JP2008031344A - Epoxy resin composition and its cured product - Google Patents

Epoxy resin composition and its cured product Download PDF

Info

Publication number
JP2008031344A
JP2008031344A JP2006207984A JP2006207984A JP2008031344A JP 2008031344 A JP2008031344 A JP 2008031344A JP 2006207984 A JP2006207984 A JP 2006207984A JP 2006207984 A JP2006207984 A JP 2006207984A JP 2008031344 A JP2008031344 A JP 2008031344A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
epoxy
condensed polycyclic
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006207984A
Other languages
Japanese (ja)
Other versions
JP5387872B2 (en
Inventor
Ichiro Ogura
一郎 小椋
Kunihiro Morinaga
邦裕 森永
Kazuo Arita
和郎 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2006207984A priority Critical patent/JP5387872B2/en
Publication of JP2008031344A publication Critical patent/JP2008031344A/en
Application granted granted Critical
Publication of JP5387872B2 publication Critical patent/JP5387872B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin composition which forms a cured product having a remarkably low linear expansion coefficient and being excellent in dimensional stability and durability as an insulating material for an electronic part. <P>SOLUTION: The epoxy resin composition contains, as essential ingredients, (A) a condensed polycyclic structure-containing compound having two epoxy groups in one molecule and typified by a 1,6-diglycidyloxynaphthalene-type epoxy resin and (B) a condensed polycyclic structure-containing compound having two phenolic hydroxy groups in one molecule and typified by 1,6-dihydroxynaphthalene. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、硬化物のガラス領域における線膨張係数が極めて低く寸法安定性に優れるエポキシ樹脂組成物に関する。   The present invention relates to an epoxy resin composition having a very low linear expansion coefficient in a glass region of a cured product and excellent dimensional stability.

エポキシ樹脂及びその硬化剤を必須成分とするエポキシ樹脂組成物は、その硬化物において優れた耐熱性と絶縁性を発現することから、半導体やプリント配線基板などの電子部品用途において広く用いられている。   An epoxy resin composition containing an epoxy resin and a curing agent as an essential component exhibits excellent heat resistance and insulation in the cured product, and is therefore widely used in electronic component applications such as semiconductors and printed wiring boards. .

この電子部品用途のなかでも多層プリント基板材料の技術分野では、近年、ビルドアップ方式の多層基板の絶縁層としてエポキシ樹脂及び硬化剤を必須成分とするエポキシ樹脂組成物から構成される接着フィルムを用いる技術が、内層回路パターンの被覆と表面ビアホール及びスルーホール内の樹脂充填が極めて容易で多層基板の生産性に優れる点から注目されている。ところが、通常、該フィルムを構成する絶縁層であるエポキシ樹脂硬化物は、銅配線、半田等といった異種材料との線膨張係数が相違するために、寸法安定性に劣り、熱衝撃によってクラックが生じやすい、という問題を有しており、硬化物の線膨張率が低いエポキシ樹脂組成物が求められていた。   Among these electronic component applications, in the technical field of multilayer printed circuit board materials, in recent years, an adhesive film composed of an epoxy resin composition containing an epoxy resin and a curing agent as an essential component is used as an insulating layer of a build-up type multilayer board. The technology has attracted attention because it is extremely easy to cover the inner layer circuit pattern and fill the resin in the surface via holes and through holes, and is excellent in productivity of the multilayer substrate. However, the cured epoxy resin, which is an insulating layer constituting the film, usually has a poor coefficient of dimensional stability and cracks due to thermal shock because the coefficient of linear expansion is different from that of different materials such as copper wiring and solder. There has been a demand for an epoxy resin composition that has a problem that it is easy and has a low linear expansion coefficient of a cured product.

そこで、例えば、接着フィルムを構成する絶縁材料として、液状ビスフェノール型エポキシ樹脂、固形エポキシ樹脂、エポキシ樹脂用硬化剤、及び無機充填材を必須成分としたエポキシ樹脂組成物を用い、かつ、該無機充填材を多量に使用して材料自体の線膨張係数を低く抑制した技術が知られている(下記、特許文献1参照)。   Therefore, for example, as an insulating material constituting the adhesive film, an epoxy resin composition containing liquid bisphenol type epoxy resin, solid epoxy resin, epoxy resin curing agent, and inorganic filler as essential components is used, and the inorganic filling is performed. A technique is known in which a large amount of material is used to suppress the coefficient of linear expansion of the material itself (see Patent Document 1 below).

然し乍ら、近年、電子部品の高性能化に伴い多層プリント基板には多段ビア構造が採用されるなど、接着フィルムにはより低い線膨張係数を有するものが求められているところ、前記エポキシ樹脂組成物は、エポキシ樹脂硬化物自体の線膨張係数が依然として高く
要求されるレベルには到底到達できていないものであった。更に、前記エポキシ樹脂組成物は、無機充填材の多量の使用が避けられず、ビルドアップ工法用の不可欠なビアホール形成時のレーザーによる加工性や、めっき層との密着性が十分なものではなかった。
However, in recent years, there has been a demand for adhesive films having a lower coefficient of linear expansion, such as multi-layer vias being used for multilayer printed circuit boards as electronic components become more sophisticated. The cured epoxy resin itself did not reach the required level of linear expansion coefficient. Furthermore, the epoxy resin composition cannot avoid the use of a large amount of an inorganic filler, and the processability by laser at the time of forming an indispensable via hole for the build-up method and the adhesion with the plating layer are not sufficient. It was.

特開2005−154727号公報JP 2005-154727 A

従って、本発明が解決しようとする課題は、エポキシ樹脂硬化物自体の線膨張係数が著しく低く、電子部品の絶縁材料として硬化物の寸法安定性、耐久性に優れたエポキシ樹脂組成物を提供することにある。   Therefore, the problem to be solved by the present invention is to provide an epoxy resin composition having an extremely low linear expansion coefficient of the cured epoxy resin itself and excellent in dimensional stability and durability of the cured product as an insulating material for electronic parts. There is.

本発明者等は上記課題を解決すべく鋭意検討を重ねた結果、ナフタレン骨格に代表される縮合多環構造を有する2官能性エポキシ樹脂を主剤に用い、かつ、ジヒドロキシナフタレンに代表される2官能性の縮合多環構造含有のフェノール性水酸基含有化合物を硬化剤として用いることにより、これらの硬化物自体が極めて低い線膨張係数を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have used a bifunctional epoxy resin having a condensed polycyclic structure typified by a naphthalene skeleton as a main agent and a bifunctional typified by dihydroxynaphthalene. It has been found that these cured products themselves can achieve a very low linear expansion coefficient by using a phenolic hydroxyl group-containing compound containing a soluble condensed polycyclic structure as a curing agent, and the present invention has been completed.

即ち、本発明は、(A)エポキシ基を1分子内に2つ有する縮合多環構造含有化合物、及び、(B)フェノール性水酸基を1分子内に2つ有する縮合多環構造含有化合物を必須成分とすることを特徴とするエポキシ樹脂組成物に関する。   That is, the present invention requires (A) a condensed polycyclic structure-containing compound having two epoxy groups in one molecule, and (B) a condensed polycyclic structure-containing compound having two phenolic hydroxyl groups in one molecule. It is related with the epoxy resin composition characterized by making it a component.

本発明によれば、エポキシ樹脂硬化物自体の線膨張係数が著しく低く、電子部品の絶縁材料として硬化物の寸法安定性、耐久性に優れたエポキシ樹脂組成物を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the epoxy resin hardened | cured material itself has a remarkably low linear expansion coefficient, and can provide the epoxy resin composition excellent in the dimensional stability and durability of hardened | cured material as an insulating material of an electronic component.

本発明で用いるエポキシ樹脂組成物は、前記した通り、(A)エポキシ基を1分子内に2つ有する縮合多環構造含有化合物、及び、(B)フェノール性水酸基を1分子内に2つ有する縮合多環構造含有化合物を必須成分とするものである。   As described above, the epoxy resin composition used in the present invention has (A) a condensed polycyclic structure-containing compound having two epoxy groups in one molecule, and (B) two phenolic hydroxyl groups in one molecule. A condensed polycyclic structure-containing compound is an essential component.

このような2官能性エポキシ樹脂と2官能性のフェノール系硬化剤とを組み合わせた場合、エポキシ基とフェノール性水酸基の反応が付加反応であることに由来して3次元に架橋した架橋構造を採らせることが困難である為、硬化しないと考えられていたのに対し、本発明が2官能性エポキシ樹脂と2官能性のフェノール系硬化剤との組み合わせであるにも拘わらず、良好な硬化性を示し、然もその硬化物が従来になく優れた低線膨張係数を達成するという驚くべき性能を発現することは特筆すべき点である。   When such a bifunctional epoxy resin and a bifunctional phenolic curing agent are combined, a three-dimensionally crosslinked structure is adopted because the reaction between the epoxy group and the phenolic hydroxyl group is an addition reaction. It was thought that it was not cured because it was difficult to cure, but good curability despite the fact that the present invention is a combination of a bifunctional epoxy resin and a bifunctional phenolic curing agent. However, it is notable that the cured product exhibits the surprising performance of achieving an excellent low linear expansion coefficient.

ここで、本発明で用いるエポキシ基を1分子内に2つ有する縮合多環構造含有化合物(A)は、分子構造内にナフタレン環、アントラセン環等の縮合多環構造を有する2官能性のエポキシ化合物である。   Here, the condensed polycyclic structure-containing compound (A) having two epoxy groups used in the present invention is a bifunctional epoxy having a condensed polycyclic structure such as a naphthalene ring or an anthracene ring in the molecular structure. A compound.

分子構造内にナフタレン環を有する化合物は、例えば、ジグリシジルオキシナフタレン類、下記構造式A−1   Compounds having a naphthalene ring in the molecular structure include, for example, diglycidyloxynaphthalene, the following structural formula A-1

Figure 2008031344
で表されるビナフチル型エポキシ樹脂、下記構造式A−2
Figure 2008031344
Binaphthyl type epoxy resin represented by the following structural formula A-2

Figure 2008031344
で表されるビスグリシジルオキシナフチルメタン、及びポリオキシナフチレン構造を有する2官能性エポキシ化合物が挙げられる。
Figure 2008031344
And a bifunctional epoxy compound having a polyoxynaphthylene structure.

ここでジグリシジルオキシナフタレン類としては、例えば、下記一般式(1)   Here, as diglycidyloxynaphthalene, for example, the following general formula (1)

Figure 2008031344

(式中、Rは水素原子又はメチル基を表し、Rはそれぞれ独立的に水素原子、炭素原子数1〜4のアルキル基、又はアラルキル基を表し、nはそれぞれ0〜10の整数である。)で表されるものが挙げられる。
Figure 2008031344

(In the formula, R 1 represents a hydrogen atom or a methyl group, R 2 independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an aralkyl group, and n represents an integer of 0 to 10, respectively. There is one represented by.

ここで、上記一般式(1)で表される化合物は、ジヒドロキシナフタレン類とエピハロヒドリン、β−アルキルエピハロヒドリンとを必須の単量体成分として反応させて得られるエポキシ樹脂である。ここで用いるジヒドロキシナフタレン類は、例えば、1,4−ジヒドロキシナフタレン、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン、及びこれらのメチル基又はエチル基が核置換した化合物が挙げられる。これらの中でも特に縮合多環構造含有化合物(A)の流動性の点から、2,7−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、1,4−ジヒドロキシナフタレンが好ましい。   Here, the compound represented by the general formula (1) is an epoxy resin obtained by reacting dihydroxynaphthalenes with epihalohydrin and β-alkylepihalohydrin as essential monomer components. Examples of the dihydroxynaphthalene used here include 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, and methyl groups thereof. Or the compound which the nucleus substituted the ethyl group is mentioned. Among these, 2,7-dihydroxynaphthalene, 1,6-dihydroxynaphthalene and 1,4-dihydroxynaphthalene are particularly preferred from the viewpoint of the fluidity of the condensed polycyclic structure-containing compound (A).

また、上記一般式(1)中、nは前記した通り、0〜10の整数であるが、本発明では特に縮合多環構造含有化合物(A)の点からnの平均が0〜2であることが好ましい。   Moreover, in said general formula (1), n is an integer of 0-10 as above-mentioned, but the average of n is 0-2 especially from the point of condensed polycyclic structure containing compound (A) in this invention. It is preferable.

従って、前記ジグリシジルオキシナフタレン類は、2,7−ジグリシジルオキシナフタレン、1,6−ジグリシジルオキシナフタレン、1,4−ジグリシジルオキシナフタレン、及び、繰り返し単位nの平均が0〜2にあるこれらの高分子量化物が好ましい。   Accordingly, the diglycidyloxynaphthalene has an average of 2,7-diglycidyloxynaphthalene, 1,6-diglycidyloxynaphthalene, 1,4-diglycidyloxynaphthalene, and repeating unit n of 0-2. These high molecular weight products are preferred.

次に、ポリオキシナフチレン構造を有する2官能性エポキシ化合物は、具体的には、
下記一般式(2)
Next, the bifunctional epoxy compound having a polyoxynaphthylene structure specifically includes:
The following general formula (2)

Figure 2008031344

(式中、Rは水素原子又はメチル基を表し、Rはそれぞれ独立的に水素原子、炭素原子数1〜4のアルキル基、又はアラルキル基を表し、o及びmはそれぞれ0〜2の整数であって、かつo又はmの何れか一方は1以上である。)
で挙げられるエポキシ化合物が挙げられる。
Figure 2008031344

(In the formula, R 1 represents a hydrogen atom or a methyl group, R 2 independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an aralkyl group, and o and m each represent 0 to 2; It is an integer, and either o or m is 1 or more.)
And epoxy compounds mentioned in the above.

前記一般式(2)で表される化合物は、具体的には、下記のA−3〜A−5で表される構造のものが挙げられる。   Specific examples of the compound represented by the general formula (2) include those represented by the following A-3 to A-5.

Figure 2008031344
Figure 2008031344

上記したA−3〜A−5で表される構造に代表されるポリオキシナフチレン構造を有する2官能性エポキシ化合物は、例えば、ジヒドロキシナフタレンを酸性触媒または塩基性触媒の存在下に反応させてフェノール樹脂を得、更にこれをグリシジル化することによって製造することができる。   The bifunctional epoxy compound having a polyoxynaphthylene structure represented by the structure represented by A-3 to A-5 described above is obtained by, for example, reacting dihydroxynaphthalene in the presence of an acidic catalyst or a basic catalyst. It can be produced by obtaining a phenol resin and further glycidylating it.

ここで使用し得るジヒドロキシナフタレンは、1,6−ジヒドロキシナフタレン、及び2,7−ジヒドロキシナフタレンが挙げられる。これらの中でも特にフェノール性水酸基が結合している芳香核において該フェノール性水酸基に隣接する位置に配向性を有するものが好ましく、とりわけ2,7−ジヒドロキシナフタレンが得られるエポキシ樹脂の流動性と難燃性とのバランスに優れる点から好ましい。   Examples of the dihydroxynaphthalene that can be used here include 1,6-dihydroxynaphthalene and 2,7-dihydroxynaphthalene. Among these, those having an orientation at the position adjacent to the phenolic hydroxyl group are particularly preferred in the aromatic nucleus to which the phenolic hydroxyl group is bonded, and in particular, the fluidity and flame retardancy of the epoxy resin from which 2,7-dihydroxynaphthalene can be obtained. From the point which is excellent in balance with property.

前記酸性触媒は、具体的には、塩酸、硫酸、リン酸などの無機酸、メタンスルホン酸、p−トルエンスルホン酸、シュウ酸などの有機酸、三弗化ホウ素、無水塩化アルミニウム、塩化亜鉛などのルイス酸などが挙げられる。また、前記塩基性触媒は、具体的には水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウムなどのアルカリ金属炭酸塩、トリフェニルホスフィンなどのリン系化合物が挙げられる。これらのなかでも特に塩基性触媒を用いることが、理論構造の2官能性エポキシ樹脂が得られる点から好ましい。   Specific examples of the acidic catalyst include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, organic acids such as methanesulfonic acid, p-toluenesulfonic acid, and oxalic acid, boron trifluoride, anhydrous aluminum chloride, and zinc chloride. And Lewis acid. Specific examples of the basic catalyst include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, and phosphorus compounds such as triphenylphosphine. . Among these, it is particularly preferable to use a basic catalyst from the viewpoint of obtaining a bifunctional epoxy resin having a theoretical structure.

また、前記塩基性触媒の使用量は、該塩基性触媒の種類や目標とする反応率などにより、適宜選択すればよいが、例えば前記塩基性触媒としてアルカリ金属水酸化物を用いる場合の場合はジヒドロキシナフタレンのフェノール性水酸基1モルに対し、0.01〜0.5モル、好ましくは0.01〜0.1の割合で使用することが好ましい。   Further, the amount of the basic catalyst used may be appropriately selected depending on the type of the basic catalyst and the target reaction rate. For example, in the case of using an alkali metal hydroxide as the basic catalyst, It is preferable to use it in a proportion of 0.01 to 0.5 mol, preferably 0.01 to 0.1, relative to 1 mol of the phenolic hydroxyl group of dihydroxynaphthalene.

また、前記一般式(2)におけるRが、アラルキル基である場合、該アラルキル基としては下記一般式X Further, when R 2 in the general formula (2) is an aralkyl group, the aralkyl group may be represented by the following general formula X

Figure 2008031344
[一般式X中、R及びRは各々独立して、メチル基又は水素原子であり、Arは、フェニレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたフェニレン基、ナフチレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたナフチレン基、nは繰り返し数の平均値で0.1〜4である。]
で表される構造が挙げられる。
Figure 2008031344
[In General Formula X, R 3 and R 4 are each independently a methyl group or a hydrogen atom, and Ar is nucleus-substituted by 1 to 3 of a phenylene group or an alkyl group having 1 to 4 carbon atoms. A naphthylene group nucleus-substituted with 1 to 3 of a phenylene group, a naphthylene group, or an alkyl group having 1 to 4 carbon atoms, and n is an average number of repetitions of 0.1 to 4. ]
The structure represented by is mentioned.

上記一般式Xで表されるアラルキル基を有する化合物は、具体的には、下記構造式A−6及びA−7で表される化合物が挙げられる。   Specific examples of the compound having an aralkyl group represented by the general formula X include compounds represented by the following structural formulas A-6 and A-7.

Figure 2008031344
Figure 2008031344

上記した一般式(2)においてRとしてアラルキル基を有する化合物は、例えば、ジヒドロキシナフタレンと、アラルキル化剤とを、酸触媒の存在下に反応させてフェノール樹脂を得、次いで、得られたフェノール樹脂とエピハロヒドリン類とを反応させることによって製造することができる。 In the above general formula (2), the compound having an aralkyl group as R 2 is obtained by, for example, reacting dihydroxynaphthalene and an aralkylating agent in the presence of an acid catalyst to obtain a phenol resin, and then the obtained phenol It can be produced by reacting a resin with epihalohydrins.

ここで用いるアラルキル化剤は、具体的には、ベンジルクロライド、ベンジルブロマイド、ベンジルアイオダイト、o−メチルベンジルクロライド、m−メチルベンジルクロライド、p−メチルベンジルクロライド、p−エチルベンジルクロライド、p−イソプロピルベンジルクロライド、p−tert−ブチルベンジルクロライド、p−フェニルベンジルクロライド、5−クロロメチルアセナフチレン、2−ナフチルメチルクロライド、1−クロロメチル−2−ナフタレン及びこれらの核置換異性体、α−メチルベンジルクロライド、α,α−ジメチルベンジルクロライド等のベルジルクロライド類;ベンジルメチルエーテル、o−メチルベンジルメチルエーテル、m−メチルベンジルメチルエーテル、p−メチルベンジルメチルエーテル、p−エチルベンジルメチルエーテル及びこれらの核置換異性体、ベンジルエチルエーテル、ベンジルプロピルエーテル、ベンジルイソブチルエーテル、ベンジルn−ブチルエーテル、p−メチルベンジルメチルエーテル及びその核置換異性体等のベンジルアルキルエーテル類;ベンジルアルコール、o−メチルベンジルアルコール、m−メチルベンジルアルコール、p−メチルベンジルアルコール、p−エチルベンジルアルコール、p−イソプロピルベンジルアルコール、p−tert−ブチルベンジルアルコール、p−フェニルベンジルアルコール、α−ナフチルカルビノール及びこれらの核置換異性体、α−メチルベンジルアルコール、及びα,α−ジメチルベンジルアルコール等のベンジルアルコール類;スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、α−メチルスチレン、β−メチルスチレン等の芳香族ビニル化合物が挙げられる。   Specific examples of the aralkylating agent used herein include benzyl chloride, benzyl bromide, benzyl iodide, o-methylbenzyl chloride, m-methylbenzyl chloride, p-methylbenzyl chloride, p-ethylbenzyl chloride, p-isopropyl. Benzyl chloride, p-tert-butylbenzyl chloride, p-phenylbenzyl chloride, 5-chloromethylacenaphthylene, 2-naphthylmethyl chloride, 1-chloromethyl-2-naphthalene and their nuclear substituted isomers, α-methyl Versyl chlorides such as benzyl chloride and α, α-dimethylbenzyl chloride; benzyl methyl ether, o-methylbenzyl methyl ether, m-methylbenzyl methyl ether, p-methylbenzyl methyl ether, Benzyl alkyl ethers such as ethyl benzyl methyl ether and nucleosubstituted isomers thereof, such as benzyl ethyl ether, benzyl propyl ether, benzyl isobutyl ether, benzyl n-butyl ether, p-methylbenzyl methyl ether and nucleosubstituted isomers thereof; Alcohol, o-methylbenzyl alcohol, m-methylbenzyl alcohol, p-methylbenzyl alcohol, p-ethylbenzyl alcohol, p-isopropylbenzyl alcohol, p-tert-butylbenzyl alcohol, p-phenylbenzyl alcohol, α-naphthylcarbyl Benzyl and their nuclei substituted isomers, α-methylbenzyl alcohol, and benzyl alcohols such as α, α-dimethylbenzyl alcohol; styrene, o-methylstyrene, Aromatic vinyl compounds such as m-methylstyrene, p-methylstyrene, α-methylstyrene, β-methylstyrene and the like can be mentioned.

これらの中でも、とりわけベンジルクロライド、ベンジルブロマイド、及びベンジルアルコールが、硬化物の難燃性が良好となる点から好ましい。   Among these, benzyl chloride, benzyl bromide, and benzyl alcohol are particularly preferable from the viewpoint of good flame retardancy of the cured product.

次に、アントラセン環を有する化合物は9,10−ビス(3,5−ジメチル−4−ヒドロキシベンジル)アントラセンとエピハロヒドリン類とを反応させることによって得られるエポキシ樹脂等が挙げられる。   Next, examples of the compound having an anthracene ring include epoxy resins obtained by reacting 9,10-bis (3,5-dimethyl-4-hydroxybenzyl) anthracene with epihalohydrins.

これらのなかでも特にフィルムへの成形性が良好で、かつ、線膨張係数が低く、硬化物の耐湿性及び靭性に優れる点からナフタレン環を有するものが好ましく、特に、低粘度で線膨張係数が低い点から前記ジグリシジルオキシナフタレン類、即ち、ジヒドロキシナフタレン類とエピハロヒドリンの反応生成物が好ましく、特に1,6−ジヒドロキシナフタレンとエピハロヒドリンの反応生成物が好ましい。また、耐熱性が高く、より強靭性に優れる点から、前記ポリオキシナフチレン構造を有する2官能性エポキシ化合物が好ましい。   Among these, those having a naphthalene ring are preferable from the viewpoints of particularly good moldability to a film, a low linear expansion coefficient, and excellent moisture resistance and toughness of a cured product, and in particular, low viscosity and a linear expansion coefficient. From the low point, the diglycidyloxynaphthalene, that is, the reaction product of dihydroxynaphthalene and epihalohydrin is preferable, and the reaction product of 1,6-dihydroxynaphthalene and epihalohydrin is particularly preferable. Moreover, the bifunctional epoxy compound which has the said polyoxy naphthylene structure from the point which is high in heat resistance and is more excellent in toughness is preferable.

また、硬化性が良好となる点から、これらのエポキシ樹脂のエポキシ当量は136g/eq〜400g/eq、含まれる加水分解性塩素含有量は1000ppm以下が好ましく、得られる硬化物の耐湿性、絶縁性が良好となる点から、含まれる全塩素含有量は2000ppm以下となる範囲であることが好ましい。   In addition, from the viewpoint of good curability, the epoxy equivalent of these epoxy resins is preferably 136 g / eq to 400 g / eq, and the hydrolyzable chlorine content is preferably 1000 ppm or less, and the resulting cured product has moisture resistance and insulation. From the viewpoint of improving the properties, the total chlorine content is preferably in the range of 2000 ppm or less.

次に、本発明で用いるフェノール性水酸基を1分子内に2つ有する縮合多環構造含有化合物(B)は、分子構造内にナフタレン環、アントラセン環等の縮合多環構造を有する2官能性のフェノール性水酸基含有化合物である。   Next, the condensed polycyclic structure-containing compound (B) having two phenolic hydroxyl groups in one molecule used in the present invention is a bifunctional compound having a condensed polycyclic structure such as a naphthalene ring or an anthracene ring in the molecular structure. It is a phenolic hydroxyl group-containing compound.

分子構造内にナフタレン環を有する化合物は、例えば、1,4−ジヒドロキシナフタレン、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン、及びこれらのメチル基又はエチル基が核置換した化合物、下記構造式B−1   Examples of the compound having a naphthalene ring in the molecular structure include 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, and these A compound in which a methyl group or an ethyl group is substituted by a nucleus, the following structural formula B-1

Figure 2008031344

で表されるビナフトール化合物、下記構造式A−2
Figure 2008031344

A binaphthol compound represented by the following structural formula A-2

Figure 2008031344

で表されるビス(ヒドロキシナフチル)メタン、並びにポリオキシナフチレン構造を有する2官能性ナフトール化合物が挙げられる。
Figure 2008031344

And a bifunctional naphthol compound having a polyoxynaphthylene structure.

ここでポリオキシナフチレン構造を有する2官能性ナフトール化合物は、具体的には、
下記一般式(4)
Here, the bifunctional naphthol compound having a polyoxynaphthylene structure specifically includes:
The following general formula (4)

Figure 2008031344

(式中、Rはそれぞれ独立的に水素原子、炭素原子数1〜4のアルキル基、又はアラルキル基を表し、n及びmはそれぞれ0〜2の整数であって、かつn又はmの何れか一方は1以上である。)
で挙げられるナフトール化合物が挙げられる。
Figure 2008031344

(In the formula, each R 2 independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an aralkyl group, and n and m are each an integer of 0 to 2, and One of them is 1 or more.)
And the naphthol compounds mentioned above.

かかる一般式(4)で表される化合物としては、例えば、下記B−3〜B−5で表されるものが挙げられる。   Examples of the compound represented by the general formula (4) include those represented by the following B-3 to B-5.

Figure 2008031344
Figure 2008031344


また、前記一般式(4)におけるRが、アラルキル基である場合、該アラルキル基としては下記一般式X Further, when R 2 in the general formula (4) is an aralkyl group, the aralkyl group may be represented by the following general formula X

Figure 2008031344
[一般式X中、R及びRは各々独立して、メチル基又は水素原子であり、Arは、フェニレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたフェニレン基、ナフチレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたナフチレン基、nは繰り返し数の平均値で0.1〜4である。]
で表される構造が挙げられる。
Figure 2008031344
[In General Formula X, R 3 and R 4 are each independently a methyl group or a hydrogen atom, and Ar is nucleus-substituted by 1 to 3 of a phenylene group or an alkyl group having 1 to 4 carbon atoms. A naphthylene group nucleus-substituted with 1 to 3 of a phenylene group, a naphthylene group, or an alkyl group having 1 to 4 carbon atoms, and n is an average number of repetitions of 0.1 to 4. ]
The structure represented by is mentioned.

上記一般式Xで表されるアラルキル基を有する化合物は、具体的には、下記構造式A−6及びA−7で表される化合物が挙げられる。   Specific examples of the compound having an aralkyl group represented by the general formula X include compounds represented by the following structural formulas A-6 and A-7.

Figure 2008031344
Figure 2008031344

次に、アントラセン環を有する化合物は9,10−ビス(3,5−ジメチル−4−ヒドロキシベンジル)アントラセン等が挙げられる。   Next, examples of the compound having an anthracene ring include 9,10-bis (3,5-dimethyl-4-hydroxybenzyl) anthracene.

これらのなかでも特にフィルムへの成形性が良好で、かつ、線膨張係数が低く、更に、硬化物の耐湿性及び靭性に優れる点からナフタレン環を有するものが好ましく、1,4−ジヒドロキシナフタレン、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン、及びこれらのメチル基又はエチル基が核置換した化合物に代表されるジグリシジルオキシナフタレン類が好ましく、特に1,6-ジヒドロキシナフタレンが好ましい。   Among these, those having a naphthalene ring are preferable from the viewpoint of excellent moldability into a film, a low linear expansion coefficient, and excellent moisture resistance and toughness of the cured product, and 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, and diglycidyloxynaphthalenes typified by compounds in which the methyl group or ethyl group is substituted with a nucleus Are preferable, and 1,6-dihydroxynaphthalene is particularly preferable.

本発明のエポキシ樹脂組成物は、エポキシ基を1分子内に2つ有する縮合多環構造含有化合物(A)(以下、これを単に「エポキシ樹脂(A)」と略記する。)を主剤として用い、かつ、フェノール性水酸基を1分子内に2つ有する縮合多環構造含有化合物(B)(以下、これを単に「硬化剤(B)」と略記する。)を硬化剤として用いるものであり、これらは前者のエポキシ基/後者のフェノール性水酸基の比率が0.95〜1.05となる配合割合で使用することにより、線膨張係数が極めて低い硬化物を得ることができる。前述した通り、通常、2官能性エポキシ樹脂と2官能性のフェノール系硬化剤とを反応させた場合、その反応生成物は、単に、直線状に高分子量化するだけで、架橋構造を有する硬化物は得られない。これに対して、本発明では、前記したようなエポキシ基/フェノール性水酸基の比率が0.95〜1.05となる当量比に近い配合割合であっても架橋構造が形成され、かつ、得られる硬化物はガラス領域における線膨張係数が極めて低いために寸法安定性に優れ、耐熱性、靭性にも優れたものとなる。   The epoxy resin composition of the present invention uses a condensed polycyclic structure-containing compound (A) having two epoxy groups in one molecule (hereinafter simply referred to as “epoxy resin (A)”) as a main agent. And a condensed polycyclic structure-containing compound (B) having two phenolic hydroxyl groups in one molecule (hereinafter simply referred to as “curing agent (B)”) as a curing agent, By using these at a blending ratio in which the ratio of the former epoxy group / the latter phenolic hydroxyl group is 0.95 to 1.05, a cured product having an extremely low linear expansion coefficient can be obtained. As described above, usually, when a bifunctional epoxy resin and a bifunctional phenolic curing agent are reacted, the reaction product is a cured product having a crosslinked structure simply by increasing the molecular weight in a straight line. Things cannot be obtained. On the other hand, in the present invention, a crosslinked structure is formed even if the blending ratio is close to the equivalent ratio in which the ratio of epoxy group / phenolic hydroxyl group is 0.95 to 1.05 as described above, and Since the cured product obtained has a very low linear expansion coefficient in the glass region, it has excellent dimensional stability, heat resistance and toughness.

上記したとおり、本発明のエポキシ樹脂組成物は、前記エポキシ樹脂(A)、及び、前記硬化剤(B)を必須成分とするものであるが、これらの各成分に加え、更に、エポキシ樹脂成分として、3官能以上のエポキシ樹脂(A’)を用いることが、硬化性に優れ、かつ、硬化物の耐湿性及び耐熱性が良好となる点から好ましい。特に、前記したビルドアップ用の接着フィルムとして用いる場合、3官能以上のエポキシ樹脂を併用することが、硬化物の破断強度を向上させ、また硬化物の架橋密度を向上させて、無機充填材を35wt%以上の高充填させても粗化処理後の硬化物表面に無機充填材が剥き出しになるのを抑制し、安定して高いめっきピール強度を得ることができる点からから好ましい。   As described above, the epoxy resin composition of the present invention comprises the epoxy resin (A) and the curing agent (B) as essential components. In addition to these components, the epoxy resin component It is preferable to use a tri- or higher functional epoxy resin (A ′) from the viewpoint of excellent curability and good moisture resistance and heat resistance of the cured product. In particular, when used as an adhesive film for build-up as described above, using a trifunctional or higher functional epoxy resin improves the breaking strength of the cured product and improves the cross-linking density of the cured product, thereby providing an inorganic filler. Even if 35 wt% or more is highly filled, the inorganic filler is prevented from being exposed on the surface of the cured product after the roughening treatment, which is preferable from the viewpoint that high plating peel strength can be obtained stably.

ここで用いる3官能以上のエポキシ樹脂(A’)は、例えば、フェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物、及び、
下記構造式
The trifunctional or higher functional epoxy resin (A ′) used here is, for example, an epoxidized product of a condensation product of a phenol and an aromatic aldehyde having a phenolic hydroxyl group, and
The following structural formula

Figure 2008031344

で表される4官能ナフタレン型エポキシ樹脂が挙げられる。
Figure 2008031344

The tetrafunctional naphthalene type epoxy resin represented by these is mentioned.

本発明のエポキシ樹脂組成物における成分(A)と成分(A’)との配合割合は、成分(A)/成分(A’)の質量比で、1/0.3〜1/2の範囲、特に1/0.5〜1/1の範囲であることが、特にビルドアップ用の接着フィルムを製造する場合の組成物の粘着性が適度に抑えられ、真空ラミネート時の脱気性が良好でボイドの発生を防止できる点から好ましい。   The compounding ratio of the component (A) and the component (A ′) in the epoxy resin composition of the present invention is a mass ratio of the component (A) / component (A ′) and ranges from 1 / 0.3 to 1/2. In particular, the range of 1 / 0.5 to 1/1 is to moderately suppress the tackiness of the composition particularly in the case of producing an adhesive film for build-up, and the deaeration at the time of vacuum lamination is good. It is preferable from the point which can prevent generation | occurrence | production of a void.

また、エポキシ樹脂成分として前記成分(A’)を併用する場合、前記硬化剤(B)中のフェノール性水酸基のモル数に対して、成分(A)及び成分(A’)中のエポキシ基の総モル数の比(エポキシ基/フェノール性水酸基)が0.95〜1.05となる範囲であることが好ましい。   Moreover, when using the said component (A ') together as an epoxy resin component, with respect to the mole number of the phenolic hydroxyl group in the said hardening | curing agent (B), the epoxy group in a component (A) and a component (A'). The ratio of the total number of moles (epoxy group / phenolic hydroxyl group) is preferably in the range of 0.95 to 1.05.

また、本発明のエポキシ樹脂組成物は、上記した硬化剤(B)に加え、本発明の効果を損なわない範囲で、他のエポキシ樹脂用硬化剤を併用してもよい。ここで使用し得る硬化剤は、例えば、アミン系化合物、酸無水物系化合物、アミド系化合物、フェノ−ル系化合物などのエポキシ樹脂用硬化剤が挙げられる。具体的には、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ポリアルキレングリコールポリアミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、フェノールアラルキル樹脂、クレゾールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニル変性フェノールアラルキル樹脂、フェノールトリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂、アミノトリアジン変性フェノール樹脂等を始めとする多価フェノール化合物、及びこれらの変性物、イミダゾ−ル、BF−アミン錯体、並びにグアニジン誘導体などが挙げられる。 Moreover, in addition to the above-mentioned curing agent (B), the epoxy resin composition of the present invention may be used in combination with another curing agent for epoxy resin as long as the effects of the present invention are not impaired. Examples of the curing agent that can be used here include curing agents for epoxy resins such as amine compounds, acid anhydride compounds, amide compounds, and phenol compounds. Specifically, diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, polyalkylene glycol polyamine, diaminodiphenyl sulfone, isophorone diamine, dicyandiamide, polyamide resin synthesized from linolenic acid and ethylene diamine, phthalic anhydride, triethylene anhydride Mellitic acid, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic acid anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, phenol novolac resin, cresol novolac resin, aromatic Hydrocarbon formaldehyde resin modified phenolic resin, dicyclopentadiene modified phenolic resin, phenol aralkyl resin, cresol aralkyl resin, naphtho Ruaralkyl resin, biphenyl modified phenol aralkyl resin, phenol trimethylol methane resin, tetraphenylol ethane resin, naphthol novolac resin, naphthol-phenol co-condensed novolac resin, naphthol-cresol co-condensed novolac resin, biphenyl-modified phenol resin, aminotriazine modified phenol Examples thereof include polyhydric phenol compounds including resins and the like, modified products thereof, imidazoles, BF 3 -amine complexes, guanidine derivatives, and the like.

上記した硬化剤は、極めて低い線膨張係数を発現する、という本発明の効果を損なわないようにするため、硬化剤の全成分中、前記した硬化剤(B)が70質量%以上となる範囲であることが好ましい。   In order not to impair the effect of the present invention that the above-mentioned curing agent expresses an extremely low linear expansion coefficient, the above-described curing agent (B) is in a range of 70% by mass or more in all components of the curing agent. It is preferable that

本発明のエポキシ樹脂組成物は、上記した各成分に加え、更に、硬化促進剤(C)を併用してもよい。   The epoxy resin composition of the present invention may further contain a curing accelerator (C) in addition to the components described above.

ここで使用し得る硬化促進剤(C)は、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。この中でも、硬化物の低線膨張係数化の効果が顕著なものとなる点からイミダゾール類が好ましい。   Examples of the curing accelerator (C) that can be used here include phosphorus compounds, tertiary amines, imidazoles, organic acid metal salts, Lewis acids, amine complex salts, and the like. Among these, imidazoles are preferable because the effect of reducing the linear expansion coefficient of the cured product becomes remarkable.

また、硬化促進剤(C)の添加量は、目標とする硬化時間等によって適宜調整することができるが、前記したエポキシ樹脂成分、硬化剤成分及び前記硬化促進剤(C)の総質量に対して0.1〜7質量%となる範囲であることが好ましい。   Moreover, although the addition amount of a hardening accelerator (C) can be suitably adjusted with the target hardening time etc., with respect to the total mass of an above-described epoxy resin component, a hardening | curing agent component, and the said hardening accelerator (C). Is preferably in the range of 0.1 to 7% by mass.

本発明のエポキシ樹脂組成物は、用途に応じて、上記した各成分に加え、更に有機溶剤(D)を使用することができる。例えば、エポキシ樹脂組成物を積層板用ワニスとして用いる場合には基材への含浸性が改善される他、ビルドアップ用接着フィルムとして用いる場合には、基材シートへの塗工性が良好になる。ここで使用し得る有機溶剤(D)は、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等が挙げられる。   The epoxy resin composition of the present invention can further use an organic solvent (D) in addition to the above-described components depending on the application. For example, when the epoxy resin composition is used as a varnish for a laminated board, the impregnation property to the base material is improved, and when used as an adhesive film for buildup, the coating property to the base material sheet is good. Become. Examples of the organic solvent (D) that can be used here include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, and acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate. , Carbitols such as cellosolve and butyl carbitol, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like.

本発明のエポキシ樹脂組成物は、上記した各成分に加え、更に、更に無機質充填材(E)を使用することができる。この無機質充填材(E)は、具体的には、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、窒化アルミ等が挙げられる。無機質充填材の配合量を特に大きくする場合は、溶融シリカを用いることが好ましい。溶融シリカは、破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め、且つ成形材料の溶融粘度の上昇を抑えるためには、球状のものを主に用いる方が好ましい。更に、球状シリカの配合量を高めるためには、球状シリカの粒度分布がより広くなるように調製することが好ましい。ここで無機質充填材(E)の使用量は、用途に応じ適宜選択することができるが、例えば、前記したビルドアップ用の接着フィルムに用いる場合、該無機質充填材(E)の使用量を増加させた場合には、硬化物の線膨張係数は低くなるものの、めっき層との接着性が低下する傾向にある。本発明のエポキシ樹脂組成物は、その硬化物が顕著に低い線膨張係数を示すことから無機質充填材(E)の使用量を低く抑えることができる。かかる観点から無機質充填材(E)の使用量は、エポキシ樹脂組成物中20〜80質量%であることが好ましい。   In addition to the above-described components, the epoxy resin composition of the present invention can further use an inorganic filler (E). Specific examples of the inorganic filler (E) include fused silica, crystalline silica, alumina, silicon nitride, and aluminum nitride. When particularly increasing the blending amount of the inorganic filler, it is preferable to use fused silica. The fused silica can be used in either a crushed shape or a spherical shape, but in order to increase the blending amount of the fused silica and to suppress an increase in the melt viscosity of the molding material, it is preferable to mainly use a spherical shape. Furthermore, in order to increase the compounding amount of the spherical silica, it is preferable to prepare so that the particle size distribution of the spherical silica becomes wider. Here, the amount of the inorganic filler (E) used can be appropriately selected according to the application. For example, when used for the above-described adhesive film for buildup, the amount of the inorganic filler (E) used is increased. In such a case, the linear expansion coefficient of the cured product is lowered, but the adhesion with the plating layer tends to be lowered. The epoxy resin composition of the present invention can keep the amount of the inorganic filler (E) used low because the cured product exhibits a significantly low linear expansion coefficient. From this viewpoint, the amount of the inorganic filler (E) used is preferably 20 to 80% by mass in the epoxy resin composition.

また、本発明のエポキシ樹脂組成物は、必要に応じて、難燃剤、シランカップリング剤、離型剤、顔料等の種々の配合剤を添加することができる。   Moreover, the epoxy resin composition of this invention can add various compounding agents, such as a flame retardant, a silane coupling agent, a mold release agent, and a pigment, as needed.

ここで、難燃剤としては、ハロゲン化合物、燐原子含有化合物や窒素原子含有化合物や無機系難燃化合物などが挙げられる。具体的には、テトラブロモビスフェノールA型エポキシ樹脂などのハロゲン化合物、赤燐、燐酸エステル化合物などの燐原子含有化合物、メラミンなどの窒素原子含有化合物、水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、硼酸カルシウムなどの無機系難燃化合物が挙げられる。   Here, examples of the flame retardant include a halogen compound, a phosphorus atom-containing compound, a nitrogen atom-containing compound, and an inorganic flame retardant compound. Specifically, halogen compounds such as tetrabromobisphenol A type epoxy resin, phosphorus atom-containing compounds such as red phosphorus and phosphate ester compounds, nitrogen atom-containing compounds such as melamine, aluminum hydroxide, magnesium hydroxide, zinc borate, boric acid Examples include inorganic flame retardant compounds such as calcium.

本発明のエポキシ樹脂組成物は、上記した各成分を均一に混合することにより得られ、接着剤、塗料、半導体封止材、回路基板材、複合材料、及びビルドアップ用接着フィルム等の各種の用途に適用できる。   The epoxy resin composition of the present invention is obtained by uniformly mixing the above-described components, and various kinds of adhesives, paints, semiconductor sealing materials, circuit board materials, composite materials, build-up adhesive films, and the like. Applicable to usage.

例えば、無溶剤型の接着剤や塗料や封止材用エポキシ樹脂組成物を調整するには、当該エポキシ樹脂を含む、硬化剤及び、必要に応じて無機充填材などの成分を、予備混合した後に、撹拌混合機や押出機、ニ−ダ、ロ−ル等を用いて均一になるまで充分に混合して製造することができる。これらの用途において無機充填材(E)の使用量は通常、充填率30〜95質量%となる範囲である。   For example, in order to prepare an epoxy resin composition for solvent-free adhesives, paints, and sealing materials, components such as a curing agent and an inorganic filler as necessary are premixed. Thereafter, the mixture can be sufficiently mixed using a stirring mixer, an extruder, a kneader, a roll or the like until uniform. In these applications, the amount of the inorganic filler (E) used is usually in a range where the filling rate is 30 to 95% by mass.

また、溶剤型の接着剤、塗料、銅張り積層板、ビルドアップ基板、繊維強化複合材料用のエポキシ樹脂組成物を調整するには、本発明のエポキシ樹脂成分、硬化剤成分、硬化促進剤、及び、必要により難燃剤等をトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン等の有機溶剤(D)に溶解させることにより製造することができる。この際の溶剤の使用量は、前記組成物ワニス中、10〜70質量%となる範囲であることが好ましい。   In addition, in order to adjust the epoxy resin composition for solvent-type adhesives, paints, copper-clad laminates, build-up substrates, fiber reinforced composite materials, the epoxy resin component, curing agent component, curing accelerator of the present invention, And if needed, a flame retardant etc. can be manufactured by dissolving in organic solvents (D), such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone. The amount of the solvent used in this case is preferably in the range of 10 to 70% by mass in the composition varnish.

この様にして得られた本発明のエポキシ樹脂組成物を硬化させるには、例えば、塗料用途の場合、上記の様にして調整された塗料を基材に塗布して、それを15〜200℃の環境で5分間〜1週間放置することによって、目的の塗膜硬化物を得ることができる。
また、接着剤の場合は、それを用いて基材を接着後、塗料と同様にして硬化させればよい。封止材硬化物は、該組成物を注型、或いはトランスファ−成形機、射出成形機などを用いて成形し、さらに80〜200℃で2〜10時間に加熱することにより硬化物を得ることができる。
また、回路基板材や複合材料用のワニス組成物の硬化物は積層物であり、この硬化物を得る方法としては、回路基板用ワニスをガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させ加熱乾燥してプリプレグを得て、それを熱プレス成形して得ることができる。
また製品形態としては、タブレット、ワニス、ペースト、パウダー、プリプレグ、フィルム或いはテープ(基材付き/無し、離型材付き/無し)、及び1液系でも2液系の何れでも構わない。
In order to cure the epoxy resin composition of the present invention thus obtained, for example, in the case of a coating application, the coating material prepared as described above is applied to a substrate, and the coating is applied at 15 to 200 ° C. The desired cured film can be obtained by leaving it for 5 minutes to 1 week in this environment.
In the case of an adhesive, the substrate may be bonded using the adhesive and then cured in the same manner as the paint. The cured encapsulant is obtained by molding the composition using a casting, transfer molding machine, injection molding machine or the like, and further heating at 80 to 200 ° C. for 2 to 10 hours. Can do.
Moreover, the hardened | cured material of the varnish composition for circuit board materials and a composite material is a laminated body, As a method of obtaining this hardened | cured material, glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber is used for the varnish for circuit boards. It can be obtained by impregnating a base material such as paper and drying by heating to obtain a prepreg, which is then subjected to hot press molding.
The product form may be tablet, varnish, paste, powder, prepreg, film or tape (with / without base material, with / without release material), and one-component or two-component system.

以上の各種用途のなかでも、本発明では、特に、ビルドアップ用接着フィルム、及び、積層板用プリプレグがとりわけ有用である。   Among the various uses described above, particularly in the present invention, a buildup adhesive film and a laminate prepreg are particularly useful.

本発明のエポキシ樹脂組成物からビルドアップ用接着フィルムを製造する方法は、例えば、本発明のエポキシ樹脂組成物を、支持フィルム上に塗布し樹脂組成物層を形成させて多層プリント配線板用の接着フィルムとする方法が挙げられる。   The method for producing an adhesive film for buildup from the epoxy resin composition of the present invention is, for example, applied to the support film by forming the epoxy resin composition of the present invention on a support film to form a resin composition layer. The method of setting it as an adhesive film is mentioned.

本発明のエポキシ樹脂組成物をビルドアップ用接着フィルムに用いる場合、該接着フィルムは、真空ラミネート法におけるラミネートの温度条件(通常70℃〜140℃)で軟化し、回路基板のラミネートと同時に、回路基板に存在するビアホール或いはスルーホール内の樹脂充填が可能な流動性(樹脂流れ)を示すことが肝要であり、このような特性を発現するよう上記各成分を配合することが好ましい。   When the epoxy resin composition of the present invention is used for a build-up adhesive film, the adhesive film is softened under the lamination temperature condition (usually 70 ° C. to 140 ° C.) in the vacuum laminating method, and at the same time as laminating the circuit board, It is important to show fluidity (resin flow) capable of filling the via hole or through hole in the substrate, and it is preferable to blend the above-described components so as to exhibit such characteristics.

ここで、多層プリント配線板のスルホールの直径は通常0.1〜0.5mm、深さは通常0.1〜1.2mmであり、通常この範囲で樹脂充填を可能とするのが好ましい。なお回路基板の両面をラミネートする場合はスルーホールの1/2程度充填されることが望ましい。   Here, the diameter of the through hole of the multilayer printed wiring board is usually 0.1 to 0.5 mm, and the depth is usually 0.1 to 1.2 mm. It is usually preferable to allow resin filling in this range. When laminating both surfaces of the circuit board, it is desirable to fill about 1/2 of the through hole.

かかる観点から本発明で用いるエポキシ樹脂組成物は、測定開始温度60℃、昇温速度5℃/分及び振動数を1Hz/degの条件で動的粘弾性を測定して導出される温度−溶融粘度(η)から、溶融粘度が、90℃で4,000乃至50,000ポイズ、100℃で2,000乃至21,000ポイズ、110℃で900乃至12,000ポイズ、120℃で500乃至9,000ポイズ、130℃で300乃至15,000となるものを用いるのが好ましい。   From this point of view, the epoxy resin composition used in the present invention is a temperature-melting point derived by measuring dynamic viscoelasticity under the conditions of a measurement start temperature of 60 ° C., a heating rate of 5 ° C./min, and a frequency of 1 Hz / deg. From the viscosity (η), the melt viscosity is 4,000 to 50,000 poise at 90 ° C., 2,000 to 21,000 poise at 100 ° C., 900 to 12,000 poise at 110 ° C., and 500 to 9 at 120 ° C. It is preferable to use a material having a viscosity of 300 to 15,000 at 130 ° C.

このような溶融粘度特性を有する樹脂組成物を用いることにより、真空ラミネーターを用いた真空ラミネートにより、回路基板表面への樹脂組成物の積層とビアホール及びスルーホール内への樹脂組成物の充填を同時に一括して行うことができる。   By using a resin composition having such a melt viscosity characteristic, the lamination of the resin composition on the circuit board surface and the filling of the resin composition into the via hole and the through hole are simultaneously performed by vacuum lamination using a vacuum laminator. Can be done in a lump.

上記した接着フィルムを製造する方法は、具体的には、ワニス状の本発明のエポキシ樹脂組成物を調製した後、支持フィルム(Y)の表面に、このワニス状の組成物を塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥させてエポキシ樹脂組成物の層(X)を形成させることにより製造することができる。   Specifically, the method for producing the adhesive film described above is, after preparing the varnish-like epoxy resin composition of the present invention, coating the varnish-like composition on the surface of the support film (Y), and further It can be produced by drying the organic solvent by heating or blowing hot air to form the layer (X) of the epoxy resin composition.

乾燥条件は、層(X)中の有機溶剤(D)の含有率が10質量%以下、好ましくは5質量%以下となるように乾燥させることが好ましい。乾燥条件はワニス中の有機溶媒量によっても異なるが、例えば30〜60質量%の有機溶剤を含むワニスを50〜150℃で3〜10分程度乾燥させることができる。   The drying conditions are preferably such that the content of the organic solvent (D) in the layer (X) is 10% by mass or less, preferably 5% by mass or less. Although the drying conditions vary depending on the amount of organic solvent in the varnish, for example, a varnish containing 30 to 60% by mass of an organic solvent can be dried at 50 to 150 ° C. for about 3 to 10 minutes.

形成される層(X)の厚さは、通常、導体層の厚さ以上とする。回路基板が有する導体層の厚さは通常5〜70μmの範囲であるので、樹脂組成物層の厚さは10〜100μmの厚みを有するのが好ましい。   The thickness of the formed layer (X) is usually not less than the thickness of the conductor layer. Since the thickness of the conductor layer of the circuit board is usually in the range of 5 to 70 μm, the thickness of the resin composition layer is preferably 10 to 100 μm.

なお、本発明における層(X)は、後述する保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。   In addition, the layer (X) in this invention may be protected with the protective film mentioned later. By protecting with a protective film, it is possible to prevent dust and the like from being attached to the surface of the resin composition layer and scratches.

前記した支持フィルム及び保護フィルムは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持フィルム及び保護フィルムはマッド処理、コロナ処理の他、離型処理を施してあってもよい。   The above-mentioned support film and protective film are made of polyolefin such as polyethylene, polypropylene and polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”), polyester such as polyethylene naphthalate, polycarbonate, polyimide, and further. Examples thereof include metal foil such as pattern paper, copper foil, and aluminum foil. In addition, the support film and the protective film may be subjected to a release treatment in addition to the mud treatment and the corona treatment.

支持フィルムの厚さは特に限定されないが、通常10〜150μmであり、好ましくは25〜50μmの範囲で用いられる。また保護フィルムの厚さは1〜40μmとするのが好ましい。   Although the thickness of a support film is not specifically limited, Usually, it is 10-150 micrometers, Preferably it is used in 25-50 micrometers. Moreover, it is preferable that the thickness of a protective film shall be 1-40 micrometers.

上記した支持フィルム(Y)は、回路基板にラミネートした後に、或いは加熱硬化することにより絶縁層を形成した後に、剥離される。接着フィルムを加熱硬化した後に支持フィルム(Y)を剥離すれば、硬化工程でのゴミ等の付着を防ぐことができる。硬化後に剥離する場合、通常、支持フィルムには予め離型処理が施される。   The support film (Y) described above is peeled off after being laminated on a circuit board or after forming an insulating layer by heat curing. If the support film (Y) is peeled after the adhesive film is heat-cured, adhesion of dust and the like in the curing process can be prevented. In the case of peeling after curing, the support film is usually subjected to a release treatment in advance.

次に、上記のようして得られた接着フィルムを用いて多層プリント配線板を製造する方法は、例えば、層(X)が保護フィルムで保護されている場合はこれらを剥離した後、層(X)を回路基板に直接接するように、回路基板の片面又は両面に、例えば真空ラミネート法によりラミネートする。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。またラミネートを行う前に接着フィルム及び回路基板を必要により加熱(プレヒート)しておいてもよい。   Next, the method for producing a multilayer printed wiring board using the adhesive film obtained as described above is, for example, when the layer (X) is protected by a protective film, after peeling these layers ( X) is laminated on one side or both sides of the circuit board so as to be in direct contact with the circuit board, for example, by a vacuum laminating method. The laminating method may be a batch method or a continuous method using a roll. Further, the adhesive film and the circuit board may be heated (preheated) as necessary before lamination.

ラミネートの条件は、圧着温度(ラミネート温度)を好ましくは70〜140℃、圧着圧力を好ましくは1〜11kgf/cm2(9.8×104〜107.9×104N/m2)とし、空気圧20mmHg(26.7hPa)以下の減圧下でラミネートすることが好ましい。   The lamination conditions are such that the pressure bonding temperature (laminating temperature) is preferably 70 to 140 ° C., the pressure bonding pressure is preferably 1 to 11 kgf / cm 2 (9.8 × 10 4 to 107.9 × 104 N / m 2), and the air pressure is 20 mmHg (26 It is preferable to laminate under a reduced pressure of 0.7 hPa or less.

ここで、回路基板とは、ガラスエポキシ、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等の基板の片面又は両面にパターン加工された導体層(回路)が形成されたものが挙げられる。   Here, the circuit board has a conductive layer (circuit) patterned on one or both sides of a substrate such as a glass epoxy, metal substrate, polyester substrate, polyimide substrate, BT resin substrate, thermosetting polyphenylene ether substrate or the like. Can be mentioned.

このように接着フィルムを回路基板にラミネートした後、支持フィルム(Y)を剥離する場合は剥離し、熱硬化することにより回路基板に絶縁層が形成される。加熱硬化の条件は150℃〜220℃で20分〜180分の範囲で選択され、より好ましくは160℃〜200℃で30〜120分である。   After laminating the adhesive film on the circuit board in this way, when the support film (Y) is peeled off, the insulating film is formed on the circuit board by peeling and thermosetting. The conditions of heat curing are selected in the range of 20 to 180 minutes at 150 to 220 ° C, more preferably 30 to 120 minutes at 160 to 200 ° C.

絶縁層を形成した後、硬化前に支持フィルム(Y)を剥離しなかった場合は、ここで剥離する。次に回路基板上に形成された絶縁層に、ドリル、レーザー、プラズマ等の方法により、穴開けを行いビアホール、スルーホールを形成する。   If the support film (Y) is not peeled off after the insulating layer is formed, it is peeled off here. Next, holes are formed in the insulating layer formed on the circuit board by a method such as drilling, laser, or plasma to form via holes and through holes.

次いで、絶縁層表面を酸化剤より粗化処理を行う。酸化剤としては、過マンガン酸塩(過マンガン酸カリウム、過マンガン酸ナトリウム等)、重クロム酸塩、オゾン、過酸化水素/硫酸、硝酸等が挙げられる。   Next, the surface of the insulating layer is roughened with an oxidizing agent. Examples of the oxidizing agent include permanganate (potassium permanganate, sodium permanganate, etc.), dichromate, ozone, hydrogen peroxide / sulfuric acid, nitric acid and the like.

次に、粗化処理により凸凹のアンカーが形成された樹脂組成物層表面に、無電解めっきと電解めっきを組み合わせた方法で導体層を形成する。また導体層とは逆パターンのめっきレジストを形成し、無電解めっきのみで導体層を形成してもよい。なお導体層形成後、150〜200℃で20〜90分アニール処理することにより、導体層のピール強度をさらに向上、安定化させることができる。本発明では、前記したとおり、無機充填材(E)の使用量を低く抑えることができる点から、優れたピール強度を発現させることができる。   Next, a conductor layer is formed on the surface of the resin composition layer on which uneven anchors are formed by the roughening treatment by a method combining electroless plating and electrolytic plating. Alternatively, a plating resist having a pattern opposite to that of the conductor layer may be formed, and the conductor layer may be formed only by electroless plating. After forming the conductor layer, the peel strength of the conductor layer can be further improved and stabilized by annealing at 150 to 200 ° C. for 20 to 90 minutes. In this invention, as above-mentioned, the outstanding peel strength can be expressed from the point which can suppress the usage-amount of an inorganic filler (E) low.

また、導体層をパターン加工し回路形成する方法としては、例えばサブトラクティブ法、セミアディディブ法などを用いることができる。   Moreover, as a method of patterning the conductor layer to form a circuit, for example, a subtractive method, a semi-additive method, or the like can be used.

次に、繊維からなるシート状補強基材に本発明のエポキシ該樹脂組成物を含浸させて多層プリント配線板の層間絶縁層用のプリプレグを製造する方法は、例えば、本発明のエポキシ樹脂組成物を繊維からなるシート状補強基材にホットメルト法又はソルベント法により含浸させ、加熱により半硬化させることにより製造する方法が挙げられる。ここで使用し得る繊維からなるシート状補強基材としては、例えばガラスクロスやアラミド繊維等が挙げられる。   Next, a method for producing a prepreg for an interlayer insulating layer of a multilayer printed wiring board by impregnating a sheet-like reinforcing substrate made of fibers with the epoxy resin composition of the present invention includes, for example, the epoxy resin composition of the present invention. There is a method in which a sheet-like reinforcing substrate made of fiber is impregnated by a hot melt method or a solvent method and semi-cured by heating. Examples of the sheet-like reinforcing substrate made of fibers that can be used here include glass cloth and aramid fibers.

次に上記プリプレグを用いて多層プリント配線板を製造する方法は、例えば回路基板に本発明のプリプレグを1枚あるいは必要により数枚重ね、離型フィルムを介して金属プレートを挟み加圧・加熱条件下でプレス積層する方法が挙げられる。圧力条件は具体的には5〜40kgf/cm2、温度は120〜200℃で20〜100分の範囲であることが好ましい。また接着フィルムと同様に真空ラミネート法により回路基板にラミネートした後、加熱硬化することによっても製造可能である。その後、前に記載した方法と同様、酸化剤により硬化したプリプレグ表面を粗化した後、導体層をめっきにより形成して多層プリント配線板を製造することができる。   Next, a method for producing a multilayer printed wiring board using the above prepreg includes, for example, one or several prepregs of the present invention on a circuit board, and a metal plate sandwiched between release films and pressurizing / heating conditions. The method of carrying out press lamination below is mentioned. Specifically, the pressure condition is preferably 5 to 40 kgf / cm 2, and the temperature is preferably 120 to 200 ° C. for 20 to 100 minutes. Moreover, it can also be manufactured by laminating on a circuit board by a vacuum laminating method as in the case of an adhesive film, and then curing by heating. Thereafter, similar to the method described above, the surface of the prepreg cured with an oxidizing agent is roughened, and then a conductor layer is formed by plating to produce a multilayer printed wiring board.

実施例1〜4び比較例1〜6
表1及び表2に示す各成分を表1及び表2に示す配合比率に従って、エポキシ樹脂組成物を調整した。
このエポキシ樹脂組成物を175℃で5時間の条件でプレス成形して、硬化物試験片を得た。それの耐熱性を、動的粘弾性測定装置(DMA)を用いてガラス転移温度を測定し評価した。また、ガラス領域(50℃)における線膨張係数を、熱機械分析装置(TMA)を用いて測定し評価した。吸湿率を、85℃85%RHで300時間放置後の質量変化率を測定し、比較評価した。その結果を表1〜2に示す。
Examples 1-4 and Comparative Examples 1-6
The epoxy resin composition was adjusted according to the compounding ratio shown in Table 1 and Table 2 for each component shown in Table 1 and Table 2.
This epoxy resin composition was press molded at 175 ° C. for 5 hours to obtain a cured product test piece. Its heat resistance was evaluated by measuring the glass transition temperature using a dynamic viscoelasticity measuring device (DMA). Moreover, the linear expansion coefficient in a glass area | region (50 degreeC) was measured and evaluated using the thermomechanical analyzer (TMA). The moisture absorption was compared and evaluated by measuring the rate of mass change after standing at 85 ° C. and 85% RH for 300 hours. The results are shown in Tables 1-2.

Figure 2008031344
Figure 2008031344

Figure 2008031344

表1及び表2中の各成分は、以下の通りである。
エポキシ樹脂(E−1)(1、6-ジヒドロキシナフタレン型エポキシ樹脂〔大日本インキ化学工業株式会社製「エピクロンHP-4032」エポキシ当量150g/eq.〕)
エポキシ樹脂(E−2)(ビスフェノールA型液状エポキシ樹脂〔大日本インキ化学工業株式会社製「EPICLON 850S」、エポキシ当量188g/eq.〕)
エポキシ樹脂(E−3)(テトラメチルビフェノール型エポキシ樹脂〔ジャパンエポキシレジン株式会社製「エピコートYX-4000H」、エポキシ当量195g/eq. 融点 105℃〕)
エポキシ樹脂(E−4)(クレゾールノボラック型エポキシ樹脂〔大日本インキ化学工業株式会社製「エピクロンN-665-EXP」、エポキシ当量203g/eq. 軟化点 68℃〕
エポキシ樹脂(E−5)(ナフタレン型4官能エポキシ樹脂〔大日本インキ化学工業株式会社製「エピクロンHP-4700」、エポキシ当量166g/eq. 軟化点 91℃〕
硬化剤(H−1)(フェノールノボラック樹脂〔大日本インキ化学工業株式会社製「フェノライトTD-2131」、軟化点80℃、水酸基当量104g/eq.〕)
TPP(トリフェニルホスフィン(硬化促進剤))
2E4MZ(2−エチル−4−メチルイミダゾール)
Figure 2008031344

Each component in Table 1 and Table 2 is as follows.
Epoxy resin (E-1) (1,6-dihydroxynaphthalene type epoxy resin [Epicron HP-4032, epoxy equivalent 150 g / eq. Manufactured by Dainippon Ink & Chemicals, Inc.])
Epoxy resin (E-2) (Bisphenol A type liquid epoxy resin [Dainippon Ink Chemical Co., Ltd. “EPICLON 850S”, epoxy equivalent 188 g / eq.])
Epoxy resin (E-3) (tetramethylbiphenol type epoxy resin [Epicoat YX-4000H, manufactured by Japan Epoxy Resin Co., Ltd., epoxy equivalent 195 g / eq. Melting point 105 ° C.)]
Epoxy resin (E-4) (Cresol novolak type epoxy resin [Dainippon Ink Chemical Co., Ltd. “Epicron N-665-EXP”, epoxy equivalent 203 g / eq. Softening point 68 ° C.]
Epoxy resin (E-5) (Naphthalene-type tetrafunctional epoxy resin [Dainippon Ink Chemical Co., Ltd. “Epicron HP-4700”, epoxy equivalent 166 g / eq. Softening point 91 ° C.]
Curing agent (H-1) (Phenol novolac resin [Dainippon Ink Chemical Co., Ltd. “Phenolite TD-2131”, softening point 80 ° C., hydroxyl group equivalent 104 g / eq.])
TPP (Triphenylphosphine (curing accelerator))
2E4MZ (2-ethyl-4-methylimidazole)

Claims (11)

(A)エポキシ基を1分子内に2つ有する縮合多環構造含有化合物、及び、(B)フェノール性水酸基を1分子内に2つ有する縮合多環構造含有化合物を必須成分とすることを特徴とするエポキシ樹脂組成物。 (A) A condensed polycyclic structure-containing compound having two epoxy groups in one molecule and (B) a condensed polycyclic structure-containing compound having two phenolic hydroxyl groups in one molecule are essential components. An epoxy resin composition. 前記エポキシ基を1分子内に2つ有する縮合多環構造含有化合物(A)が、ジグリシジルオキシナフタレンである請求項1記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein the condensed polycyclic structure-containing compound (A) having two epoxy groups in one molecule is diglycidyloxynaphthalene. 前記エポキシ基を1分子内に2つ有する縮合多環構造含有化合物(A)が、ポリナフチレンオキシ構造を有する2官能性エポキシ化合物である請求項1記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein the condensed polycyclic structure-containing compound (A) having two epoxy groups in one molecule is a bifunctional epoxy compound having a polynaphthyleneoxy structure. 前記エポキシ基を1分子内に2つ有する縮合多環構造含有化合物(A)が、1分子あたりの前記ナフタレン構造の総数が2〜8のポリナフチレンオキシ構造を有する2官能性エポキシ化合物である請求項3記載のエポキシ樹脂組成物。 The condensed polycyclic structure-containing compound (A) having two epoxy groups in one molecule is a bifunctional epoxy compound having a polynaphthyleneoxy structure in which the total number of naphthalene structures per molecule is 2 to 8. The epoxy resin composition according to claim 3. 前記エポキシ基を1分子内に2つ有する縮合多環構造含有化合物(A)が、ポリナフチレンオキシ構造を主骨格としており、かつ、該構造の芳香環に、(メチル)グリシジルオキシ基及び下記一般式X
Figure 2008031344

[一般式X中、R及びRは各々独立して、メチル基又は水素原子であり、Arは、フェニレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたフェニレン基、ナフチレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたナフチレン基、pは繰り返し数の平均値で0.1〜4である。]
で表される構造部位を結合させた分子構造を有するものである請求項1記載のエポキシ樹脂組成物。
The condensed polycyclic structure-containing compound (A) having two epoxy groups in one molecule has a polynaphthyleneoxy structure as a main skeleton, and a (methyl) glycidyloxy group and Formula X
Figure 2008031344

[In General Formula X, R 1 and R 2 are each independently a methyl group or a hydrogen atom, and Ar is substituted with 1 to 3 of a phenylene group or an alkyl group having 1 to 4 carbon atoms. A phenylene group, a naphthylene group, a naphthylene group nucleus-substituted with 1 to 3 alkyl groups having 1 to 4 carbon atoms, and p is an average number of repetitions of 0.1 to 4. ]
The epoxy resin composition according to claim 1, which has a molecular structure in which structural parts represented by
前記エポキシ樹脂(A)が、「ASTM D4287」に準拠して測定される150℃における溶融粘度が0.1〜30dPa・sである請求項1記載のエポキシ樹脂組成物。 2. The epoxy resin composition according to claim 1, wherein the epoxy resin (A) has a melt viscosity of 0.1 to 30 dPa · s at 150 ° C. measured in accordance with “ASTM D4287”. 前記縮合多環構造を有する2官能型エポキシ樹脂(A)と、前記縮合多環構造を有するジヒドロキシ化合物(B)との配合割合が、前者のエポキシ基/後者のフェノール性水酸基の比率が0.95〜1.05となる割合である請求項1〜6の何れか1つに記載のエポキシ樹脂組成物。 The blending ratio of the bifunctional epoxy resin (A) having the condensed polycyclic structure and the dihydroxy compound (B) having the condensed polycyclic structure is such that the ratio of the former epoxy group / the latter phenolic hydroxyl group is 0. The epoxy resin composition according to any one of claims 1 to 6, which has a ratio of 95 to 1.05. 前記(A)成分及び(B)成分に加え、更に、硬化促進剤(C)を含有する請求項1〜6の何れか1つに記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 6, further comprising a curing accelerator (C) in addition to the components (A) and (B). 前記(A)成分及び(B)成分に加え、更に無機充填剤(E)を含有する請求項1〜6の何れか1つに記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 6, further comprising an inorganic filler (E) in addition to the component (A) and the component (B). 請求項1〜9の何れか1つに記載のエポキシ樹脂組成物からなることを特徴とするビルドアップフィルム用樹脂組成物。 A resin composition for buildup films, comprising the epoxy resin composition according to any one of claims 1 to 9. 請求項1〜10の何れか1つに記載のエポキシ樹脂組成物を硬化させてなる硬化物。

Hardened | cured material formed by hardening | curing the epoxy resin composition as described in any one of Claims 1-10.

JP2006207984A 2006-07-31 2006-07-31 Epoxy resin composition and cured product thereof Active JP5387872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006207984A JP5387872B2 (en) 2006-07-31 2006-07-31 Epoxy resin composition and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006207984A JP5387872B2 (en) 2006-07-31 2006-07-31 Epoxy resin composition and cured product thereof

Publications (2)

Publication Number Publication Date
JP2008031344A true JP2008031344A (en) 2008-02-14
JP5387872B2 JP5387872B2 (en) 2014-01-15

Family

ID=39121121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006207984A Active JP5387872B2 (en) 2006-07-31 2006-07-31 Epoxy resin composition and cured product thereof

Country Status (1)

Country Link
JP (1) JP5387872B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008074941A (en) * 2006-09-21 2008-04-03 Sumitomo Bakelite Co Ltd Resin composition for semiconductor sealing and semiconductor device
JP2009242572A (en) * 2008-03-31 2009-10-22 Nippon Steel Chem Co Ltd Epoxy resin composition and molded product
WO2010035459A1 (en) * 2008-09-25 2010-04-01 積水化学工業株式会社 Episulfide compound, episulfide compound-containing mixture, method for producing episulfide compound-containing mixture, curable composition and connection structure
JP2011020365A (en) * 2009-07-16 2011-02-03 Nippon Steel Chem Co Ltd Copper foil with resin, laminated plate, and printed wiring board
WO2012002119A1 (en) * 2010-07-02 2012-01-05 Dic株式会社 Thermosetting resin composition, cured product thereof, active ester resin, semiconductor sealing material, prepreg, printed circuit board, and build-up film
WO2012053661A1 (en) * 2010-10-22 2012-04-26 新日鐵化学株式会社 High-molecular-weight epoxy resin and resin film, resin composition, and cured article using high-molecular-weight epoxy resin
WO2012099162A1 (en) * 2011-01-20 2012-07-26 三菱瓦斯化学株式会社 Resin composition, prepreg and laminate
WO2012165240A1 (en) * 2011-05-27 2012-12-06 三菱瓦斯化学株式会社 Resin composition, prepreg and laminate
CN102844350A (en) * 2010-03-02 2012-12-26 三菱瓦斯化学株式会社 Resin composition, prepreg, and laminated sheet
JP2014037486A (en) * 2012-08-16 2014-02-27 Dic Corp Curable resin composition, cured product, and printed wiring board
JP2014037487A (en) * 2012-08-16 2014-02-27 Dic Corp Curable resin composition, cured product, and printed wiring board
JP2014196472A (en) * 2013-03-06 2014-10-16 Dic株式会社 Epoxy resin composition for electronic material and cured product of the same
WO2015045674A1 (en) * 2013-09-26 2015-04-02 田岡化学工業株式会社 Epoxy resin having binaphthalene skeleton
US9062172B2 (en) 2009-12-14 2015-06-23 Ajinomoto Co., Inc. Resin composition adhesive film and prepreg containing the same, multilayered printed wiring board containing an insulating layer formed by curing such a resin composition, semiconductor device containing such a multilayered printed wiring board, and method of producing such a resin composition
JP2015168776A (en) * 2014-03-07 2015-09-28 Dic株式会社 Acid group-containing (meth)acrylate resin, production method of acid group-containing (meth)acrylate resin, curable resin material, cured product of the same, and resist material
JP2015168775A (en) * 2014-03-07 2015-09-28 Dic株式会社 Acid group-containing (meth)acrylate resin, production method of acid group-containing (meth)acrylate resin, curable resin material, cured product of the same, and resist material
WO2023100722A1 (en) * 2021-11-30 2023-06-08 味の素株式会社 Epoxy resin

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216280A (en) * 1993-01-21 1994-08-05 Mitsubishi Electric Corp Epoxy resin composition for sealing semiconductor and semiconductor device utilizing the same
JP2000119369A (en) * 1998-10-09 2000-04-25 Nippon Steel Chem Co Ltd Solid epoxy resin, epoxy resin composition and its cured product
JP2004339313A (en) * 2003-05-14 2004-12-02 Nippon Steel Chem Co Ltd Epoxy resin, manufacturing method therefor, epoxy resin composition and cured product
JP2006307162A (en) * 2005-03-18 2006-11-09 Dainippon Ink & Chem Inc Epoxy resin composition, cured product thereof, novel epoxy resin, production method thereof, and novel phenol resin
JP2007231083A (en) * 2006-02-28 2007-09-13 Dainippon Ink & Chem Inc Epoxy resin composition, cured product thereof, new epoxy resin, new phenol resin, and semiconductor sealing material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216280A (en) * 1993-01-21 1994-08-05 Mitsubishi Electric Corp Epoxy resin composition for sealing semiconductor and semiconductor device utilizing the same
JP2000119369A (en) * 1998-10-09 2000-04-25 Nippon Steel Chem Co Ltd Solid epoxy resin, epoxy resin composition and its cured product
JP2004339313A (en) * 2003-05-14 2004-12-02 Nippon Steel Chem Co Ltd Epoxy resin, manufacturing method therefor, epoxy resin composition and cured product
JP2006307162A (en) * 2005-03-18 2006-11-09 Dainippon Ink & Chem Inc Epoxy resin composition, cured product thereof, novel epoxy resin, production method thereof, and novel phenol resin
JP2007231083A (en) * 2006-02-28 2007-09-13 Dainippon Ink & Chem Inc Epoxy resin composition, cured product thereof, new epoxy resin, new phenol resin, and semiconductor sealing material
JP4285491B2 (en) * 2006-02-28 2009-06-24 Dic株式会社 Epoxy resin composition, cured product thereof, novel epoxy resin, novel phenol resin, and semiconductor sealing material

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008074941A (en) * 2006-09-21 2008-04-03 Sumitomo Bakelite Co Ltd Resin composition for semiconductor sealing and semiconductor device
JP2009242572A (en) * 2008-03-31 2009-10-22 Nippon Steel Chem Co Ltd Epoxy resin composition and molded product
TWI491601B (en) * 2008-09-25 2015-07-11 Sekisui Chemical Co Ltd A sulfide compound, a mixture containing a cyclic sulfide, a process for producing a mixture containing a cyclic sulfide, a hardened composition and a connecting structure
WO2010035459A1 (en) * 2008-09-25 2010-04-01 積水化学工業株式会社 Episulfide compound, episulfide compound-containing mixture, method for producing episulfide compound-containing mixture, curable composition and connection structure
JP4730695B2 (en) * 2008-09-25 2011-07-20 積水化学工業株式会社 Curable composition and connection structure
JP2011173901A (en) * 2008-09-25 2011-09-08 Sekisui Chem Co Ltd Episulfide compound, episulfide compound-containing mixture, method for producing episulfide compound-containing mixture, curable composition and connection structure
JP2011020365A (en) * 2009-07-16 2011-02-03 Nippon Steel Chem Co Ltd Copper foil with resin, laminated plate, and printed wiring board
JP2016006187A (en) * 2009-12-14 2016-01-14 味の素株式会社 Resin composition
US9062172B2 (en) 2009-12-14 2015-06-23 Ajinomoto Co., Inc. Resin composition adhesive film and prepreg containing the same, multilayered printed wiring board containing an insulating layer formed by curing such a resin composition, semiconductor device containing such a multilayered printed wiring board, and method of producing such a resin composition
CN105315435A (en) * 2010-03-02 2016-02-10 三菱瓦斯化学株式会社 Resin composition, prepreg, and laminated sheet
KR102002178B1 (en) 2010-03-02 2019-10-21 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, prepreg, and laminated sheet
CN102844350A (en) * 2010-03-02 2012-12-26 三菱瓦斯化学株式会社 Resin composition, prepreg, and laminated sheet
KR20130018721A (en) * 2010-03-02 2013-02-25 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, prepreg, and laminated sheet
US20130045650A1 (en) * 2010-03-02 2013-02-21 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, and laminated sheet
US8669333B2 (en) 2010-07-02 2014-03-11 Dic Corporation Thermosetting resin composition, cured product thereof, active ester resin, semiconductor encapsulating material, prepreg, circuit board, and build-up film
CN102985485A (en) * 2010-07-02 2013-03-20 Dic株式会社 Thermosetting resin composition, cured product thereof, active ester resin, semiconductor sealing material, prepreg, printed circuit board, and build-up film
JP5120520B2 (en) * 2010-07-02 2013-01-16 Dic株式会社 Thermosetting resin composition, cured product thereof, active ester resin, semiconductor sealing material, prepreg, circuit board, and build-up film
WO2012002119A1 (en) * 2010-07-02 2012-01-05 Dic株式会社 Thermosetting resin composition, cured product thereof, active ester resin, semiconductor sealing material, prepreg, printed circuit board, and build-up film
WO2012053661A1 (en) * 2010-10-22 2012-04-26 新日鐵化学株式会社 High-molecular-weight epoxy resin and resin film, resin composition, and cured article using high-molecular-weight epoxy resin
JP2012092158A (en) * 2010-10-22 2012-05-17 Nippon Steel Chem Co Ltd High molecular weight epoxy resin, resin film using the high molecular weight epoxy resin, resin composition, and cured product
US9955573B2 (en) 2011-01-20 2018-04-24 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg and laminate
CN103443200A (en) * 2011-01-20 2013-12-11 三菱瓦斯化学株式会社 Resin composition, prepreg and laminate
JPWO2012099162A1 (en) * 2011-01-20 2014-06-30 三菱瓦斯化学株式会社 Resin composition, prepreg, and laminate
CN103443200B (en) * 2011-01-20 2015-12-23 三菱瓦斯化学株式会社 Resin combination, prepreg and plywood
JP5958827B2 (en) * 2011-01-20 2016-08-02 三菱瓦斯化学株式会社 Resin composition, prepreg, and laminate
EP2666821A4 (en) * 2011-01-20 2017-07-12 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg and laminate
WO2012099162A1 (en) * 2011-01-20 2012-07-26 三菱瓦斯化学株式会社 Resin composition, prepreg and laminate
JPWO2012165240A1 (en) * 2011-05-27 2015-02-23 三菱瓦斯化学株式会社 Resin composition, prepreg, and laminate
WO2012165240A1 (en) * 2011-05-27 2012-12-06 三菱瓦斯化学株式会社 Resin composition, prepreg and laminate
US9512329B2 (en) 2011-05-27 2016-12-06 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, and laminate
CN103582664A (en) * 2011-05-27 2014-02-12 三菱瓦斯化学株式会社 Resin composition, prepreg and laminate
JP2014037487A (en) * 2012-08-16 2014-02-27 Dic Corp Curable resin composition, cured product, and printed wiring board
JP2014037486A (en) * 2012-08-16 2014-02-27 Dic Corp Curable resin composition, cured product, and printed wiring board
JP2014196472A (en) * 2013-03-06 2014-10-16 Dic株式会社 Epoxy resin composition for electronic material and cured product of the same
KR20160062037A (en) * 2013-09-26 2016-06-01 타오카 케미컬 컴퍼니 리미티드 Epoxy resin having binaphthalene skeleton
TWI557149B (en) * 2013-09-26 2016-11-11 田岡化學工業股份有限公司 Epoxy resin having binaphthalene skeleton
CN105579488A (en) * 2013-09-26 2016-05-11 田冈化学工业株式会社 Epoxy resin having binaphthalene skeleton
WO2015045674A1 (en) * 2013-09-26 2015-04-02 田岡化学工業株式会社 Epoxy resin having binaphthalene skeleton
KR102048610B1 (en) 2013-09-26 2019-11-25 타오카 케미컬 컴퍼니 리미티드 Epoxy resin having binaphthalene skeleton
JP2015168775A (en) * 2014-03-07 2015-09-28 Dic株式会社 Acid group-containing (meth)acrylate resin, production method of acid group-containing (meth)acrylate resin, curable resin material, cured product of the same, and resist material
JP2015168776A (en) * 2014-03-07 2015-09-28 Dic株式会社 Acid group-containing (meth)acrylate resin, production method of acid group-containing (meth)acrylate resin, curable resin material, cured product of the same, and resist material
WO2023100722A1 (en) * 2021-11-30 2023-06-08 味の素株式会社 Epoxy resin

Also Published As

Publication number Publication date
JP5387872B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5387872B2 (en) Epoxy resin composition and cured product thereof
JP5181769B2 (en) Epoxy resin composition and cured product thereof
TWI466927B (en) Method for producing phosphorus atom-containing phenols, novel phosphorus atom-containing phenols, curable resin composition, cured article thereof, printed wiring substrate and semiconductor packaging material
TWI751310B (en) Epoxy resin, manufacturing method, epoxy resin composition and hardened product thereof
JP5637418B1 (en) Phosphorus atom-containing active ester resin, epoxy resin composition, cured product thereof, prepreg, circuit board, and build-up film
TW201137022A (en) Phenol resin composition, method of producing same, curable resin composition, cured product of same and printed wiring board
JP2009242559A (en) Epoxy resin composition and cured product of the same
JP2011157434A (en) Method for producing phosphorus atom-containing phenols, phosphorus atom-containing phenols, curable resin composition, cured product thereof, resin composition for printed wiring board, printed wiring board, resin composition for flexible printed wiring board, resin composition for semiconductor sealing material, and resin composition for interlayer insulating material for build-up substrate
JP5024642B2 (en) Novel phenolic resin, curable resin composition, cured product thereof, and printed wiring board
JP2009001787A (en) Polyphenylene ether resin composition and electronic member
JP5402091B2 (en) Curable resin composition, cured product thereof, printed wiring board, novel phenol resin, and production method thereof
JP5614519B1 (en) Modified phenolic resin, method for producing modified phenolic resin, modified epoxy resin, method for producing modified epoxy resin, curable resin composition, cured product thereof, and printed wiring board
JP2010077343A (en) Epoxy resin composition, cured product of the same, and buildup film insulating material
JP2010077344A (en) Epoxy resin composition, cured product of the same, and buildup film insulating material
JP5228404B2 (en) Epoxy resin composition, cured product thereof, resin composition for buildup film, novel epoxy resin, and production method thereof
JP2009073889A (en) Epoxy resin composition, cured product thereof, and resin composition for build-up film
JP5309788B2 (en) Epoxy resin composition, cured product thereof, prepreg, copper-clad laminate, and resin composition for build-up adhesive film
TWI752114B (en) epoxy resin composition
KR20240037342A (en) Phenolic resin, epoxy resin, curable resin composition, cured product, fiber-reinforced composite material, and fiber-reinforced resin molded article
JP5402761B2 (en) Curable resin composition, cured product thereof, method for producing phosphorus atom-containing phenols, resin composition for printed wiring board, printed wiring board, resin composition for flexible wiring board, resin composition for semiconductor sealing material, and build Resin composition for interlayer insulation material for up-substrate
JP6040725B2 (en) Phenoxy resin, curable resin composition, cured product thereof, prepreg, circuit board, and buildup film
JP5637367B2 (en) Curable resin composition, cured product thereof, method for producing phosphorus atom-containing phenol resin, printed wiring board resin composition, printed wiring board, flexible wiring board resin composition, semiconductor sealing material resin composition, and build Resin composition for interlayer insulation material for up-substrate
JP5637368B2 (en) Curable resin composition, cured product thereof, method for producing phosphorus atom-containing phenol compound, printed wiring board resin composition, printed wiring board, flexible wiring board resin composition, semiconductor sealing material resin composition, and build Resin composition for interlayer insulation material for up-substrate
JP5504553B2 (en) Epoxy resin composition, cured product thereof, resin composition for build-up film insulating layer, and novel epoxy resin
JP5987262B2 (en) Curable resin composition, cured product, and printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130925

R150 Certificate of patent or registration of utility model

Ref document number: 5387872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250