樹脂を第1表に示すようにそれぞれ用い、かつ第1表
に示すように硬化剤、硬化促進剤、無機充填材及びその
他の配合剤を配合し、二本ロールを用いて70〜110
℃の温度で混練し、その混線物を冷却後粉砕し、タブレ
ットマシーンでタブレットに加圧成形した。
Examples 1 to 6 Comparative Examples I to ■ As epoxy resins, each epoxy resin obtained in Epoxy Resin Production Examples 1 to 6, Epoxy Resin Production Examples! The epoxy resin obtained in Table 1, a commercially available O-cresol nomelac edexy resin, and a commercially available brominated phenol nogelac epoxy resin were used as shown in Table 1, and a curing agent, as shown in Table 1, was used. Blend the curing accelerator, inorganic filler and other compounding agents, and roll it to 70 to 110 using two rolls.
The mixture was kneaded at a temperature of 0.degree. C., and the mixed material was cooled, pulverized, and pressure-molded into tablets using a tablet machine.

得られた各タブレットを、トランスファー成形機を用い
て180℃、圧カフ0ゆ/cM2.3分間の条件を用い
て成形したのち、180℃で6時間の条件でポストキュ
アさせた。得られた各硬化樹脂のガラス転移温度、曲げ
強度、曲げ弾性率及び線膨張係数は、それぞれ第1異に
示すとおりであった。
Each of the obtained tablets was molded using a transfer molding machine at 180° C. and a pressure cuff of 0 Yu/cM for 2.3 minutes, and then post-cured at 180° C. for 6 hours. The glass transition temperature, bending strength, bending elastic modulus, and linear expansion coefficient of each of the obtained cured resins were as shown in the first difference.

また、各樹脂組成物を用い、8mXB■のダイデンディ
ンググレート上に半導体素子を置き。
Further, using each resin composition, a semiconductor element was placed on a die-dending grate of 8m×B■.

14wX20mX2.25mの代きさの80ピンQua
dフラツトパツケージの成形を行なった。
80 pin Qua with a size of 14w x 20m x 2.25m
d. A flat package was formed.

得られた各ノ々ツケージを85℃、85%RHi件下で
72時間吸湿させたのち、215℃のべ一ノや−フエー
スハンダ処理を90秒行ない、クラックの有無を調べた
結果は、それぞれ第1表に示すとおりで弗った・ 同様に、6.4 wn X 6.4 tmのダイボンデ
ィングプレート上に半導体素子を置き、フラットパッケ
ージを成形し、同様の吸湿処理後に260℃のノ・ンダ
浴で10秒間浸漬処理し、クラックの発生を調べた結果
は、それぞれ第1表に示すとおりであった。
After each of the obtained knot cages was allowed to absorb moisture for 72 hours at 85°C and 85% RHi, it was subjected to a 215°C pot-face soldering process for 90 seconds, and the presence or absence of cracks was examined. Similarly, a semiconductor element was placed on a 6.4 wn x 6.4 tm die bonding plate, a flat package was formed, and after the same moisture absorption treatment, it was heated to 260°C. The samples were immersed in a powder bath for 10 seconds, and the occurrence of cracks was examined. The results are shown in Table 1.

第1表の注: ・1・・・油化シェルエポキシ株式会社商品名 エピコ
ート1801エポキシ当量210 中2・・・日本化薬株式会社商品名 プレン、エポキシ
当量285 中3・・・荒用化学社商品名 タマノール752、水酸
基当量104 牟4・・・ジメチルジメトキシシランとγ−グリシドキ
シゾロビルトリメトキシシランの縮合によって得られた
シリコーン樹脂 −5・・・日本ユニカー株式会社商品名NUCシリコー
ンA−186 中6・・・評価基準は下記のとおシである。
Notes to Table 1: ・1...Product name of Yuka Shell Epoxy Co., Ltd. Epicoat 1801 Epoxy equivalent weight 210 Middle 2...Nippon Kayaku Co., Ltd. Brand name Prene, epoxy equivalent weight 285 Middle 3...Aurayo Kagakusha Co., Ltd. Product name: Tamanol 752, hydroxyl equivalent: 104 ㎟4...Silicone resin obtained by condensation of dimethyldimethoxysilane and γ-glycidoxysolobyltrimethoxysilane-5...Nippon Unicar Co., Ltd. Product name: NUC Silicone A- 186 6th grade...Evaluation criteria are as follows.

O:合格 ×:不合格 第1表の結果から明らかなように、各実施例のエポキシ
樹脂は、比較例の樹脂硬化物と較べて、硬化樹脂物性が
全般的に著しく優れておシ、特にガラス転移温度が高く
て耐熱性に優れ、かつ吸湿後のハンダ処理時のノクツケ
ージクラツクの発生が著しく少ない。
O: Pass ×: Fail As is clear from the results in Table 1, the epoxy resins of each example had significantly superior cured resin physical properties overall, and particularly It has a high glass transition temperature, has excellent heat resistance, and significantly reduces the occurrence of crack cage cracks during soldering after absorbing moisture.

(C)  発明の効果 本発明のエポキシ樹脂組成物は、硬化樹脂のガラス転移
温度が高くて耐熱性に優れておシ、また機械的強度も大
で、かつ吸湿性が少なくて、成形iJ?ツケージの吸湿
後の71ンダ処理においてもクラックの発生が著しく少
ないから、トランジスタやICなどの電子部品、特に耐
熱性の要求されるそれらの部品の封止用に適する。
(C) Effects of the Invention The epoxy resin composition of the present invention has a high glass transition temperature of the cured resin, has excellent heat resistance, has high mechanical strength, and has low hygroscopicity, so that it can be molded easily. Since the occurrence of cracks is extremely low even in the 71-under treatment after the cage absorbs moisture, it is suitable for sealing electronic components such as transistors and ICs, especially those components that require heat resistance.

Claims (1)

【特許請求の範囲】[Claims] (1)下記の(A)〜(D)の各成分を含有してなるこ
とを特徴とする電子部品封止用エポキシ樹脂組成物。 (A):ナフトール及びジヒドロキシナフタレンから選
ばれた少なくとも1種のヒドロキシナフタレン化合物と
アルデヒドとの縮合反応によって得られたポリヒドロキ
シナフタレン系化合物とエピハロヒドリンとから製造さ
れたエポキシ樹脂。 (B):1分子中に2個以上のフェノール性水酸基を有
する化合物からなる硬化剤 (C):硬化促進剤 (D):無機充填材
(1) An epoxy resin composition for encapsulating electronic components, characterized by containing each of the following components (A) to (D). (A): An epoxy resin produced from epihalohydrin and a polyhydroxynaphthalene compound obtained by a condensation reaction of at least one hydroxynaphthalene compound selected from naphthol and dihydroxynaphthalene with an aldehyde. (B): Curing agent consisting of a compound having two or more phenolic hydroxyl groups in one molecule (C): Curing accelerator (D): Inorganic filler
JP779489A 1989-01-18 1989-01-18 Epoxy resin composition for sealing electronic component Pending JPH02189326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP779489A JPH02189326A (en) 1989-01-18 1989-01-18 Epoxy resin composition for sealing electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP779489A JPH02189326A (en) 1989-01-18 1989-01-18 Epoxy resin composition for sealing electronic component

Publications (1)

Publication Number Publication Date
JPH02189326A true JPH02189326A (en) 1990-07-25

Family

ID=11675556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP779489A Pending JPH02189326A (en) 1989-01-18 1989-01-18 Epoxy resin composition for sealing electronic component

Country Status (1)

Country Link
JP (1) JPH02189326A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02235918A (en) * 1989-03-09 1990-09-18 Mitsubishi Electric Corp Epoxy resin composition for semiconductor sealing
JPH02245016A (en) * 1989-03-17 1990-09-28 Nippon Kayaku Co Ltd Highly heat-resistant and flame-retarding resin composition
JPH0496929A (en) * 1990-08-14 1992-03-30 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JPH04211422A (en) * 1990-01-25 1992-08-03 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JPH04214714A (en) * 1990-12-11 1992-08-05 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
EP0506359A2 (en) * 1991-03-29 1992-09-30 Shin-Etsu Chemical Co., Ltd. Epoxy resin compositions and semiconductor devices encapsulated therewith
JPH04300914A (en) * 1991-03-29 1992-10-23 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JPH0597970A (en) * 1991-10-07 1993-04-20 Shin Etsu Chem Co Ltd Thermosetting resin composition and semiconductor device
US5300588A (en) * 1991-04-04 1994-04-05 Shin-Etsu Chemical Co., Ltd. Thermosetting resin compositions
JP2002157917A (en) * 2000-11-20 2002-05-31 Hitachi Chem Co Ltd Resin composition for insulation process of electric apparatus
JP2008274297A (en) * 2001-07-12 2008-11-13 Dic Corp Epoxy resin, epoxy resin composition, and cured product of the same
WO2010047169A1 (en) * 2008-10-22 2010-04-29 Dic株式会社 Curable resin composition and cured product thereof, printed circuit board, and epoxy resin and method for producing same
JP2013087173A (en) * 2011-10-17 2013-05-13 Mitsubishi Gas Chemical Co Inc Novel epoxy compound and method for producing the same
CN105392765A (en) * 2013-07-19 2016-03-09 Dic株式会社 Compound containing phenolic hydroxy group, photosensitive composition, composition for resists, resist coating film, curable composition, composition for resist underlayer films, and resist underlayer film
US10179828B2 (en) * 2015-01-16 2019-01-15 Dic Corporation Curable composition for permanent resist films, and permanent resist film
US10466590B2 (en) 2014-10-10 2019-11-05 Dic Corporation Naphthol-type calixarene compound and method for producing the same, photosensitive composition, resist material, and coating

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60237081A (en) * 1984-05-10 1985-11-25 Agency Of Ind Science & Technol Novel polyglycidyl ether, its preparation and resin prepared therefrom
JPS6169826A (en) * 1984-09-14 1986-04-10 Agency Of Ind Science & Technol Polyglycidyl ether, its production and resin obtained therefrom
JPS61141724A (en) * 1984-12-12 1986-06-28 Agency Of Ind Science & Technol Polyglycidyl ether composition
JPS61218623A (en) * 1985-03-25 1986-09-29 Agency Of Ind Science & Technol Epoxy resin composition and cured material thereof
JPS6225116A (en) * 1986-07-17 1987-02-03 Agency Of Ind Science & Technol Resin obtained from novel polyglycidyl ether
JPS62143920A (en) * 1986-11-26 1987-06-27 Agency Of Ind Science & Technol Epoxy resin
JPS63252451A (en) * 1987-04-08 1988-10-19 Nitto Electric Ind Co Ltd Semiconductor device
JPS63273624A (en) * 1987-05-01 1988-11-10 Ube Ind Ltd Epoxy resin composition
JPS63286423A (en) * 1987-05-19 1988-11-24 Toshiba Chem Corp Resin composition for sealing
JPS63295622A (en) * 1987-05-27 1988-12-02 Fujitsu Ltd Epoxy resin composition for sealing semiconductor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60237081A (en) * 1984-05-10 1985-11-25 Agency Of Ind Science & Technol Novel polyglycidyl ether, its preparation and resin prepared therefrom
JPS6169826A (en) * 1984-09-14 1986-04-10 Agency Of Ind Science & Technol Polyglycidyl ether, its production and resin obtained therefrom
JPS61141724A (en) * 1984-12-12 1986-06-28 Agency Of Ind Science & Technol Polyglycidyl ether composition
JPS61218623A (en) * 1985-03-25 1986-09-29 Agency Of Ind Science & Technol Epoxy resin composition and cured material thereof
JPS6225116A (en) * 1986-07-17 1987-02-03 Agency Of Ind Science & Technol Resin obtained from novel polyglycidyl ether
JPS62143920A (en) * 1986-11-26 1987-06-27 Agency Of Ind Science & Technol Epoxy resin
JPS63252451A (en) * 1987-04-08 1988-10-19 Nitto Electric Ind Co Ltd Semiconductor device
JPS63273624A (en) * 1987-05-01 1988-11-10 Ube Ind Ltd Epoxy resin composition
JPS63286423A (en) * 1987-05-19 1988-11-24 Toshiba Chem Corp Resin composition for sealing
JPS63295622A (en) * 1987-05-27 1988-12-02 Fujitsu Ltd Epoxy resin composition for sealing semiconductor

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02235918A (en) * 1989-03-09 1990-09-18 Mitsubishi Electric Corp Epoxy resin composition for semiconductor sealing
JPH02245016A (en) * 1989-03-17 1990-09-28 Nippon Kayaku Co Ltd Highly heat-resistant and flame-retarding resin composition
JPH04211422A (en) * 1990-01-25 1992-08-03 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JPH0496929A (en) * 1990-08-14 1992-03-30 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JPH04214714A (en) * 1990-12-11 1992-08-05 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JP2541015B2 (en) * 1990-12-11 1996-10-09 信越化学工業株式会社 Epoxy resin composition for semiconductor device encapsulation and semiconductor device
EP0506359A2 (en) * 1991-03-29 1992-09-30 Shin-Etsu Chemical Co., Ltd. Epoxy resin compositions and semiconductor devices encapsulated therewith
JPH04300914A (en) * 1991-03-29 1992-10-23 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JPH04300915A (en) * 1991-03-29 1992-10-23 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
EP0506359A3 (en) * 1991-03-29 1993-02-03 Shin-Etsu Chemical Co., Ltd. Epoxy resin compositions and semiconductor devices encapsulated therewith
US5300588A (en) * 1991-04-04 1994-04-05 Shin-Etsu Chemical Co., Ltd. Thermosetting resin compositions
JPH0597970A (en) * 1991-10-07 1993-04-20 Shin Etsu Chem Co Ltd Thermosetting resin composition and semiconductor device
JP2002157917A (en) * 2000-11-20 2002-05-31 Hitachi Chem Co Ltd Resin composition for insulation process of electric apparatus
JP2008274297A (en) * 2001-07-12 2008-11-13 Dic Corp Epoxy resin, epoxy resin composition, and cured product of the same
WO2010047169A1 (en) * 2008-10-22 2010-04-29 Dic株式会社 Curable resin composition and cured product thereof, printed circuit board, and epoxy resin and method for producing same
JP2013087173A (en) * 2011-10-17 2013-05-13 Mitsubishi Gas Chemical Co Inc Novel epoxy compound and method for producing the same
CN105392765A (en) * 2013-07-19 2016-03-09 Dic株式会社 Compound containing phenolic hydroxy group, photosensitive composition, composition for resists, resist coating film, curable composition, composition for resist underlayer films, and resist underlayer film
KR20160033652A (en) * 2013-07-19 2016-03-28 디아이씨 가부시끼가이샤 Compound containing phenolic hydroxy group, photosensitive composition, composition for resists, resist coating film, curable composition, composition for resist underlayer films, and resist underlayer film
TWI602806B (en) * 2013-07-19 2017-10-21 Dic股份有限公司 Phenolic hydroxyl group-containing compound, photosensitive composition, composition for resist, resist coating, curable composition, cured product, composition for resist underlayer film, and resist underlayer film
US9828457B2 (en) * 2013-07-19 2017-11-28 Dic Corporation Compound containing phenolic hydroxy group, photosensitive composition, composition for resists, resist coating film, curable composition, composition for resist underlayer films, and resist underlayer film
US10466590B2 (en) 2014-10-10 2019-11-05 Dic Corporation Naphthol-type calixarene compound and method for producing the same, photosensitive composition, resist material, and coating
US10179828B2 (en) * 2015-01-16 2019-01-15 Dic Corporation Curable composition for permanent resist films, and permanent resist film

Similar Documents

Publication Publication Date Title
JPH02189326A (en) Epoxy resin composition for sealing electronic component
JPH047365B2 (en)
JPS6198726A (en) Epoxy resin composition for sealing electronic parts
US6713589B2 (en) Phenyl, naphthly or fluorene cyclopentyl epoxy resins
JPH07258240A (en) Glycidyl ether compound and epoxy resin composition
JPH0321627A (en) Phenol-novolak type epoxy resin and production thereof
JPH0570552A (en) Epoxy resin composition
JPH0570556A (en) Epoxy resin composition
JPH0593038A (en) Epoxy resin composition
JP2511316B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH0570553A (en) Epoxy resin composition
JPH0258523A (en) Epoxy resin composition for semiconductors sealing use
JP2981759B2 (en) Epoxy compound and epoxy resin composition
JPH0570549A (en) Epoxy resin composition
JPH05186546A (en) Polyhydroxynaphthalene compound and epoxy resin composition
JPH07224142A (en) Epoxy resin and epoxy resin composition
JPH07216052A (en) Epoxy resin and epoxy resin composition
JP2000095922A (en) Epoxy resin composition for semiconductor sealing
JPH0593035A (en) Epoxy resin composition
JPH07258241A (en) Glycidyl ether compound and epoxy resin composition
JPH0570551A (en) Epoxy resin composition
JP2870710B2 (en) New compounds, resins, resin compositions and cured products
JP3419942B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor encapsulation method
JP3325694B2 (en) Epoxy resin and epoxy resin composition
JPH04372618A (en) Epoxy resin composition