JP2008074941A - Resin composition for semiconductor sealing and semiconductor device - Google Patents

Resin composition for semiconductor sealing and semiconductor device Download PDF

Info

Publication number
JP2008074941A
JP2008074941A JP2006255178A JP2006255178A JP2008074941A JP 2008074941 A JP2008074941 A JP 2008074941A JP 2006255178 A JP2006255178 A JP 2006255178A JP 2006255178 A JP2006255178 A JP 2006255178A JP 2008074941 A JP2008074941 A JP 2008074941A
Authority
JP
Japan
Prior art keywords
resin composition
group
semiconductor
general formula
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006255178A
Other languages
Japanese (ja)
Other versions
JP5332094B2 (en
Inventor
Yoji Kuroda
洋史 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2006255178A priority Critical patent/JP5332094B2/en
Publication of JP2008074941A publication Critical patent/JP2008074941A/en
Application granted granted Critical
Publication of JP5332094B2 publication Critical patent/JP5332094B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4801Structure
    • H01L2224/48011Length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition for semiconductor sealing use having excellent soldering resistance and flame retardancy and exhibiting excellent high-temperature storage property or low warpage. <P>SOLUTION: The resin composition for semiconductor sealing use contains an epoxy resin expressed by general formula (1), a compound having ≥2 phenolic hydroxyl groups, an inorganic filler and a cure accelerator. In the formula, R1 is a hydrocarbon group; OG is a glycidyl ether group and n1 is an integer of 0-5. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体封止用樹脂組成物及び半導体装置に関するものである。   The present invention relates to a semiconductor sealing resin composition and a semiconductor device.

近年の電子機器の小型化、軽量化、高性能化の市場動向において、半導体素子(以下、「素子」、「チップ」ともいう。)の高集積化が年々進み、また半導体装置(以下、「パッケージ」ともいう。)の表面実装化が促進されるなかで、半導体封止用エポキシ樹脂組成物(以下、「封止材」又は「封止材料」ともいう。)への要求は益々厳しいものとなってきている。特に半導体装置の表面実装化が一般的になってきている現状では、吸湿した半導体装置が半田処理時に高温にさらされ、気化した水蒸気の爆発的応力により半導体装置にクラックが発生したり、或いは半導体素子やリードフレームと半導体封止用エポキシ樹脂組成物の硬化物との界面に剥離が発生したりすることにより、半導体装置の電気的信頼性を大きく損なう不良が生じ、これらの不良の防止、即ち耐半田性の向上が大きな課題となっている。さらに鉛の使用撤廃の機運から、従来よりも融点の高い無鉛半田の使用が高まってきている。この無鉛半田の適用により実装温度を従来に比べ約20℃高くする必要があり、実装後の半導体装置の信頼性が現状に比べ著しく低下する不具合が生じてきている。また、環境問題からBr化合物や酸化アンチモン等の難燃剤を使わずに耐燃性を付与する要求も増えてきている。耐半田性、耐燃性向上については、無機充填剤を高充填化することにより、前者は低吸水化、後者は燃えやすい樹脂分の低減ができ、両方の改良手法としては有効とされている。このような背景から、最近の半導体封止用エポキシ樹脂組成物の動向は、より低粘度の樹脂を適用し、より多くの無機充填剤を配合する傾向が強くなっている。   In recent years, electronic devices have become more and more compact in size, light weight, and high in performance, and semiconductor elements (hereinafter referred to as “elements” and “chips”) have been increasingly integrated, and semiconductor devices (hereinafter “ The demand for an epoxy resin composition for encapsulating a semiconductor (hereinafter also referred to as “encapsulant” or “encapsulant”) is becoming increasingly severe as surface mounting of a package is also promoted. It has become. In particular, surface mounting of semiconductor devices has become common, and moisture-absorbed semiconductor devices are exposed to high temperatures during soldering, and cracks are generated in the semiconductor devices due to the explosive stress of vaporized water vapor, or semiconductors The occurrence of delamination at the interface between the element or lead frame and the cured product of the epoxy resin composition for semiconductor encapsulation causes a defect that greatly impairs the electrical reliability of the semiconductor device. Improvement of solder resistance is a major issue. Furthermore, the use of lead-free solder, which has a higher melting point than before, has been increasing due to the abolition of the use of lead. By using this lead-free solder, it is necessary to increase the mounting temperature by about 20 ° C. compared to the conventional case, and there has been a problem that the reliability of the semiconductor device after mounting is significantly reduced compared to the current situation. Moreover, the request | requirement which provides flame resistance, without using flame retardants, such as a Br compound and antimony oxide, from the environmental problem is also increasing. For improving solder resistance and flame resistance, the former can reduce water absorption and the latter can reduce flammable resin by increasing the filling of the inorganic filler, which is effective as an improved technique for both. Against this background, the trend of recent epoxy resin compositions for semiconductor encapsulation is becoming more likely to apply a resin with a lower viscosity and to mix more inorganic fillers.

成形時に低粘度で高流動性を維持するためには、溶融粘度の低い樹脂を用いたり(例えば、特許文献1参照。)、また無機充填剤の配合量を高めるために無機充填剤をシランカップリング剤で表面処理したりする方法が知られている(例えば、特許文献2参照。)。しかし、これらの方法だけでは実装時の耐半田性、耐燃性の付与が両立できず、これらを両立するための手法が求められていた。
そこで本出願人は、耐半田性、耐燃性に優れたビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂、ビフェニレン骨格含有フェノールアラルキル型硬化剤を用いた半導体封止用エポキシ樹脂組成物を提案している(例えば、特許文献3参照)。この半導体封止用エポキシ樹脂組成物は分子骨格に芳香族環を多く含むことから燃焼時、成形物表層に炭化層を形成することにより、さらなる燃焼を抑え、優れた耐燃性を示す。また、芳香族環構造含有による疎水性の向上、架橋点間距離増大による高温下における低弾性率化が耐半田性向上に寄与している。
In order to maintain a low viscosity and a high fluidity at the time of molding, a resin having a low melt viscosity is used (for example, refer to Patent Document 1), or an inorganic filler is added to a silane cup in order to increase the blending amount of the inorganic filler. A method of performing a surface treatment with a ring agent is known (for example, see Patent Document 2). However, these methods alone cannot provide both solder resistance and flame resistance at the time of mounting, and a technique for achieving both of them has been demanded.
Therefore, the present applicant has proposed a biphenylene skeleton-containing phenol aralkyl type epoxy resin excellent in solder resistance and flame resistance, and an epoxy resin composition for semiconductor encapsulation using a biphenylene skeleton-containing phenol aralkyl type curing agent (for example, And Patent Document 3). Since this epoxy resin composition for semiconductor encapsulation contains a large amount of aromatic rings in the molecular skeleton, during combustion, a carbonized layer is formed on the surface of the molded product, thereby suppressing further combustion and exhibiting excellent flame resistance. Moreover, the improvement in hydrophobicity due to the inclusion of the aromatic ring structure and the reduction in elastic modulus at high temperatures due to the increase in the distance between cross-linking points contributes to the improvement in solder resistance.

一方、半導体エレクトロニクスの進歩は半導体装置の自動車等屋外使用機器への多数搭載を促進し、屋内機器で用いられた場合よりも温度環境に一層厳しい信頼性を要求される様になってきた。特に車載用途での必須要求項目である150℃程度の高温雰囲気下でも半導体装置がその機能を維持できる保存信頼性(以下、「高温保管特性」という。)があるが、前述のビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂、ビフェニレン骨格含有フェノールアラルキル型硬化剤を用いた半導体封止用エポキシ樹脂組成物の硬化物はガラス転移温度(以下、「Tg」ともいう。)が高くなく、高温保管特性が不充分となる場合があった。
以上から、リードフレームパッケージにおいては、耐半田性、耐燃性を損なうことなく、高温保管特性の要求を満たすことができる技術が求められていた。
On the other hand, the advancement of semiconductor electronics has promoted the mounting of a large number of semiconductor devices on outdoor equipment such as automobiles, and demanded more strict reliability in the temperature environment than when used in indoor equipment. In particular, there is storage reliability (hereinafter referred to as “high temperature storage characteristics”) that allows the semiconductor device to maintain its function even under a high temperature atmosphere of about 150 ° C., which is an essential requirement for in-vehicle applications. A cured product of an epoxy resin composition for semiconductor encapsulation using an aralkyl type epoxy resin or a phenol aralkyl type curing agent containing a biphenylene skeleton does not have a high glass transition temperature (hereinafter also referred to as “Tg”), and does not have high-temperature storage characteristics. In some cases, it was sufficient.
From the above, in the lead frame package, there has been a demand for a technique that can satisfy the requirements for high-temperature storage characteristics without impairing the solder resistance and the flame resistance.

さらに電子機器の小型化、軽量化、高機能化の市場動向において、半導体の高集積化が年々進み、また、半導体パッケージの表面実装化が促進されるなかで、新規にエリア表面実装のパッケージが開発され、従来構造のパッケージから移行し始めている。
エリア表面実装型半導体パッケージとしてはボール・グリッド・アレイ(以下、「BGA」という。)、あるいは更に小型化を追求したチップ・サイズ・パッケージ(以下、「CSP」という。)が代表的であるが、これらは従来のクワッド・フラット・パッケージ(以下、「QFP」という。)、スモール・アウトライン・パッケージ(以下、「SOP」という。)に代表される表面実装パッケージでは限界に近づいている多ピン化・高速化への要求に対応するために開発されたものである。構造としては、ビスマレイミド・トリアジン(以下、「BT」という。)樹脂/銅箔回路基板に代表される硬質回路基板、あるいはポリイミド樹脂フィルム/銅箔回路基板に代表されるフレキシブル回路基板の片面上に半導体素子を搭載し、その素子搭載面、即ち基板の片面のみが半導体封止用樹脂組成物などで成形・封止されている。また基板の素子搭載面の反対面には半田ボールを格子状に並列して形成し、パッケージを表面実装するマザーボードとの接合を行う特徴を有している。更に、素子を搭載する基板としては、上記有機回路基板以外にもリードフレーム等の金属基板を用いる構造も考案されている。
Furthermore, in the market trend of downsizing, weight reduction, and high functionality of electronic devices, semiconductors have been increasingly integrated and the surface mounting of semiconductor packages has been promoted. Developed and starting to migrate from traditionally structured packages.
The area surface mount type semiconductor package is typically a ball grid array (hereinafter referred to as “BGA”) or a chip size package (hereinafter referred to as “CSP”) in pursuit of further miniaturization. These are high-pin counts that are approaching the limit in conventional surface mount packages such as quad flat packages (hereinafter referred to as “QFP”) and small outline packages (hereinafter referred to as “SOP”).・ It was developed to meet the demand for higher speed. The structure is one side of a rigid circuit board typified by bismaleimide triazine (hereinafter referred to as “BT”) resin / copper foil circuit board or a flexible circuit board typified by polyimide resin film / copper foil circuit board. A semiconductor element is mounted on the element, and only the element mounting surface, that is, one side of the substrate is molded and sealed with a resin composition for semiconductor sealing. In addition, solder balls are formed in parallel in a grid pattern on the surface opposite to the element mounting surface of the substrate, and the package is bonded to a mother board that is surface-mounted. Furthermore, a structure using a metal substrate such as a lead frame in addition to the organic circuit substrate has been devised as a substrate on which elements are mounted.

これらエリア表面実装型半導体パッケージの構造は基板の素子搭載面のみを半導体封止用樹脂組成物で封止し、半田ボール形成面側は封止しないという片面封止の形態をとっている。ごく希に、素子を搭載する基板としてリードフレーム等の金属基板を用いる場合などでは、半田ボール形成面にも数十μm程度の封止樹脂層が存在することもあるが、素子搭載面では数百μmから数mm程度の封止樹脂層が形成されるため、実質的に片面封止となっている。このため、有機基板や金属基板と半導体封止用樹脂組成物の硬化物との間での熱膨張・熱収縮の不整合、あるいは半導体封止用樹脂組成物の成形・硬化時の硬化収縮による影響により、エリア表面実装型半導体パッケージでは成形直後から反りが発生しやすい。また、エリア表面実装型半導体パッケージを実装するマザーボード上に半田接合を行う場合、200℃以上の加熱工程を経るが、この際にパッケージの反りが発生し、多数の半田ボールが平坦とならず、パッケージを実装するマザーボードから浮き上がってしまい、電気的接合信頼性が低下する不具合が起こる場合もある。   The structure of these area surface mount type semiconductor packages is in the form of single-side sealing in which only the element mounting surface of the substrate is sealed with a resin composition for semiconductor sealing, and the solder ball forming surface side is not sealed. In rare cases, when a metal substrate such as a lead frame is used as a substrate on which an element is mounted, a sealing resin layer of about several tens of μm may exist on the solder ball formation surface, but on the element mounting surface, Since a sealing resin layer of about 100 μm to several mm is formed, it is substantially single-side sealed. For this reason, due to mismatch of thermal expansion / shrinkage between the organic substrate or metal substrate and the cured resin composition for semiconductor encapsulation, or due to curing shrinkage during molding / curing of the semiconductor encapsulation resin composition. Due to the influence, the area surface mount type semiconductor package is likely to warp immediately after molding. In addition, when solder bonding is performed on a mother board on which an area surface mount type semiconductor package is mounted, a heating process of 200 ° C. or more is performed, but at this time, warping of the package occurs, and a large number of solder balls do not become flat, There is a case where a problem arises that the electrical connection reliability is lowered due to floating from the motherboard on which the package is mounted.

前記エリア表面実装型半導体パッケージのような基板上の実質的に片面のみを半導体封止用樹脂組成物で封止したパッケージにおいて、反りを低減するには、半導体封止用樹脂組成物の硬化収縮を小さくすること、及び基板の線膨張係数と半導体封止用樹脂組成物の硬化物の線膨張係数を近づける2つの方法が重要である。
有機基板では、BT樹脂やポリイミド樹脂のような高いガラス転移温度の樹脂が広く用いられており、これらは半導体封止用樹脂組成物の成形温度である170℃近辺よりも高いTgを有する。従って、これらの有機基板は、半導体封止用樹脂組成物の成形温度から室温までの冷却過程では有機基板の線膨張係数がα1の領域のみで熱収縮する。従って、半導体封止用樹脂組成物もその硬化物のTgが高く、且つその硬化物のα1が回路基板と同程度であり、更にその硬化収縮がゼロであればパッケージの反りはほぼゼロになると考えられる。このため、トリフェノールメタン型エポキシ樹脂とトリフェノールメタン型フェノール樹脂との組合せによりTgを高くし、半導体封止用樹脂組成物の硬化収縮を小さくする手法が提案されている(例えば、特許文献4参照。)。一方、溶融粘度の低い樹脂を用いて無機充填剤の配合量を高めることにより、α1を基板に合せる手法が提案されている(例えば、特許文献5参照。)。また、線膨張係数を低下することができるとされるナフタレン環骨格を有する樹脂を使用することも提案されている(例えば、特許文献6参照。)。しかしながら、これらの半導体封止用樹脂組成物では反りは生じ難いものの、硬化物の吸水率が高いため、半田処理時にクラックが生じ易かった。また、耐燃性も難燃剤を用いないと実用には耐えられない場合があった。
以上から、エリア表面実装型半導体パッケージにおいても、耐半田性、耐燃性を損なうことなく、低反り性の要求を満たすことができる技術が求められていた。
以上のように、リードフレームパッケージ、エリア表面実装型半導体パッケージの両方において、要求される高いレベルの耐半田性、耐燃性を満足するとともに、高温保管特性、低反り性が得られる封止材の開発が望まれていた。
In a package in which only one surface on a substrate such as the area surface mount semiconductor package is sealed with a resin composition for semiconductor encapsulation, the shrinkage of the resin composition for semiconductor encapsulation is reduced in order to reduce warpage. Two methods for reducing the linear expansion coefficient of the substrate and the linear expansion coefficient of the cured resin composition for semiconductor encapsulation are important.
In the organic substrate, resins having a high glass transition temperature such as BT resin and polyimide resin are widely used, and these have a Tg higher than around 170 ° C. which is the molding temperature of the resin composition for semiconductor encapsulation. Accordingly, these organic substrates thermally shrink only in the region where the linear expansion coefficient of the organic substrate is α1 during the cooling process from the molding temperature of the resin composition for semiconductor encapsulation to room temperature. Therefore, if the Tg of the cured product of the resin composition for semiconductor encapsulation is high, the α1 of the cured product is about the same as that of the circuit board, and the cure shrinkage is zero, the warping of the package becomes almost zero. Conceivable. For this reason, a technique has been proposed in which Tg is increased by a combination of a triphenolmethane type epoxy resin and a triphenolmethane type phenol resin, and the curing shrinkage of the resin composition for semiconductor encapsulation is reduced (for example, Patent Document 4). reference.). On the other hand, a method of matching α1 with a substrate by increasing the blending amount of the inorganic filler using a resin having a low melt viscosity has been proposed (for example, see Patent Document 5). It has also been proposed to use a resin having a naphthalene ring skeleton that can reduce the linear expansion coefficient (see, for example, Patent Document 6). However, although these semiconductor sealing resin compositions are unlikely to warp, the cured product has a high water absorption rate, so that cracks are likely to occur during soldering. Moreover, the flame resistance may not be practically used unless a flame retardant is used.
From the above, there has been a demand for a technology that can satisfy the demand for low warpage without losing solder resistance and flame resistance in the area surface mount semiconductor package.
As described above, in both the lead frame package and the area surface mount semiconductor package, the high-temperature storage characteristics and low warpage properties are obtained while satisfying the required high level of solder resistance and flame resistance. Development was desired.

特開平7−130919号公報JP-A-7-130919 特開平8−20673号公報JP-A-8-20673 特開平11−140277号公報JP-A-11-140277 特開平11−147940号公報Japanese Patent Laid-Open No. 11-147940 特開平11−1541号公報Japanese Patent Laid-Open No. 11-1541 特開2001−233936号公報JP 2001-233936 A

本発明は、耐半田性、耐燃性に優れ、かつ高温保管特性又は低反り性にも優れた半導体封止用樹脂組成物及びそれを用いた半導体装置を提供するものである。   The present invention provides a resin composition for encapsulating a semiconductor excellent in solder resistance and flame resistance and excellent in high-temperature storage characteristics or low warpage, and a semiconductor device using the same.

本発明は、
[1] 下記一般式(1)で表されるエポキシ樹脂(A)と、フェノール性水酸基を2個以上含む化合物(B)と、無機充填剤(C)と、硬化促進剤(D)と、を含むことを特徴とする半導体封止用樹脂組成物、

Figure 2008074941
(ただし、上記一般式(1)において、R1は炭素数1ないし20の炭化水素基であり、互いに同じであっても異なっていても良い。OGはグリシジルエーテル基である。OG及びR1の結合位置は、−O−が結合している芳香環側及び他方の芳香環側のいずれであってもよい。n1は0ないし5の整数であり、全体の平均値は0より大きく、5より小さい正数である。m1は0ないし6の整数、k1は1又は2である。) The present invention
[1] An epoxy resin (A) represented by the following general formula (1), a compound (B) containing two or more phenolic hydroxyl groups, an inorganic filler (C), a curing accelerator (D), A resin composition for semiconductor encapsulation, comprising:
Figure 2008074941
(In the general formula (1), R1 is a hydrocarbon group having 1 to 20 carbon atoms, and may be the same or different. OG is a glycidyl ether group. Bond of OG and R1) The position may be either the aromatic ring side to which —O— is bonded or the other aromatic ring side, n1 is an integer of 0 to 5, and the overall average value is larger than 0 and smaller than 5. (M1 is an integer from 0 to 6, and k1 is 1 or 2.)

[2] 前記第[1]項に記載の半導体封止用樹脂組成物において、フェノール性水酸基を2個以上含む化合物(B)が下記一般式(2)で表される化合物を含むことを特徴とする半導体封止用樹脂組成物、

Figure 2008074941
(ただし、上記一般式(2)において、−R2−はフェニレン基、ビフェニレン基又はナフチレン基である。−R3(OH)−はヒドロキシフェニレン基又は1−ヒドロキシナフチレン基、2−ヒドロキシナフチレン基である。R4、R5は、それぞれR3、R2に導入される基で、炭素数1ないし10の炭化水素基であり、それらは互いに同じであっても異なっていても良い。n2の平均値は1以上、10以下の正数、k2は0ないし5の整数、m2は0ないし8の整数である。) [2] The resin composition for encapsulating a semiconductor according to [1] above, wherein the compound (B) containing two or more phenolic hydroxyl groups contains a compound represented by the following general formula (2). A semiconductor sealing resin composition,
Figure 2008074941
(In the general formula (2), -R2- is a phenylene group, a biphenylene group, or a naphthylene group. -R3 (OH)-is a hydroxyphenylene group, a 1-hydroxynaphthylene group, or a 2-hydroxynaphthylene group. R4 and R5 are groups introduced into R3 and R2, respectively, and are hydrocarbon groups having 1 to 10 carbon atoms, which may be the same or different from each other. A positive number of 1 or more and 10 or less, k2 is an integer of 0 to 5, and m2 is an integer of 0 to 8.)

[3] 前記第[1]項又は第[2]項に記載の半導体封止用樹脂組成物において、フェノール性水酸基を2個以上含む化合物(B)が下記一般式(3)で表される化合物を含むことを特徴とする半導体封止用樹脂組成物、

Figure 2008074941
(ただし、上記一般式(3)において、R4、R5は、炭素数1ないし10の炭化水素基であり、それらは互いに同じであっても異なっていても良い。n3の平均値は1以上、10以下の正数、k3は0ないし3の整数、m3は0ないし4の整数である。) [3] In the resin composition for encapsulating a semiconductor according to [1] or [2], the compound (B) containing two or more phenolic hydroxyl groups is represented by the following general formula (3). A semiconductor sealing resin composition comprising a compound,
Figure 2008074941
(However, in the general formula (3), R4 and R5 are hydrocarbon groups having 1 to 10 carbon atoms, and they may be the same or different. The average value of n3 is 1 or more, A positive number of 10 or less, k3 is an integer of 0 to 3, and m3 is an integer of 0 to 4.)

[4] 前記第[1]項又は第[2]項に記載の半導体封止用樹脂組成物において、フェノール性水酸基を2個以上含む化合物(B)が下記一般式(4)で表される化合物を含むことを特徴とする半導体封止用樹脂組成物、

Figure 2008074941
(ただし、上記一般式(4)において、R4、R5は、炭素数1ないし10の炭化水素基であり、それらは互いに同じであっても異なっていても良い。n4の平均値は1以上、10以下の正数、k4は0ないし5の整数、m4は0ないし4の整数である。) [4] In the resin composition for encapsulating a semiconductor according to [1] or [2], the compound (B) containing two or more phenolic hydroxyl groups is represented by the following general formula (4). A semiconductor sealing resin composition comprising a compound,
Figure 2008074941
(However, in the general formula (4), R4 and R5 are hydrocarbon groups having 1 to 10 carbon atoms, and they may be the same or different. The average value of n4 is 1 or more. A positive number of 10 or less, k4 is an integer of 0 to 5, and m4 is an integer of 0 to 4.)

[5] 前記第[1]項ないし第[4]項のいずれかに記載の半導体封止用樹脂組成物において、前記硬化促進剤(D)が、下記一般式(5)で表される化合物、下記一般式(6)で表される化合物、下記一般式(7)で表される化合物及び下記一般式(8)で表される化合物から選ばれる少なくとも1つであることを特徴とする半導体封止用樹脂組成物、

Figure 2008074941
(ただし、上記一般式(5)において、Pはリン原子を表す。R6、R7、R8及びR9は芳香族基、又はアルキル基を表す。Aはヒドロキシル基、カルボキシル基、チオール基から選ばれる官能基のいずれかを芳香環に少なくとも1つ有する芳香族有機酸のアニオンを表す。AHはヒドロキシル基、カルボキシル基、チオール基から選ばれる官能基のいずれかを芳香環に少なくとも1つ有する芳香族有機酸を表す。a、bは1ないし3の整数、cは0ないし3の整数であり、かつa=bである。) [5] In the resin composition for semiconductor encapsulation according to any one of [1] to [4], the curing accelerator (D) is a compound represented by the following general formula (5): A semiconductor represented by the following general formula (6), a compound represented by the following general formula (7), and a compound represented by the following general formula (8): Sealing resin composition,
Figure 2008074941
(However, in the said General formula (5), P represents a phosphorus atom. R6, R7, R8, and R9 represent an aromatic group or an alkyl group. A is a function chosen from a hydroxyl group, a carboxyl group, and a thiol group. An anion of an aromatic organic acid having at least one of the groups in the aromatic ring AH represents an aromatic organic having at least one functional group selected from a hydroxyl group, a carboxyl group, and a thiol group in the aromatic ring. Represents an acid, a and b are integers of 1 to 3, c is an integer of 0 to 3, and a = b.

Figure 2008074941
(ただし、上記一般式(6)において、Pはリン原子を表す。X1は水素又は炭素数1ないし3のアルキル基、Y1は水素又はヒドロキシル基を表す。m6、n6は1ないし3の整数。)
Figure 2008074941
(However, in the said General formula (6), P represents a phosphorus atom. X1 represents hydrogen or a C1-C3 alkyl group, Y1 represents hydrogen or a hydroxyl group. M6 and n6 are integers of 1-3. )

Figure 2008074941
(ただし、上記一般式(7)において、Pはリン原子を表す。R10、R11及びR12は炭素数1ないし12のアルキル基又は炭素数6ないし12のアリール基を表し、互いに同一であっても異なっていてもよい。R13、R14及びR15は水素原子又は炭素数1ないし12の炭化水素基を表し、互いに同一であっても異なっていてもよく、R13とR14が結合して環状構造となっていてもよい。)
Figure 2008074941
(In the above general formula (7), P represents a phosphorus atom. R10, R11 and R12 represent an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 12 carbon atoms, and may be the same as each other). R13, R14 and R15 each represents a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms and may be the same or different from each other, and R13 and R14 are bonded to form a cyclic structure. May be.)

Figure 2008074941
(ただし、上記一般式(8)において、A1は窒素原子又はリン原子を表す。Siは珪素原子を表す。R16、R17、R18及びR19は、それぞれ、芳香環又は複素環を有する有機基、或いは脂肪族基を表し、互いに同一であっても異なっていてもよい。X2は、基Y2及びY3と結合する有機基である。X3は、基Y4及びY5と結合する有機基である。Y2及びY3は、プロトン供与性置換基がプロトンを放出してなる基であり、それらは互いに同一であっても異なっていてもよく、同一分子内の基Y2、及びY3が珪素原子と結合してキレート構造を形成するものである。Y4及びY5は、プロトン供与性置換基がプロトンを放出してなる基であり、同一分子内の基Y4及びY5が珪素原子と結合してキレート構造を形成するものである。X2、及びX3は互いに同一であっても異なっていてもよく、Y2、Y3、Y4、及びY5は互いに同一であっても異なっていてもよい。Z1は芳香環又は複素環を有する有機基或いは脂肪族基を表す。)
Figure 2008074941
(In the above general formula (8), A1 represents a nitrogen atom or a phosphorus atom. Si represents a silicon atom. R16, R17, R18 and R19 are each an organic group having an aromatic ring or a heterocyclic ring, or Represents an aliphatic group, which may be the same or different from each other, X2 represents an organic group bonded to the groups Y2 and Y3, and X3 represents an organic group bonded to the groups Y4 and Y5. Y3 is a group formed by releasing a proton from a proton-donating substituent, which may be the same or different from each other, and the groups Y2 and Y3 in the same molecule are bonded to a silicon atom to form a chelate. Y4 and Y5 are groups formed by proton-donating substituents releasing protons, and groups Y4 and Y5 in the same molecule are combined with a silicon atom to form a chelate structure. X2 and X3 may be the same or different from each other, and Y2, Y3, Y4 and Y5 may be the same or different from each other, and Z1 is an organic having an aromatic ring or a heterocyclic ring. Represents a group or an aliphatic group.)

[6] 前記第[1]項ないし第[5]項のいずれかに記載の半導体封止用樹脂組成物において、更にシランカップリング剤(E)と、芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(F)を含むことを特徴とする半導体封止用樹脂組成物、
[7] 前記第[6]項に記載の半導体封止用樹脂組成物において、前記化合物(F)は、芳香環を構成する2個の隣接する炭素原子にそれぞれ水酸基が結合した化合物であることを特徴とする半導体封止用樹脂組成物、
[8] 前記第[6]項に記載の半導体封止用樹脂組成物において、前記化合物(F)は、ナフタレン環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物であることを特徴とする半導体封止用樹脂組成物、
[9] 前記第[6]項に記載の半導体封止用樹脂組成物において、前記化合物(F)は、ナフタレン環を構成する2個の隣接する炭素原子にそれぞれ水酸基が結合した化合物であることを特徴とする半導体封止用樹脂組成物、
[10] 前記第[6]項ないし第[9]項のいずれかに記載の半導体封止用樹脂組成物において、前記化合物(F)を当該樹脂組成物全体の0.01重量%以上、1重量%以下含むことを特徴とする半導体封止用樹脂組成物、
[11] 前記第[6]項ないし第[10]項のいずれかに記載の半導体封止用樹脂組成物において、前記シランカップリング剤(E)を当該樹脂組成物全体の0.01重量%以上、1重量%以下含むことを特徴とする半導体封止用樹脂組成物、
[12] 前記第[1]項ないし第[11]項のいずれかに記載の半導体封止用樹脂組成物において、前記無機充填剤(C)を当該樹脂組成物全体の80重量%以上、92重量%以下含むことを特徴とする半導体封止用樹脂組成物、
[13] 前記第[1]項ないし第[12]項のいずれかに記載の半導体封止用樹脂組成物の硬化物により半導体素子を封止してなることを特徴とする半導体装置、
[14] 150℃を超える高温環境下での動作保証が要求される電子部品に使用される半導体装置であって、前記第[3]項に記載の半導体封止用樹脂組成物の硬化物により半導体素子を封止してなることを特徴とする半導体装置、
[15] 基板の片面に半導体素子が搭載され、該半導体素子が搭載された基板面側の実質的に片面のみが前記第[4]項に記載の半導体封止用樹脂組成物の硬化物により封止されてなることを特徴とするエリア表面実装型半導体装置、
である。
[6] The resin composition for semiconductor encapsulation according to any one of [1] to [5], further comprising a silane coupling agent (E) and two or more adjacent members constituting an aromatic ring. A resin composition for encapsulating a semiconductor, comprising a compound (F) in which a hydroxyl group is bonded to each carbon atom,
[7] In the resin composition for encapsulating a semiconductor according to [6], the compound (F) is a compound in which a hydroxyl group is bonded to each of two adjacent carbon atoms constituting an aromatic ring. A resin composition for encapsulating a semiconductor,
[8] In the resin composition for encapsulating a semiconductor according to [6], the compound (F) is a compound in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting a naphthalene ring. A resin composition for encapsulating a semiconductor,
[9] In the resin composition for encapsulating a semiconductor according to [6], the compound (F) is a compound in which a hydroxyl group is bonded to each of two adjacent carbon atoms constituting a naphthalene ring. A resin composition for encapsulating a semiconductor,
[10] In the resin composition for semiconductor encapsulation according to any one of [6] to [9], the compound (F) is contained in an amount of 0.01% by weight or more based on the total amount of the resin composition. A resin composition for encapsulating a semiconductor, comprising:
[11] The resin composition for semiconductor encapsulation according to any one of [6] to [10], wherein the silane coupling agent (E) is 0.01% by weight of the resin composition as a whole. Or more, 1 wt% or less, a semiconductor sealing resin composition,
[12] In the resin composition for encapsulating a semiconductor according to any one of [1] to [11], the inorganic filler (C) is 80% by weight or more of the total resin composition, 92 A resin composition for encapsulating a semiconductor, comprising:
[13] A semiconductor device, wherein a semiconductor element is sealed with a cured product of the resin composition for semiconductor sealing according to any one of [1] to [12],
[14] A semiconductor device used for an electronic component that requires operation guarantee in a high-temperature environment exceeding 150 ° C., which is obtained by curing the resin composition for semiconductor encapsulation according to the above [3]. A semiconductor device characterized by sealing a semiconductor element;
[15] A semiconductor element is mounted on one side of the substrate, and substantially only one side of the substrate surface on which the semiconductor element is mounted is made of a cured product of the resin composition for semiconductor encapsulation according to the above [4]. An area surface-mounting semiconductor device, characterized by being sealed;
It is.

耐半田性、耐燃性に優れ、かつ高温保管特性又は低反り性にも優れた半導体封止用樹脂組成物を得ることができる。   It is possible to obtain a resin composition for encapsulating a semiconductor which is excellent in solder resistance and flame resistance and excellent in high temperature storage characteristics or low warpage.

本発明は、一般式(1)で表されるエポキシ樹脂(A)と、フェノール性水酸基を2個以上含む化合物(B)と、無機充填剤(C)と、硬化促進剤(D)と、を含むことにより、高い耐半田性、耐燃性に優れ、かつ高温保管特性又は低反り性にも優れた半導体封止用樹脂組成物が得られるものである。
以下、各成分について詳細に説明する。
The present invention relates to an epoxy resin (A) represented by the general formula (1), a compound (B) containing two or more phenolic hydroxyl groups, an inorganic filler (C), a curing accelerator (D), By containing, it is possible to obtain a resin composition for encapsulating a semiconductor that is excellent in high solder resistance and flame resistance, and also excellent in high-temperature storage characteristics or low warpage.
Hereinafter, each component will be described in detail.

本発明で用いられる下記一般式(1)で表されるエポキシ樹脂(A)は、分子内にナフタレン骨格を有するため、嵩高く、剛直性が高いことから、これを用いたエポキシ樹脂組成物の硬化物のガラス転移温度が高くなり、高温保管特性に優れる半導体装置が得られる効果を有する。また、ナフタレン骨格を含有することにより、これを用いたエポキシ樹脂組成物の硬化物の線膨張係数が小さくなり、低反り性に優れるエリア表面実装型半導体装置が得られる効果も有する。該エポキシ樹脂(A)は、下記一般式(1)中のn1の値が0ないし5の整数である化合物の混合物であり、好ましくはn1の値が1ないし2の整数である化合物の混合物が主成分であることが望ましい。それにより主成分のエポキシ基数が2ないし3となり、これを用いたエポキシ樹脂組成物の硬化物の弾性率を低くすることができ、耐半田性に優れる半導体装置が得られる効果を有する。また、下記一般式(1)中のR1はアルキル基、芳香族基を含む炭化水素基であり、互いに同じであっても異なっていても良いが、芳香族基を含む炭化水素基であることが好ましい。それによりナフタレン骨格に加え、さらに芳香族環炭素が多くなり、これを用いたエポキシ樹脂組成物の硬化物は特に耐燃性に優れるという効果を有する。本発明で用いられる下記一般式(1)で表されるエポキシ樹脂(A)としては、下記式(9)で表される化合物等が挙げられるが、下記一般式(1)の構造であれば特に限定するものではない。本発明で用いられる下記一般式(1)で表されるエポキシ樹脂(A)の製法については、特に限定するものではないが、例えば、2つ以上のヒドロキシル基を有するナフタレン化合物を脱水反応によりエーテル化したのち、エーテル化していないヒドロキシル基をグリシジルエーテル化する方法などにより得ることができる。   Since the epoxy resin (A) represented by the following general formula (1) used in the present invention has a naphthalene skeleton in the molecule, it is bulky and has high rigidity. The glass transition temperature of the cured product is increased, and the semiconductor device having excellent high-temperature storage characteristics can be obtained. Further, by containing a naphthalene skeleton, the linear expansion coefficient of the cured product of the epoxy resin composition using the skeleton is reduced, and there is an effect that an area surface mounting type semiconductor device excellent in low warpage can be obtained. The epoxy resin (A) is a mixture of compounds in which the value of n1 in the following general formula (1) is an integer of 0 to 5, preferably a mixture of compounds in which the value of n1 is an integer of 1 to 2. The main component is desirable. As a result, the number of epoxy groups in the main component becomes 2 to 3, and the elastic modulus of the cured product of the epoxy resin composition using the epoxy group can be lowered, and a semiconductor device having excellent solder resistance can be obtained. Moreover, R1 in the following general formula (1) is a hydrocarbon group containing an alkyl group or an aromatic group, and may be the same or different from each other, but is a hydrocarbon group containing an aromatic group Is preferred. Thereby, in addition to the naphthalene skeleton, the aromatic ring carbon further increases, and the cured product of the epoxy resin composition using the skeleton has an effect of particularly excellent flame resistance. Examples of the epoxy resin (A) represented by the following general formula (1) used in the present invention include compounds represented by the following formula (9). There is no particular limitation. The method for producing the epoxy resin (A) represented by the following general formula (1) used in the present invention is not particularly limited. For example, a naphthalene compound having two or more hydroxyl groups is converted into an ether by a dehydration reaction. Then, it can be obtained by a method in which a hydroxyl group that has not been etherified is glycidyl etherified.

Figure 2008074941
(ただし、上記一般式(1)において、R1は炭素数1ないし20の炭化水素基であり、互いに同じであっても異なっていても良い。OGはグリシジルエーテル基である。OG及びR1の結合位置は、−O−が結合している芳香環側及び他方の芳香環側のいずれであってもよい。n1は0ないし5の整数であり、全体の平均値は0より大きく、5より小さい正数である。m1は0ないし6の整数、k1は1又は2である。)
Figure 2008074941
(ただし、上記式(9)において、n9は0ないし5の整数である。)
Figure 2008074941
(In the general formula (1), R1 is a hydrocarbon group having 1 to 20 carbon atoms, and may be the same or different. OG is a glycidyl ether group. Bond of OG and R1) The position may be either the aromatic ring side to which —O— is bonded or the other aromatic ring side, n1 is an integer of 0 to 5, and the overall average value is larger than 0 and smaller than 5. (M1 is an integer from 0 to 6, and k1 is 1 or 2.)
Figure 2008074941
(However, in the above formula (9), n9 is an integer of 0 to 5.)

本発明では、前記一般式(1)で表されるエポキシ樹脂(A)を用いることによる効果が損なわれない範囲で、他のエポキシ樹脂を併用することができる。併用できるエポキシ樹脂としては、例えばビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、ジヒドロアントラヒドロキノンのグリシジルエーテル化エポキシ樹脂等が挙げられる。半導体封止用エポキシ樹脂組成物としての耐湿信頼性を考慮すると、イオン性不純物であるNaイオンやClイオンが極力少ない方が好ましく、硬化性の点からエポキシ当量としては100g/eq以上、500g/eq以下のものが好ましい。
併用する場合における前記一般式(1)で表されるエポキシ樹脂(A)の配合割合としては、全エポキシ樹脂に対して、好ましくは10重量%以上であり、更に好ましくは30重量%以上、特に好ましくは50重量%以上である。エポキシ樹脂(A)の配合割合が上記範囲内であると、ガラス転移温度が上昇することによる高温保管特性向上効果、及び線膨張係数が小さくなることによる低反り性向上効果を得ることができる。
In this invention, another epoxy resin can be used together in the range by which the effect by using the epoxy resin (A) represented by the said General formula (1) is not impaired. Examples of epoxy resins that can be used in combination include biphenyl type epoxy resins, bisphenol type epoxy resins, stilbene type epoxy resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins, triphenolmethane type epoxy resins, and phenol aralkyl type epoxy resins having a phenylene skeleton. Resin, phenol aralkyl type epoxy resin having biphenylene skeleton, naphthol type epoxy resin, alkyl modified triphenol methane type epoxy resin, triazine nucleus-containing epoxy resin, dicyclopentadiene modified phenol type epoxy resin, dihydroanthrahydroquinone glycidyl etherified epoxy resin Etc. In consideration of moisture resistance reliability as an epoxy resin composition for semiconductor encapsulation, it is preferable that Na ions and Cl ions, which are ionic impurities, be as small as possible. From the viewpoint of curability, the epoxy equivalent is 100 g / eq or more and 500 g / The thing below eq is preferable.
The blending ratio of the epoxy resin (A) represented by the general formula (1) when used in combination is preferably 10% by weight or more, more preferably 30% by weight or more, particularly with respect to the total epoxy resin. Preferably it is 50 weight% or more. When the blending ratio of the epoxy resin (A) is within the above range, an effect of improving high-temperature storage characteristics due to an increase in glass transition temperature and an effect of improving low warpage due to a decrease in linear expansion coefficient can be obtained.

本発明では、硬化剤として、耐燃性、耐湿性、電気特性、硬化性、保存安定性等の点からフェノール性水酸基を2個以上含む化合物(B)を用いる。このフェノール性水酸基を2個以上含む化合物(B)は、1分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定するものではないが、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、トリフェノールメタン型フェノール樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、フェニレン骨格及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン骨格及び/又はビフェニレン骨格を有するナフトールアラルキル樹脂、ビスフェノール化合物、等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。これらのうち、硬化性の点から水酸基当量は90g/eq以上、300g/eq以下のものが好ましい。   In the present invention, a compound (B) containing two or more phenolic hydroxyl groups is used as a curing agent from the viewpoints of flame resistance, moisture resistance, electrical properties, curability, storage stability, and the like. The compound (B) containing two or more phenolic hydroxyl groups is a monomer, oligomer or polymer in general having two or more phenolic hydroxyl groups in one molecule, and its molecular weight and molecular structure are not particularly limited. For example, phenol novolak resin, cresol novolak resin, triphenolmethane type phenol resin, terpene modified phenol resin, dicyclopentadiene modified phenol resin, phenol aralkyl resin having phenylene skeleton and / or biphenylene skeleton, phenylene skeleton and / or biphenylene skeleton Examples thereof include naphthol aralkyl resins, bisphenol compounds, and the like, and these may be used alone or in combination of two or more. Among these, the hydroxyl equivalent is preferably 90 g / eq or more and 300 g / eq or less from the viewpoint of curability.

また、本発明では、フェノール性水酸基を2個以上含む化合物(B)として下記一般式(2)で表される化合物を含むことが好ましい。下記一般式(2)で表される化合物は、フェニレン、ビフェニレン、ナフチレン骨格を含むアラルキル基(−CH2−R2−CH2−)を有することから、ノボラック型フェノール樹脂と比べて架橋点間距離が長いため、これらを用いたエポキシ樹脂組成物の硬化物は高温下において低弾性率化され、且つフェノール性水酸基の含有割合が少ないことから、これらを用いたエポキシ樹脂組成物の硬化物の低吸水化も実現することができる。これらの特性の発現により、耐半田性向上に寄与することができる。さらにナフチレン骨格を含有する化合物においては、ナフタレン環に起因する剛直性によるTgの上昇や、その平面構造に起因する分子間相互作用による線膨張係数の低下により、エリア表面実装型半導体パッケージにおける低反り性を向上させることができる。また、下記一般式(2)で表される化合物において、フェノール性水酸基を含有する芳香族基(−R3(OH)−)としては、ヒドロキシフェニレン基、あるいは1−ヒドロキシナフチレン基、2−ヒドロキシナフチレン基のいずれでもよいが、特にヒドロキシナフチレン基である場合は、前述のナフチレン骨格を含有する化合物と同様に、これを用いたエポキシ樹脂組成物の硬化物におけるTgの上昇や線膨張係数の低下により、低反り性を向上させる効果が得られ、さらに芳香族炭素を多く有することから、これを用いたエポキシ樹脂組成物の硬化物における耐燃性の向上も実現することができる。
本発明で用いられる下記一般式(2)で表される化合物としては、例えば、フェニレン骨格を含有するフェノールアラルキル樹脂、下記一般式(3)で表されるビフェニレン骨格を含有するフェノールアラルキル樹脂、ナフチレン骨格を含有するフェノールアラルキル樹脂、下記一般式(4)で表されるフェニレン骨格を含有するナフトールアラルキル樹脂が挙げられるが、下記一般式(2)の構造であれば特に限定するものではない。
Moreover, in this invention, it is preferable that the compound represented by following General formula (2) is included as a compound (B) containing two or more phenolic hydroxyl groups. Since the compound represented by the following general formula (2) has an aralkyl group (—CH 2 —R 2 —CH 2 —) containing a phenylene, biphenylene, or naphthylene skeleton, the distance between cross-linking points as compared with a novolak type phenol resin. Therefore, the cured product of the epoxy resin composition using these has a low elastic modulus at a high temperature and the content ratio of the phenolic hydroxyl group is small. Water absorption can also be realized. The manifestation of these characteristics can contribute to the improvement of solder resistance. Further, in a compound containing a naphthylene skeleton, low warpage in an area surface mount type semiconductor package due to an increase in Tg due to rigidity due to the naphthalene ring and a decrease in linear expansion coefficient due to intermolecular interaction due to its planar structure. Can be improved. In the compound represented by the following general formula (2), the aromatic group (-R3 (OH)-) containing a phenolic hydroxyl group may be a hydroxyphenylene group, a 1-hydroxynaphthylene group, or 2-hydroxy. Any of the naphthylene groups may be used, but in particular, in the case of the hydroxy naphthylene group, similarly to the compound containing the naphthylene skeleton, an increase in Tg and a linear expansion coefficient in the cured product of the epoxy resin composition using the naphthylene skeleton are used. As a result of the reduction, the effect of improving the low warpage is obtained, and further, since it has a large amount of aromatic carbon, it is also possible to realize an improvement in flame resistance in a cured product of an epoxy resin composition using the same.
Examples of the compound represented by the following general formula (2) used in the present invention include a phenol aralkyl resin containing a phenylene skeleton, a phenol aralkyl resin containing a biphenylene skeleton represented by the following general formula (3), and naphthylene. Examples thereof include a phenol aralkyl resin containing a skeleton and a naphthol aralkyl resin containing a phenylene skeleton represented by the following general formula (4). However, the structure is not particularly limited as long as the structure is the following general formula (2).

Figure 2008074941
(ただし、上記一般式(2)において、−R2−はフェニレン基、ビフェニレン基又はナフチレン基である。−R3(OH)−はヒドロキシフェニレン基又は1−ヒドロキシナフチレン基、2−ヒドロキシナフチレン基である。R4、R5は、それぞれR3、R2に導入される基で、炭素数1ないし10の炭化水素基であり、それらは互いに同じであっても異なっていても良い。n2の平均値は1以上、10以下の正数、k2は0ないし5の整数、m2は0ないし8の整数である。)
Figure 2008074941
(In the general formula (2), -R2- is a phenylene group, a biphenylene group, or a naphthylene group. -R3 (OH)-is a hydroxyphenylene group, a 1-hydroxynaphthylene group, or a 2-hydroxynaphthylene group. R4 and R5 are groups introduced into R3 and R2, respectively, and are hydrocarbon groups having 1 to 10 carbon atoms, which may be the same or different from each other. A positive number of 1 or more and 10 or less, k2 is an integer of 0 to 5, and m2 is an integer of 0 to 8.)

Figure 2008074941
(ただし、上記一般式(3)において、R4、R5は、炭素数1ないし10の炭化水素基であり、それらは互いに同じであっても異なっていても良い。n3の平均値は1以上、10以下の正数、k3は0ないし3の整数、m3は0ないし4の整数である。)
Figure 2008074941
(However, in the general formula (3), R4 and R5 are hydrocarbon groups having 1 to 10 carbon atoms, and they may be the same or different. The average value of n3 is 1 or more, A positive number of 10 or less, k3 is an integer of 0 to 3, and m3 is an integer of 0 to 4.)

Figure 2008074941
(ただし、上記一般式(4)において、R4、R5は、炭素数1ないし10の炭化水素基であり、それらは互いに同じであっても異なっていても良い。n4の平均値は1以上、10以下の正数、k4は0ないし5の整数、m4は0ないし4の整数である。)
Figure 2008074941
(However, in the general formula (4), R4 and R5 are hydrocarbon groups having 1 to 10 carbon atoms, and they may be the same or different. The average value of n4 is 1 or more. A positive number of 10 or less, k4 is an integer of 0 to 5, and m4 is an integer of 0 to 4.)

本発明において、前記一般式(2)で表される化合物の配合割合としては、特に限定するものではないが、フェノール性水酸基を2個以上含む化合物(B)の全量に対して、好ましくは10重量%以上であり、更に好ましくは30重量%以上、特に好ましくは50重量%以上である。一般式(2)で表される化合物の配合割合が上記範囲内であると、耐燃性向上効果を得ることができる。   In the present invention, the mixing ratio of the compound represented by the general formula (2) is not particularly limited, but is preferably 10 with respect to the total amount of the compound (B) containing two or more phenolic hydroxyl groups. % By weight or more, more preferably 30% by weight or more, and particularly preferably 50% by weight or more. When the compounding ratio of the compound represented by the general formula (2) is within the above range, an effect of improving the flame resistance can be obtained.

本発明で用いられるエポキシ樹脂の全量とフェノール性水酸基を2個以上含む化合物の全量との配合割合は、エポキシ樹脂のエポキシ基数(EP)とフェノール性水酸基を2個以上含む化合物のフェノール性水酸基数(OH)との比(EP/OH)が、0.6以上、1.5以下であることが好ましく、0.8以上、1.3以下であることがより好ましい。当量比が上記範囲内であると、エポキシ樹脂組成物の硬化性の低下が生じる可能性が少ない。また、当量比が上記範囲内であると、エポキシ樹脂組成物の硬化物において、ガラス転移温度の低下や耐湿信頼性の低下等を引き起こす恐れが少ない。   The blending ratio between the total amount of the epoxy resin used in the present invention and the total amount of the compound containing two or more phenolic hydroxyl groups is the number of epoxy groups (EP) of the epoxy resin and the number of phenolic hydroxyl groups of the compound containing two or more phenolic hydroxyl groups. The ratio (EP / OH) to (OH) is preferably 0.6 or more and 1.5 or less, and more preferably 0.8 or more and 1.3 or less. When the equivalent ratio is within the above range, there is little possibility that the curability of the epoxy resin composition is lowered. Further, when the equivalent ratio is within the above range, the cured product of the epoxy resin composition is less likely to cause a decrease in glass transition temperature, a decrease in moisture resistance reliability, and the like.

本発明に用いられる無機充填剤(C)としては、一般に半導体封止用樹脂組成物に用いられているものを使用することができ、例えば、溶融シリカ、球状シリカ、結晶シリカ、アルミナ、窒化珪素、窒化アルミ等が挙げられる。無機充填剤(C)の粒径としては、金型への充填性を考慮すると0.01μm以上、150μm以下であることが望ましい。また、無機充填剤(C)の含有量としては、エポキシ樹脂組成物全体の80重量%以上、92重量%以下が好ましく、より好ましくは82重量%以上、91重量%以下、特に好ましくは84重量%以上、90重量%以下である。無機充填剤(C)の含有量が上記範囲内であると、エポキシ樹脂組成物の硬化物の吸水量が増加して強度が低下することによる耐半田性の低下を引き起こす恐れが少ない。また、無機充填剤(C)の含有量が上記範囲内であると、流動性が損なわれることによる成形面での不具合の発生を引き起こす恐れが少ない。   As the inorganic filler (C) used in the present invention, those generally used in a resin composition for semiconductor encapsulation can be used. For example, fused silica, spherical silica, crystalline silica, alumina, silicon nitride And aluminum nitride. The particle size of the inorganic filler (C) is preferably 0.01 μm or more and 150 μm or less in consideration of the filling property to the mold. Further, the content of the inorganic filler (C) is preferably 80% by weight or more and 92% by weight or less, more preferably 82% by weight or more and 91% by weight or less, and particularly preferably 84% by weight of the entire epoxy resin composition. % To 90% by weight. When the content of the inorganic filler (C) is within the above range, the amount of water absorption of the cured product of the epoxy resin composition increases and there is little possibility of causing a decrease in solder resistance due to a decrease in strength. Further, when the content of the inorganic filler (C) is within the above range, there is little possibility of causing defects on the molding surface due to the loss of fluidity.

本発明に用いられる硬化促進剤(D)は、エポキシ樹脂のエポキシ基とフェノール性水酸基を2個以上含む化合物のフェノール性水酸基との反応を促進するものであればよく、一般の半導体封止用エポキシ樹脂組成物に使用されているものを利用することができる。具体例としては、有機ホスフィン、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物等のリン原子含有化合物、1,8−ジアザビシクロ(5,4,0)ウンデセン−7、ベンジルジメチルアミン、2−メチルイミダゾール等の窒素原子含有化合物が挙げられる。これらのうち、リン原子含有化合物が好ましく、特に流動性という点を考慮するとテトラ置換ホスホニウム化合物が好ましく、またエポキシ樹脂組成物の硬化物熱時低弾性率という点を考慮するとホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物が好ましく、また潜伏的硬化性という点を考慮すると、ホスホニウム化合物とシラン化合物との付加物が好ましい。   The curing accelerator (D) used in the present invention is not limited as long as it promotes the reaction between the epoxy group of the epoxy resin and the phenolic hydroxyl group of the compound containing two or more phenolic hydroxyl groups. What is used for the epoxy resin composition can be utilized. Specific examples include organic phosphines, tetra-substituted phosphonium compounds, phosphobetaine compounds, phosphorus atom-containing compounds such as adducts of phosphine compounds and quinone compounds, 1,8-diazabicyclo (5,4,0) undecene-7, benzyl Nitrogen atom-containing compounds such as dimethylamine and 2-methylimidazole can be mentioned. Among these, a phosphorus atom-containing compound is preferable, and a tetra-substituted phosphonium compound is particularly preferable in consideration of fluidity, and a phosphobetaine compound and a phosphine compound in consideration of a low elastic modulus when cured of an epoxy resin composition. An adduct of quinone compound and a quinone compound is preferable, and an adduct of a phosphonium compound and a silane compound is preferable in consideration of latent curing property.

前記有機ホスフィンとしては、例えばエチルホスフィン、フェニルホスフィン等の第1ホスフィン、ジメチルホスフィン、ジフェニルホスフィン等の第2ホスフィン、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン等の第3ホスフィンが挙げられる。   Examples of the organic phosphine include a first phosphine such as ethylphosphine and phenylphosphine, a second phosphine such as dimethylphosphine and diphenylphosphine, and a third phosphine such as trimethylphosphine, triethylphosphine, tributylphosphine, and triphenylphosphine.

前記テトラ置換ホスホニウム化合物としては、下記一般式(5)で表される化合物等が挙げられる。   Examples of the tetra-substituted phosphonium compound include compounds represented by the following general formula (5).

Figure 2008074941
(ただし、上記一般式(5)において、Pはリン原子を表す。R6、R7、R8及びR9は芳香族基、又はアルキル基を表す。Aはヒドロキシル基、カルボキシル基、チオール基から選ばれる官能基のいずれかを芳香環に少なくとも1つ有する芳香族有機酸のアニオンを表す。AHはヒドロキシル基、カルボキシル基、チオール基から選ばれる官能基のいずれかを芳香環に少なくとも1つ有する芳香族有機酸を表す。a、bは1ないし3の整数、cは0ないし3の整数であり、かつa=bである。)
Figure 2008074941
(However, in the said General formula (5), P represents a phosphorus atom. R6, R7, R8, and R9 represent an aromatic group or an alkyl group. A is a function chosen from a hydroxyl group, a carboxyl group, and a thiol group. An anion of an aromatic organic acid having at least one of the groups in the aromatic ring AH represents an aromatic organic having at least one functional group selected from a hydroxyl group, a carboxyl group, and a thiol group in the aromatic ring. Represents an acid, a and b are integers of 1 to 3, c is an integer of 0 to 3, and a = b.

前記一般式(5)で表される化合物は、例えば以下のようにして得られるがこれに限定されるものではない。まず、テトラ置換ホスホニウムハライドと芳香族有機酸と塩基を有機溶剤に混ぜ均一に混合し、その溶液系内に芳香族有機酸アニオンを発生させる。次いで水を加えると、前記一般式(5)で表される化合物を沈殿させることができる。前記一般式(5)で表される化合物において、リン原子に結合するR6、R7、R8及びR9がフェニル基であり、かつAHはヒドロキシル基を芳香環に有する化合物、すなわちフェノール類であり、かつAは該フェノール類のアニオンであるのが好ましい。   The compound represented by the general formula (5) is obtained as follows, for example, but is not limited thereto. First, a tetra-substituted phosphonium halide, an aromatic organic acid and a base are mixed in an organic solvent and mixed uniformly to generate an aromatic organic acid anion in the solution system. Subsequently, when water is added, the compound represented by the general formula (5) can be precipitated. In the compound represented by the general formula (5), R6, R7, R8 and R9 bonded to the phosphorus atom are phenyl groups, and AH is a compound having a hydroxyl group in an aromatic ring, that is, phenols, and A is preferably an anion of the phenol.

前記ホスホベタイン化合物としては、下記一般式(6)で表される化合物等が挙げられる。

Figure 2008074941
(ただし、上記一般式(6)において、Pはリン原子を表す。X1は水素又は炭素数1ないし3のアルキル基、Y1は水素又はヒドロキシル基を表す。m6、n6は1ないし3の整数。) Examples of the phosphobetaine compound include compounds represented by the following general formula (6).
Figure 2008074941
(However, in the said General formula (6), P represents a phosphorus atom. X1 represents hydrogen or a C1-C3 alkyl group, Y1 represents hydrogen or a hydroxyl group. M6 and n6 are integers of 1-3. )

前記一般式(6)で表される化合物は、例えば以下のようにして得られる。まず、第三ホスフィンであるトリ芳香族置換ホスフィンとジアゾニウム塩とを接触させ、前記トリ芳香族置換ホスフィンと前記ジアゾニウム塩が有するジアゾニウム基とを置換させる工程を経て得られる。しかしこれに限定されるものではない。   The compound represented by the general formula (6) is obtained, for example, as follows. First, it is obtained through a step of bringing a triaromatic substituted phosphine, which is a third phosphine, into contact with a diazonium salt and replacing the triaromatic substituted phosphine with a diazonium group of the diazonium salt. However, the present invention is not limited to this.

前記ホスフィン化合物とキノン化合物との付加物としては、下記一般式(7)で表される化合物等が挙げられる。

Figure 2008074941
(ただし、上記一般式(7)において、Pはリン原子を表す。R10、R11及びR12は炭素数1ないし12のアルキル基又は炭素数6ないし12のアリール基を表し、互いに同一であっても異なっていてもよい。R13、R14及びR15は水素原子又は炭素数1ないし12の炭化水素基を表し、互いに同一であっても異なっていてもよく、R13とR14が結合して環状構造となっていてもよい。) Examples of the adduct of the phosphine compound and the quinone compound include a compound represented by the following general formula (7).
Figure 2008074941
(In the above general formula (7), P represents a phosphorus atom. R10, R11 and R12 represent an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 12 carbon atoms, and may be the same as each other). R13, R14 and R15 each represents a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms and may be the same or different from each other, and R13 and R14 are bonded to form a cyclic structure. May be.)

前記ホスフィン化合物とキノン化合物との付加物に用いるホスフィン化合物としては、トリフェニルホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリナフチルホスフィン、トリス(ベンジル)ホスフィン等の芳香環に無置換あるいはアルキル基、アルコキシル基等の置換基が存在するものが好ましく、アルキル基、アルコキシル基の有機基としては1ないし6の炭素数を有するものが挙げられる。入手しやすさの観点からはトリフェニルホスフィンが好ましい。
また前記ホスフィン化合物とキノン化合物との付加物に用いるキノン化合物としては、o−ベンゾキノン、p−ベンゾキノン、アントラキノン類が挙げられ、中でもp−ベンゾキノンが保存安定性の点から好ましい。
前記ホスフィン化合物とキノン化合物との付加物の製造方法としては、有機第三ホスフィンとベンゾキノン類の両者が溶解することができる溶媒中で接触、混合させることにより付加物を得ることができる。溶媒としてはアセトンやメチルエチルケトン等のケトン類で付加物への溶解性が低いものがよい。しかしこれに限定されるものではない。
前記一般式(7)で表される化合物において、リン原子に結合するR10、R11及びR12がフェニル基であり、かつR13、R14及びR15が水素原子である化合物、すなわち1,4−ベンゾキノンとトリフェニルホスフィンを付加させた化合物がエポキシ樹脂組成物の硬化物熱時弾性率を低下させる点で好ましい。
Examples of the phosphine compound used for the adduct of the phosphine compound and the quinone compound include triphenylphosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, trinaphthylphosphine, and tris (benzyl) phosphine. Those having a substituent or a substituent such as an alkyl group or an alkoxyl group are preferred, and examples of the organic group of the alkyl group and the alkoxyl group include those having 1 to 6 carbon atoms. From the viewpoint of availability, triphenylphosphine is preferable.
Examples of the quinone compound used for the adduct of the phosphine compound and the quinone compound include o-benzoquinone, p-benzoquinone, and anthraquinones. Among them, p-benzoquinone is preferable from the viewpoint of storage stability.
As a method for producing the adduct of the phosphine compound and the quinone compound, the adduct can be obtained by contacting and mixing in a solvent in which both the organic tertiary phosphine and the benzoquinone can be dissolved. The solvent is preferably a ketone such as acetone or methyl ethyl ketone, which has low solubility in the adduct. However, the present invention is not limited to this.
In the compound represented by the general formula (7), R10, R11 and R12 bonded to the phosphorus atom are phenyl groups, and R13, R14 and R15 are hydrogen atoms, that is, 1,4-benzoquinone and tri A compound to which phenylphosphine is added is preferable in that the elastic modulus of the cured epoxy resin composition when heated is lowered.

前記ホスホニウム化合物とシラン化合物との付加物としては、下記一般式(8)で表される化合物等が挙げられる。

Figure 2008074941
(ただし、上記一般式(8)において、A1は窒素原子又はリン原子を表す。Siは珪素原子を表す。R16、R17、R18及びR19は、それぞれ、芳香環又は複素環を有する有機基、或いは脂肪族基を表し、互いに同一であっても異なっていてもよい。X2は、基Y2及びY3と結合する有機基である。X3は、基Y4及びY5と結合する有機基である。Y2及びY3は、プロトン供与性置換基がプロトンを放出してなる基であり、それらは互いに同一であっても異なっていてもよく、同一分子内の基Y2、及びY3が珪素原子と結合してキレート構造を形成するものである。Y4及びY5は、プロトン供与性置換基がプロトンを放出してなる基であり、同一分子内の基Y4及びY5が珪素原子と結合してキレート構造を形成するものである。X2、及びX3は互いに同一であっても異なっていてもよく、Y2、Y3、Y4、及びY5は互いに同一であっても異なっていてもよい。Z1は芳香環又は複素環を有する有機基或いは脂肪族基を表す。) Examples of the adduct of the phosphonium compound and the silane compound include compounds represented by the following general formula (8).
Figure 2008074941
(In the above general formula (8), A1 represents a nitrogen atom or a phosphorus atom. Si represents a silicon atom. R16, R17, R18 and R19 are each an organic group having an aromatic ring or a heterocyclic ring, or Represents an aliphatic group, which may be the same or different from each other, X2 represents an organic group bonded to the groups Y2 and Y3, and X3 represents an organic group bonded to the groups Y4 and Y5. Y3 is a group formed by releasing a proton from a proton-donating substituent, which may be the same or different from each other, and the groups Y2 and Y3 in the same molecule are bonded to a silicon atom to form a chelate. Y4 and Y5 are groups formed by proton-donating substituents releasing protons, and groups Y4 and Y5 in the same molecule are combined with a silicon atom to form a chelate structure. X2 and X3 may be the same or different from each other, and Y2, Y3, Y4 and Y5 may be the same or different from each other, and Z1 is an organic having an aromatic ring or a heterocyclic ring. Represents a group or an aliphatic group.)

前記一般式(8)において、R16、R17、R18及びR19としては、例えば、フェニル基、メチルフェニル基、メトキシフェニル基、ヒドロキシフェニル基、ナフチル基、ヒドロキシナフチル基、ベンジル基、メチル基、エチル基、n−ブチル基、n−オクチル基及びシクロヘキシル基等が挙げられ、これらの中でも、フェニル基、メチルフェニル基、メトキシフェニル基、ヒドロキシフェニル基、ヒドロキシナフチル基等の置換基を有する芳香族基もしくは無置換の芳香族基がより好ましい。
また、前記一般式(8)において、X2は、Y2及びY3と結合する有機基である。同様に、X3は、基Y4及びY5と結合する有機基である。Y2及びY3はプロトン供与性置換基がプロトンを放出してなる基であり、同一分子内の基Y2及びY3が珪素原子と結合してキレート構造を形成するものである。同様にY4及びY5はプロトン供与性置換基がプロトンを放出してなる基であり、同一分子内の基Y4及びY5が珪素原子と結合してキレート構造を形成するものである。基X2及びX3は互いに同一であっても異なっていてもよく、基Y2、Y3、Y4、及びY5は互いに同一であっても異なっていてもよい。
このような前記一般式(8)中の−Y2−X2−Y3−、及び−Y4−X3−Y5−で表される基は、プロトン供与体が、プロトンを2個放出してなる基で構成されるものであり、プロトン供与体としては、例えば、カテコール、ピロガロール、1,2−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン、2,2’−ビフェノール、1,1’−ビ−2−ナフトール、サリチル酸、1−ヒドロキシ−2−ナフトエ酸、3−ヒドロキシ−2−ナフトエ酸、クロラニル酸、タンニン酸、2−ヒドロキシベンジルアルコール、1,2−シクロヘキサンジオール、1,2−プロパンジオール及びグリセリン等が挙げられるが、これらの中でも、カテコール、1,2−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレンがより好ましい。
In the general formula (8), examples of R16, R17, R18, and R19 include phenyl group, methylphenyl group, methoxyphenyl group, hydroxyphenyl group, naphthyl group, hydroxynaphthyl group, benzyl group, methyl group, and ethyl group. , N-butyl group, n-octyl group, cyclohexyl group and the like, among these, an aromatic group having a substituent such as phenyl group, methylphenyl group, methoxyphenyl group, hydroxyphenyl group, hydroxynaphthyl group, or the like An unsubstituted aromatic group is more preferable.
Moreover, in the said General formula (8), X2 is an organic group couple | bonded with Y2 and Y3. Similarly, X3 is an organic group bonded to the groups Y4 and Y5. Y2 and Y3 are groups formed by proton-donating substituents releasing protons, and groups Y2 and Y3 in the same molecule are bonded to a silicon atom to form a chelate structure. Similarly, Y4 and Y5 are groups formed by proton-donating substituents releasing protons, and groups Y4 and Y5 in the same molecule are combined with a silicon atom to form a chelate structure. The groups X2 and X3 may be the same or different from each other, and the groups Y2, Y3, Y4, and Y5 may be the same or different from each other.
Such groups represented by -Y2-X2-Y3- and -Y4-X3-Y5- in the general formula (8) are constituted by a group in which a proton donor releases two protons. Examples of proton donors include catechol, pyrogallol, 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,2′-biphenol, 1,1′-bi-2-naphthol, Salicylic acid, 1-hydroxy-2-naphthoic acid, 3-hydroxy-2-naphthoic acid, chloranilic acid, tannic acid, 2-hydroxybenzyl alcohol, 1,2-cyclohexanediol, 1,2-propanediol, glycerin, etc. Among these, catechol, 1,2-dihydroxynaphthalene, and 2,3-dihydroxynaphthalene are more preferable.

また、一般式(8)中のZ1は、芳香環または複素環を有する有機基または脂肪族基を表し、これらの具体的な例としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基およびオクチル基等の脂肪族炭化水素基や、フェニル基、ベンジル基、ナフチル基およびビフェニル基等の芳香族炭化水素基、グリシジルオキシプロピル基、メルカプトプロピル基、アミノプロピル基およびビニル基等の反応性置換基などが挙げられるが、これらの中でも、メチル基、エチル基、フェニル基、ナフチル基およびビフェニル基が熱安定性の面からより好ましい。   Z1 in the general formula (8) represents an organic group or an aliphatic group having an aromatic ring or a heterocyclic ring. Specific examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, and a hexyl group. Reactions of aliphatic hydrocarbon groups such as octyl and octyl groups, aromatic hydrocarbon groups such as phenyl, benzyl, naphthyl and biphenyl, glycidyloxypropyl, mercaptopropyl, aminopropyl and vinyl Among them, a methyl group, an ethyl group, a phenyl group, a naphthyl group, and a biphenyl group are more preferable from the viewpoint of thermal stability.

前記ホスホニウム化合物とシラン化合物との付加物の製造方法としては、メタノールを入れたフラスコに、フェニルトリメトキシシラン等のシラン化合物、2,3−ジヒドロキシナフタレン等の2価以上のプロトン供与体を加えて溶かし、次に室温攪拌下ナトリウムメトキシド−メタノール溶液を滴下する。さらにそこへ予め用意したテトラフェニルホスホニウムブロマイド等のテトラ置換ホスホニウムハライドをメタノールに溶かした溶液を室温攪拌下滴下すると結晶が析出する。析出した結晶を濾過、水洗、真空乾燥すると、ホスホニウム化合物とシラン化合物との付加物が得られる。しかし、これに限定されるものではない。   As a method for producing an adduct of the phosphonium compound and the silane compound, a silane compound such as phenyltrimethoxysilane and a bivalent or higher proton donor such as 2,3-dihydroxynaphthalene are added to a flask containing methanol. Then, sodium methoxide-methanol solution is added dropwise with stirring at room temperature. Furthermore, when a solution prepared by dissolving a tetra-substituted phosphonium halide such as tetraphenylphosphonium bromide in methanol in methanol is added dropwise with stirring at room temperature, crystals are precipitated. The precipitated crystals are filtered, washed with water, and vacuum dried to obtain an adduct of a phosphonium compound and a silane compound. However, it is not limited to this.

本発明に用いる硬化促進剤(D)の配合量は、全エポキシ樹脂組成物中0.1重量%以上、1重量%以下が好ましい。硬化促進剤(D)の配合量が上記範囲内であると、硬化性の低下を引き起こす恐れが少ない。また、硬化促進剤(D)の配合量が上記範囲内であると、流動性の低下を引き起こす恐れが少ない。   As for the compounding quantity of the hardening accelerator (D) used for this invention, 0.1 to 1 weight% is preferable in all the epoxy resin compositions. There is little possibility of causing curability fall that the compounding quantity of a hardening accelerator (D) exists in the said range. Moreover, there is little possibility of causing a fluid fall as the compounding quantity of a hardening accelerator (D) exists in the said range.

本発明に用いることができるシランカップリング剤(E)は、エポキシシラン、アミノシラン、ウレイドシラン、メルカプトシラン等が好ましいが、特にこれらに限定されず、エポキシ樹脂と無機充填剤との間で反応し、エポキシ樹脂と無機充填剤の界面強度を向上させるものであればよい。また、後述する芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(F)(以下、「化合物(F)」とも称する。)は、当該シランカップリング剤(E)との相乗効果により、エポキシ樹脂組成物の粘度を下げ、流動性を向上させる効果を有するため、シランカップリング剤(E)は化合物(F)の効果を充分に得るためにも有効である。エポキシシランとしては、例えば、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、β−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられ、アミノシランとしては、例えば、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−フェニルγ−アミノプロピルトリエトキシシラン、N−フェニルγ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリエトキシシラン、N−6−(アミノヘキシル)3−アミノプロピルトリメトキシシラン、N−(3−(トリメトキシシリルプロピル)−1,3−ベンゼンジメタナン等が挙げられ、ウレイドシランとしては、例えば、γ−ウレイドプロピルトリエトキシシラン、ヘキサメチルジシラザン等が挙げられ、メルカプトシランとしては、例えば、γ−メルカプトプロピルトリメトキシシラン等が挙げられる。これらのシランカップリング剤(E)は1種類を単独で用いても2種類以上を併用してもよい。本発明に用いることができるシランカップリング剤(E)の配合量は、全エポキシ樹脂組成物中0.01重量%以上、1重量%以下が好ましく、より好ましくは0.05重量%以上、0.8重量%以下、特に好ましくは0.1重量%以上、0.6重量%以下である。シランカップリング剤(E)の配合量が上記範囲内であると、化合物(F)との相乗効果により、エポキシ樹脂組成物の充分な低粘度化と流動性向上効果を得ることができる。また、シランカップリング剤(E)の配合量が上記範囲内であれば、エポキシ樹脂と無機充填剤との界面強度が低下することによる半導体装置における耐半田性の低下を引き起こす恐れが少ない。また、シランカップリング剤(E)の配合量が上記範囲内であれば、エポキシ樹脂組成物の硬化物の吸水性が増大することによる耐半田性の低下も引き起こす恐れが少ない。   The silane coupling agent (E) that can be used in the present invention is preferably epoxy silane, amino silane, ureido silane, mercapto silane, etc., but is not particularly limited thereto, and reacts between the epoxy resin and the inorganic filler. Any material that improves the interface strength between the epoxy resin and the inorganic filler may be used. Further, the compound (F) (hereinafter also referred to as “compound (F)”) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting an aromatic ring described later is the silane coupling agent (E). Therefore, the silane coupling agent (E) is also effective for obtaining the effect of the compound (F) sufficiently because it has the effect of lowering the viscosity of the epoxy resin composition and improving the fluidity. Examples of the epoxy silane include γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, β- (3,4 epoxycyclohexyl) ethyltrimethoxysilane. Examples of aminosilanes include γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, and N-β (aminoethyl) γ. -Aminopropylmethyldimethoxysilane, N-phenylγ-aminopropyltriethoxysilane, N-phenylγ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltriethoxysilane, N-6- (amino (Hexyl) 3-aminopropyl Examples include trimethoxysilane and N- (3- (trimethoxysilylpropyl) -1,3-benzenedimethanane. Examples of ureidosilane include γ-ureidopropyltriethoxysilane and hexamethyldisilazane. Examples of the mercaptosilane include γ-mercaptopropyltrimethoxysilane, etc. These silane coupling agents (E) may be used alone or in combination of two or more. The amount of the silane coupling agent (E) that can be used in the present invention is preferably 0.01% by weight or more and 1% by weight or less, more preferably 0.05% by weight or more, 0% in the total epoxy resin composition. 0.8 wt% or less, particularly preferably 0.1 wt% or more and 0.6 wt% or less, and the blending amount of the silane coupling agent (E) is in the above range. When the content of the silane coupling agent (E) is within the range, a sufficient viscosity reduction and fluidity improvement effect of the epoxy resin composition can be obtained due to a synergistic effect with the compound (F). If it is within the range, there is little risk of causing a decrease in solder resistance in the semiconductor device due to a decrease in the interface strength between the epoxy resin and the inorganic filler, and the amount of the silane coupling agent (E) is within the above range. If it is inside, there is little possibility of causing the fall of solder resistance by the water absorption of the hardened | cured material of an epoxy resin composition increasing.

本発明に用いることができる芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(F)(以下、「化合物(F)」とも称する。)は、これを用いることにより、エポキシ樹脂組成物の溶融粘度を下げ、流動性を向上させる効果を有するものである。化合物(F)としては、下記一般式(10)で表される単環式化合物又は下記一般式(11)で表される多環式化合物等を用いることができ、これらの化合物は水酸基以外の置換基を有していてもよい。   A compound (F) (hereinafter also referred to as “compound (F)”) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting an aromatic ring that can be used in the present invention is used. It has the effect of lowering the melt viscosity of the epoxy resin composition and improving fluidity. As the compound (F), a monocyclic compound represented by the following general formula (10) or a polycyclic compound represented by the following general formula (11) can be used. It may have a substituent.

Figure 2008074941
(ただし、上記一般式(10)において、R20、R24はどちらか一方が水酸基であり、片方が水酸基のとき他方は水素、水酸基又は水酸基以外の置換基である。R21、R22、及びR23は水素、水酸基又は水酸基以外の置換基である。)
Figure 2008074941
(However, in the general formula (10), one of R20 and R24 is a hydroxyl group, and when one is a hydroxyl group, the other is hydrogen, a hydroxyl group or a substituent other than a hydroxyl group. R21, R22, and R23 are hydrogen. , A hydroxyl group or a substituent other than a hydroxyl group.)

Figure 2008074941
(ただし、上記一般式(11)において、R25、R31はどちらか一方が水酸基であり、片方が水酸基のとき他方は水素、水酸基又は水酸基以外の置換基である。R26、R27、R28、R29、及びR30は水素、水酸基又は水酸基以外の置換基である。)
Figure 2008074941
(However, in the general formula (11), one of R25 and R31 is a hydroxyl group, and when one is a hydroxyl group, the other is hydrogen, a hydroxyl group or a substituent other than a hydroxyl group. R26, R27, R28, R29, And R30 is hydrogen, a hydroxyl group or a substituent other than a hydroxyl group.)

前記一般式(10)で表される単環式化合物の具体例として、例えば、カテコール、ピロガロール、没食子酸、没食子酸エステル又はこれらの誘導体が挙げられる。また、前記一般式(11)で表される多環式化合物の具体例として、例えば、1,2−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン及びこれらの誘導体が挙げられる。これらのうち、流動性と硬化性の制御のしやすさから、芳香環を構成する2個の隣接する炭素原子にそれぞれ水酸基が結合した化合物が好ましい。また、混練工程での揮発を考慮した場合、母核は低揮発性で秤量安定性の高いナフタレン環である化合物とすることがより好ましい。この場合、化合物(F)を、具体的には、例えば、1,2−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン及びその誘導体等のナフタレン環を有する化合物とすることができる。これらの化合物(F)は1種類を単独で用いても2種以上を併用してもよい。   Specific examples of the monocyclic compound represented by the general formula (10) include catechol, pyrogallol, gallic acid, gallic acid ester, and derivatives thereof. Specific examples of the polycyclic compound represented by the general formula (11) include 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, and derivatives thereof. Among these, a compound in which a hydroxyl group is bonded to each of two adjacent carbon atoms constituting an aromatic ring is preferable because of easy control of fluidity and curability. In consideration of volatilization in the kneading step, it is more preferable that the mother nucleus is a compound having a low volatility and a highly stable weighing naphthalene ring. In this case, specifically, the compound (F) can be a compound having a naphthalene ring such as 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene and derivatives thereof. These compounds (F) may be used individually by 1 type, or may use 2 or more types together.

かかる化合物(F)の配合量は、全エポキシ樹脂組成物中に0.01重量%以上、1重量%以下であることが好ましく、より好ましくは0.03重量%以上、0.8重量%以下、特に好ましくは0.05重量%以上、0.5重量%以下である。化合物(F)の配合量が上記範囲内であると、シランカップリング剤(E)との相乗効果により、エポキシ樹脂組成物の充分な低粘度化と流動性向上効果を得ることができる。また、化合物(F)の配合量が上記範囲内であると、エポキシ樹脂組成物の硬化性の低下や硬化物物性の低下を引き起こす恐れが少ない。   The compounding amount of the compound (F) is preferably 0.01% by weight or more and 1% by weight or less, more preferably 0.03% by weight or more and 0.8% by weight or less in the total epoxy resin composition. Particularly preferably, it is 0.05% by weight or more and 0.5% by weight or less. When the compounding amount of the compound (F) is within the above range, a sufficient viscosity reduction and fluidity improvement effect of the epoxy resin composition can be obtained due to a synergistic effect with the silane coupling agent (E). Moreover, there is little possibility of causing the fall of sclerosis | hardenability of an epoxy resin composition, and the fall of physical property of hardened | cured material as the compounding quantity of a compound (F) is in the said range.

本発明のエポキシ樹脂組成物は、(A)ないし(F)成分を主成分とするが、更にこれ以外に必要に応じて、カルナバワックス等の天然ワックス、ポリエチレンワックス等の合成ワックス、ステアリン酸やステアリン酸亜鉛等の高級脂肪酸及びその金属塩類若しくはパラフィン等の離型剤;カーボンブラック、ベンガラ等の着色剤;シリコーンオイル、シリコーンゴム等の低応力添加剤;酸化ビスマス水和物等の無機イオン交換体;水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物、硼酸亜鉛、モリブデン酸亜鉛、フォスファゼン等の難燃剤;等の添加剤を適宜配合してもよい。   The epoxy resin composition of the present invention has the components (A) to (F) as main components, but in addition to this, natural wax such as carnauba wax, synthetic wax such as polyethylene wax, stearic acid, Release agents such as higher fatty acids such as zinc stearate and its metal salts or paraffin; Colorants such as carbon black and Bengala; Low stress additives such as silicone oil and silicone rubber; Inorganic ion exchange such as bismuth oxide hydrate An additive such as a metal hydroxide such as aluminum hydroxide and magnesium hydroxide, a flame retardant such as zinc borate, zinc molybdate, and phosphazene may be appropriately blended.

本発明の半導体封止用樹脂組成物は、(A)ないし(F)成分及びその他の添加剤等を、例えば、ミキサー等を用いて常温で均一に混合したもの、更にその後、加熱ロール、ニーダー又は押出機等の混練機を用いて溶融混練し、続いて冷却、粉砕したものなど、必要に応じて適宜分散度や流動性等を調整したものを用いることができる。   The resin composition for semiconductor encapsulation of the present invention is obtained by mixing the components (A) to (F) and other additives uniformly at room temperature using, for example, a mixer, and then heating roll, kneader Or what knead | mixed and kneaded using kneading machines, such as an extruder, and cooled and grind | pulverized subsequently, etc., what adjusted dispersion degree, fluidity | liquidity, etc. suitably can be used as needed.

本発明のエポキシ樹脂組成物の硬化物により半導体素子を封止し半導体装置を製造するには、例えば、該半導体素子を搭載したリードフレーム等を金型キャビティ内に設置した後、該エポキシ樹脂組成物をトランスファーモールド、コンプレッションモールド、インジェクションモールド等の成形方法で成形硬化すればよい。   To manufacture a semiconductor device by sealing a semiconductor element with a cured product of the epoxy resin composition of the present invention, for example, after installing a lead frame or the like on which the semiconductor element is mounted in a mold cavity, the epoxy resin composition What is necessary is just to shape-harden a thing with shaping | molding methods, such as a transfer mold, a compression mold, and an injection mold.

本発明で封止を行う半導体素子としては、特に限定されるものではなく、例えば、集積回路、大規模集積回路、トランジスタ、サイリスタ、ダイオード、固体撮像素子等が挙げられる。
本発明の半導体装置の形態としては、特に限定されないが、例えば、デュアル・インライン・パッケージ(DIP)、プラスチック・リード付きチップ・キャリヤ(PLCC)、クワッド・フラット・パッケージ(QFP)、スモール・アウトライン・パッケージ(SOP)、スモール・アウトライン・Jリード・パッケージ(SOJ)、薄型スモール・アウトライン・パッケージ(TSOP)、薄型クワッド・フラット・パッケージ(TQFP)、テープ・キャリア・パッケージ(TCP)、ボール・グリッド・アレイ(BGA)、チップ・サイズ・パッケージ(CSP)等が挙げられる。
上記トランスファーモールドなどの成形方法で封止された半導体装置は、そのまま、或いは80℃から200℃程度の温度で、10分から10時間程度の時間をかけて完全硬化させた後、電子機器等に搭載される。
The semiconductor element that performs sealing in the present invention is not particularly limited, and examples thereof include an integrated circuit, a large-scale integrated circuit, a transistor, a thyristor, a diode, and a solid-state imaging element.
The form of the semiconductor device of the present invention is not particularly limited. For example, the dual in-line package (DIP), the plastic lead chip carrier (PLCC), the quad flat package (QFP), the small outline, and the like. Package (SOP), Small Outline J Lead Package (SOJ), Thin Small Outline Package (TSOP), Thin Quad Flat Package (TQFP), Tape Carrier Package (TCP), Ball Grid Examples include an array (BGA), a chip size package (CSP), and the like.
A semiconductor device sealed by a molding method such as the above transfer mold is mounted on an electronic device or the like as it is or after being completely cured at a temperature of about 80 ° C. to 200 ° C. for about 10 minutes to 10 hours. Is done.

図1は、本発明に係るエポキシ樹脂組成物を用いた半導体装置の一例について、断面構造を示した図である。ダイパッド3上に、ダイボンド材硬化体2を介して半導体素子1が固定されている。半導体素子1の電極パッドとリードフレーム5との間は金線4によって接続されている。半導体素子1は、封止用樹脂組成物の硬化体6によって封止されている。   FIG. 1 is a view showing a cross-sectional structure of an example of a semiconductor device using the epoxy resin composition according to the present invention. The semiconductor element 1 is fixed on the die pad 3 via the die bond material cured body 2. The electrode pad of the semiconductor element 1 and the lead frame 5 are connected by a gold wire 4. The semiconductor element 1 is sealed with a cured body 6 of a sealing resin composition.

図2は、本発明に係るエポキシ樹脂組成物を用いた片面封止型の半導体装置の一例について、断面構造を示した図である。基板8上にダイボンド材硬化体2を介して半導体素子1が固定されている。半導体素子1の電極パッドと基板8上の電極パッドとの間は金線4によって接続されている。封止用樹脂組成物の硬化体6によって、基板8の半導体素子1が搭載された片面側のみが封止されている。基板8上の電極パッドは基板8上の非封止面側の半田ボール9と内部で接合されている。   FIG. 2 is a diagram showing a cross-sectional structure of an example of a single-side sealed semiconductor device using the epoxy resin composition according to the present invention. The semiconductor element 1 is fixed on the substrate 8 through the die bond material cured body 2. The electrode pad of the semiconductor element 1 and the electrode pad on the substrate 8 are connected by a gold wire 4. Only the single side | surface side in which the semiconductor element 1 of the board | substrate 8 was mounted is sealed by the hardening body 6 of the resin composition for sealing. The electrode pads on the substrate 8 are bonded to the solder balls 9 on the non-sealing surface side on the substrate 8 inside.

以下、本発明を実施例にて具体的に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。配合割合は重量部とする。
<リードフレーム用封止材の評価>
実施例1
EXAMPLES Hereinafter, although this invention is demonstrated concretely in an Example, this invention is not limited at all by these Examples. The blending ratio is parts by weight.
<Evaluation of encapsulant for lead frame>
Example 1

エポキシ樹脂1:下記式(9)で表されるエポキシ樹脂(大日本インキ化学工業株式会社製、EXA−7310。エポキシ当量240、軟化点55℃。下記式(9)においてn9は0ないし5の整数で、その平均値は1.2。) 6.94重量部

Figure 2008074941
Epoxy resin 1: Epoxy resin represented by the following formula (9) (Dai Nippon Ink Chemical Co., Ltd., EXA-7310. Epoxy equivalent 240, softening point 55 ° C. In the following formula (9), n9 is 0-5. An integer, the average value is 1.2.) 6.94 parts by weight
Figure 2008074941

硬化剤1:下記式(12)で表される化合物(明和化成製、MEH−7851SS。水酸基当量203、軟化点66℃。一般式(2)において−R2−:ビフェニレン基、−R3(OH)−:ヒドロキシフェニレン基、k2:0、m2:0。下記式(12)におけるn12の平均値:1.5。) 5.86重量部

Figure 2008074941
溶融球状シリカ(平均粒径30μm) 86.00重量部
硬化促進剤1:トリフェニルホスフィン 0.20重量部
シランカップリング剤1:γ−グリシドキシプロピルトリメトキシシラン
0.30重量部
2,3−ジヒドロキシナフタレン 0.20重量部
カルナバワックス 0.20重量部
カーボンブラック 0.30重量部
をミキサーにて常温混合し、80℃以上、100℃以下の加熱ロールで溶融混練し、冷却後粉砕し、エポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を用いて以下の方法で評価した。評価結果を表1に示す。 Curing agent 1: Compound represented by the following formula (12) (Maywa Kasei Co., Ltd., MEH-7851SS. Hydroxyl equivalent: 203, softening point: 66 ° C. In the general formula (2): -R2-: biphenylene group, -R3 (OH) -: Hydroxyphenylene group, k2: 0, m2: 0, average value of n12 in the following formula (12): 1.5.) 5.86 parts by weight
Figure 2008074941
Fused spherical silica (average particle size 30 μm) 86.00 parts by weight Curing accelerator 1: 0.20 parts by weight of triphenylphosphine Silane coupling agent 1: γ-glycidoxypropyltrimethoxysilane
0.30 parts by weight 2,3-dihydroxynaphthalene 0.20 parts by weight Carnauba wax 0.20 parts by weight Carbon black 0.30 parts by weight is mixed at room temperature with a mixer and melted with a heating roll at 80 ° C. or higher and 100 ° C. or lower. The mixture was kneaded, cooled and pulverized to obtain an epoxy resin composition. It evaluated by the following method using the obtained epoxy resin composition. The evaluation results are shown in Table 1.

・スパイラルフロー:低圧トランスファー成形機(コータキ精機株式会社製、KTS−15)を用いて、EMMI−1−66に準じたスパイラルフロー測定用金型に、金型温度175℃、注入圧力6.9MPa、保圧時間120秒の条件で、エポキシ樹脂組成物を注入し、流動長を測定した。スパイラルフローは、流動性のパラメータであり、数値が大きい方が、流動性が良好である。単位はcm。 -Spiral flow: Using a low-pressure transfer molding machine (KTS-15, manufactured by Kotaki Seiki Co., Ltd.), a mold for spiral flow measurement conforming to EMMI-1-66, mold temperature 175 ° C, injection pressure 6.9 MPa The epoxy resin composition was injected under the condition of a holding time of 120 seconds, and the flow length was measured. The spiral flow is a fluidity parameter, and the larger the value, the better the fluidity. The unit is cm.

・吸湿率:低圧トランスファー成形機(コータキ精機株式会社製、KTS−30)を用いて、金型温度175℃、注入圧力7.4MP、硬化時間120秒の条件で、エポキシ樹脂組成物を注入成形して直径50mm、厚さ3mmの試験片を作製し、175℃、8時間で後硬化した。その後、得られた試験片を85℃、相対湿度85℃の環境下で168時間加湿処理し、加湿処理前後の重量変化を測定し吸湿率を求めた。単位は重量%。 -Moisture absorption rate: An epoxy resin composition is injection-molded using a low-pressure transfer molding machine (KTS-30, manufactured by Kotaki Seiki Co., Ltd.) at a mold temperature of 175 ° C, an injection pressure of 7.4 MP, and a curing time of 120 seconds. A test piece having a diameter of 50 mm and a thickness of 3 mm was prepared and post-cured at 175 ° C. for 8 hours. Thereafter, the obtained test piece was humidified for 168 hours in an environment of 85 ° C. and a relative humidity of 85 ° C., and the weight change before and after the humidification treatment was measured to obtain the moisture absorption rate. The unit is% by weight.

・耐燃性:低圧トランスファー成形機(コータキ精機株式会社製、KTS−30)を用いて、金型温度175℃、注入圧力9.8MPa、注入時間15秒、硬化時間120秒の条件で、エポキシ樹脂組成物を注入成形して3.2mm厚の耐燃試験片を作製した。作製した試験片を用いて、UL94垂直法の規格に則り耐燃試験を行い、耐燃性を判断した。表には、判定後の耐燃ランクを示した。 Flame resistance: Epoxy resin using a low-pressure transfer molding machine (KTS-30, KTS-30) under conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, an injection time of 15 seconds, and a curing time of 120 seconds. The composition was injection molded to produce a 3.2 mm thick flame resistant test piece. Using the prepared test piece, a flame resistance test was performed in accordance with the standard of the UL94 vertical method to determine the flame resistance. The table shows the fire resistance rank after the determination.

・耐半田性1:低圧トランスファー成形機(第一精工製、GP−ELF)を用いて、金型温度180℃、注入圧力7.4MPa、硬化時間120秒の条件で、エポキシ樹脂組成物を注入してシリコンチップが搭載されたリードフレーム等を封止成形し、80ピンのクワッド・フラット・パッケージ(80pQFP;Cu製リードフレーム、パッケージサイズは14×20mm×厚さ2.0mm、シリコンチップサイズは7×7mm×厚さ0.35mm、チップと回路基板のボンディングパッドとは25μm径の金線でボンディングされている。)を作製した。ポストキュアとして175℃で4時間加熱処理したパッケージ6個を、85℃、相対湿度60%で168時間加湿処理した後、IRリフロー処理(260℃、JEDEC・Le1el2条件に従う)を行った。処理後のパッケージ内部の剥離、及びクラックの有無を超音波傷機(日立建機ファインテック製、mi−scope10)で観察し、剥離又はクラックのいずれか一方でも発生したものを不良とした。不良パッケージの個数がn個であるとき、n/6と表示した。 Solder resistance 1: An epoxy resin composition was injected using a low-pressure transfer molding machine (Daiichi Seiko, GP-ELF) under conditions of a mold temperature of 180 ° C., an injection pressure of 7.4 MPa, and a curing time of 120 seconds. Then, the lead frame on which the silicon chip is mounted is sealed and molded, and an 80-pin quad flat package (80pQFP; Cu lead frame, package size is 14 × 20mm × thickness 2.0mm, silicon chip size is 7 × 7 mm × thickness 0.35 mm, and the bonding pad of the chip and the circuit board is bonded with a gold wire with a diameter of 25 μm). Six packages heat treated at 175 ° C. for 4 hours as post-cure were humidified for 168 hours at 85 ° C. and 60% relative humidity, and then IR reflow treatment (260 ° C., according to JEDEC / Le1el2 conditions) was performed. The inside of the package after the treatment and the presence or absence of cracks were observed with an ultrasonic scratcher (manufactured by Hitachi Construction Machinery Finetech, mi-scope 10), and any one of the peeling or cracking was regarded as defective. When the number of defective packages is n, n / 6 is displayed.

・ガラス転移温度(Tg):低圧トランスファー成形機(コータキ精機株式会社製、KTS−30)を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件で、エポキシ樹脂組成物を注入成形して試験片(幅2mm×長さ30mm×厚さ1.0mm)を作製し、175℃、4時間で後硬化したものを用いた。測定には、動的粘弾性測定装置(オリエンテック社製、RHEOVIVRON DDV−25FP)を用い5℃/分の割合で昇温しながら、周波数10Hzの歪みを与えて動的粘弾性の測定を行い、tanδのピーク値からガラス転移温度(Tg)を判定した。 Glass transition temperature (Tg): Epoxy resin composition using a low-pressure transfer molding machine (KTS-30, manufactured by Kotaki Seiki Co., Ltd.) under conditions of a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds. A test piece (width 2 mm × length 30 mm × thickness 1.0 mm) was prepared by injection molding, and post-cured at 175 ° C. for 4 hours. For the measurement, a dynamic viscoelasticity measurement device (Orientec Co., Ltd., RHEOVIVRON DDV-25FP) is used to measure the dynamic viscoelasticity by applying a strain of a frequency of 10 Hz while raising the temperature at a rate of 5 ° C / min. The glass transition temperature (Tg) was determined from the peak value of tan δ.

・高温保管特性:アルミニウムパッドを形成したTEGチップ(チップサイズ:3.5×3.5mm)を、42アロイ製の16ピンのスモール・アウトライン・パッケージ(16pSOP)用リードフレームに接着し、前記アルミニウムパッドと前記リードフレームとを回路とワイヤーとが一本の線で繋がったデージーチェーンになるようにワイヤーボンディングしたTEGチップ搭載リードフレームを予め準備し、低圧トランスファー成形機(コータキ精機株式会社製、KTS−125)を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間120秒の条件で、前記TEGチップ搭載リードフレームをエポキシ樹脂組成物により封止成形して、テストパッケージを作製した。得られたパッケージを、175℃、8時間で後硬化した後、高温保管試験(185℃、電圧の印加無し)を行い、配線間の電気抵抗値が初期値に対して20%以上増加したパッケージを不良と判定し、不良になるまでの時間を測定した。配線間の電気抵抗値の測定間隔は1週間に1回。不良時間はn=4ヶの平均値。単位は時間。 -High temperature storage characteristics: TEG chip (chip size: 3.5 x 3.5 mm) with aluminum pad formed is bonded to a lead frame for 42 alloy 16-pin small outline package (16pSOP). Prepare a TEG chip mounting lead frame in which the pad and the lead frame are wire-bonded to form a daisy chain in which the circuit and the wire are connected by a single wire, and a low-pressure transfer molding machine (KTS, manufactured by Kotaki Seiki Co., Ltd.) -125), the TEG chip mounted lead frame was encapsulated with an epoxy resin composition under conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 120 seconds to prepare a test package. . The resulting package was post-cured at 175 ° C. for 8 hours, and then subjected to a high-temperature storage test (185 ° C., no voltage applied), and the electrical resistance value between the wirings increased by 20% or more relative to the initial value. Was determined to be defective, and the time until failure was measured. The measurement interval of electrical resistance between wiring is once a week. The defective time is an average value of n = 4 pieces. The unit is time.

実施例2ないし17、比較例1ないし3
表1、2の配合に従い、実施例1と同様にしてエポキシ樹脂組成物を製造し、実施例1と同様にして評価した。評価結果を表1、2に示す。
実施例1以外で用いた成分について、以下に示す。
エポキシ樹脂2:ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂(日本化薬(株)製、NC−3000、エポキシ当量274、軟化点58℃)
エポキシ樹脂3:クレゾールノボラック型エポキシ樹脂(エポキシ当量196、軟化点60℃。)
エポキシ樹脂4:ビフェニル型結晶性エポキシ樹脂(ジャパンエポキシレジン(株)製、YX4000K。エポキシ当量185、融点105℃。)
硬化剤3:フェニレン骨格を有するフェノールアラルキル樹脂(三井化学株式会社製、XLC−4L。水酸基当量165、軟化点65℃。一般式(2)において−R2−:フェニレン基、−R3(OH)−:ヒドロキシフェニレン基、k2:0、m2:0、n2の平均値:3.5。)
硬化剤4:フェノールノボラック樹脂(住友ベークライト製、PR−HF−3。水酸基当量104、軟化点80℃。)
硬化促進剤2:1,8−ジアザビシクロ(5,4,0)ウンデセン−7
硬化促進剤3:下記式(13)で表される硬化促進剤
Examples 2 to 17, Comparative Examples 1 to 3
According to the composition of Tables 1 and 2, an epoxy resin composition was produced in the same manner as in Example 1, and evaluated in the same manner as in Example 1. The evaluation results are shown in Tables 1 and 2.
Components used in Examples other than Example 1 are shown below.
Epoxy resin 2: phenol aralkyl type epoxy resin having a biphenylene skeleton (manufactured by Nippon Kayaku Co., Ltd., NC-3000, epoxy equivalent 274, softening point 58 ° C.)
Epoxy resin 3: cresol novolac type epoxy resin (epoxy equivalent 196, softening point 60 ° C.)
Epoxy resin 4: Biphenyl type crystalline epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., YX4000K. Epoxy equivalent 185, melting point 105 ° C.)
Curing agent 3: Phenol aralkyl resin having a phenylene skeleton (Mitsui Chemical Co., Ltd., XLC-4L. Hydroxyl equivalent 165, softening point 65 ° C. In the general formula (2) -R2-: phenylene group, -R3 (OH)- : Hydroxyphenylene group, k2: 0, m2: 0, average value of n2: 3.5.)
Curing agent 4: Phenol novolac resin (manufactured by Sumitomo Bakelite, PR-HF-3, hydroxyl equivalent 104, softening point 80 ° C.)
Curing accelerator 2: 1,8-diazabicyclo (5,4,0) undecene-7
Curing accelerator 3: Curing accelerator represented by the following formula (13)

Figure 2008074941
硬化促進剤4:下記式(14)で表される硬化促進剤
Figure 2008074941
Curing accelerator 4: Curing accelerator represented by the following formula (14)

Figure 2008074941
硬化促進剤5:下記式(15)で表される硬化促進剤
Figure 2008074941
Figure 2008074941
Curing accelerator 5: Curing accelerator represented by the following formula (15)
Figure 2008074941

硬化促進剤6:下記式(16)で表される硬化促進剤

Figure 2008074941
Curing accelerator 6: Curing accelerator represented by the following formula (16)
Figure 2008074941

シランカップリング剤2:γ−メルカプトプロピルトリメトキシシラン
1,2−ジヒドロキシナフタレン
カテコール
ピロガロール
Silane coupling agent 2: γ-mercaptopropyltrimethoxysilane 1,2-dihydroxynaphthalene catechol pyrogallol

Figure 2008074941
Figure 2008074941

Figure 2008074941
Figure 2008074941

実施例1ないし17は、エポキシ樹脂として一般式(1)で表されるエポキシ樹脂(A)を用いたものであり、エポキシ樹脂(A)の配合割合、フェノール性水酸基を2個以上含む化合物(B)の種類と配合割合、無機充填剤(C)の配合割合、硬化促進剤(D)の種類、シランカップリング剤(E)の種類と配合割合、並びに芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(F)の種類と配合割合を変えたものを含むものであるが、いずれも、良好な流動性(スパイラルフロー)、吸湿率、耐燃性及び耐半田性を示し、かつ高いTg、良好な高温保管特性が得られた。   In Examples 1 to 17, the epoxy resin (A) represented by the general formula (1) is used as an epoxy resin, the compounding ratio of the epoxy resin (A), a compound containing two or more phenolic hydroxyl groups ( B) type and mixing ratio, inorganic filler (C) mixing ratio, curing accelerator (D) type, silane coupling agent (E) type and mixing ratio, and two or more constituting the aromatic ring These include compounds with different types and blending ratios of compounds (F) in which hydroxyl groups are bonded to adjacent carbon atoms, all of which have good fluidity (spiral flow), moisture absorption, flame resistance and solder resistance. As shown, high Tg and good high temperature storage characteristics were obtained.

一方、エポキシ樹脂としてクレゾールノボラック型エポキシ樹脂を用い、フェノール性水酸基を2個以上含む化合物(B)としてフェノールノボラック樹脂を用いた比較例1では、高いTg、良好な高温保管特性が得られたものの、吸湿率、耐燃性及び耐半田性が劣る結果となった。また、エポキシ樹脂としてビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂を用いた点のみが実施例1と異なる比較例2は、吸湿率、耐燃性及び耐半田性では良好な結果が得られたものの、実施例1に比べTgは低く、高温保管特性も劣る結果となった。さらに、エポキシ樹脂として低粘度な結晶性ビフェニル型エポキシ樹脂を用い、フェノール性水酸基を2個以上含む化合物(B)としてフェノールアラルキル樹脂を用いた比較例3では、エポキシ樹脂組成物が低粘度であるため無機充填剤を多く配合することが可能で、それ故吸湿率が低くなっているが、Tgは低く、高温保管特性も劣る結果となり、且つ耐燃性及び耐半田性も不充分な結果となった。
以上の結果から、実施例1ないし17は、耐燃性、耐半田性に優れ、かつ高Tgで、高温保管特性も良好となることが分かった。
On the other hand, in Comparative Example 1 using a cresol novolac type epoxy resin as an epoxy resin and a phenol novolac resin as a compound (B) containing two or more phenolic hydroxyl groups, high Tg and good high temperature storage characteristics were obtained. As a result, the moisture absorption rate, flame resistance and solder resistance were inferior. In Comparative Example 2, which differs from Example 1 only in that a phenol aralkyl type epoxy resin having a biphenylene skeleton was used as an epoxy resin, although good results were obtained in moisture absorption, flame resistance and solder resistance, Compared to Example 1, Tg was low, and the high-temperature storage characteristics were inferior. Furthermore, in Comparative Example 3 using a low-viscosity crystalline biphenyl type epoxy resin as the epoxy resin and a phenol aralkyl resin as the compound (B) containing two or more phenolic hydroxyl groups, the epoxy resin composition has a low viscosity. Therefore, it is possible to add a large amount of inorganic filler, and hence the moisture absorption rate is low, but the Tg is low, the high temperature storage characteristics are inferior, and the flame resistance and solder resistance are insufficient. It was.
From the above results, it was found that Examples 1 to 17 had excellent flame resistance and solder resistance, high Tg, and good high-temperature storage characteristics.

<BGA用封止材の評価>
実施例18
エポキシ樹脂1:下記式(9)で表されるエポキシ樹脂(大日本インキ化学工業株式会社製、EXA−7310。エポキシ当量240、軟化点55℃。下記式(9)においてn9の平均値:1.2。)
6.83重量部

Figure 2008074941
<Evaluation of sealing material for BGA>
Example 18
Epoxy resin 1: Epoxy resin represented by the following formula (9) (Dai Nippon Ink Chemical Co., Ltd., EXA-7310. Epoxy equivalent 240, softening point 55 ° C. Average value of n9 in the following formula (9): 1 .2.)
6.83 parts by weight
Figure 2008074941

硬化剤2:下記式(17)で表される化合物(新日鐵化学製、SN−485。水酸基当量210、軟化点85℃。一般式(2)において−R2−:フェニレン基、−R3(OH)−:2−ヒドロキシナフチレン基、k2:0、m2:0。下記式(17)におけるn17の平均値:1.5。)
5.97重量部

Figure 2008074941
Curing agent 2: Compound represented by the following formula (17) (manufactured by Nippon Steel Chemical Co., Ltd., SN-485. Hydroxyl equivalent: 210, softening point: 85 ° C. In the general formula (2), -R2-: phenylene group, -R3 ( OH)-: 2-hydroxynaphthylene group, k2: 0, m2: 0, average value of n17 in the following formula (17): 1.5.)
5.97 parts by weight
Figure 2008074941

溶融球状シリカ(平均粒径30μm) 86.00重量部
硬化促進剤1:トリフェニルホスフィン 0.20重量部
シランカップリング剤1:γ−グリシドキシプロピルトリメトキシシラン
0.30重量部
2,3−ジヒドロキシナフタレン 0.20重量部
カルナバワックス 0.20重量部
カーボンブラック 0.30重量部
をミキサーにて常温混合し、80℃以上、100℃以下の加熱ロールで溶融混練し、冷却後粉砕し、エポキシ樹脂組成物を得た。評価結果を表3に示す。
Fused spherical silica (average particle size 30 μm) 86.00 parts by weight Curing accelerator 1: 0.20 parts by weight of triphenylphosphine Silane coupling agent 1: γ-glycidoxypropyltrimethoxysilane
0.30 parts by weight 2,3-dihydroxynaphthalene 0.20 parts by weight Carnauba wax 0.20 parts by weight Carbon black 0.30 parts by weight is mixed at room temperature with a mixer and melted with a heating roll at 80 ° C. or higher and 100 ° C. or lower. The mixture was kneaded, cooled and pulverized to obtain an epoxy resin composition. The evaluation results are shown in Table 3.

・スパイラルフロー:低圧トランスファー成形機(コータキ精機株式会社製、KTS−15)を用いて、EMMI−1−66に準じたスパイラルフロー測定用金型に、金型温度175℃、注入圧力6.9MPa、保圧時間120秒の条件で、エポキシ樹脂組成物を注入し、流動長を測定した。スパイラルフローは、流動性のパラメータであり、数値が大きい方が、流動性が良好である。単位はcm。 -Spiral flow: Using a low-pressure transfer molding machine (KTS-15, manufactured by Kotaki Seiki Co., Ltd.), a mold for spiral flow measurement conforming to EMMI-1-66, mold temperature 175 ° C, injection pressure 6.9 MPa The epoxy resin composition was injected under the condition of a holding time of 120 seconds, and the flow length was measured. The spiral flow is a fluidity parameter, and the larger the value, the better the fluidity. The unit is cm.

・吸湿率:低圧トランスファー成形機(コータキ精機株式会社製、KTS−30)を用いて、金型温度175℃、注入圧力7.4MP、硬化時間120秒の条件で、エポキシ樹脂組成物を注入成形して直径50mm、厚さ3mmの試験片を作製し、175℃、8時間で後硬化した。その後、得られた試験片を85℃、相対湿度85℃の環境下で168時間加湿処理し、加湿処理前後の重量変化を測定し吸湿率を求めた。単位は重量%。 -Moisture absorption rate: An epoxy resin composition is injection-molded using a low-pressure transfer molding machine (KTS-30, manufactured by Kotaki Seiki Co., Ltd.) at a mold temperature of 175 ° C, an injection pressure of 7.4 MP, and a curing time of 120 seconds. A test piece having a diameter of 50 mm and a thickness of 3 mm was prepared and post-cured at 175 ° C. for 8 hours. Thereafter, the obtained test piece was humidified for 168 hours in an environment of 85 ° C. and a relative humidity of 85 ° C., and the weight change before and after the humidification treatment was measured to obtain the moisture absorption rate. The unit is% by weight.

・耐燃性:低圧トランスファー成形機(コータキ精機株式会社製、KTS−30)を用いて、金型温度175℃、注入圧力9.8MPa、注入時間15秒、硬化時間120秒の条件で、エポキシ樹脂組成物を注入成形して3.2mm厚の耐燃試験片を作製した。作製した試験片を用いて、UL94垂直法の規格に則り耐燃試験を行い、耐燃性を判断した。表には、判定後の耐燃ランクを示した。 Flame resistance: Epoxy resin using a low-pressure transfer molding machine (KTS-30, KTS-30) under conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, an injection time of 15 seconds, and a curing time of 120 seconds. The composition was injection molded to produce a 3.2 mm thick flame resistant test piece. Using the prepared test piece, a flame resistance test was performed in accordance with the standard of the UL94 vertical method to determine the flame resistance. The table shows the fire resistance rank after the determination.

・耐半田性2:低圧トランスファー成形機(TOWA製、Yシリーズ)を用いて、金型温度180℃、注入圧力7.4MPa、硬化時間120秒の条件で、エポキシ樹脂組成物を注入してシリコンチップが搭載された回路基板等を封止成形し、225ピンのボール・グリッド・アレイ(225pBGA;基板は厚さ0.36mm、ビスマレイミド・トリアジン/ガラスクロス基板、パッケージサイズは24×24mm、厚さ1.17mm、シリコンチップはサイズ9×9mm、厚さ0.35mm、チップと回路基板のボンディングパッドとを25μm径の金線でボンディングしている。平均金線長は5mm。)を作製した。ポストキュアとして175℃で8時間加熱処理したパッケージ8個を、85℃、相対湿度60%で168時間加湿処理した後、IRリフロー処理(260℃、JEDEC・Level2条件に従う)を行った。処理後のパッケージ内部の剥離、及びクラックの有無を超音波傷機(日立建機ファインテック製、mi−scope10)で観察し、剥離又はクラックのいずれか一方でも発生したものを不良とした。不良パッケージの個数がn個であるとき、n/8と表示した。 Solder resistance 2: Silicone is injected by injecting an epoxy resin composition using a low-pressure transfer molding machine (manufactured by TOWA, Y series) under conditions of a mold temperature of 180 ° C., an injection pressure of 7.4 MPa, and a curing time of 120 seconds. A circuit board on which the chip is mounted is encapsulated, and a 225-pin ball grid array (225pBGA; board is 0.36mm thick, bismaleimide triazine / glass cloth board, package size is 24x24mm, thick The silicon chip is 9 × 9 mm in size, the thickness is 0.35 mm, and the chip and the bonding pad of the circuit board are bonded with a gold wire with a diameter of 25 μm. The average gold wire length is 5 mm. . Eight packages heat treated at 175 ° C. for 8 hours as post-cure were humidified for 168 hours at 85 ° C. and 60% relative humidity, and then IR reflow treatment (260 ° C., according to JEDEC Level 2 conditions) was performed. The inside of the package after the treatment and the presence or absence of cracks were observed with an ultrasonic scratcher (manufactured by Hitachi Construction Machinery Finetech, mi-scope 10), and any one of the peeling or cracking was regarded as defective. When the number of defective packages is n, n / 8 is displayed.

・熱膨張量:低圧トランスファー成形機(コータキ精機株式会社製、KTS−30)を用いて、金型温度175℃、注入圧力7.5×MPa、硬化時間120秒の条件で、エポキシ樹脂組成物を注入成形して試験片(4mm×5mm×15mm)を作製した。得られた試験片を熱機械分析装置(セイコー電子工業(株)製、TMA100)を用いて、測定温度範囲0℃から320℃、昇温速度5℃/分で測定したときのチャートより、30℃から175℃の範囲における熱膨張量を算出した。単位は%。 -Thermal expansion amount: epoxy resin composition using a low-pressure transfer molding machine (KTS-30, KTS-30) under conditions of a mold temperature of 175 ° C, an injection pressure of 7.5 x MPa, and a curing time of 120 seconds. A test piece (4 mm × 5 mm × 15 mm) was produced by injection molding. From the chart when the obtained test piece was measured at a measurement temperature range of 0 ° C. to 320 ° C. and a temperature increase rate of 5 ° C./min using a thermomechanical analyzer (manufactured by Seiko Denshi Kogyo Co., Ltd., TMA100), 30 The amount of thermal expansion in the range from ℃ to 175 ℃ was calculated. Units%.

・パッケージ反り量:低圧トランスファー成形機(TOWA製、Yシリーズ)を用いて、金型温度180℃、注入圧力7.4MPa、硬化時間120秒の条件で、エポキシ樹脂組成物によりシリコンチップを搭載した回路基板等を封止成形して、225ピンのボール・グリッド・アレイ(225pBGA;基板は厚さ0.36mm、ビスマレイミド・トリアジン/ガラスクロス基板、パッケージサイズは24×24mm、厚さ1.17mm、シリコンチップはサイズ9×9mm、厚さ0.35mm、チップと回路基板のボンディングパッドとを25μm径の金線でボンディングしている。)を作製した。得られたパッケージを更にポストキュアとして175℃で8時間加熱処理した。室温に冷却後パッケージのゲートから対角線方向に、表面粗さ計を用いて高さ方向の変位を測定し、変位差の最も大きい値を反り量とした。単位はμm。 Package warpage amount: Using a low-pressure transfer molding machine (manufactured by TOWA, Y series), a silicon chip was mounted with an epoxy resin composition under conditions of a mold temperature of 180 ° C., an injection pressure of 7.4 MPa, and a curing time of 120 seconds. Circuit board, etc. is sealed and molded, and 225-pin ball grid array (225pBGA; board is 0.36mm thick, bismaleimide triazine / glass cloth board, package size is 24x24mm, thickness is 1.17mm The silicon chip was 9 × 9 mm in size and 0.35 mm in thickness, and the chip and the bonding pad of the circuit board were bonded with a 25 μm diameter gold wire. The obtained package was further heat treated at 175 ° C. for 8 hours as a post cure. After cooling to room temperature, the displacement in the height direction was measured using a surface roughness meter in the diagonal direction from the gate of the package, and the value with the largest displacement difference was taken as the amount of warpage. The unit is μm.

実施例19ないし34、比較例4ないし7
表3、表4の配合に従い、実施例18と同様にしてエポキシ樹脂組成物を製造し、実施例18と同様にして評価した。評価結果を表3、表4に示す。
実施例18以外で用いた成分について、以下に示す。
エポキシ樹脂2:ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂(日本化薬(株)製、NC−3000。エポキシ当量274、軟化点58℃。)
エポキシ樹脂4:ビフェニル型結晶性エポキシ樹脂(ジャパンエポキシレジン(株)製、YX−4000K。エポキシ当量185、融点105℃。)
エポキシ樹脂5:トリフェノールメタン型エポキシ樹脂(ジャパンエポキシレジン(株)製、E−1032H60。エポキシ当量171、軟化点60℃。)
硬化剤3:フェニレン骨格を有するフェノールアラルキル樹脂(三井化学株式会社製、XLC−4L。水酸基当量165、軟化点65℃。一般式(2)において−R2−:フェニレン基、−R3(OH)−:ヒドロキシフェニレン基、k2:0、m2:0、n2の平均値:3.4。)
硬化剤4:フェノールノボラック樹脂(住友ベークライト製、PR−HF−3。水酸基当量104、軟化点80℃。)
硬化剤5:トリフェノールメタン型フェノール樹脂(明和化成(株)製、MEH−7500。水酸基当量97、軟化点110℃。)
硬化促進剤2:1,8−ジアザビシクロ(5,4,0)ウンデセン−7
硬化促進剤3:下記式(13)で表される硬化促進剤
Examples 19 to 34, Comparative Examples 4 to 7
According to the composition of Table 3 and Table 4, an epoxy resin composition was produced in the same manner as in Example 18 and evaluated in the same manner as in Example 18. The evaluation results are shown in Tables 3 and 4.
Components used in Examples other than Example 18 are shown below.
Epoxy resin 2: phenol aralkyl type epoxy resin having a biphenylene skeleton (manufactured by Nippon Kayaku Co., Ltd., NC-3000, epoxy equivalent 274, softening point 58 ° C.)
Epoxy resin 4: Biphenyl type crystalline epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., YX-4000K. Epoxy equivalent 185, melting point 105 ° C.)
Epoxy resin 5: Triphenolmethane type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., E-1032H60. Epoxy equivalent 171, softening point 60 ° C.)
Curing agent 3: Phenol aralkyl resin having a phenylene skeleton (Mitsui Chemical Co., Ltd., XLC-4L. Hydroxyl equivalent 165, softening point 65 ° C. In the general formula (2) -R2-: phenylene group, -R3 (OH)- : Hydroxyphenylene group, k2: 0, m2: 0, average value of n2: 3.4.)
Curing agent 4: Phenol novolac resin (manufactured by Sumitomo Bakelite, PR-HF-3, hydroxyl equivalent 104, softening point 80 ° C.)
Curing agent 5: Triphenolmethane type phenol resin (Maywa Kasei Co., Ltd., MEH-7500. Hydroxyl equivalent 97, softening point 110 ° C.)
Curing accelerator 2: 1,8-diazabicyclo (5,4,0) undecene-7
Curing accelerator 3: Curing accelerator represented by the following formula (13)

Figure 2008074941
硬化促進剤4:下記式(14)で表される硬化促進剤
Figure 2008074941
Curing accelerator 4: Curing accelerator represented by the following formula (14)

Figure 2008074941
硬化促進剤5:下記式(15)で表される硬化促進剤
Figure 2008074941
Figure 2008074941
Curing accelerator 5: Curing accelerator represented by the following formula (15)
Figure 2008074941

硬化促進剤6:下記式(16)で表される硬化促進剤

Figure 2008074941
Curing accelerator 6: Curing accelerator represented by the following formula (16)
Figure 2008074941

シランカップリング剤2:γ−メルカプトプロピルトリメトキシシラン
1,2−ジヒドロキシナフタレン
カテコール
ピロガロール
Silane coupling agent 2: γ-mercaptopropyltrimethoxysilane 1,2-dihydroxynaphthalene catechol pyrogallol

Figure 2008074941
Figure 2008074941

Figure 2008074941
Figure 2008074941

実施例18ないし34は、エポキシ樹脂として一般式(1)で表されるエポキシ樹脂(A)を用いたものであり、エポキシ樹脂(A)の配合割合、フェノール性水酸基を2個以上含む化合物(B)の種類と配合割合、無機充填剤(C)の配合割合、硬化促進剤(D)の種類、シランカップリング剤(E)の種類と配合割合、並びに芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(F)の種類と配合割合を変えたものを含むものであるが、いずれも、良好な流動性(スパイラルフロー)、吸湿率、耐燃性及び耐半田性を示し、かつ熱膨張量、パッケージ反り量が低いという良好な結果が得られた。 In Examples 18 to 34, the epoxy resin (A) represented by the general formula (1) was used as an epoxy resin, and the compounding ratio of the epoxy resin (A) and a compound containing two or more phenolic hydroxyl groups ( B) type and mixing ratio, inorganic filler (C) mixing ratio, curing accelerator (D) type, silane coupling agent (E) type and mixing ratio, and two or more constituting the aromatic ring These include compounds with different types and blending ratios of compounds (F) in which hydroxyl groups are bonded to adjacent carbon atoms, all of which have good fluidity (spiral flow), moisture absorption, flame resistance and solder resistance. And good results were obtained in that the amount of thermal expansion and package warpage were low.

一方、エポキシ樹脂としてトリフェノールメタン型エポキシ樹脂を用い、フェノール性水酸基を2個以上含む化合物(B)としてトリフェノールメタン型フェノール樹脂を用いた比較例4では、熱膨張量、パッケージ反り量は低く良好であったものの、流動性、吸湿率、耐燃性及び耐半田性の点で劣る結果となった。また、エポキシ樹脂としてビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂を用い、フェノール性水酸基を2個以上含む化合物(B)としてビフェニレン骨格を有するフェノールアラルキル樹脂を用いた比較例5では、吸湿率が低く、高い耐燃性、良好な耐半田性が得られたものの、熱膨張量及びパッケージ反り量が劣る結果となった。さらに、エポキシ樹脂として低粘度な結晶性ビフェニル型エポキシ樹脂を用い、フェノール性水酸基を2個以上含む化合物(B)としてフェノールアラルキル樹脂を用いた比較例6では、エポキシ樹脂組成物が低粘度であるため無機充填剤を多く配合することが可能で、それ故熱膨張量が低く、パッケージ反り量はある程度良好だが、耐燃性が低く、耐半田性も劣る結果となった。またさらに、エポキシ樹脂としてトリフェノールメタン型エポキシ樹脂を用いた点のみが実施例18と異なる比較例7は、熱膨張量、パッケージ反り量は低く良好であったものの、吸湿性、耐燃性及び耐半田性の点で劣る結果となった。
以上の結果から、実施例18ないし34は、耐燃性、耐半田性に優れ、かつ低い熱膨張量で、パッケージ反り量も良好となることが分かった。
On the other hand, in Comparative Example 4 using a triphenolmethane type epoxy resin as the epoxy resin and using a triphenolmethane type phenol resin as the compound (B) containing two or more phenolic hydroxyl groups, the thermal expansion amount and the package warpage amount are low. Although it was good, the results were poor in terms of fluidity, moisture absorption, flame resistance and solder resistance. Further, in Comparative Example 5 using a phenol aralkyl type epoxy resin having a biphenylene skeleton as an epoxy resin and using a phenol aralkyl resin having a biphenylene skeleton as a compound (B) containing two or more phenolic hydroxyl groups, the moisture absorption rate is low, Although high flame resistance and good solder resistance were obtained, the thermal expansion amount and package warpage amount were inferior. Furthermore, in Comparative Example 6 using a low-viscosity crystalline biphenyl type epoxy resin as an epoxy resin and a phenol aralkyl resin as a compound (B) containing two or more phenolic hydroxyl groups, the epoxy resin composition has a low viscosity. Therefore, a large amount of inorganic filler can be blended, and therefore the thermal expansion amount is low and the package warpage amount is good to some extent, but the flame resistance is low and the solder resistance is poor. Furthermore, Comparative Example 7, which differs from Example 18 only in that a triphenolmethane type epoxy resin was used as the epoxy resin, was good in terms of moisture absorption, flame resistance and resistance, although the amount of thermal expansion and package warpage were low and good. The result was inferior in terms of solderability.
From the above results, it was found that Examples 18 to 34 were excellent in flame resistance and solder resistance, had a low thermal expansion amount, and had a good package warpage.

本発明に従うと、耐半田性、耐燃性に優れ、かつ高温保管特性又は低反り性にも優れた半導体封止用エポキシ樹脂組成物を得ることができるため、表面実装型半導体装置用として好適である。低反り性に優れるという点からは、エリア表面実装型の半導体装置パッケージ用としても好適である。   According to the present invention, an epoxy resin composition for semiconductor encapsulation having excellent solder resistance and flame resistance and excellent high-temperature storage characteristics or low warpage can be obtained. is there. From the viewpoint of excellent low warpage, it is also suitable for an area surface mount type semiconductor device package.

本発明に係るエポキシ樹脂組成物を用いた半導体装置の一例について、断面構造を示した図である。It is the figure which showed the cross-section about an example of the semiconductor device using the epoxy resin composition which concerns on this invention. 本発明に係るエポキシ樹脂組成物を用いた片面封止型の半導体装置の一例について、断面構造を示した図である。It is the figure which showed the cross-section about an example of the single-side sealing type semiconductor device using the epoxy resin composition which concerns on this invention.

符号の説明Explanation of symbols

1 半導体素子
2 ダイボンド材硬化体
3 ダイパッド
4 金線
5 リードフレーム
6 封止用樹脂組成物の硬化体
7 レジスト
8 基板
9 半田ボール
DESCRIPTION OF SYMBOLS 1 Semiconductor element 2 Die-bonding material hardening body 3 Die pad 4 Gold wire 5 Lead frame 6 Curing body of the resin composition for sealing 7 Resist 8 Substrate 9 Solder ball

Claims (15)

下記一般式(1)で表されるエポキシ樹脂(A)と、
フェノール性水酸基を2個以上含む化合物(B)と、
無機充填剤(C)と、
硬化促進剤(D)と、
を含むことを特徴とする半導体封止用樹脂組成物。
Figure 2008074941
(ただし、上記一般式(1)において、R1は炭素数1ないし20の炭化水素基であり、互いに同じであっても異なっていても良い。OGはグリシジルエーテル基である。OG及びR1の結合位置は、−O−が結合している芳香環側及び他方の芳香環側のいずれであってもよい。n1は0ないし5の整数であり、全体の平均値は0より大きく、5より小さい正数である。m1は0ないし6の整数、k1は1又は2である。)
An epoxy resin (A) represented by the following general formula (1);
A compound (B) containing two or more phenolic hydroxyl groups;
An inorganic filler (C);
A curing accelerator (D);
A resin composition for encapsulating a semiconductor, comprising:
Figure 2008074941
(However, in the above general formula (1), R1 is a hydrocarbon group having 1 to 20 carbon atoms and may be the same or different. OG is a glycidyl ether group. Bond of OG and R1 The position may be on the aromatic ring side to which —O— is bonded or on the other aromatic ring side, n1 is an integer of 0 to 5, and the overall average value is larger than 0 and smaller than 5. (M1 is an integer from 0 to 6, and k1 is 1 or 2)
請求項1に記載の半導体封止用樹脂組成物において、フェノール性水酸基を2個以上含む化合物(B)が下記一般式(2)で表される化合物を含むことを特徴とする半導体封止用樹脂組成物。
Figure 2008074941
(ただし、上記一般式(2)において、−R2−はフェニレン基、ビフェニレン基又はナフチレン基である。−R3(OH)−はヒドロキシフェニレン基又は1−ヒドロキシナフチレン基、2−ヒドロキシナフチレン基である。R4、R5は、それぞれR3、R2に導入される基で、炭素数1ないし10の炭化水素基であり、それらは互いに同じであっても異なっていても良い。n2の平均値は1以上、10以下の正数、k2は0ないし5の整数、m2は0ないし8の整数である。)
2. The semiconductor sealing resin composition according to claim 1, wherein the compound (B) containing two or more phenolic hydroxyl groups contains a compound represented by the following general formula (2). Resin composition.
Figure 2008074941
(In the general formula (2), -R2- is a phenylene group, a biphenylene group, or a naphthylene group. -R3 (OH)-is a hydroxyphenylene group, a 1-hydroxynaphthylene group, or a 2-hydroxynaphthylene group. R4 and R5 are groups introduced into R3 and R2, respectively, and are hydrocarbon groups having 1 to 10 carbon atoms, which may be the same or different from each other. A positive number of 1 or more and 10 or less, k2 is an integer of 0 to 5, and m2 is an integer of 0 to 8.)
請求項1又は2に記載の半導体封止用樹脂組成物において、フェノール性水酸基を2個以上含む化合物(B)が下記一般式(3)で表される化合物を含むことを特徴とする半導体封止用樹脂組成物。
Figure 2008074941
(ただし、上記一般式(3)において、R4、R5は、炭素数1ないし10の炭化水素基であり、それらは互いに同じであっても異なっていても良い。n3の平均値は1以上、10以下の正数、k3は0ないし3の整数、m3は0ないし4の整数である。)
The resin composition for semiconductor encapsulation according to claim 1 or 2, wherein the compound (B) containing two or more phenolic hydroxyl groups contains a compound represented by the following general formula (3). Resin composition for stopping.
Figure 2008074941
(However, in the general formula (3), R4 and R5 are hydrocarbon groups having 1 to 10 carbon atoms, and they may be the same or different. The average value of n3 is 1 or more, A positive number of 10 or less, k3 is an integer of 0 to 3, and m3 is an integer of 0 to 4.)
請求項1又は2に記載の半導体封止用樹脂組成物において、フェノール性水酸基を2個以上含む化合物(B)が下記一般式(4)で表される化合物を含むことを特徴とする半導体封止用樹脂組成物。
Figure 2008074941
(ただし、上記一般式(4)において、R4、R5は、炭素数1ないし10の炭化水素基であり、それらは互いに同じであっても異なっていても良い。n4の平均値は1以上、10以下の正数、k4は0ないし5の整数、m4は0ないし4の整数である。)
The resin composition for semiconductor encapsulation according to claim 1 or 2, wherein the compound (B) containing two or more phenolic hydroxyl groups contains a compound represented by the following general formula (4). Resin composition for stopping.
Figure 2008074941
(However, in the general formula (4), R4 and R5 are hydrocarbon groups having 1 to 10 carbon atoms, and they may be the same or different. The average value of n4 is 1 or more. A positive number of 10 or less, k4 is an integer of 0 to 5, and m4 is an integer of 0 to 4.)
請求項1ないし請求項4のいずれかに記載の半導体封止用樹脂組成物において、前記硬化促進剤(D)が、下記一般式(5)で表される化合物、下記一般式(6)で表される化合物、下記一般式(7)で表される化合物及び下記一般式(8)で表される化合物から選ばれる少なくとも1つであることを特徴とする半導体封止用樹脂組成物。
Figure 2008074941
(ただし、上記一般式(5)において、Pはリン原子を表す。R6、R7、R8及びR9は芳香族基、又はアルキル基を表す。Aはヒドロキシル基、カルボキシル基、チオール基から選ばれる官能基のいずれかを芳香環に少なくとも1つ有する芳香族有機酸のアニオンを表す。AHはヒドロキシル基、カルボキシル基、チオール基から選ばれる官能基のいずれかを芳香環に少なくとも1つ有する芳香族有機酸を表す。a、bは1ないし3の整数、cは0ないし3の整数であり、かつa=bである。)
Figure 2008074941
(ただし、上記一般式(6)において、Pはリン原子を表す。X1は水素又は炭素数1ないし3のアルキル基、Y1は水素又はヒドロキシル基を表す。m6、n6は1ないし3の整数。)
Figure 2008074941
(ただし、上記一般式(7)において、Pはリン原子を表す。R10、R11及びR12は炭素数1ないし12のアルキル基又は炭素数6ないし12のアリール基を表し、互いに同一であっても異なっていてもよい。R13、R14及びR15は水素原子又は炭素数1ないし12の炭化水素基を表し、互いに同一であっても異なっていてもよく、R13とR14が結合して環状構造となっていてもよい。)
Figure 2008074941
(ただし、上記一般式(8)において、A1は窒素原子又はリン原子を表す。Siは珪素原子を表す。R16、R17、R18及びR19は、それぞれ、芳香環又は複素環を有する有機基、或いは脂肪族基を表し、互いに同一であっても異なっていてもよい。X2は、基Y2及びY3と結合する有機基である。X3は、基Y4及びY5と結合する有機基である。Y2及びY3は、プロトン供与性置換基がプロトンを放出してなる基であり、それらは互いに同一であっても異なっていてもよく、同一分子内の基Y2、及びY3が珪素原子と結合してキレート構造を形成するものである。Y4及びY5は、プロトン供与性置換基がプロトンを放出してなる基であり、同一分子内の基Y4及びY5が珪素原子と結合してキレート構造を形成するものである。X2、及びX3は互いに同一であっても異なっていてもよく、Y2、Y3、Y4、及びY5は互いに同一であっても異なっていてもよい。Z1は芳香環又は複素環を有する有機基或いは脂肪族基を表す。)
In the resin composition for semiconductor sealing in any one of Claims 1 thru | or 4, the said hardening accelerator (D) is a compound represented by following General formula (5), and following General formula (6) A resin composition for encapsulating a semiconductor, which is at least one selected from a compound represented by the following formula, a compound represented by the following general formula (7), and a compound represented by the following general formula (8).
Figure 2008074941
(However, in the said General formula (5), P represents a phosphorus atom. R6, R7, R8, and R9 represent an aromatic group or an alkyl group. A is a function chosen from a hydroxyl group, a carboxyl group, and a thiol group. An anion of an aromatic organic acid having at least one of the groups in the aromatic ring AH represents an aromatic organic having at least one functional group selected from a hydroxyl group, a carboxyl group, and a thiol group in the aromatic ring. Represents an acid, a and b are integers of 1 to 3, c is an integer of 0 to 3, and a = b.
Figure 2008074941
(However, in the said General formula (6), P represents a phosphorus atom. X1 represents hydrogen or a C1-C3 alkyl group, Y1 represents hydrogen or a hydroxyl group. M6 and n6 are integers of 1-3. )
Figure 2008074941
(In the above general formula (7), P represents a phosphorus atom. R10, R11 and R12 represent an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 12 carbon atoms, and may be the same as each other). R13, R14 and R15 each represents a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms and may be the same or different from each other, and R13 and R14 are bonded to form a cyclic structure. May be.)
Figure 2008074941
(In the above general formula (8), A1 represents a nitrogen atom or a phosphorus atom. Si represents a silicon atom. R16, R17, R18 and R19 are each an organic group having an aromatic ring or a heterocyclic ring, or Represents an aliphatic group, which may be the same or different from each other, X2 represents an organic group bonded to the groups Y2 and Y3, and X3 represents an organic group bonded to the groups Y4 and Y5. Y3 is a group formed by releasing a proton from a proton-donating substituent, which may be the same or different from each other, and the groups Y2 and Y3 in the same molecule are bonded to a silicon atom to form a chelate. Y4 and Y5 are groups formed by proton-donating substituents releasing protons, and groups Y4 and Y5 in the same molecule are combined with a silicon atom to form a chelate structure. X2 and X3 may be the same or different from each other, and Y2, Y3, Y4 and Y5 may be the same or different from each other, and Z1 is an organic having an aromatic ring or a heterocyclic ring. Represents a group or an aliphatic group.)
請求項1ないし請求項5のいずれかに記載の半導体封止用樹脂組成物において、更にシランカップリング剤(E)と、芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(F)を含むことを特徴とする半導体封止用樹脂組成物。   6. The resin composition for encapsulating a semiconductor according to claim 1, wherein a hydroxyl group is further bonded to each of the silane coupling agent (E) and two or more adjacent carbon atoms constituting the aromatic ring. The resin composition for semiconductor sealing characterized by including the compound (F) which carried out. 請求項6に記載の半導体封止用樹脂組成物において、前記化合物(F)は、芳香環を構成する2個の隣接する炭素原子にそれぞれ水酸基が結合した化合物であることを特徴とする半導体封止用樹脂組成物。   The resin composition for semiconductor encapsulation according to claim 6, wherein the compound (F) is a compound in which a hydroxyl group is bonded to each of two adjacent carbon atoms constituting an aromatic ring. Resin composition for stopping. 請求項6に記載の半導体封止用樹脂組成物において、前記化合物(F)は、ナフタレン環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物であることを特徴とする半導体封止用樹脂組成物。   7. The semiconductor sealing resin composition according to claim 6, wherein the compound (F) is a compound in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting a naphthalene ring. Resin composition for sealing. 請求項6に記載の半導体封止用樹脂組成物において、前記化合物(F)は、ナフタレン環を構成する2個の隣接する炭素原子にそれぞれ水酸基が結合した化合物であることを特徴とする半導体封止用樹脂組成物。   The resin composition for semiconductor encapsulation according to claim 6, wherein the compound (F) is a compound in which a hydroxyl group is bonded to each of two adjacent carbon atoms constituting a naphthalene ring. Resin composition for stopping. 請求項6ないし請求項9のいずれかに記載の半導体封止用樹脂組成物において、前記化合物(F)を当該樹脂組成物全体の0.01重量%以上、1重量%以下含むことを特徴とする半導体封止用樹脂組成物。   The resin composition for encapsulating a semiconductor according to any one of claims 6 to 9, wherein the compound (F) is contained in an amount of 0.01% by weight or more and 1% by weight or less based on the whole resin composition. A semiconductor sealing resin composition. 請求項6ないし請求項10のいずれかに記載の半導体封止用樹脂組成物において、前記シランカップリング剤(E)を当該樹脂組成物全体の0.01重量%以上、1重量%以下含むことを特徴とする半導体封止用樹脂組成物。   The resin composition for semiconductor encapsulation according to any one of claims 6 to 10, wherein the silane coupling agent (E) is contained in an amount of 0.01% by weight or more and 1% by weight or less of the entire resin composition. A resin composition for encapsulating a semiconductor. 請求項1ないし請求項11のいずれかに記載の半導体封止用樹脂組成物において、前記無機充填剤(C)を当該樹脂組成物全体の80重量%以上、92重量%以下含むことを特徴とする半導体封止用樹脂組成物。   12. The resin composition for encapsulating a semiconductor according to claim 1, wherein the inorganic filler (C) is contained in an amount of 80% by weight or more and 92% by weight or less of the entire resin composition. A semiconductor sealing resin composition. 請求項1ないし請求項12のいずれかに記載の半導体封止用樹脂組成物の硬化物により半導体素子を封止してなることを特徴とする半導体装置。   A semiconductor device, wherein a semiconductor element is sealed with a cured product of the resin composition for semiconductor sealing according to claim 1. 150℃を超える高温環境下での動作保証が要求される電子部品に使用される半導体装置であって、請求項3に記載の半導体封止用樹脂組成物の硬化物により半導体素子を封止してなることを特徴とする半導体装置。 A semiconductor device used for an electronic component that is required to guarantee operation in a high temperature environment exceeding 150 ° C., wherein the semiconductor element is sealed with a cured product of the resin composition for semiconductor sealing according to claim 3. A semiconductor device characterized by comprising: 基板の片面に半導体素子が搭載され、該半導体素子が搭載された基板面側の実質的に片面のみが請求項4に記載の半導体封止用樹脂組成物の硬化物により封止されてなることを特徴とするエリア表面実装型半導体装置。   A semiconductor element is mounted on one surface of the substrate, and substantially only one surface on the substrate surface side on which the semiconductor element is mounted is sealed with a cured product of the resin composition for semiconductor sealing according to claim 4. An area surface mount type semiconductor device characterized by the above.
JP2006255178A 2006-09-21 2006-09-21 Semiconductor sealing resin composition and semiconductor device Active JP5332094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006255178A JP5332094B2 (en) 2006-09-21 2006-09-21 Semiconductor sealing resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006255178A JP5332094B2 (en) 2006-09-21 2006-09-21 Semiconductor sealing resin composition and semiconductor device

Publications (2)

Publication Number Publication Date
JP2008074941A true JP2008074941A (en) 2008-04-03
JP5332094B2 JP5332094B2 (en) 2013-11-06

Family

ID=39347328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006255178A Active JP5332094B2 (en) 2006-09-21 2006-09-21 Semiconductor sealing resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP5332094B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010144115A (en) * 2008-12-22 2010-07-01 Sumitomo Bakelite Co Ltd Semiconductor-sealing resin composition and semiconductor device
WO2011108524A1 (en) * 2010-03-02 2011-09-09 三菱瓦斯化学株式会社 Resin composition, prepreg, and laminated sheet
JP2016006187A (en) * 2009-12-14 2016-01-14 味の素株式会社 Resin composition
WO2020129248A1 (en) * 2018-12-21 2020-06-25 日立化成株式会社 Sealing resin composition and electronic component device
JP2021063146A (en) * 2019-10-10 2021-04-22 住友ベークライト株式会社 Resin composition for sealing, semiconductor device and power device
JP2022003130A (en) * 2018-12-27 2022-01-11 住友ベークライト株式会社 Sealing resin composition, semiconductor device, and method for manufacturing semiconductor device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298794A (en) * 2003-08-29 2005-10-27 Sumitomo Bakelite Co Ltd Latent catalyst for epoxy resin, epoxy resin composition and semiconductor apparatus
WO2005116104A1 (en) * 2004-05-27 2005-12-08 Sumitomo Bakelite Co., Ltd. Semiconductor sealing resin composition and semiconductor device
JP2006111672A (en) * 2004-10-13 2006-04-27 Sumitomo Bakelite Co Ltd Semiconductor sealing resin composition and semiconductor device
JP2006124643A (en) * 2004-09-30 2006-05-18 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006188622A (en) * 2005-01-07 2006-07-20 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006232941A (en) * 2005-02-23 2006-09-07 Sumitomo Bakelite Co Ltd Semiconductor-sealing epoxy resin composition and semiconductor device
JP2006307162A (en) * 2005-03-18 2006-11-09 Dainippon Ink & Chem Inc Epoxy resin composition, cured product thereof, novel epoxy resin, production method thereof, and novel phenol resin
JP2008031344A (en) * 2006-07-31 2008-02-14 Dainippon Ink & Chem Inc Epoxy resin composition and its cured product

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298794A (en) * 2003-08-29 2005-10-27 Sumitomo Bakelite Co Ltd Latent catalyst for epoxy resin, epoxy resin composition and semiconductor apparatus
WO2005116104A1 (en) * 2004-05-27 2005-12-08 Sumitomo Bakelite Co., Ltd. Semiconductor sealing resin composition and semiconductor device
JP2006124643A (en) * 2004-09-30 2006-05-18 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006111672A (en) * 2004-10-13 2006-04-27 Sumitomo Bakelite Co Ltd Semiconductor sealing resin composition and semiconductor device
JP2006188622A (en) * 2005-01-07 2006-07-20 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006232941A (en) * 2005-02-23 2006-09-07 Sumitomo Bakelite Co Ltd Semiconductor-sealing epoxy resin composition and semiconductor device
JP2006307162A (en) * 2005-03-18 2006-11-09 Dainippon Ink & Chem Inc Epoxy resin composition, cured product thereof, novel epoxy resin, production method thereof, and novel phenol resin
JP2008031344A (en) * 2006-07-31 2008-02-14 Dainippon Ink & Chem Inc Epoxy resin composition and its cured product

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN1006501819; *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010144115A (en) * 2008-12-22 2010-07-01 Sumitomo Bakelite Co Ltd Semiconductor-sealing resin composition and semiconductor device
JP2016006187A (en) * 2009-12-14 2016-01-14 味の素株式会社 Resin composition
EP2543687A4 (en) * 2010-03-02 2017-05-24 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, and laminated sheet
KR20190086052A (en) * 2010-03-02 2019-07-19 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, prepreg, and laminated sheet
JPWO2011108524A1 (en) * 2010-03-02 2013-06-27 三菱瓦斯化学株式会社 Resin composition, prepreg, and laminate
CN102844350A (en) * 2010-03-02 2012-12-26 三菱瓦斯化学株式会社 Resin composition, prepreg, and laminated sheet
JP5892340B2 (en) * 2010-03-02 2016-03-23 三菱瓦斯化学株式会社 Resin composition, prepreg, and laminate
JP2016053168A (en) * 2010-03-02 2016-04-14 三菱瓦斯化学株式会社 Resin composition, prepreg, and laminated sheet
WO2011108524A1 (en) * 2010-03-02 2011-09-09 三菱瓦斯化学株式会社 Resin composition, prepreg, and laminated sheet
KR20130018721A (en) * 2010-03-02 2013-02-25 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, prepreg, and laminated sheet
KR102002178B1 (en) * 2010-03-02 2019-10-21 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, prepreg, and laminated sheet
KR102107366B1 (en) * 2010-03-02 2020-05-07 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, prepreg, and laminated sheet
WO2020129248A1 (en) * 2018-12-21 2020-06-25 日立化成株式会社 Sealing resin composition and electronic component device
CN113195582A (en) * 2018-12-21 2021-07-30 昭和电工材料株式会社 Resin composition for sealing and electronic component device
JPWO2020129248A1 (en) * 2018-12-21 2021-12-02 昭和電工マテリアルズ株式会社 Encapsulating resin composition and electronic component equipment
JP2022003130A (en) * 2018-12-27 2022-01-11 住友ベークライト株式会社 Sealing resin composition, semiconductor device, and method for manufacturing semiconductor device
JP2021063146A (en) * 2019-10-10 2021-04-22 住友ベークライト株式会社 Resin composition for sealing, semiconductor device and power device

Also Published As

Publication number Publication date
JP5332094B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
JP4946440B2 (en) Semiconductor sealing resin composition and semiconductor device
JP5321057B2 (en) Semiconductor sealing resin composition and semiconductor device
JP5028756B2 (en) Semiconductor sealing resin composition and semiconductor device
JP5332094B2 (en) Semiconductor sealing resin composition and semiconductor device
TWI536514B (en) Semiconductor-encapsulating resin composition and semiconductor device
JP4569137B2 (en) Semiconductor sealing resin composition and semiconductor device
JP2008163138A (en) Semiconductor-sealing epoxy resin composition and semiconductor device
JP5228496B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5187101B2 (en) Epoxy resin composition and semiconductor device
JP5386836B2 (en) Semiconductor sealing resin composition and semiconductor device
JP5386837B2 (en) Semiconductor sealing resin composition and semiconductor device
JP5126045B2 (en) Semiconductor sealing resin composition and semiconductor device
JP2012007086A (en) Resin composition for sealing and electronic part device
JP5272973B2 (en) Epoxy resin composition and semiconductor device
JP2007270126A (en) Resin composition for semiconductor sealing use and semiconductor device
JP4973177B2 (en) Semiconductor sealing resin composition and semiconductor device
JP2008094896A (en) Resin composition for sealing semiconductor and semiconductor device
JP5092676B2 (en) Epoxy resin composition and semiconductor device
JP4894387B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5115098B2 (en) Resin composition and semiconductor device
JP4639427B2 (en) Epoxy resin composition and semiconductor device
JP5092675B2 (en) Epoxy resin composition and semiconductor device
JP2006111672A (en) Semiconductor sealing resin composition and semiconductor device
JP4973444B2 (en) Semiconductor sealing resin composition and semiconductor device
JP5211737B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R150 Certificate of patent or registration of utility model

Ref document number: 5332094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150