JPH047365B2 - - Google Patents

Info

Publication number
JPH047365B2
JPH047365B2 JP17072784A JP17072784A JPH047365B2 JP H047365 B2 JPH047365 B2 JP H047365B2 JP 17072784 A JP17072784 A JP 17072784A JP 17072784 A JP17072784 A JP 17072784A JP H047365 B2 JPH047365 B2 JP H047365B2
Authority
JP
Japan
Prior art keywords
epoxy resin
group
weight
resin
bishydroxybiphenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17072784A
Other languages
Japanese (ja)
Other versions
JPS6147725A (en
Inventor
Ryohei Tanaka
Hideyuki Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuka Shell Epoxy KK
Original Assignee
Yuka Shell Epoxy KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuka Shell Epoxy KK filed Critical Yuka Shell Epoxy KK
Priority to JP17072784A priority Critical patent/JPS6147725A/en
Publication of JPS6147725A publication Critical patent/JPS6147725A/en
Publication of JPH047365B2 publication Critical patent/JPH047365B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は半導体封止用エポキシ樹脂組成物に関
するものであり、更に詳しくはフエノール硬化エ
ポキシ樹脂のガラス転移点を維持しつつ、低弾性
率及び耐クラツク性の優れた硬化物を提供する半
導体封止用エポキシ樹脂組成物に関するものであ
る。 〔従来技術とその問題点〕 半導体素子を樹脂を用いて封止する場合には、
一般に、樹脂を半導体に直接封止することが行わ
れている。そのため、半導体素子と樹脂との温度
変化に伴う線膨張率の差が大きい場合や大きな熱
応力がかゝつた場合には、素子ペレツトが割れを
生じたり、半導体素子のボンデイング線が切断さ
れる等の問題があり素子への応力を小さくするこ
とが望まれ、近年、半導体素子の大型化、高集積
化に伴なつて増々その要求が強くなつている。 半導体封止用エポキシ樹脂組成物は、耐熱性、
電気特性及び耐水性等の面より、エポキシ樹脂と
してノボラツク型エポキシ樹脂、硬化剤としてフ
エノールノボラツク樹脂、充填剤としてシリカ粉
末より基本的に構成されることは広く知られてい
る。 しかしながら、従来のエポキシ樹脂組成物で半
導体素子を封止した場合、ヒートサイクルテスト
を行なうと、封止樹脂にクラツクが生じたり、チ
ツプにクラツクが生ずるなど半導体部品の信頼性
を低下させるという問題点が生じている。これは
エポキシ樹脂として、耐熱性の優れるノボラツク
型エポキシ樹脂を使用しているため、これよりな
る硬化物は硬く、可撓性が不足することに起因す
るものである。 このような問題点を解決するためにエポキシ樹
脂組成物に、例えば、可撓性付与剤を配合する方
法が知られている。しかしながら、従来知られて
いる可撓性付与剤を配合した場合には、可撓性は
改良されるものの、一方においてガラス転移点
(Tg)が急激に低下すると同時に高温電気特性も
低下し、耐湿性に与える影響が大きいという問題
点を有している。 また、低弾性率及び高ガラス転移点を有するシ
リコーン樹脂を配合する方法が知られているが、
シリコーン樹脂は金属との接着性が劣り、透湿性
が大きいために、耐湿性の面で信頼性に欠けると
いう問題点を有している。 〔発明の目的〕 本発明は、このような状況に鑑みてなされたも
ので、その目的はその硬化物がフエノール硬化エ
ポキシ樹脂のガラス転移点を維持しつつ、低弾性
率及び優れた耐クラツク性を有する半導体封止用
エポキシ樹脂組成物を提供することにある。 〔発明の概要〕 即ち、本発明は、 (1)(a) 一般式 (式中、Rは水素原子又はメチル基を示し、
R1〜R8は水素原子、メチル基、エチル基、
イソプロピル基、フエニル基、クロル原子又
はブロム原子からなる群より選ばれた同一若
しくは異なる基を示す。また、nは0〜5の
整数を示す。) で表わされるビスヒドロキシビフエニル系エ
ポキシ樹脂 100重量部 (b) ノボラツク型エポキシ樹脂20〜400重量部 (c) フエノールノボラツク樹脂硬化剤 (d) 硬化促進剤 (e) 無機質充填剤 から成ることを特徴とする半導体封止用エポキシ
樹脂組成物である。 本発明における(a)成分のビスヒドロキシビフエ
ニル系エポキシ樹脂は一般式 (式中、Rは水素原子又はメチル基を示し、R1
〜R8は水素原子、メチル基、エチル基、イソプ
ロピル基、フエニル基、クロル原子又はブロム原
子からなる群から選ばれた同一若しくは異なる基
を示す。また、nは0〜5の整数を示す。) で表わされるが、この樹脂は、4,4′−ビスヒド
ロキシビフエニル、4,4′−ビスヒドロキシ−
3,3′,5,5′−テトラメチルビフエニル、4,
4′ビスヒドロキシ−3,3′,5,5′−テトラメチ
ル−2−クロロビフエニル、4,4′ビスヒドロキ
シ−3,3′,5,5′−テトラメチル−2−ブロモ
ビフエニル、4,4′ビスヒドロキシ−3,3′,
5,5′−テトラエチルビフエニル、4,4′ビスヒ
ドロキシ−3,3′,5,5′−テトラフエニルビフ
エニル等のビフエノール誘導体をエピハロヒドリ
ン又はβ−メチルエピハロヒドリン(以下、両者
をエピハロヒドリンで代表する)とを反応させる
ことにより得られる。 具体的には、 () ビスヒドロキシビフエニル又はそのメチル
化物(以下、両者をビスヒドロキシビフエニル
のメチル化物で代表する。)と過剰のエピハロ
ヒドリンとをアルカリ金属水酸化物の共存下に
反応させ、ビスヒドロキシビフエニルのメチル
化物へのエピハロヒドリンの付加反応と、エポ
キシ環を形成する閉環反応とを同時に行つてポ
リエポキシ化合物を製造する1段法 () ビスヒドロキシビフエニルのメチル化物と
過剰のエピハロヒドリンと塩基性触媒の存在下
で付加反応させ、次いでアルカリ金属水酸化物
を添加して閉環反応を行なつてポリエポキシ化
合物を製造する2段法 が挙げられる。 エピハロヒドリンとしてはエピクロルヒドリ
ン、エピプロモヒドリン、β−メチルエピクロル
ヒドリン、β−メチルエピプロモヒドリン、β−
メチルエピヨードヒドリン等が挙げられるが、一
般にエピクロルヒドリンが使用される。 また、アルカリ金属水酸化物としては苛性カ
リ、苛性ソーダが使用でき、これらは固体のまま
で、あるいは40〜50%のアルカリ水溶液として添
加される。 塩基性触媒としてはテトラメチルアンモニウム
クロリド、テトラメチルアンモニウムブロミド、
トリエチルメチルアンモニウムクロリド、テトラ
エチルアンモニウムアイダイド、セチルトリエチ
ルアンモニウムブロミド等の四級アンモニウム塩
が使用できる。 前記1段法においては60〜150℃、好ましくは
80〜120℃の範囲の温度で反応が行われる。アル
カリ金属水酸化物はビフエニル誘導体の水酸基1
当量に対して0.8〜1.5モル倍、好ましくは0.9〜
1.2モル倍使用する。 また、前記2段法においては、前段の反応は90
〜150℃、好ましくは100〜140℃の温度で行なう。
ビスヒドロキシビフエニルのメチル化物に対する
エピハロヒドリンの使用量は1.3〜20倍モル量、
好ましくは1.5〜14倍モル量であり、過剰に使用
したエピハロヒドリンは蒸留回収することにより
再利用可能である。また、塩基性触媒はビスヒド
ロキシビフエニルのフエノール性水酸基に対して
0.002〜0.5モル%の量使用される。 後段の反応は60〜150℃、好ましくは80〜120℃
で行ない、アルカリ金属水酸化物は生成したハロ
ヒドリンに対して等モル量〜1.1倍モル量用いら
れる。これら前段および後段の反応はメチルイソ
ブチルケトン、メチルエチルケトン、トルエン等
の不活性有機溶媒の存在下で行つてもよい。 これら()および()の反応終了後、反応
生成物は温水で洗浄して例えば食塩の如きアルカ
リ金属塩を除去し、次いで水を留去して精製す
る。あるいは反応生成物を水に不溶または難溶性
の有機溶媒、例えばメチルイソブチルケトン、メ
チルエチルケトン、トルエン等に溶解し、この溶
液を水又は温水と接触させて食塩等の無機不純物
を水相に溶解し、その後有機溶媒を留去して精製
を行なう。 このようにして得られた前記一般式で表わされ
るエポキシ樹脂は、エピハロヒドリンを大過剰使
用した場合でも、n=0の化合物のみで占められ
ているわけでなく、n=1〜5のポリエポキシ化
合物を20重量%以下の割合で含んでいるのが普通
である。 この一般式で表わされるエポキシ樹脂の融点
は、その重合度と分子量分布によつて左右される
が、例えば、R、R2、R4、R5、R7がHで、R1
R3、R6、R8がCH3の場合83〜165℃、R、R4
R5、R7がHで、R1、R3、R6、R8がCH3、R2がCl
の場合のそれは41〜95℃であり、また、R、R1
R2、R3、R4、R5、R6、R7、R8が全てHである場
合のそれは145〜190℃である。 本発明における(b)成分のノボラツクエポキシ樹
脂としては、例えば下記のものが挙げられる。 () クレゾールノボラツク型エポキシ樹脂:例
えば油化シエルエポキシ社のエピコート181、
チバ社のアラルダイトECN1235、同1273、同
1280(以上何れも商品名)等。 () フエノールノボラツク型エポキシ樹脂:例
えば油化シエルエポキシ社のエピコート152、
同154、チバ社のアラルダイトEPN1138、同
1139、ダウケミカル社のDEN438、同448(以上
何れも商品名)等。 () 臭素化フエノールノボラツク型エポキシ樹
脂:例えば日本化薬社のブレン そして(b)成分としては、これらから成る群よる
選ばれた1種又は2種以上のものが使用される。 ビスヒドロキシビフエニル系ジエポキシ樹脂と
ノボラツク型エポキシ樹脂の配合比としては、ビ
スヒドロキシビフエニル系エポキシ樹脂100重量
部に対してノボラツク型エポキシ樹脂20〜400重
量部、好ましくは30〜300重量部である。ノボラ
ツク型エポキシ樹脂が20重量部以下では、耐熱性
が低く、また400重量部以上となるとヒートクラ
ツク性の改良効果は極めて小さい。 また、この系にビスフエノールAより誘導され
るエポキシ樹脂、例えば油化シエルエポキシ社製
エピコート828、エピコート1001及びエピコート
1004等及びビスフエノールFより誘導されるエポ
キシ樹脂例えば油化シエルエポキシ社製エピコー
ト807等を必要量加えてもよい。 本発明において硬化剤として用いられる(c)成分
のフエノールノボラツク樹脂としては、フエノー
ル、クレゾール、キシレノール、レゾルシノー
ル、クロロフエノール、フエニルフエノール及び
ビスフエノールA等から成る群より選ばれた少な
くとも1種または2種以上の混合物をホルムアル
デヒド又はパラホルムアルデヒドとともに酸触媒
下で反応させて得たものである。 かゝるフエノールノボラツク樹脂は、樹脂組成
物の架橋密度を高め、半導体素子に対する未反応
原料(モノマー)の悪影響を防ぐために、未反応
モノマー量が該フエノールノボラツク樹脂中、
0.7重量%以下のものを使用することが好ましい。
また、その軟化点は、60〜110℃であることが好
ましい。 上記フエノールノボラツク樹脂の配合量は(a)成
分及び(b)成分のエポキシ樹脂との組合せにおい
て、エポキシ樹脂中のエポキシ基1個当たり、フ
エノール樹脂中のフエノール性水酸基が0.5〜2.0
個となるように配合することが好ましく、更に好
ましくは約1個である。 本発明において使用される(d)成分の硬化促進剤
は、エポキシ樹脂とフエノールノボラツク樹脂の
反応を促進し、硬化を速めるものである。このよ
うな硬化促進剤としては、例えば2−(ジメチル
アミノメチル)フエノール、2,4,6−トリス
(ジメチルアミノメチル)フエノール、ベンジル
ジメチルアミン、α−メチルベンジルジメチルア
ミンのような第三級アミン、2−メチルイミダゾ
ール、2−フエニルイミダゾール、2−ウンデシ
ルイミダゾール、2−ヘプタデシルイミダゾー
ル、2−エチル−4−メチルイミダゾール等のイ
ミダゾール類やトリフエニルフオスフイン等のフ
オスフイン類が挙げられ、その配合量としてはエ
ポキシ樹脂組成物中0.02〜1.0重量%であること
が好ましい。 本発明において使用される(e)成分の無機質充填
剤は、通常、無機質充填剤として使用されている
ものであれば如何なるものでもよい。このような
無機質充填剤としては、溶融シリカ粉、結晶性シ
リカ粉、石英ガラス粉、タルク、ケイ酸カルシウ
ム粉、ケイ酸ジルコニウム粉、アルミナ粉、炭酸
カルシウム粉、クレー粉、硫酸バリウム粉及びガ
ラス繊維等が挙げられ、これらから成る群より選
ばれた1種若しくは2種以上のものが使用される
が、シリカ粉末が特に好ましい。 上記無機質充填剤の配合量は、配合される無機
質充填剤の種類により、硬化物に所望の弾性率、
線膨張率及びガラス転移温度等を付与するに充分
な量であれば良いが、樹脂組成物中に50〜85重量
%であることが好ましい。50重量%未満であると
線膨張率が大きくなり、一方、85重量%を超える
と樹脂組成物の流動性が低下する。 本発明の樹脂組成物の製造は、上記した5成分
を混合して行われるが、その混合順序は特に限定
されない。但し、(a)成分と(b)成分のエポキシ樹脂
は予じめ、混合しておくことが好ましい。 本発明においては、必要に応じて更に、離型
剤、着色剤、カツプリング剤又は難燃剤等を添加
しても良い。離型剤としては、例えば、天然ワツ
クス、合成ワツクス、高級脂肪及びその金属塩並
びにパラフイン等が挙げられ、着色剤としてはカ
ーボン等が、又、難燃剤としては、例えば、三酸
化アンチモン、五酸化アンチモン、リン酸及びリ
ン化合物等が挙げられる。 〔発明の効果〕 本発明によれば、その樹脂硬化物がフエノール
硬化エポキシ樹脂のガラス転移点を維持しつつ、
低弾性率及び優れた耐クラツク性を有する半導体
封止用エポキシ樹脂組成物を得ることが可能であ
る。 〔発明の実施例〕 ビスヒドロキシビフエニル系エポキシ樹脂の製
造 製造例 1 エポキシ樹脂A 撹拌装置、温度計、冷却器を備えた内容積5
の三つ口フラスコ内に、4,4′−ビスヒドロキシ
−3,3′,5,5′−テトラメチルビフエニル242
g(1.0モル)、エピクロルヒドリン2220g(24モ
ル)、テトラメチルアンモニウムクロリド1.9gを
仕込み加熱還流下で2時間付加反応を行なわせ
た。次いで内容物を60℃に冷却し、水分除去装置
を付設してから、水酸化ナトリウムを88g(2.2
モル)加え、反応温度55〜60℃、減圧度100〜150
mmHgで生成する水を連続的に共沸除去させなが
ら閉環反応を行なわせた。生成水が36mlに達した
点を反応終了点とした。(2時間後) 反応生成物を減圧過した後、過物をミキサ
ー中で水洗を繰返して食塩を除去した。また液
を減圧蒸留し、残存エピクロルヒドリンを回収し
た。 このようにしてエポキシ当量185g/当量、融
点105℃である淡黄色固体の4,4′−ビス(2,
3−エポキシプロポキシ)−3,3′,5,5′−テ
トラメチルビフエニル330gを得た。 製造例 2 エポキシ樹脂B 先の製造例1にて4,4′−ビスヒドロキシ−
3,3′,5,5′−テトラメチルビフエニルの代り
に4,4′−ビスヒドロキシビフエニル186g(1.0
モル)用いる以外は、先の製造例1と同様の手法
にて、エポキシ当量157g/当量、融点151℃であ
る淡黄色固体の4,4′−ビス(2,3−エポキシ
プロポキシ)−ビフエニル273gを得た。 実施例1〜6、比較例1〜6 エポキシ樹脂の硬化 製造例1、2で得たエポキシ樹脂A及びB、ビ
スフエノールA型エポキシ樹脂(油化シエルエポ
キシ社製:E−828(商品名))、クレゾールノボラ
ツク型エポキシ樹脂(油化シエルエポキシ社製:
E−181(商品名))、フエノールノボラツク型エポ
キシ樹脂(油化シエルエポキシ社製:E−154(商
品名))、フエノールノボラツク樹脂(群栄化学社
製:レジトツプPSF4224(商品名))、2−ウンデ
シルイミダゾール及び溶融シリカを第1表に示し
た組成比でそれぞれ配合し、溶融混合した後、プ
レス成型にて160℃/20分予備硬化した後170℃/
5時間後硬化し試験片を作製した。 なお、耐クラツク性については0lyphantのワツ
シヤー法にて評価した。 得られた硬化物の物性を第1表に示す。
[Technical Field of the Invention] The present invention relates to an epoxy resin composition for semiconductor encapsulation, and more specifically to a cured product that maintains the glass transition point of a phenol-cured epoxy resin and has a low elastic modulus and excellent crack resistance. The present invention relates to an epoxy resin composition for semiconductor encapsulation. [Prior art and its problems] When sealing a semiconductor element with resin,
Generally, resin is directly encapsulated into a semiconductor. Therefore, if there is a large difference in coefficient of linear expansion between the semiconductor element and the resin due to temperature changes, or if large thermal stress is applied, the element pellet may crack or the bonding lines of the semiconductor element may be severed. Due to this problem, it is desired to reduce the stress on the device, and in recent years, as semiconductor devices have become larger and more highly integrated, this demand has become stronger. The epoxy resin composition for semiconductor encapsulation has heat resistance,
From the viewpoint of electrical properties and water resistance, it is widely known that the epoxy resin is basically composed of a novolac type epoxy resin, a phenol novolac resin as a hardening agent, and a silica powder as a filler. However, when a semiconductor element is encapsulated using a conventional epoxy resin composition, there are problems in that when a heat cycle test is performed, cracks occur in the encapsulating resin or cracks occur in the chip, reducing the reliability of the semiconductor component. is occurring. This is because a novolak type epoxy resin with excellent heat resistance is used as the epoxy resin, and the cured product made of this resin is hard and lacks flexibility. In order to solve these problems, a method is known in which, for example, a flexibility imparting agent is added to an epoxy resin composition. However, when conventionally known flexibility-imparting agents are blended, although flexibility is improved, the glass transition point (Tg) decreases rapidly, high-temperature electrical properties also decrease, and moisture resistance The problem is that it has a large impact on sexuality. In addition, a method of blending a silicone resin with a low elastic modulus and a high glass transition temperature is known, but
Silicone resins have poor adhesion to metals and high moisture permeability, so they have the problem of lacking reliability in terms of moisture resistance. [Object of the Invention] The present invention was made in view of the above circumstances, and its purpose is to provide a cured product with low elastic modulus and excellent crack resistance while maintaining the glass transition point of the phenol-cured epoxy resin. An object of the present invention is to provide an epoxy resin composition for semiconductor encapsulation having the following properties. [Summary of the invention] That is, the present invention provides the following: (1)(a) General formula (In the formula, R represents a hydrogen atom or a methyl group,
R 1 to R 8 are hydrogen atoms, methyl groups, ethyl groups,
Indicates the same or different groups selected from the group consisting of isopropyl group, phenyl group, chlorine atom, or bromine atom. Moreover, n shows an integer of 0-5. ) 100 parts by weight of a bishydroxybiphenyl epoxy resin (b) 20 to 400 parts by weight of a novolak type epoxy resin (c) A phenol novolak resin curing agent (d) A curing accelerator (e) An inorganic filler An epoxy resin composition for semiconductor encapsulation, characterized by: The bishydroxybiphenyl epoxy resin as component (a) in the present invention has the general formula (In the formula, R represents a hydrogen atom or a methyl group, and R 1
~ R8 represents the same or different groups selected from the group consisting of a hydrogen atom, a methyl group, an ethyl group, an isopropyl group, a phenyl group, a chloro atom, or a bromine atom. Moreover, n shows an integer of 0-5. ), but this resin is 4,4'-bishydroxybiphenyl, 4,4'-bishydroxy-
3,3',5,5'-tetramethylbiphenyl, 4,
4'bishydroxy-3,3',5,5'-tetramethyl-2-chlorobiphenyl, 4,4'bishydroxy-3,3',5,5'-tetramethyl-2-bromobiphenyl, 4,4'bishydroxy-3,3',
Biphenol derivatives such as 5,5'-tetraethylbiphenyl and 4,4'bishydroxy-3,3',5,5'-tetraphenylbiphenyl can be converted into epihalohydrin or β-methylepihalohydrin (hereinafter both are referred to as epihalohydrin). ) can be obtained by reacting with Specifically, () bishydroxybiphenyl or its methylated product (hereinafter, both are represented by methylated bishydroxybiphenyl) and excess epihalohydrin are reacted in the coexistence of an alkali metal hydroxide, A one-step method for producing a polyepoxy compound by simultaneously performing an addition reaction of epihalohydrin to a methylated product of bishydroxybiphenyl and a ring-closing reaction to form an epoxy ring. A two-step method is mentioned in which a polyepoxy compound is produced by carrying out an addition reaction in the presence of a basic catalyst, and then carrying out a ring-closing reaction by adding an alkali metal hydroxide. Epihalohydrin includes epichlorohydrin, epipromohydrin, β-methylepichlorohydrin, β-methylepipromohydrin, β-
Examples include methylepiiodohydrin, but epichlorohydrin is generally used. Further, as the alkali metal hydroxide, caustic potash and caustic soda can be used, and these are added as a solid or as a 40 to 50% aqueous alkali solution. Basic catalysts include tetramethylammonium chloride, tetramethylammonium bromide,
Quaternary ammonium salts such as triethylmethylammonium chloride, tetraethylammonium idide, and cetyltriethylammonium bromide can be used. In the one-stage method, the temperature is 60 to 150°C, preferably
The reaction is carried out at a temperature in the range 80-120°C. The alkali metal hydroxide is the hydroxyl group 1 of the biphenyl derivative.
0.8 to 1.5 times the mole equivalent, preferably 0.9 to 1.5 times the mole
Use 1.2 mole times. In addition, in the two-stage method, the first stage reaction is 90
It is carried out at a temperature of -150°C, preferably 100-140°C.
The amount of epihalohydrin used is 1.3 to 20 times the molar amount of bishydroxybiphenyl methylated product,
It is preferably 1.5 to 14 times the molar amount, and epihalohydrin used in excess can be reused by recovering it by distillation. In addition, the basic catalyst acts on the phenolic hydroxyl group of bishydroxybiphenyl.
It is used in an amount of 0.002-0.5 mol%. The temperature of the subsequent reaction is 60-150℃, preferably 80-120℃
The alkali metal hydroxide is used in an equimolar amount to 1.1 times the molar amount of the halohydrin produced. These first-stage and second-stage reactions may be carried out in the presence of an inert organic solvent such as methyl isobutyl ketone, methyl ethyl ketone, or toluene. After the reaction of () and () is completed, the reaction product is washed with warm water to remove an alkali metal salt such as common salt, and then purified by distilling off water. Alternatively, the reaction product is dissolved in an organic solvent that is insoluble or poorly soluble in water, such as methyl isobutyl ketone, methyl ethyl ketone, toluene, etc., and this solution is brought into contact with water or hot water to dissolve inorganic impurities such as common salt in the aqueous phase. Thereafter, the organic solvent is distilled off to perform purification. Even when epihalohydrin is used in large excess, the epoxy resin represented by the general formula obtained in this way does not consist only of compounds with n=0, but with polyepoxy compounds with n=1 to 5. It usually contains less than 20% by weight. The melting point of the epoxy resin represented by this general formula depends on its degree of polymerization and molecular weight distribution, but for example, R, R 2 , R 4 , R 5 , and R 7 are H, R 1 ,
When R 3 , R 6 and R 8 are CH 3 83 to 165°C, R, R 4 ,
R 5 and R 7 are H, R 1 , R 3 , R 6 and R 8 are CH 3 and R 2 is Cl
It is 41-95°C in the case of R, R 1 ,
When R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are all H, the temperature is 145 to 190°C. Examples of the novolak epoxy resin as component (b) in the present invention include the following. () Cresol novolak type epoxy resin: For example, Epicoat 181 from Yuka Ciel Epoxy Co., Ltd.
Ciba Araldite ECN1235, Araldite 1273, Araldite
1280 (all of the above are product names), etc. () Phenol novolac type epoxy resin: For example, Epicoat 152 from Yuka Ciel Epoxy Co., Ltd.
154, Ciba's Araldite EPN1138,
1139, DOW Chemical Company's DEN438, DEN448 (all of the above are product names), etc. () Brominated phenol novolak type epoxy resin: for example, Bren from Nippon Kayaku Co., Ltd.; and as component (b), one or more selected from the group consisting of these are used. The blending ratio of the bishydroxybiphenyl diepoxy resin and the novolak epoxy resin is 20 to 400 parts by weight, preferably 30 to 300 parts by weight, of the novolak epoxy resin per 100 parts by weight of the bishydroxybiphenyl epoxy resin. . If the amount of novolak type epoxy resin is less than 20 parts by weight, the heat resistance will be low, and if it is more than 400 parts by weight, the effect of improving heat crack resistance will be extremely small. In addition, in this system, epoxy resins derived from bisphenol A, such as Epicote 828, Epicote 1001 and Epicote manufactured by Yuka Ciel Epoxy Co., Ltd.
1004, etc., and an epoxy resin derived from bisphenol F, such as Epicote 807 manufactured by Yuka Ciel Epoxy Co., Ltd., may be added in the required amount. The phenol novolak resin as component (c) used as a curing agent in the present invention is at least one selected from the group consisting of phenol, cresol, xylenol, resorcinol, chlorophenol, phenylphenol, bisphenol A, etc. It is obtained by reacting a mixture of two or more types with formaldehyde or paraformaldehyde under an acid catalyst. In order to increase the crosslinking density of the resin composition and prevent the unreacted raw material (monomer) from having an adverse effect on the semiconductor device, such a phenol novolak resin has an amount of unreacted monomer in the phenol novolak resin.
It is preferable to use 0.7% by weight or less.
Moreover, it is preferable that the softening point is 60 to 110°C. The blending amount of the above phenolic novolac resin is 0.5 to 2.0 phenolic hydroxyl groups in the phenolic resin per epoxy group in the epoxy resin in combination with the epoxy resins of components (a) and (b).
It is preferable to mix the number of particles, more preferably about one. The curing accelerator used in the present invention as component (d) accelerates the reaction between the epoxy resin and the phenol novolac resin to accelerate curing. Examples of such curing accelerators include tertiary amines such as 2-(dimethylaminomethyl)phenol, 2,4,6-tris(dimethylaminomethyl)phenol, benzyldimethylamine, and α-methylbenzyldimethylamine. , 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecyl imidazole, 2-ethyl-4-methylimidazole, and other imidazoles; and triphenylphosphin and other phosphins. The blending amount is preferably 0.02 to 1.0% by weight in the epoxy resin composition. The inorganic filler as component (e) used in the present invention may be any inorganic filler that is normally used as an inorganic filler. Such inorganic fillers include fused silica powder, crystalline silica powder, quartz glass powder, talc, calcium silicate powder, zirconium silicate powder, alumina powder, calcium carbonate powder, clay powder, barium sulfate powder, and glass fiber. One or more types selected from the group consisting of these are used, but silica powder is particularly preferred. The amount of the above-mentioned inorganic filler to be blended depends on the type of inorganic filler to be blended, and the desired elastic modulus and
The amount may be sufficient as long as it provides a coefficient of linear expansion, a glass transition temperature, etc., but it is preferably 50 to 85% by weight in the resin composition. If it is less than 50% by weight, the coefficient of linear expansion will increase, while if it exceeds 85% by weight, the fluidity of the resin composition will decrease. The resin composition of the present invention is produced by mixing the five components described above, but the mixing order is not particularly limited. However, it is preferable that the epoxy resins (a) and (b) are mixed in advance. In the present invention, a mold release agent, a coloring agent, a coupling agent, a flame retardant, etc. may be further added as necessary. Examples of mold release agents include natural waxes, synthetic waxes, higher fats and their metal salts, paraffin, etc. Colorants include carbon, and flame retardants include antimony trioxide, pentoxide, etc. Examples include antimony, phosphoric acid, and phosphorus compounds. [Effects of the Invention] According to the present invention, the cured resin material maintains the glass transition point of the phenol-cured epoxy resin,
It is possible to obtain an epoxy resin composition for semiconductor encapsulation that has a low elastic modulus and excellent crack resistance. [Embodiments of the invention] Production example of bishydroxybiphenyl epoxy resin 1 Epoxy resin A Internal volume 5 equipped with a stirring device, thermometer, and cooler
In a three-necked flask, 4,4'-bishydroxy-3,3',5,5'-tetramethylbiphenyl 242
(1.0 mol), 2220 g (24 mol) of epichlorohydrin, and 1.9 g of tetramethylammonium chloride were charged, and an addition reaction was carried out under heating and reflux for 2 hours. The contents were then cooled to 60°C, equipped with a water removal device, and then 88 g (2.2 g) of sodium hydroxide was added.
mol) added, reaction temperature 55-60℃, degree of vacuum 100-150
The ring-closing reaction was carried out while continuously azeotropically removing the water produced at mmHg. The point at which the produced water reached 36 ml was defined as the end point of the reaction. (After 2 hours) After the reaction product was filtered under reduced pressure, the filtered product was washed repeatedly with water in a mixer to remove salt. Further, the liquid was distilled under reduced pressure to recover residual epichlorohydrin. In this way, a pale yellow solid, 4,4'-bis(2,
330 g of 3-epoxypropoxy)-3,3',5,5'-tetramethylbiphenyl were obtained. Production Example 2 Epoxy Resin B In the previous Production Example 1, 4,4'-bishydroxy-
186 g of 4,4'-bishydroxybiphenyl (1.0
273 g of 4,4'-bis(2,3-epoxypropoxy)-biphenyl, a pale yellow solid with an epoxy equivalent of 157 g/equivalent and a melting point of 151°C, was prepared in the same manner as in Production Example 1 except that 273 g of 4,4'-bis(2,3-epoxypropoxy)-biphenyl was used. I got it. Examples 1 to 6, Comparative Examples 1 to 6 Curing of epoxy resin Epoxy resins A and B obtained in Production Examples 1 and 2, bisphenol A type epoxy resin (manufactured by Yuka Ciel Epoxy Co., Ltd.: E-828 (trade name) ), cresol novolak type epoxy resin (manufactured by Yuka Ciel Epoxy Co., Ltd.:
E-181 (product name)), phenol novolac type epoxy resin (manufactured by Yuka Ciel Epoxy Co., Ltd.: E-154 (product name)), phenol novolak resin (manufactured by Gunei Kagaku Co., Ltd.: Retop PSF4224 (product name)) , 2-undecylimidazole and fused silica were blended in the composition ratios shown in Table 1, melt-mixed, precured by press molding at 160°C for 20 minutes, and then 170°C/
After 5 hours of curing, a test piece was prepared. The crack resistance was evaluated using Olyphant's washer method. Table 1 shows the physical properties of the obtained cured product.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 (a) 一般式 (式中、Rは水素原子又はメチル基を示し、
R1〜R8は水素原子、メチル基、エチル基、イ
ソプロピル基、フエニル基、クロル原子又はブ
ロム原子からなる群より選ばれた同一若しくは
異なる基を示す。また、nは0〜5の整数を示
す。) で表わされるビスヒドロキシビフエニル系エポ
キシ樹脂 100重量部 (b) ノボラツク型エポキシ樹脂20〜400重量部 (c) フエノールノボラツク樹脂硬化剤 (d) 硬化促進剤 (e) 無機質充填剤 から成ることを特徴とする半導体封止用エポキシ
樹脂組成物。
[Claims] 1 (a) General formula (In the formula, R represents a hydrogen atom or a methyl group,
R1 to R8 represent the same or different groups selected from the group consisting of a hydrogen atom, a methyl group, an ethyl group, an isopropyl group, a phenyl group, a chloro atom, or a bromine atom. Moreover, n shows an integer of 0-5. ) 100 parts by weight of a bishydroxybiphenyl epoxy resin (b) 20 to 400 parts by weight of a novolak type epoxy resin (c) A phenol novolak resin curing agent (d) A curing accelerator (e) An inorganic filler An epoxy resin composition for semiconductor encapsulation characterized by:
JP17072784A 1984-08-16 1984-08-16 Epoxy resin composition for sealing semiconductor Granted JPS6147725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17072784A JPS6147725A (en) 1984-08-16 1984-08-16 Epoxy resin composition for sealing semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17072784A JPS6147725A (en) 1984-08-16 1984-08-16 Epoxy resin composition for sealing semiconductor

Publications (2)

Publication Number Publication Date
JPS6147725A JPS6147725A (en) 1986-03-08
JPH047365B2 true JPH047365B2 (en) 1992-02-10

Family

ID=15910271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17072784A Granted JPS6147725A (en) 1984-08-16 1984-08-16 Epoxy resin composition for sealing semiconductor

Country Status (1)

Country Link
JP (1) JPS6147725A (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6198726A (en) * 1984-10-19 1986-05-17 Mitsubishi Petrochem Co Ltd Epoxy resin composition for sealing electronic parts
JPS61259552A (en) * 1985-05-14 1986-11-17 Nitto Electric Ind Co Ltd Semiconductor sealing device
JPH06104712B2 (en) * 1987-04-08 1994-12-21 東レ株式会社 Resin composition for semiconductor encapsulation
JPH0753791B2 (en) * 1987-09-04 1995-06-07 東レ株式会社 Resin composition for semiconductor encapsulation
JPH0668010B2 (en) * 1987-09-28 1994-08-31 東レ株式会社 Resin composition for semiconductor encapsulation
JPH0776257B2 (en) * 1988-09-29 1995-08-16 日東電工株式会社 Semiconductor device
JPH0776258B2 (en) * 1988-09-29 1995-08-16 日東電工株式会社 Semiconductor device
JPH0791364B2 (en) * 1988-10-06 1995-10-04 東レ株式会社 Solder heat resistant epoxy resin composition for semiconductor encapsulation
JPH0676475B2 (en) * 1988-10-07 1994-09-28 東レ株式会社 Epoxy resin composition for semiconductor encapsulation
JPH0730236B2 (en) * 1989-02-20 1995-04-05 東レ株式会社 Epoxy resin composition for semiconductor encapsulation
JPH02258829A (en) * 1989-03-30 1990-10-19 Toray Ind Inc Epoxy resin composition
JP2732122B2 (en) * 1989-06-13 1998-03-25 油化シエルエポキシ株式会社 Epoxy resin and epoxy resin composition for encapsulation
JPH0314818A (en) * 1989-06-13 1991-01-23 Yuka Shell Epoxy Kk Epoxy resin composition for sealing semiconductor
DE69029102T2 (en) * 1989-06-13 1997-03-20 Shell Int Research Encapsulating epoxy resin composition
JPH0794531B2 (en) * 1992-04-27 1995-10-11 東レ株式会社 Resin composition for semiconductor encapsulation
US5834570A (en) * 1993-06-08 1998-11-10 Nippon Steel Chemical Co., Ltd. Epoxy resin composition
EP0705856A2 (en) 1994-10-07 1996-04-10 Shell Internationale Researchmaatschappij B.V. Epoxy resin composition for semiconductor encapsulation
JPH08239557A (en) * 1996-02-15 1996-09-17 Nitto Denko Corp Device for sealing semiconductor
JP2922151B2 (en) * 1996-02-15 1999-07-19 日東電工株式会社 Semiconductor sealing device
US6156865A (en) * 1998-11-19 2000-12-05 Nec Corporation Flame retardant thermosetting resin composition
JP2002128861A (en) 2000-10-23 2002-05-09 Japan Epoxy Resin Kk Epoxy resin composition and method for producing the same
SG110189A1 (en) * 2003-09-26 2005-04-28 Japan Epoxy Resins Co Ltd Epoxy compound, preparation method thereof, and use thereof
JP4716082B2 (en) * 2004-04-22 2011-07-06 Dic株式会社 Epoxy resin composition and cured product thereof
JP2017048388A (en) * 2015-09-03 2017-03-09 三菱化学株式会社 Epoxy resin, epoxy resin composition, cured product, and electric/electronic component
CN107922588B (en) * 2015-09-03 2023-03-28 三菱化学株式会社 Epoxy resin, epoxy resin composition, cured product, and electric/electronic component

Also Published As

Publication number Publication date
JPS6147725A (en) 1986-03-08

Similar Documents

Publication Publication Date Title
JPH047365B2 (en)
JPH04217675A (en) Epoxy resin and its intermediate, production thereof and epoxy resin composition
JPS6198726A (en) Epoxy resin composition for sealing electronic parts
JPH02189326A (en) Epoxy resin composition for sealing electronic component
US5149730A (en) Epoxy resin composition
JPS6341527A (en) Epoxy resin composition for sealing semiconductor
JP2690825B2 (en) Low softening point naphthol aralkyl resin and epoxy resin composition using the resin
US5141974A (en) Epoxy resin composition
JP2747930B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2511316B2 (en) Epoxy resin composition for semiconductor encapsulation
JP3770343B2 (en) Epoxy resin composition and semiconductor sealing material
JPH10324733A (en) Epoxy resin composition, production of epoxy resin and semiconductor-sealing material
JPH0570552A (en) Epoxy resin composition
EP0403022A2 (en) Encapsulating epoxy resin composition
JP3704081B2 (en) Epoxy resin, its production method and its use
JPH0593038A (en) Epoxy resin composition
JPH05186546A (en) Polyhydroxynaphthalene compound and epoxy resin composition
JPH0570553A (en) Epoxy resin composition
JP3214745B2 (en) Epoxy resin composition
JPH07216052A (en) Epoxy resin and epoxy resin composition
JP3141960B2 (en) New epoxy resin, resin composition and cured product
JP2001131389A (en) Epoxy resin composition
JPH0426642A (en) Polyhydric phenol-based compound and curing agent of epoxy resin
JPH05186547A (en) Polyhydroxyaromatic compound, epoxy resin containing same, and epoxy resin composition
JPH0570549A (en) Epoxy resin composition

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term