JP2008045424A - エンジンの空燃比制御装置 - Google Patents

エンジンの空燃比制御装置 Download PDF

Info

Publication number
JP2008045424A
JP2008045424A JP2006219353A JP2006219353A JP2008045424A JP 2008045424 A JP2008045424 A JP 2008045424A JP 2006219353 A JP2006219353 A JP 2006219353A JP 2006219353 A JP2006219353 A JP 2006219353A JP 2008045424 A JP2008045424 A JP 2008045424A
Authority
JP
Japan
Prior art keywords
air
amount
engine
fuel injection
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006219353A
Other languages
English (en)
Inventor
Hiroaki Mitsuki
宏明 三津木
Masanori Matsushita
正典 松下
Tomoaki Saito
智明 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2006219353A priority Critical patent/JP2008045424A/ja
Publication of JP2008045424A publication Critical patent/JP2008045424A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】エンジンの低回転域から高回転域にわたり、空燃比の制御を高精度に行うことができるようにする。
【解決手段】エアフローセンサ22の検出値に基づいて燃焼室に流入する空気量を算出する空気量演算手段52と、少なくとも吸気圧力センサ24および回転数センサ41の各検出値に基づいて燃焼室内に流入する空気中の酸素量を推定する酸素量推定手段51と、空燃比がエンジンの運転状態に応じた目標空燃比となるように燃料噴射量を設定する燃料噴射制御手段55とを備えている。上記燃料噴射制御手段55は、エンジン回転数が所定回転数以下の低回転時には空気量演算手段52により算出された空気量に基づいて燃料噴射量を設定し、エンジン回転数が所定回転数より高い高回転時には上記酸素量推定手段51により推定された酸素量に基づいて燃料噴射量を設定するようになっている。
【選択図】図2

Description

本発明は、空燃比がエンジンの運転状態に応じた目標空燃比となるように、燃焼室に流入する空気量または酸素量に基づいて燃料噴射量を設定するエンジンの空燃比制御装置に関するものである。
従来から、自動車等のエンジンにおいては、予め運転状態に応じた目標空燃比を設定しておくとともに、吸気通路中に設けたエアフローセンサにより検出される空気流量に基づいて燃焼室に流入する空気量を算出し、この空気量に基づき、上記目標空燃比となるように燃料噴射量を設定して、インジェクタからの燃料噴射を制御するようにした空燃比制御装置は一般に知られている。
ところが、このようにエアフローセンサにより検出される空気流量に基づいて燃焼室に流入する空気量を算出するようにすると、燃焼室に流入する空気量が変化する過渡時などに、エアフローセンサの検出値に基づいて算出される空気量と実際に燃焼室に流入する空気量との間に誤差が生じ易くなる。
そこで、特許文献1に示されるように、ノンスロットル状態(吸気通路中のスロットル弁が大きく開かれている状態)での定常運転時にはエアフローセンサの検出値に基づいて上記空気量を求めるが、スロットリング状態(スロットル弁によって吸入空気量を調整している運転状態)や過渡状態ではエアフローセンサの検出値によらずに他のパラメータを用いて上記空気量を推定し、例えばスロットリング状態では吸気圧力(負圧)等に基づいて空気量を推定するようにしたものが提案されている。
特開2005−30295号公報
吸気圧力等に基づいて燃焼室に流入する空気量(もしくは空気中の酸素量)を推定するようにすれば、過渡時等に誤差が生じることが避けられて、種々の運転状態で、エアフローセンサの検出値に基づいて空気量を求める場合よりも精度良く空燃比の制御を行うことが可能となる。
しかし、エンジンのアイドル時等の低回転時には、運転状態の変化に対して吸気圧力の応答性が低下するため、吸気圧力等に基づいた空気量もしくは酸素量の推定とそれに応じた燃料噴射量の設定による空燃比の制御の精度が低下するという問題が残されていた。
本発明は上記の事情に鑑み、エンジンの低回転域から高回転域にわたる広い運転領域で、空燃比の制御を高精度に行うことができるエンジンの空燃比制御装置を提供することを目的とする。
上記課題を解決するため、本発明は、エンジンの吸気通路中の空気流量を検出するエアフローセンサと、このエアフローセンサの検出値に基づいて燃焼室に流入する空気量を算出する空気量演算手段と、エンジンの吸気圧力を検出する吸気圧力センサと、エンジンの回転数を検出する回転数センサと、少なくとも上記吸気圧力センサおよび回転数センサの各検出値に基づいて燃焼室内に流入する空気中の酸素量を推定する酸素量推定手段と、空燃比がエンジンの運転状態に応じた目標空燃比となるように燃料噴射量を設定する燃料噴射制御手段とを備え、上記燃料噴射制御手段は、エンジン回転数が所定回転数以下の低回転時には上記空気量演算手段により算出された空気量に基づいて燃料噴射量を設定し、エンジン回転数が所定回転数より高い高回転時には上記酸素量推定手段により推定された酸素量に基づいて燃料噴射量を設定するようにしたものである。
この構成によると、上記高回転時には、少なくともエンジンの吸気圧力とエンジン回転数とに基づき、燃焼室内に流入する空気中の酸素量が推定され、この酸素量に基づいて目標空燃比となるように燃料噴射量が設定される。これにより、過渡状態等に誤差が生じることが避けられ、精度良く燃料噴射量が制御される。
一方、このように吸気圧力等に基づいて上記酸素量を推定する手法では吸気圧力の応答性が悪くなることに起因して精度が低下する可能性がある低回転時には、エアフローセンサの検出値に基づいて算出された空気量が用いられ、この空気量に基づいて燃料噴射量が設定されるため、低回転時に燃料噴射量の制御の精度が著しく低下することがない。
こうして、低回転時と高回転時とにわたり、空燃比の制御が精度良く行われる。
本発明のエンジンの空燃比制御装置において、上記燃料噴射制御手段は、エンジン負荷が所定値以下で、かつ、エンジン回転数が所定回転数以下である低負荷低回転時のみ、上記空気量演算手段により算出された空気量に基づいて燃料噴射量を設定するようになっていることが好ましい。
このようにすると、エンジンの運転状態がアイドル域やその近傍の低回転、低負荷の領域にあるときに、燃料噴射量の制御の精度が著しく低下することが避けられる。
また、上記酸素量推定手段は、上記吸気圧力センサおよび回転数センサの各検出値を含む入力と燃焼室に流入する空気中の酸素濃度との関係につき、予め行われた計測のデータに基づいて作成された酸素濃度モデルを有し、この酸素濃度モデルに基づいて燃焼室内に流入する空気中の酸素量を推定するようになっていることが好ましい。
このようにすると、酸素量推定手段により酸素量が推定されるとき、予め行われた計測のデータに基づいて作成された酸素濃度モデルが用いられることにより、酸素量が精度良く求められる。
本発明の空燃比制御装置によると、エンジンの低回転時には、エアフローセンサの検出値に基づいて算出された空気量に基づき燃料噴射量が設定され、高負荷時には、吸気圧力センサおよびエンジン回転数に基づいて酸素量推定手段により推定された酸素量に基づき料噴射量が設定されるため、低回転時と高回転時とにわたり、空燃比の制御を精度良く行うことができる。
以下、図面に基づいて本発明の実施の形態を説明する。
図1はエンジンの全体構成を示している。この図に示すエンジンは、自動車等の車両に搭載されたロータリーエンジンであって、燃料として水素を使用している。
このロータリーエンジンのエンジン本体1は、トロコイド状の内周面を有するロータハウジングとその両側に位置するサイドハウジングとで形成されたロータ収容室(以下、気筒という)11に概略三角形状のロータ12が収容されて構成されており、ロータ12の外周側に3つの作動室(燃焼室)が区画されている。このロータリーエンジンは、図示を省略するが、2つのロータハウジングを3つのサイドハウジングの間に挟みこむようにして一体化し、その間に形成される2つの気筒11(図1ではそのうちの1つの気筒のみを図示)にそれぞれロータ12を収容した2ロータタイプのものである。
上記各ロータ12は、その3つの頂部にそれぞれ配設されたシール部が各々ロータハウジングのトロコイド状内周面に当接した状態で、エキセントリックシャフト13の回りを自転しながら公転するようになっている。そして、ロータ12が1回転する間に、ロータ12の各頂部間にそれぞれ形成された作動室が、周方向に移動しながら、吸気、圧縮、膨張(燃焼)および排気の各行程を行い、これにより発生する回転力がロータ12を介してエキセントリックシャフト13から出力されるようになっている。
上記エンジン本体1には、各気筒の吸気行程にある作動室に連通するように吸気通路2が接続されるとともに、各気筒の排気行程にある作動室に連通するように排気通路3が接続されている。上記吸気通路2は、上流側では1つであるが、下流側では2つに分岐してそれぞれ各気筒11の作動室に連通している。また、上記排気通路3は、上流側では各気筒11の作動室にそれぞれ連通して2つ設けられているが、下流側では合流されている。
吸気通路2の上記分岐部よりも上流側においては、上流側から下流側に向かって順に、吸気通路2に吸入される空気を浄化するエアクリーナ21、吸気通路2内に吸入される空気の流量を検出するエアフローセンサ22、ステップモータ等のアクチュエータにより駆動されて吸気通路2の断面積を調節するスロットル弁23、ブースト(吸気圧力)を検出するブーストセンサ(吸気圧力センサ)24が配設されている。
一方、排気通路3の上記合流部より下流側には、排気ガスを浄化するための三元触媒31が設けられるとともに、これより上流に、排気中の酸素濃度を検出することにより空燃比を検出するλセンサ32が設けられている。
また、エンジン本体1の各気筒11には、図示省略の水素タンクから供給される水素を作動室内に直接噴射する2つの直噴インジェクタ14a,14bがそれぞれ設けられている。これらの直噴インジェクタ14a,14bは、ロータハウジングの長軸近傍において、噴口が作動室内に臨むように配置されている。これらの直噴インジェクタ14a,14bが設けられた位置は、吸気行程から圧縮行程まで作動室に開口する位置となっている。また、各直噴インジェクタ14a,14bにはタイミング弁が内蔵されており、噴射する水素ガスの量を自由にコントロール可能となっている。
これら2つの直噴インジェクタのうち、一方のインジェクタ14aは吸気行程中に水素を噴射する吸気行程用直噴インジェクタであり、他方のインジェクタ14bは圧縮行程中に水素を噴射する圧縮行程用直噴インジェクタである。
また、上記吸気通路2の分岐部より下流側には、水素タンクから供給された水素を吸気通路2内に噴射する通路内インジェクタ15が配設されている。この通路内インジェクタ15には、上記直噴インジェクタ14a,14bと同様にタイミング弁が内蔵されており、噴射する水素ガスの量を自由にコントロール可能となっている。そして、通路内インジェクタ15は、吸気行程中に吸気通路2内に水素を噴射し、吸気通路2を介して作動室内に水素を供給するようになっている。
ここで、上記インジェクタ14a,14b,15による燃料供給方式について説明すると、吸気行程用直噴インジェクタ14aや通路内インジェクタ15による吸気行程での燃料供給は、水素が作動室内に流入する空気と混ざり易くミキシングが良い反面、作動室に吸い込まれる空気が減少して体積効率が低い。なお、これら吸気行程での燃料供給を行うインジェクタのうち、吸気行程用直噴インジェクタ14aは通路内インジェクタ15に比べて体積効率の点で優れ、通路内インジェクタ15は吸気行程用直噴インジェクタ14aに比べてミキシングの点で優れている。また、圧縮行程用直噴インジェクタ14bによる水素の噴射は、圧縮行程中に行われるため、体積効率が高い一方、点火までの時間が短く且つ混合気の流動が吸気行程ほど大きくないことにより、ミキシングが悪い。なお、ミキシングが悪くなると、燃焼室内で水素が塊状化して局所的に水素濃度が濃い部分が生じ、この部分でプリイグニッションが発生し易くなる。
また、上記エンジン本体1の各気筒11には、それぞれ2つずつの点火プラグ16が設けられており、この2つの点火プラグ16はそれぞれ、ロータハウジングの短軸の近傍に配設されている。
さらにこのロータリーエンジンには、このエンジンの運転状態を制御するECU(エンジンコントロールユニット)5が設けられている。このECU5には、前述のエアフローセンサ22、ブーストセンサ24、λセンサ32からの各検出信号が入力されるとともに、エンジン回転数を検出する回転数センサ41およびアクセル開度(アクセルペダル踏み込み量)を検出するアクセル開度センサ42からの各検出信号も入力されている。そして、このECU5は、少なくとも上記各インジェクタ14a,14b,15、スロットル弁23および点火プラグ16に制御信号を出力して、これらの作動を制御するようになっている。
図2は上記ECU5の機能的構成をブロック図で示しているこの図に示すように、ECU5には、酸素量推定手段51、空気量演算手段52、切替手段53、目標λ設定手段54および燃料噴射制御手段55を機能的に含んでいる。
上記酸素量推定手段51は、少なくとも上記ブーストセンサ24および回転数センサ41の各検出値に基づき、酸素濃度モデル51aを用いて、作動室(燃焼室)内に流入する空気中の酸素量を推定するようになっており、当実施形態ではブーストセンサ24、回転数センサ41、エアフローセンサ22の各検出値に基づいて酸素量を推定するようになっている。
上記酸素濃度モデル51aは、ブースト(吸気圧力)、エンジン回転数等の入力に基づいて燃焼室内に流入する空気中の酸素濃度を推定するために、予め計測されたデータに基づいて作成されたモデルであり、具体的にはTMW(The MathWork)社製のMBC(Model-Based Calibration)モデルが用いられている。このMBCモデルは、ブースト、エンジン回転数等と上記酸素濃度との関係について、予め計測したデータに基づいて統計モデルを構築し、さらにこの統計モデルおよび計測データを使ってキャリブレーションを行うことにより、燃焼室内に流入する空気中の酸素濃度を精度良く求めることができるようにしたものである。なお、このモデルに対する入力としては図示のもののほかにも酸素濃度に影響するものを必要に応じて加えるようにしてもよく、例えば、図外のEGR通路に設けられるEGRバルブの開度、エンジン水温、λセンサ32の検出値等を入力に加えるようにしてもよい。
そして、酸素濃度モデル51aを用いて、1ストローク中に燃焼室内に流入する空気中の酸素量が求められるようになっている。
また、上記空気量演算手段52は、エアフローセンサ22の検出値に基づき、1ストローク中に燃焼室内に流入する空気量を求めるようになっている。
切替手段53は、燃料噴射制御手段55に対して酸素量推定手段51による酸素量の推定値を出力するか空気量演算手段52による空気量の演算値を出力するかを運転状態に応じて切り替えるものであり、エンジン回転数が所定回転数以下の低回転時には上記空気量の演算値を出力し、エンジン回転数が所定回転数より高い高回転時には上記酸素量の推定値を出力する。当実施形態では、エンジン回転数とエンジン負荷(アクセル開度)とに応じ、低回転且つ低負荷のときに上記空気量の演算値を出力し、それ以外のときは上記酸素量の推定値を出力するようになっている。
目標λ設定手段54は、空燃比に相当する空気過剰率λの目標値(目標λ)を運転状態に応じて設定するものであり、例えば図3に示すように目標λが設定されている。
すなわち、エンジン回転数が所定の第1回転数n1未満の領域(第1運転領域)のうちの高負荷側の領域Iでは、体積効率を高めにくい状況下でエンジン出力を確保するために目標λが1以下の燃料リッチに設定され、上記第1運転領域のうちの低負荷側の領域I´およびアイドル領域(ID)では、出力があまり必要でないので、空燃比をリーン化するように、目標λが1.8に設定される。
エンジン回転数が第1回転数n1以上且つ第2回転数n2(n2>n1)未満の領域(第2運転領域)のうちの高負荷側の領域IIでは、第1運転領域よりも体積効率を高めることができて、第1運転領域ほど空燃比をリッチにしなくとも出力を稼ぐことができるので、目標λが1.1〜1.3とされ、上記第2運転領域のうちの低負荷側の領域II´では、高負荷側よりも空燃比をリーン化するように、目標λが1.5〜1.6に設定される。
また、エンジン回転数が第2回転数n2以上且つ第3回転数n3(n3>n2)未満の領域(第3運転領域)IIIおよびエンジン回転数が第3回転数n3以上の領域(第4運転領域)IVでは、目標λが1.4〜1.6に設定される。
なお、このような目標λの設定とともに、噴射するインジェクタが運転状態に応じて設定されている。例えば、上記第1運転領域(I,I´)では、体積効率の低下を抑えるため、圧縮行程用直噴インジェクタ14bによって燃料噴射を行うように設定されている。第2運転領域(II,II´)では、ミキシングの悪化(それに伴うプリイグニッションの発生)の防止と体積効率向上との両立を図るため、通路内インジェクタ15による吸気行程噴射と圧縮行程用直噴インジェクタ14bによる圧縮行程噴射の両方を行うように設定されている。第3運転領域IIIでも第2運転領域と同様に通路内インジェクタ15と圧縮行程用直噴インジェクタ14bの両方による噴射を行うように設定されている。第4運転領域IVでは、通路内インジェクタ15と吸気行程用直噴インジェクタ14aとによる吸気行程噴射を行うように設定されている。
また、上記燃料噴射制御手段55は、空燃比が運転状態に応じた目標空燃比となるように燃料噴射量を設定し、それに応じた制御信号をインジェクタ14a,14b,15に出力して燃料噴射を制御するものである。この燃料噴射制御手段55は、目標燃料噴射量演算手段56、実燃料噴射量演算手段57、F/B(フィードバック)補正量演算手段58および最終燃料噴射量演算手段59を含んでいる。
目標燃料噴射量演算手段56は、上記切替手段53を介して入力される上記酸素量の推定値又は上記空気量の演算値に基づき、目標λ設定手段54により設定された目標λが得られるような目標燃料噴射量を演算する。
また、実燃料噴射量演算手段57は、λセンサ32により検出される実際の空気過剰率λと、上記切替手段53を介して与えられる上記酸素量の推定値又は上記空気量の演算値とから、実燃料噴射量を演算する。そして、F/B補正量演算手段58は、上記目標燃料噴射量と実燃料噴射量とを比較し、両者の偏差に応じた補正量を演算する。
最終燃料噴射量演算手段59は、上記目標燃料噴射量と上記補正量とから最終燃料噴射量を演算するようになっている。
図4は上記ECU5により行われる空燃比制御をフローチャートで示している。
このフローチャートの処理がスタートすると、ECU5は先ずステップS1でエンジン回転数、ブースト、エアフローセンサ出力、アクセル開度等の各種センサ値を入力し、次いでステップS2で、アクセル開度が所定値(例えば全開の0.5%)以下の低負荷運転状態か否かを判定する。低負荷運転状態であれば、さらにステップS3で、エンジン回転数Nが所定回転数Na(例えば850rpm)以下の低回転か否かを判定する。
これらステップS2,S3の判定に応じ、低負荷且つ低回転の運転状態にあるとき(ステップS2,S3がともにYESの場合)は、ステップS4で、空気量演算手段52によりエアフローセンサ22の出力に基づいて1ストローク中の空気量を演算する。また、低負荷且つ低回転の運転状態以外のとき(ステップS2の判定がNOの場合や、S3の判定がNOの場合)は、ステップS5で、酸素量推定手段51により酸素濃度モデル51aを用いて1ストローク中の酸素量を演算する。
ステップS4又はステップS5に続いて、ステップS6で、運転状態に応じて設定された目標λと上記酸素量または上記空気量とに基づき、目標燃料噴射量を演算する。さらにステップS7で、上記目標燃料噴射量とλセンサ32の出力に基づいて求められる実燃料噴射量との偏差に応じ、F/B補正量を演算する。そして、ステップS8で、上記目標燃料噴射量と上記F/B補正量とに基づき、最終燃料噴射量を演算し、それに応じた制御信号を出力して、インジェクタ14a,14b,15からの燃料噴射を制御する。
以上のような当実施形態の制御装置によると、低負荷且つ低回転の運転状態以外のとき(高回転時等)には、酸素量推定手段51により、ブースト(吸気圧力)およびエンジン回転数等に基づいて作動室(燃焼室)に流入する空気中の酸素量が推定され、その酸素量に基づいて燃料噴射量が設定されるため、過渡時等に大きな誤差を生じるようなことがなく、精度良く燃料噴射量が制御される。
とくに、上記酸素量推定手段51は、前述のように計測データに基づくモデルの構築およびキャリブレーションが行われて高い精度が確保されるようにしたMBCモデル等の酸素濃度モデル51aを備えているため、上記酸素量が精度良く求められる。
一方、低負荷且つ低回転の運転状態では、ブースト(吸気圧力)の応答性が悪くなることにより、酸素量推定手段51による酸素量推定の精度が低下する傾向がある。このときには、上記空気量演算手段52によりエアフローセンサ22の検出値に基づいて作動室(燃焼室)に流入する空気量が演算され、その空気量に基づいて燃料噴射量が設定されるため、燃料噴射量の制御の精度が著しく低下することがない。
こうして、低回転時と高回転時とにわたり、空燃比の制御が精度良く行われることとなる。
なお、上記実施形態では、燃料に水素を用いたロータリエンジンに本発明を適用した場合を示しているが、これに限られるものではなく、レシプロエンジンに適用することもでき、また、燃料はガソリンであってもよい。
本発明の一実施形態による空燃比制御装置を備えたエンジンの全体構成を示す概略図である。 エンジンコントロールユニットの機能的構成を示すブロック図である。 運転状態に応じた目標空気過剰率を示すマップである。 空燃比制御の例を示すフローチャートである。
符号の説明
1 エンジン本体
2 吸気通路
3 排気通路
14a,14b,15 インジェクタ
23 エアフローセンサ
24 ブーストセンサ
32 λセンサ
51 酸素量推定手段
51a 酸素濃度モデル
52 空気量演算手段
55 燃料噴射制御手段

Claims (3)

  1. エンジンの吸気通路中の空気流量を検出するエアフローセンサと、
    このエアフローセンサの検出値に基づいて燃焼室に流入する空気量を算出する空気量演算手段と、
    エンジンの吸気圧力を検出する吸気圧力センサと、
    エンジンの回転数を検出する回転数センサと、
    少なくとも上記吸気圧力センサおよび回転数センサの各検出値に基づいて燃焼室内に流入する空気中の酸素量を推定する酸素量推定手段と、
    空燃比がエンジンの運転状態に応じた目標空燃比となるように燃料噴射量を設定する燃料噴射制御手段とを備え、
    上記燃料噴射制御手段は、エンジン回転数が所定回転数以下の低回転時には上記空気量演算手段により算出された空気量に基づいて燃料噴射量を設定し、エンジン回転数が所定回転数より高い高回転時には上記酸素量推定手段により推定された酸素量に基づいて燃料噴射量を設定することを特徴とするエンジンの空燃比制御装置。
  2. 上記燃料噴射制御手段は、エンジン負荷が所定値以下で、かつ、エンジン回転数が所定回転数以下である低負荷低回転時のみ、上記空気量演算手段により算出された空気量に基づいて燃料噴射量を設定することを特徴とする請求項1記載のエンジンの空燃比制御装置。
  3. 上記酸素量推定手段は、上記吸気圧力センサおよび回転数センサの各検出値を含む入力と燃焼室に流入する空気中の酸素濃度との関係につき、予め行われた計測のデータに基づいて作成された酸素濃度モデルを有し、この酸素濃度モデルに基づいて燃焼室内に流入する空気中の酸素量を推定することを特徴とする請求項1または2に記載のエンジンの空燃比制御装置。
JP2006219353A 2006-08-11 2006-08-11 エンジンの空燃比制御装置 Pending JP2008045424A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006219353A JP2008045424A (ja) 2006-08-11 2006-08-11 エンジンの空燃比制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006219353A JP2008045424A (ja) 2006-08-11 2006-08-11 エンジンの空燃比制御装置

Publications (1)

Publication Number Publication Date
JP2008045424A true JP2008045424A (ja) 2008-02-28

Family

ID=39179415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006219353A Pending JP2008045424A (ja) 2006-08-11 2006-08-11 エンジンの空燃比制御装置

Country Status (1)

Country Link
JP (1) JP2008045424A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102678364A (zh) * 2011-03-16 2012-09-19 本田技研工业株式会社 空燃比推断检测装置
CN110914528A (zh) * 2017-05-03 2020-03-24 标致雪铁龙汽车股份有限公司 用于在扫气时调节探测器的丰度设定值的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102678364A (zh) * 2011-03-16 2012-09-19 本田技研工业株式会社 空燃比推断检测装置
CN110914528A (zh) * 2017-05-03 2020-03-24 标致雪铁龙汽车股份有限公司 用于在扫气时调节探测器的丰度设定值的方法
CN110914528B (zh) * 2017-05-03 2022-05-27 标致雪铁龙汽车股份有限公司 用于在扫气时调节探测器的丰度设定值的方法

Similar Documents

Publication Publication Date Title
KR100241825B1 (ko) 내연기관의 연소제어장치
US20070169746A1 (en) Fuel injection apparatus and fuel injection control method for internal combustion engine
US8447456B2 (en) Detection of engine intake manifold air-leaks
US9027535B2 (en) Control apparatus for internal combustion engine
US9194322B2 (en) Control device of an engine
JP6093258B2 (ja) 過給機付きエンジンの排気還流装置のための故障検出装置
JP4065784B2 (ja) 内燃機関の制御装置
JP5176911B2 (ja) セタン価判定装置
US8255143B2 (en) Diagnostic systems and methods for sensors in homogenous charge compression ignition engine systems
TW200916647A (en) Operation control device of internal combustion engine
JPH1193731A (ja) 筒内噴射内燃機関の燃料噴射制御装置
JP2008163815A (ja) 内燃機関の燃料噴射制御装置
JP4280931B2 (ja) 内燃機関の空燃比制御装置
JP5310574B2 (ja) 内燃機関用制御装置
JP5116870B1 (ja) 内燃機関の大気圧推定制御装置および大気圧推定方法
JP5273060B2 (ja) 内燃機関の空燃比ばらつき検出装置
JP2008045424A (ja) エンジンの空燃比制御装置
JP2002309993A (ja) 内燃機関の制御装置
JP2009191650A (ja) 内燃機関の制御装置
JP2002332872A (ja) 内燃機関の制御装置
CN114635804B (zh) 控制内燃发动机系统
JP3564520B2 (ja) エンジンのアイドル回転数制御装置
JP5427715B2 (ja) エンジンの制御装置
JP2008025511A (ja) 内燃機関の空燃比制御装置
JP2009127590A (ja) 内燃機関の異常判定装置および異常判定方法