JP2008080525A - サーマルヘッド及びその製造方法 - Google Patents

サーマルヘッド及びその製造方法 Download PDF

Info

Publication number
JP2008080525A
JP2008080525A JP2006260050A JP2006260050A JP2008080525A JP 2008080525 A JP2008080525 A JP 2008080525A JP 2006260050 A JP2006260050 A JP 2006260050A JP 2006260050 A JP2006260050 A JP 2006260050A JP 2008080525 A JP2008080525 A JP 2008080525A
Authority
JP
Japan
Prior art keywords
layer
heating resistor
thermal head
heating
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006260050A
Other languages
English (en)
Inventor
Toshiyuki Kawamura
俊行 川村
Eiji Oshima
英司 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006260050A priority Critical patent/JP2008080525A/ja
Publication of JP2008080525A publication Critical patent/JP2008080525A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electronic Switches (AREA)

Abstract

【課題】ヘッドサイズの大型化を防ぎながら、個々の発熱抵抗体の特性バラツキを少なくできるサーマルヘッド及びその製造方法を提供する。
【解決手段】本発明に係るサーマルヘッド20Aは、絶縁性の基板21と、基板21の上に直線的に複数配置された発熱抵抗体23と、発熱抵抗体23にそれぞれ接続された共通電極25及び個別電極24とを備え、発熱抵抗体23は、層間絶縁膜27を介して積層された複数の発熱抵抗層23a,23bからなる。これにより、基板上における発熱抵抗体の形成面積を大きくすることなく、抵抗層の通電距離を長くとることが可能となり、ヘッドサイズを大きくすることなく発熱抵抗体23の発熱量を増加させることができる。また、比抵抗の比較的低い抵抗材料を用いて発熱抵抗体23を作製することが可能となり、個々の発熱抵抗体23の製造バラツキが発熱特性に与える影響を少なくすることができる。
【選択図】図2

Description

本発明は、サーマルプリンタ等に利用されるサーマルヘッド及びその製造方法に関する。
一般に、感熱プリンタ、熱転写プリンタ等のサーマルプリンタに搭載されるサーマルヘッドは、例えば、複数の発熱抵抗体を絶縁性基板上に直線的に整列配置し、印字又は印画情報に従って各発熱抵抗体を選択的に通電加熱させて、感熱プリンタにおいては感熱記録紙に発色記録させ、熱転写プリンタにおいてはインクリボンのインクを溶融して普通紙に転写記録させる。
図11から図13は従来のサーマルヘッドの構成の一例を示すものであり、図11はヘッドチップ全体の平面図、図12は図11のA部の拡大図、図13は図12における[13]−[13]線方向断面図である。
アルミナ等の絶縁性基板11の上面には、蓄熱層として機能するガラス材からなるグレーズ層12が、断面円弧状となるように部分的に積層されている。このグレーズ層12の上面には、Ta−SiO2などからなる複数の発熱抵抗体13が直線状に整列するようにして形成されている。発熱抵抗体13は、蒸着又はスパッタリング等により基板11上に全体的に形成された後、フォトリソグラフィ技術を用いて所定形状にパターン加工される。そして、各発熱抵抗体13の両側の上面には、各発熱抵抗体13に対して通電するための個別電極14及び共通電極15がそれぞれ形成されている。
個別電極14及び共通電極15は、それぞれ、蒸着又はスパッタリング等により基板11上に全体的に形成された後、フォトリソグラフィ技術を用いて所定形状にパターン加工される。そして、各発熱抵抗体13は、個別電極14及び共通電極15間に露出するようにして各個独立に形成され、各電極14,15間に電圧を印加することにより発熱されるようになっている。
また、絶縁性基板11、グレーズ層12、発熱抵抗体13、個別電極14及び共通電極15の上面には、絶縁性の保護層16が積層されている。この保護層16は、発熱抵抗体13の酸化防止と、インクリボンとの接触による摩耗から発熱抵抗体13及び電極14,15を保護する目的で形成される。
一方、この種のサーマルヘッドの電極構造として、発熱抵抗体に対する共通電極の接続形態によって2つのタイプが知られている。一つは、共通電極がすべての発熱抵抗体に対して共通に接続されるコモン電極構造であり(例えば特許文献1参照)、他の一つは、隣接する2つの発熱抵抗体を一単位として共通に接続された複数の電極層で上記共通電極が構成される折り返し電極構造である(例えば特許文献2参照)。なお、「コモン電極構造」及び「折り返し電極構造」は必ずしも一般的な用語ではなく、本明細書において便宜上定めた用語である。
図14及び図15は、上記コモン電極構造タイプの第1の従来例によるサーマルヘッド10Aの概略構成を示している。図14は当該サーマルヘッド10Aの平面図、図15は図14における[15]−[15]線方向断面図である。図において、1は絶縁性の基板、3は発熱抵抗体、4は個別電極、5は共通電極、6は保護層である。
図14に示すように、各発熱抵抗体3の一端側(図において上端側)は、個々の発熱抵抗体3にそれぞれ形成された配線層7を介して共通電極5に接続されている。共通電極5は、各発熱抵抗体3の一端側からその他端側へ基板1の側周部に沿って引き出されている。個別電極4及び共通電極5のそれぞれには、保護層6で覆われていない領域において、半導体チップや制御基板などの外部回路に接続される端子形成部4a,5aが設けられている。この第1の従来例に係るコモン電極構造のサーマルヘッド10Aは、個々の発熱抵抗体3で1つの画素を形成している。
一方、図16及び図17は、上記折り返し電極構造タイプの第2の従来例によるサーマルヘッド10Bの概略構成を示している。図16は当該サーマルヘッド10Bの平面図、図17は図16における[17]−[17]線方向断面図である。
この第2の従来例に係る折り返し電極構造のサーマルヘッド10Bは、図16に示すように、隣接する2つの発熱抵抗体3a,3bを組として1つの画素を形成している。一方の発熱抵抗体3aは個別電極4に接続され、他方の発熱抵抗体3bは共通電極5に接続されている。各発熱抵抗体3a,3bの一端側(図において上端側)は配線層8を介して相互に接続されており、個別電極4及び共通電極5は各発熱抵抗体3a,3bの他端側に配置されている。各組の発熱抵抗体3a,3bは、これらの配置位置が交互に入れ替えられており、共通電極5は、隣接する2つの組の発熱抵抗体3b,3bに対して共通に接続されている。
なお、この第2の従来例のサーマルヘッド10Bを構成する個々の発熱抵抗体3a,3bの形成面積は、第1の従来例のサーマルヘッド10Aを構成する個々の発熱抵抗体3の形成面積よりも小さく構成されており、例えば、一組の発熱抵抗体3a,3bの総面積が、1つの発熱抵抗体3の形成面積とほぼ等しくなるように設定されている。
特開昭61−54955号公報 特開平2−50848号公報
さて、この種のサーマルヘッドにおいては、印画特性や印画速度の向上が要求されている。印画特性や印画速度を向上させるためには、発熱抵抗体の投入エネルギーを大きくして、限られた領域に形成された発熱抵抗体を所定の加熱温度に迅速に昇温させる必要がある。そこで、発熱抵抗体として比抵抗の比較的高い材料を用いることで、発熱量の増大を図る方法がある。具体的に、例えばTa−SiO2などで構成される発熱抵抗体において、非金属成分(SiO2)の混合比率を高めて抵抗材料の高比抵抗化を図ることが考えられる。
しかしながら、比抵抗の大きな材料を用いてサーマルヘッドを製造することは、個々の発熱抵抗体の製造上のバラツキが発熱特性に強く影響して、発熱抵抗体の作製制御が困難になるという問題がある。すなわち、個々の発熱抵抗体は、基板上に形成した発熱抵抗体層をパターンエッチングして形成されるため、成膜、現像、エッチングの各工程における膜厚分布、加工精度バラツキ等を原因として個々の素子特性に一定のバラツキが発生する。このバラツキは、比抵抗の大きな材料を用いた場合に素子間の発熱量の違いとなって顕著に現れ、サーマルヘッドの安定製造を困難にする。
以上のことから、サーマルヘッドの安定した製造を確保するためには、発熱抵抗体を構成する抵抗材料として比抵抗が比較的低い材料を用いるのが好適である。しかし、比抵抗の低い材料を用いて発熱抵抗体を構成する場合、発熱量を高めるためには抵抗層の素子長すなわち通電距離を大きくする、または抵抗層の膜厚を薄くする必要がある。素子長を長くする場合、上述した従来の素子構造では、発熱抵抗体の形成面積が大きくなってしまい、ヘッドサイズが大型化するという問題がある。一方、抵抗層の膜厚を薄くする場合、耐久性能が低下する問題がある。
本発明は上述の問題に鑑みてなされ、ヘッドサイズの大型化を防ぎながら、個々の発熱抵抗体の特性バラツキを少なくできるサーマルヘッド及びその製造方法を提供することを課題とする。
以上の課題を解決するに当たり、本発明のサーマルヘッドは、絶縁性の基板と、上記基板の上に直線的に複数配置された発熱抵抗体と、上記発熱抵抗体にそれぞれ接続された共通電極及び個別電極とを備えたサーマルヘッドであって、上記発熱抵抗体は、層間絶縁膜を介して積層された複数の発熱抵抗層からなることを特徴とする。
また、本発明のサーマルヘッドの製造方法は、絶縁性の基板上に第1の発熱抵抗層を形成する工程と、上記第1の発熱抵抗層の上に層間絶縁膜を形成する工程と、上記層間絶縁膜の上に、上記第1の発熱抵抗層と電気的に接続された第2の発熱抵抗層を形成する工程と、上記第1の発熱抵抗層に第1の電極層を形成する工程と、上記第2の発熱抵抗層に第2の電極層を形成する工程とを有する。
本発明では、発熱抵抗体を複数の発熱抵抗層の積層構造としたので、基板上における発熱抵抗体の形成面積を大きくすることなく、抵抗層の通電距離を長くとることが可能となる。これにより、ヘッドサイズを大きくすることなく、発熱抵抗体の発熱量を増加させることができ、印画速度や印画特性の向上を図ることができる。
また、比抵抗の比較的低い抵抗材料を用いて発熱抵抗体を作製することが可能となるので、個々の発熱抵抗体の製造バラツキが発熱特性に与える影響を少なくすることができる。すなわち、一様な発熱特性を有する複数の発熱抵抗体を安定して作製することが可能となる。
発熱抵抗体を構成する上記第1,第2の発熱抵抗層は、共通電極と個別電極との間において互いに直列的に接続されることで、抵抗層の通電距離を確保でき、高発熱量の発熱抵抗層を容易に形成することができる。なお、発熱抵抗体を構成する抵抗層は、上記第1,第2の2つの抵抗層に限られず、更に積層数を増加して通電距離を延長させてもよい。
また、本発明に係るサーマルヘッドは、各々の発熱抵抗体に対して共通電極が共通に接続された上記コモン電極構造のサーマルヘッド、あるいは、隣接する2つの発熱抵抗体に対して共通に接続された複数の電極層で共通電極が構成された上記折り返し電極構造のサーマルヘッドに対して、それぞれ適用可能である。
以上述べたように、本発明によれば、ヘッドサイズを大きくすることなく、所要の発熱特性を具備する発熱抵抗体を安定して作製することが可能となる。
以下、本発明の各実施の形態について図面を参照して説明する。
(第1の実施形態)
図1及び図2は、本発明の第1の実施形態によるサーマルヘッド20Aの概略構成を示しており、図1はサーマルヘッド20Aの平面図、図2は図1の[2]−[2]線方向断面図である。
本実施形態のサーマルヘッド20Aは、絶縁性の基板21と、この基板21の上に直線的に複数配置された発熱抵抗体23と、これら各発熱抵抗体23に対してそれぞれ個別に接続された個別電極24と、これら各発熱抵抗体23に対してそれぞれ共通に接続された共通電極25と、基板21上の上記各種機能膜を被覆する保護層26とを備えている。
基板21は、ガラス基板等の蓄熱性の高い絶縁性基板で構成されている。また、基板21は図示するように平板状の基板に限られず、断面円弧形状のグレーズ層を表面に有する基板も適用可能であり、後述するように、このグレーズ層の上に発熱抵抗体23や電極24,25が形成されるように構成してもよい(図9A,B)。
発熱抵抗体23は、図2に示すように、層間絶縁膜27を介して積層された複数の発熱抵抗層23a,23bで構成されている。本実施形態では、下層側の第1の発熱抵抗層23aと上層側の第2の発熱抵抗層23bの2層構造で、発熱抵抗体23が構成されている。
第1,第2の発熱抵抗層23a,23bは、Ta−SiO2やTa−N等の耐熱性のある抵抗材料であって、その比抵抗が比較的低く構成されたものが用いられている。本実施形態では、これら発熱抵抗層23a,23bを同種の抵抗材料(例えばTa−SiO2)で構成しているが、互いに異種の抵抗材料で構成されていても構わない。
第1の発熱抵抗層23aは、基板21の上に形成されたTa−SiO2膜を長方形状にパターン形成してなり、その長手方向と直交する方向に直線的に微細間隔で複数個配列されている。なお、第1の発熱抵抗層23aの平面視形状は図示する長方形状に限られない。
第2の発熱抵抗層23bは、第1の発熱抵抗層23aの上に層間絶縁膜27を介して形成されている。層間絶縁膜27は、耐熱性及び熱伝導性に優れた電気絶縁膜であれば特に制限されず、例えばAl23膜、SiO2膜などが用いられる。第2の発熱抵抗層23bは、その一端側(図2において左端側)の接合部29を介して、下層側の第1の発熱抵抗層23aと接続されている。
第2の発熱抵抗層23bは、層間絶縁膜27の上に形成されたTa−SiO2膜を長方形状にパターン形成してなり、その長手方向と直交する方向に直線的に複数個配列されている。この第2の発熱抵抗層23bの配列間隔は、第1の発熱抵抗層23aの配列間隔に対応している。本実施形態において、第2の発熱抵抗層23bは、第1の発熱抵抗層23aの直上位置において、第1の発熱抵抗層23aと同一形成幅で、かつ第1の発熱抵抗層23aよりも短い形成長で形成されている。
次に、発熱抵抗体23を通電加熱するための電極構造について説明する。本実施形態では、下層側の第1の発熱抵抗層23aに共通電極25が接続され、上層側の第2の発熱抵抗層23bに個別電極24が接続されている。特に、本実施形態のサーマルヘッド20Aにおいては、コモン電極構造で上記各電極24,25が構成されている。
共通電極25は、金や銅などの金属材料からなり、各発熱抵抗体23の第1の発熱抵抗層23aの他端側(図2において右端側)に、配線層28を介して共通に接続されている。配線層28は、各発熱抵抗体23に対して個別に形成されたアルミニウム等の金属膜で構成されている。
一方、個別電極24は、個々の第2の発熱抵抗層23bの他端側(図2において右端側)にそれぞれ独立して設けられている。この個別電極24は、第2の発熱抵抗層23bよりも上記他端側に延出形成された層間絶縁膜27の上に形成されている。個別電極24は、アルミニウム等の金属膜で構成されている。
また、各個別電極24は、共通電極25と同様に、各発熱抵抗体23の他端側に配列されている。これにより、基板21上における電極24,25の形成面積を少なくすることができるので、基板21の小型化を図ることが可能となる。
保護層26は、個別電極24及び共通電極25の各々の端子形成部24a,25aを除いて、発熱抵抗体23、個別電極24及び共通電極25を被覆している。特に、保護層26は、発熱抵抗体を構成する発熱抵抗層23a,23bの酸化防止と、インクリボン等との接触による摩耗から発熱抵抗体23及び電極層24,25を保護する目的で形成される。
なお、個別電極24の端子形成部24a及び共通電極25の端子形成部25aにはそれぞれ図示しないフレキシブル配線基板やボンディングワイヤを介して外部のIC回路素子や制御回路基板に接続されている。なお、上記IC回路素子は、コンピュータ端末等の外部装置から発信される印画情報に基づいて個々の個別電極24に電流を供給し、各発熱抵抗体23毎に通電加熱制御を行う。
以上のように構成される本実施形態のサーマルヘッド20Aにおいては、個別電極24と共通電極25との間で第1,第2の発熱抵抗層23a,23bが接合部29を介して互いに直列的に接続されている。図3A,Bは、発熱抵抗体23の電極構造を模式的に示す平面図であり、Aは上層側、Bは下層側を示している。上層側の第2の発熱抵抗層23bには個別電極24が個々に接続され、下層側の第1の発熱抵抗層23aには共通電極25が共通に接続されている。また、第1,第2の発熱抵抗層23a,23bはそれぞれ接合部29a,29bを介して互いに接合されている。なお、簡略化のため、配線層28を共通電極25の一部とみなし、図3Bにおける配線層28の図示は省略している。
第1,第2の発熱抵抗層23a,23bからなる発熱抵抗体23の各々は、それぞれで1つの画素単位を構成し、個別に通電加熱されることで、発熱抵抗体23の配列方向と直交する方向に走行する紙などの印画(印字)媒体に対して絵柄や文字などを印刷する。特に、感熱プリンタ用のサーマルヘッドにおいては感熱記録紙に発色記録させ、熱転写プリンタにおいてはインクリボンを昇華させて普通紙等に転写記録させる。
本実施形態のサーマルヘッド20Aによれば、各々の発熱抵抗体23を第1の発熱抵抗層23aと第2の発熱抵抗層23bとの積層構造とし、その素子長を層厚方向に折り返すように形成したので、基板21上における形成面積を大きくすることなく抵抗層の通電距離を長くとることができる。これにより、上述した第1の従来例に係るサーマルヘッド10A(図14、15)と比較して、発熱抵抗体の形成領域を例えば2倍にすることができる。その結果、ヘッドサイズを大きくすることなく、発熱抵抗体23の発熱量を増加させることができ、印画速度や印画特性の向上を図ることができるようになる。
また、上述の例において、第1の従来例に係るサーマルヘッド10Aと同等の発熱量を得るに際し、本実施形態によれば発熱抵抗層の比抵抗を従来の例えば2分の1に低減することができる。比抵抗の比較的低い抵抗材料を用いて発熱抵抗体(第1,第2の発熱抵抗層23a,23b)を作製することにより、個々の発熱抵抗体の製造バラツキが発熱特性に与える影響を少なくすることができる。すなわち、一様な発熱特性を有する複数の発熱抵抗体を安定して作製することが可能となり、発熱量の調整も容易に行えるようになる。
なお、抵抗材料の比抵抗の調整は、例えば、Ta−SiO2で抵抗材料が構成される場合、非金属成分であるSiO2の混合比率を調整することで、容易に行うことができる。すなわち、非金属成分を多くすることで比抵抗を高くすることができ、非金属成分を少なくすることで比抵抗を低くすることができる。
次に、以上のように構成される本実施形態のサーマルヘッド20Aの一製造方法について図4を参照して説明する。図4は、本実施形態のサーマルヘッド20Aの製造方法を説明するための要部の工程断面図である。
まず、図4Aに示すように、基板21の上に第1の発熱抵抗層23aを形成する工程が行われる。第1の発熱抵抗層23aは、基板21の表面全域に抵抗材料を成膜した後、フォトリソグラフィ技術を用いたパターンエッチングによって所定形状に形成される。あるいは、基板21上に予め形成したレジストパターンの上から抵抗材料を成膜した後、レジストパターンと同時に余分な成膜材料を除去するリフトオフ法を採用してもよい。
次に、図4Bに示すように、第1の発熱抵抗層23aの上に層間絶縁膜27を形成する工程が行われる。層間絶縁膜27は、例えば、第1の発熱抵抗層23aを含む基板21の表面全域に絶縁材料を成膜した後、フォトリソグラフィ技術を用いたパターンエッチングによって所定形状に形成される。あるいは、基板21上に予め形成したレジストパターンの上から絶縁材料を成膜した後、レジストパターンと同時に余分な絶縁材料を除去するリフトオフ法を採用してもよい。
続いて、図4Cに示すように、層間絶縁膜27の上に第2の発熱抵抗体層23bを形成する工程が行われる。この第2の発熱抵抗体層23bは、第1の発熱抵抗体層23aの形成方法と同様な方法を用いて形成することができる。このとき、第1,第2の発熱抵抗体層23a,23bは、接合部29において互いに接合される。
次に、図4Dに示すように、第2の発熱抵抗層23bと接続される個別電極24と、第1の発熱抵抗層23aと接続される配線層28を形成する工程が行われる。本実施形態では、これら個別電極24と配線層28とは同種金属で構成されることから、例えばアルミニウム膜を基板21上に全面成膜した後、フォトリソグラフィ技術を用いたパターンエッチングにより、図示するような加工形状に形成される。
続いて、図5Eに示すように、配線層28と接続される共通電極25を形成する工程が行われる。共通電極25は、上述した個別電極24の形成方法と同様な方法で形成することができる。これにより、配線層28を介して共通電極25が第1の発熱抵抗層23aに電気的に接続される。
そして、図5Fに示すように、基板21上に保護層26を形成する工程が行われる。形成された保護層26には、その後、個別電極24及び共通電極25のそれぞれの端子形成部に対応する領域を開口するエッチング工程が行われる。
以上のようにして、第1,第2の発熱抵抗体23a,23bの積層構造からなる発熱抵抗体23を備えた本実施形態のサーマルヘッド20Aが作製される。本実施形態によれば、発熱抵抗体23を複数の層に亘って形成するようにしたので、発熱抵抗体23の素子長(通電距離)を従来よりも長くすることができ、これにより、発熱量の調整を任意に設定することが可能となる。また、素子長を大きく構成できる分、比抵抗の低い抵抗材料を用いることが可能となり、これにより、発熱特性のバラツキの少ない発熱抵抗体を安定して作製することが可能となる。
(第2の実施形態)
図5及び図6は、本発明の第2の実施形態によるサーマルヘッド20Bの概略構成を示しており、図5はサーマルヘッド20Bの平面図、図6は図5の[6]−[6]線方向断面図である。なお、図において上述の第1の実施形態と対応する部分については同一の符号を付し、その詳細な説明は省略するものとする。
本実施形態のサーマルヘッド20Bは、絶縁性の基板21と、この基板21の上に直線的に複数配置された発熱抵抗体23と、これら各発熱抵抗体23に対してそれぞれ個別に接続された個別電極24と、隣接する2つの発熱抵抗体23に対して共通に接続された複数の電極層からなる共通電極25と、基板21上の上記各種機能膜を被覆する保護層26とを備えている。
本実施形態において、発熱抵抗体23は、上述の第1の実施形態と同様に、層間絶縁膜27を介して積層された第1,第2の発熱抵抗層23a,23bの積層構造からなる。各発熱抵抗体23を通電するための電極構造は、下層側の第1の発熱抵抗層23aに共通電極25が接続され、上層側の第2の発熱抵抗層23bに個別電極24が接続されている。第1,第2の発熱抵抗層23a,23bは、接合部29を介して個別電極24と共通電極25との間に直列的に接続されている。
本実施形態のサーマルヘッド20Bにおいては、折り返し電極構造で上記各電極24,25が構成されている。図7A,Bは、本実施形態における発熱抵抗体23の電極構造を模式的に示す平面図であり、Aは上層側、Bは下層側を示している。上層側の第2の発熱抵抗層23bには個別電極24が個々に接続され、下層側の第1の発熱抵抗層23aには複数の共通電極25が、隣接する2つの発熱抵抗層23aを一単位としてそれぞれ共通に接続されている。また、第1,第2の発熱抵抗層23a,23bはそれぞれ接合部29a,29bを介して互いに接合されている。以上の構成の発熱抵抗体23の各々は、それぞれで1つの画素単位を構成している。
本実施形態のサーマルヘッド20Bによれば、各々の発熱抵抗体23を第1の発熱抵抗層23aと第2の発熱抵抗層23bとの積層構造とし、その素子長を層厚方向に折り返すように形成したので、基板21上における形成面積を大きくすることなく抵抗層の通電距離を長くとることができる。これにより、上述した第2の従来例に係るサーマルヘッド10B(図16、17)と比較して、発熱抵抗体の形成領域を例えば2倍にすることができる。その結果、ヘッドサイズを大きくすることなく、発熱抵抗体23の発熱量を増加させることができ、印画速度や印画特性の向上を図ることができるようになる。
また、本実施形態のサーマルヘッド20Bによれば、各発熱抵抗体23を層厚方向に折り返して1画素分の画素領域を形成しているので、上述した第2の従来例の構造と比較して、同一基板サイズで発熱抵抗体の配置数すなわち画素数を倍増させることができ、これにより印刷画像の高精細化を図ることが可能となる。また、発熱抵抗層23a,23bの形成長を長くすることにより、発熱抵抗層23a,23bの構成材料の低比抵抗化を図ることができる。また、画素数を同一としたときには基板サイズをはるかに縮小することができ、これによりヘッドサイズの小型化を図ることが可能となる。
さらに、上述の例において、第2の従来例に係るサーマルヘッド10Bと同等の画素サイズで同等の発熱量を得るに際し、本実施形態によれば発熱抵抗層の比抵抗を従来の例えば4分の1に低減することができる。比抵抗の比較的低い抵抗材料を用いて発熱抵抗体(第1,第2の発熱抵抗層23a,23b)を作製することにより、個々の発熱抵抗体の製造バラツキが発熱特性に与える影響を少なくすることができる。すなわち、一様な発熱特性を有する複数の発熱抵抗体を安定して作製することが可能となり、発熱量の調整も容易に行えるようになる。
次に、以上のように構成される本実施形態のサーマルヘッド20Bの一製造方法について図8を参照して説明する。図8は、本実施形態のサーマルヘッド20Bの製造方法を説明するための要部の工程断面図である。
まず、図8Aに示すように、基板21の上に第1の発熱抵抗層23aを形成する工程が行われる。第1の発熱抵抗層23aは、基板21の表面全域に抵抗材料を成膜した後、フォトリソグラフィ技術を用いたパターンエッチングによって所定形状に形成される。あるいは、基板21上に予め形成したレジストパターンの上から抵抗材料を成膜した後、レジストパターンと同時に余分な成膜材料を除去するリフトオフ法を採用してもよい。
次に、図8Bに示すように、第1の発熱抵抗層23aの上に層間絶縁膜27を形成する工程が行われる。層間絶縁膜27は、例えば、第1の発熱抵抗層23aを含む基板21の表面全域に絶縁材料を成膜した後、フォトリソグラフィ技術を用いたパターンエッチングによって所定形状に形成される。あるいは、基板21上に予め形成したレジストパターンの上から絶縁材料を成膜した後、レジストパターンと同時に余分な絶縁材料を除去するリフトオフ法を採用してもよい。
続いて、図8Cに示すように、層間絶縁膜27の上に第2の発熱抵抗体層23bを形成する工程が行われる。この第2の発熱抵抗体層23bは、第1の発熱抵抗体層23aの形成方法と同様な方法を用いて形成することができる。このとき、第1,第2の発熱抵抗体層23a,23bは、接合部29において互いに接合される。
次に、図8Dに示すように、第2の発熱抵抗層23bと接続される個別電極24と、第1の発熱抵抗層23aと接続される共通電極25を形成する工程が行われる。個別電極24と共通電極25は、同一材料を用いて同時に形成されてもよいし、異種材料を用いて別々の工程で形成されてもよい。また、形成順も特に限定されない。
最後に、図8Eに示すように、基板21上に保護層26を形成する工程が行われる。形成された保護層26には、その後、個別電極24及び共通電極25のそれぞれの端子形成部に対応する領域を開口するエッチング工程が行われる。
以上のようにして、第1,第2の発熱抵抗体23a,23bの積層構造からなる発熱抵抗体23を備えた本実施形態のサーマルヘッド20Bが作製される。本実施形態によれば、発熱抵抗体23を複数の層に亘って形成するようにしたので、発熱抵抗体23の素子長(通電距離)を従来よりも長くすることができ、これにより、発熱量の調整を任意に設定することが可能となる。また、素子長を大きく構成できる分、比抵抗の低い抵抗材料を用いることが可能となり、これにより、発熱特性のバラツキの少ない発熱抵抗体を安定して作製することが可能となる。
以上、本発明の各実施形態について説明したが、勿論、本発明はこれらに限定されることはなく、本発明の技術的思想に基づいて種々の変形が可能である。
例えば以上の各実施形態では、平板状の基板21の上に発熱抵抗体23、電極24,25および保護層26を形成してサーマルヘッドを構成するようにしたが、発熱抵抗体23の下地構造は上記の例に限定されない。
例えば、図9Aは、基板21の表面に断面円弧状の突部22を蓄熱層として形成し、この突部12の上部に発熱抵抗体23を形成したサーマルヘッドに対して本発明を適用した例を示している。基板21は接着材料層32を介して放熱体33に接着されている。なお、本例において、発熱抵抗体23を構成する第1,第2の発熱抵抗層23a,23bは、層間絶縁膜27に設けた層間接続部29が接合部として構成された例を示している。
また、図9Bは、突部12の内部に空隙部31を砥石加工等により形成し、この空隙部31と突部12表面との間の薄肉部を蓄熱層30として有するサーマルヘッドに本発明を適用した例を示している。突部12へ空隙部31を形成した図示するエアギャップ構造のサーマルヘッドにおいては、空隙部31内の空気層がガラス層よりも熱伝達特性が低いことから、発熱抵抗体23直下の蓄熱性を高めてエネルギー効率の向上を図ることができる。また、このサーマルヘッドにおいては、蓄熱層30が薄肉状に形成されているため、通電解除時における発熱抵抗体23の放熱性が高められ、これにより印刷速度の向上を図ることが可能となる。
更に、以上の実施形態では、発熱抵抗体23を構成する第1,第2の発熱抵抗層23a,23bにおいて、上層側の発熱抵抗体23bを下層側の発熱抵抗体23aの形成領域上に形成したが、これに代えて、図10に示すように、上層側の発熱抵抗層23bを、直下の発熱抵抗層23aに対してオフセットした位置に形成してもよい。この場合、個々の発熱抵抗体23の発熱領域を見かけ上、拡大することができる。
本発明の第1の実施形態によるサーマルヘッドの概略構成を示す平面図である。 図1における[2]−[2]線方向断面図である。 図1のサーマルヘッドにおける発熱抵抗体の電極構造を説明するための上層側及び下層側の要部平面図である。 図1のサーマルヘッドの一製造方法を説明するための工程断面図である。 本発明の第2の実施形態によるサーマルヘッドの概略構成を示す平面図である。 図5における[6]−[6]線方向断面図である。 図5のサーマルヘッドにおける発熱抵抗体の電極構造を説明するための上層側及び下層側の要部平面図である。 図5のサーマルヘッドの一製造方法を説明するための工程断面図である。 本発明に係るサーマルヘッドの構成の変形例を説明するための要部断面図である。 本発明に係るサーマルヘッドの構成の他の変形例を説明するための要部平面図である。 従来のサーマルヘッドの構成の一例を示す概略平面図である。 図11におけるA部の拡大図である。 図12における[13]−[13]線方向断面図である。 第1の従来例によるサーマルヘッドの概略構成を示す平面図である。 図14における[15]−[15]線方向断面図である。 第2の従来例によるサーマルヘッドの概略構成を示す平面図である。 図16における[17]−[17]線方向断面図である。
符号の説明
20A,20B…サーマルヘッド、21…基板、22…突部(蓄熱層)、23…発熱抵抗体、23a…第1の発熱抵抗層、23b…第2の発熱抵抗層、24…個別電極、25…共通電極、26…保護層、27…層間絶縁膜、28…配線層、29,29a,29b…接合部、30…蓄熱層、31空隙部、32…接着材料層、33…放熱体

Claims (8)

  1. 絶縁性の基板と、
    前記基板の上に直線的に複数配置された発熱抵抗体と、
    前記発熱抵抗体にそれぞれ接続された共通電極及び個別電極とを備えたサーマルヘッドであって、
    前記発熱抵抗体は、層間絶縁膜を介して積層された複数の発熱抵抗層からなる
    ことを特徴とするサーマルヘッド。
  2. 各層の前記発熱抵抗層は、前記共通電極と前記個別電極との間において互いに直列的に接続されている
    ことを特徴とする請求項1に記載のサーマルヘッド。
  3. 前記共通電極及び前記個別電極は、それぞれ異なる層の前記発熱抵抗層に接続されている
    ことを特徴とする請求項1に記載のサーマルヘッド。
  4. 前記共通電極は、前記複数の発熱抵抗体に対して共通に接続されている
    ことを特徴とする請求項1に記載のサーマルヘッド。
  5. 前記共通電極は、隣接する2つの前記発熱抵抗体に対して共通に接続された複数の電極層からなる
    ことを特徴とする請求項1に記載のサーマルヘッド。
  6. 前記絶縁性基材と前記発熱抵抗体との間には、断面円弧状の蓄熱層が設けられている
    ことを特徴とする請求項1に記載のサーマルヘッド。
  7. 前記蓄熱層の内部には、空隙部が形成されている
    ことを特徴とする請求項6に記載のサーマルヘッド。
  8. 絶縁性の基板上に第1の発熱抵抗層を形成する工程と、
    前記第1の発熱抵抗層の上に層間絶縁膜を形成する工程と、
    前記層間絶縁膜の上に、前記第1の発熱抵抗層と電気的に接続された第2の発熱抵抗層を形成する工程と、
    前記第1の発熱抵抗層に第1の電極層を形成する工程と、
    前記第2の発熱抵抗層に第2の電極層を形成する工程とを有する
    ことを特徴とするサーマルヘッドの製造方法。





JP2006260050A 2006-09-26 2006-09-26 サーマルヘッド及びその製造方法 Pending JP2008080525A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006260050A JP2008080525A (ja) 2006-09-26 2006-09-26 サーマルヘッド及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006260050A JP2008080525A (ja) 2006-09-26 2006-09-26 サーマルヘッド及びその製造方法

Publications (1)

Publication Number Publication Date
JP2008080525A true JP2008080525A (ja) 2008-04-10

Family

ID=39351881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006260050A Pending JP2008080525A (ja) 2006-09-26 2006-09-26 サーマルヘッド及びその製造方法

Country Status (1)

Country Link
JP (1) JP2008080525A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014069318A (ja) * 2012-09-27 2014-04-21 Toshiba Hokuto Electronics Corp サーマルプリントヘッドおよびその製造方法
JP2014188980A (ja) * 2013-03-28 2014-10-06 Toshiba Hokuto Electronics Corp サーマルプリントヘッド
JP2021053889A (ja) * 2019-09-30 2021-04-08 ローム株式会社 サーマルプリントヘッド及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014069318A (ja) * 2012-09-27 2014-04-21 Toshiba Hokuto Electronics Corp サーマルプリントヘッドおよびその製造方法
JP2014188980A (ja) * 2013-03-28 2014-10-06 Toshiba Hokuto Electronics Corp サーマルプリントヘッド
JP2021053889A (ja) * 2019-09-30 2021-04-08 ローム株式会社 サーマルプリントヘッド及びその製造方法
JP7360880B2 (ja) 2019-09-30 2023-10-13 ローム株式会社 サーマルプリントヘッド及びその製造方法

Similar Documents

Publication Publication Date Title
JP6371529B2 (ja) サーマルプリントヘッド、サーマルプリンタ
JP2008080525A (ja) サーマルヘッド及びその製造方法
JP5135585B2 (ja) サーマルヘッドの製造方法
JP4541229B2 (ja) サーマルヘッド及びその製造方法
JP2001232838A (ja) サーマルプリントヘッドおよびその製造方法
JP2006159866A (ja) サーマルプリントヘッド
JP5511510B2 (ja) サーマルヘッド
JP2002067367A (ja) サーマルヘッド及びその製造方法
JP6010413B2 (ja) サーマルプリントヘッドおよびその製造方法
JP3124870B2 (ja) サーマルヘッドおよびその製造方法
JP6341723B2 (ja) サーマルプリントヘッド及びサーマルプリンタ
JP4448433B2 (ja) サーマルヘッドの製造方法
JP3231951B2 (ja) サーマルヘッドおよびその製造方法
JP7219634B2 (ja) サーマルプリントヘッド
US6330014B1 (en) Thermal head manufactured by sequentially laminating conductive layer, layer insulating layer and heater element on heat insulating layer
JP2009131994A (ja) サーマルプリントヘッドおよびその製造方法
CN113386469B (zh) 热敏打印头及其制造方法
JP5425564B2 (ja) サーマルプリントヘッドおよびサーマルプリンタ
JP5840887B2 (ja) サーマルヘッドおよびこれを備えるサーマルプリンタ
JP2014188980A (ja) サーマルプリントヘッド
JP6422225B2 (ja) サーマルヘッド
JP3639115B2 (ja) ラインサーマルヘッド
JP6080452B2 (ja) サーマルプリントヘッドおよびサーマルプリンタ
JP2022012222A (ja) サーマルプリントヘッド
JP6117476B2 (ja) サーマルプリントヘッド