JP2008035286A - 無線通信装置及び故障推定方法 - Google Patents

無線通信装置及び故障推定方法 Download PDF

Info

Publication number
JP2008035286A
JP2008035286A JP2006207241A JP2006207241A JP2008035286A JP 2008035286 A JP2008035286 A JP 2008035286A JP 2006207241 A JP2006207241 A JP 2006207241A JP 2006207241 A JP2006207241 A JP 2006207241A JP 2008035286 A JP2008035286 A JP 2008035286A
Authority
JP
Japan
Prior art keywords
unit
antenna
abnormality
antennas
failure location
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006207241A
Other languages
English (en)
Inventor
Minako Kitahara
美奈子 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006207241A priority Critical patent/JP2008035286A/ja
Publication of JP2008035286A publication Critical patent/JP2008035286A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 故障箇所を自動的に推定可能とする。
【解決手段】 複数のアンテナ#1〜#nを具備する無線通信装置であって、複数のアンテナ#1〜#nを用いて無線信号の送受信を行う無線信号送受信部1と、各アンテナ#1〜#n間での無線信号の振幅偏差又は位相偏差の少なくとも一方を判定するための判定用パラメータを取得する判定用パラメータ取得部5と、判定用パラメータに基づいて、各アンテナ#1〜#nで送受信される無線信号の周波数について、各アンテナ#1〜#nの異常を検出する異常検出部7と、異常を検出した場合、当該異常のある各アンテナ#1〜#nと周波数との対応付けに基づいて、無線信号送受信部1内の故障箇所を推定する故障箇所推定部8とを備える。
【選択図】 図1

Description

本発明は、複数のアンテナを具備する無線通信装置、及びこの無線通信装置の故障箇所を推定する故障推定方法に関する。
デジタル通信では、伝送速度の向上や時分割多重により、周波数資源の有効利用が図られている。周波数資源を更に有効利用可能な技術として、アダプティブアレイアンテナを使用した空間分割多重(SDMA)方式が知られている。アダプティブアレイアンテナでは、複数のアンテナにより適応的に指向性パターンを形成することにより、特定方向の通信相手に対して電波を送受信する。
アダプティブアレイアンテナにおいて、高精度に指向性を制御するためには、アンテナキャリブレーションを定期的に実行して、アンテナの送受信時の振幅特性及び位相特性を校正することが必要である。アンテナキャリブレーションを行うと、回路上に不具合がある場合、キャリブレーションエラーとして不具合の発生を検出できる。また、アンテナキャリブレーションを自動的に行うことで、不具合を早期に発見可能とする手法が提案されている(特許文献1参照。)。
特開2001−53662号公報
無線通信基地局装置においては、様々な要因によって無線通信装置の内部回路が故障することがある。特許文献1では、アンテナキャリブレーションによってアンテナの送受信の振幅特性及び位相特性を校正することを主な目的としており、故障箇所の検出のためにアンテナキャリブレーションを積極的に活用していない。このため、アンテナキャリブレーションに失敗した場合、サービスを停止し、故障箇所を判断するために人手による解析を行う必要がある。この結果、解析にコストを要し、復旧までに長時間を要するという問題があった。
上記問題点を鑑み、本発明は、故障箇所を自動的に推定可能な無線通信装置及び故障推定方法を提供する。
上記目的を達成するために、本発明の第1の特徴は、複数のアンテナを具備する無線通信装置であって、複数のアンテナを用いて無線信号の送受信を行う無線信号送受信部と、各アンテナ間での無線信号の振幅偏差又は位相偏差の少なくとも一方を判定するための判定用パラメータを取得する判定用パラメータ取得部と、判定用パラメータに基づいて、各アンテナで送受信される無線信号の周波数について、各アンテナの異常を検出する異常検出部と、異常を検出した場合、当該異常のある各アンテナと周波数との対応付けに基づいて、無線信号送受信部内の故障箇所を推定する故障箇所推定部とを備えることを要旨とする。
この特徴によれば、各アンテナ間での無線信号の振幅偏差又は位相偏差の少なくとも一方を判定するための判定用パラメータを取得する判定用パラメータ取得部と、判定用パラメータに基づいて、各アンテナで送受信される無線信号の周波数について、各アンテナの異常を検出する異常検出部と、異常を検出した場合、当該異常のある各アンテナと周波数との対応付けに基づいて、無線信号送受信部内の故障箇所を推定する故障箇所推定部とを備えることによって、故障を自動的に推定できる。
本発明の第2の特徴は、第1の特徴に係る無線通信装置において、故障箇所推定部は、異常のある各アンテナと周波数との第1の対応付けと、無線信号送受信部内の構成箇所と、の第2の対応付けに基づいて、故障箇所を推定することを要旨とする。
この特徴によれば、第1の特徴に係る無線通信装置において、故障箇所推定部は、異常のある各アンテナと周波数との第1の対応付けと、無線信号送受信部内の構成箇所と、の第2の対応付けに基づいて、故障箇所を推定することによって、故障を自動的に推定できる。
本発明の第3の特徴は、第1又は第2の特徴に係る無線通信装置において、故障箇所推定部によって故障箇所が推定された場合、無線信号送受信部内で故障箇所を除いた箇所である正常箇所を用いて、無線信号送受信部の動作を継続させる制御部を更に備えることを要旨とする。
この特徴によれば、故障箇所推定部によって故障箇所が推定された場合、無線信号送受信部内で故障箇所を除いた箇所である正常箇所を用いて、無線信号送受信部の動作を継続させることによって、正常動作系と故障系を切り分け、正常動作している系で活用できる箇所は有効利用し、故障発生時でも最善のサービスを行うことができる。
本発明の第4の特徴は、第1〜第3のいずれかの特徴に係る無線通信装置において、故障箇所推定部によって故障箇所が推定された場合、異常が検出された旨と共に故障箇所を外部に通知する故障箇所通知部を更に備えることを要旨とする。
この特徴によれば、故障箇所推定部によって故障箇所が推定された場合、異常が検出された旨と共に故障箇所を外部に通知することによって、故障箇所を無線通信装置の外部に通知可能となる。
本発明の第5の特徴は、第1〜第4のいずれかの特徴に係る無線通信装置において、無線信号が、マルチキャリア信号且つ時分割信号であり、判定用パラメータ取得部は、判定用パラメータをアンテナ毎、キャリア毎、及びタイムスロット毎に取得し、異常検出部は、異常の検出をアンテナ毎、キャリア毎、及びタイムスロット毎に行うことを要旨とする。
この特徴によれば、マルチキャリア信号且つ時分割信号を用いる場合に、判定用パラメータ取得部が、判定用パラメータをアンテナ毎、キャリア毎、及びタイムスロット毎に取得し、異常検出部が、異常の検出をアンテナ毎、キャリア毎、及びタイムスロット毎に行うことによって、効果的な故障箇所検出を可能とすることができる。
本発明の第6の特徴は、第1〜第5のいずれかの特徴に係る無線通信装置において、判定用パラメータ取得部は、振幅偏差又は位相偏差の少なくとも一方を校正するアンテナキャリブレーションの際に判定用パラメータを取得することを要旨とする。
この特徴によれば、アンテナキャリブレーション動作を利用して、故障箇所を検出することができる。
本発明の第7の特徴は、複数のアンテナを具備する無線通信装置に適用される故障推定方法であって、複数のアンテナを用いて、無線信号送受信部が無線信号の送受信を行うステップと、各アンテナ間での無線信号の振幅偏差又は位相偏差の少なくとも一方を判定するための判定用パラメータを取得するステップと、判定用パラメータに基づいて、各アンテナで送受信される無線信号の周波数について、各アンテナの異常を検出するステップと、異常を検出した場合、当該異常のある各アンテナと周波数との対応付けに基づいて、無線信号送受信部内の故障箇所を推定するステップ とを含むことを要旨とする。
本発明によれば、故障箇所を自動的に推定可能な無線通信装置及び故障推定方法を提供できる。
次に、図面を参照して、本発明の実施形態を説明する。以下の実施形態における図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
(無線通信装置の全体構成例)
以下においては無線通信装置の一例として、図1に示すように複数のアンテナ#1〜#nを具備し、移動局と通信する無線基地局について説明する(n;2以上の整数)。本発明の実施形態に係る無線通信装置は、複数のアンテナ#1〜#nと、無線信号送受信部1と、キャリブレーション制御部12と、判定用パラメータ取得部5と、異常検出部7と、故障箇所推定部8と、故障箇所通知部9と、制御部10と、通信インタフェース部(以下、「通信I/F部」)11とを備える。
無線信号送受信部1は、複数のアンテナ#1〜#nをアダプティブアレイアンテナとして使用し、移動局と通信を行う。通信I/F部11は、外部のネットワークに接続され、ネットワーク上の基地局管理装置等と通信する。
キャリブレーション制御部12は、複数のアンテナ#1〜#nを用いた無線信号の送受信時において、アンテナ間の振幅偏差又は位相偏差の少なくとも一方を校正するためのアンテナキャリブレーション動作を制御する。なお、アンテナキャリブレーションは各アンテナ#1〜#nの送信特性情報(振幅・位相差情報)又は受信特性情報(振幅・位相差情報)、あるいはこれらの組み合わせをもとに実行される。
判定用パラメータ取得部5は、アンテナ間での無線信号の振幅偏差又は位相偏差の少なくとも一方を判定するための判定用パラメータをアンテナ毎に取得する。異常検出部7は、判定用パラメータに基づき、複数のアンテナ#1〜#nにおいて異常が発生したか否かを判定する。異常の検出は、複数のアンテナ#1〜#nのそれぞれについて、振幅が安定しているか否かと、他のアンテナとの位相差が安定しているか否か等に応じて行われる。なお、判定用パラメータの詳細については後述する。
故障箇所推定部8は、複数のアンテナ#1〜#nの少なくとも1つについて異常が検出された場合に、異常の発生状態に基づいて無線信号送受信部1内の故障箇所を推定する。ここで「異常の発生状態」とは、異常のある各アンテナ#1〜#nと周波数(キャリア周波数又は通信チャネルの周波数)との対応付けを意味する。例えば、各アンテナ#1〜#nのうち、どのアンテナのどの周波数で異常が検出されたか、あるいはどのアンテナ群(アンテナブロック)のどの周波数で異常が検出されたか等を意味する。ただし、後述するように、無線通信装置の採用する無線通信方式に応じて、アンテナ以外の要素について発生する異常の発生状態を利用可能である。
一例として、異常のあるアンテナが検出された場合、キャリブレーション制御部12は、基準となるアンテナを切り替えつつ、キャリブレーション動作を複数回行う。この結果、異常検出部7は、複数回のキャリブレーションに渡って異常を判定し、故障箇所推定部8が異常の発生状態を得ることができる。更に、故障箇所推定部8は、異常の発生状態に応じて、故障箇所が、無線信号送受信部1の送信系、受信系、又は送受信両方であるのかを判断する。
制御部10は、無線信号送受信部1を制御すると共に、故障箇所が推定された場合に、故障箇所を除いた正常箇所を用いて無線信号送受信部1の動作を継続させる。故障箇所通知部9は、故障箇所が検出された場合、通信I/F部11を用いて、故障箇所を基地局管理装置に自動的に通知する。
したがって、一部のアンテナにのみ故障が発生した際に与える影響を最小限に抑え、無線通信装置の運用を続けながら、故障箇所として通知された箇所を調べることにより、故障対応を迅速に行うことが可能となる。
なお、アンテナ#1〜#n、無線信号送受信部1、キャリブレーション制御部12、及び通信I/F部11は、ハードウェアとして実装されるが、判定用パラメータ取得部5、異常検出部7、故障箇所推定部8、及び故障箇所通知部9は、プログラムとして実装し、図示を省略するCPUに実行させることが可能である。したがって、アンテナキャリブレーション機能を有する無線通信装置に対し、特別な装置を追加設置することなく、故障や故障発生時においても運用上の影響を最小限に抑えることが可能となる。
(無線信号送受信部の概略構成)
次に、無線信号送受信部1の概略構成について説明する。無線信号送受信部1は、無線信号の増幅及び周波数変換等を行うパワーアンプ・高周波部(以下、「PA・RF部」)1aと、無線信号を信号処理する信号処理部1bとを備える。
信号処理部1bは、複数のアンテナ#1〜#nから無線信号を同時に送信又は受信するときに、複数のアンテナ#1〜#nのそれぞれについての無線信号に重み付けを行うように構成されている。具体的には、信号処理部1bは、送信ウェイト処理部13と、ウェイト算出部14と、キャリブレーションウェイト算出部15と、受信ウェイト処理部16とを備える。
受信ウェイト処理部16は、PA・RF部1aからの受信信号から、振幅情報及び位相情報をアンテナ毎に取得し、ウェイト算出部14及び判定用パラメータ取得部5に振幅情報及び位相情報を通知する。ウェイト算出部14は、PA・RF部1aの送受信信号に与える振幅と位相とを調整するためのウェイトをアンテナ毎に算出する。
また、受信ウェイト処理部16は、ウェイト算出部14が算出した、位相及び振幅の各アンテナ間における相違量を示すウェイトを用いて、PA・RF部1aからのアンテナ毎の受信信号を重み付けして合成する。これにより受信時の指向性パターンを形成することになる。送信ウェイト処理部13は、受信時に算出したパラメータを送信時にも利用して、アンテナ毎の送信信号に重み付けを行う。これにより送信時のアレイアンテナパターンを形成することになる。
(キャリブレーション制御部の構成)
次に、キャリブレーション制御部12の構成について説明する。キャリブレーション制御部12は、検査用信号生成部2と、合成・分配部3と、検査用信号送受信部4と、検波部6とを備える。検査用信号生成部2は、キャリブレーション時において、同一の振幅・位相の検査用信号をベースバンド帯域で生成する。なお、検査用信号としては、例えば一定周波数の信号の一種であるトーン信号(正弦波)、又は周波数が信号内容に応じて変更されるバースト信号(ビット列)等が使用できる。
無線信号送受信部1の受信特性を検査する場合、検査用信号は、検査用信号送受信部4及び合成・分配部3を介して、PA・RF部1aに入力される。これに対して、無線信号送受信部1の送信特性を検査する場合、検査用信号は、送信ウェイト処理部13を介してPA・RF部1aに入力される。
検査用信号送受信部4は、無線周波数とベースバンド周波数との変換を行う。検波部6は、キャリブレーションに必要な各アンテナの位相情報及び振幅情報を検出する。
合成・分配部3は、複数のアンテナ#1〜#nからの信号を合成すると共に、検査用信号送受信部4からの信号を複数のアンテナ#1〜#nに分配する。
(判定用パラメータ)
次に、判定用パラメータについて詳細に説明する。判定用パラメータ取得部5は、判定用パラメータとして、以下の1)〜5)のいずれか、あるいは以下の1)〜5)の組み合わせを取得する。
1)全アンテナが同一の振幅で電波を送信している際に、キャリブレーション制御部12で検出される各アンテナについての信号振幅情報(以下、「送信振幅情報」)
2)全アンテナが同一の振幅で電波を受信している際に、受信ウェイト処理部16で検出される各アンテナについての受信振幅情報(以下、「受信振幅情報」)
3)アンテナ間での送信信号の位相差情報(以下、「送信位相差情報」)
4)アンテナ間での受信信号の位相差情報(以下、「受信位相差情報」)
5)上記1)〜4)の情報から算出される情報
ここで、上記5)としては、例えば、基準アンテナで規格化された各アンテナの送受信振幅・位相差情報等が該当する。
異常検出部7は、上記1)〜5)の判定用パラメータに対し、位相揺らぎ又は振幅揺らぎの有無を判定する。
「振幅揺らぎ(振幅偏差)」とは、各アンテナを用いて同じ振幅の検査用信号を送信させた場合のアンテナ間に生じるばらつき、あるいは、各アンテナを用いて同じ振幅の検査用信号を受信させた場合のアンテナ間に生じるばらつきを意味する。ばらつきの大きさは、全アンテナ平均値に対して、所定の閾値内に収まっているかどうかで判定しても良いし、ある基準で判断しても良い。
「位相差揺らぎ(位相偏差)」とは、各アンテナを用いて同じ位相の検査用信号を送信させた場合のアンテナ間に生じるばらつき、あるいは、各アンテナを用いて同じ位相の検査用信号を受信させた場合のアンテナ間に生じるばらつきを意味する。位相偏差は、連続的に同じ送受信動作をさせることによって検出可能である。
例えば、2回同じ検査用信号の送受信動作を行ったとき、位相偏差は基準アンテナを決めて、位相差ベクトルを作り、その位相差ベクトルの内積を取ることで確認する。アンテナ数を“N”として、
1回目をa = [ a1,a2, ・・・・,aN]
2回目をb = [ b1,b2, ・・・・,bN]
(1番目のアンテナが基準アンテナであればa1=b1)
が送受信動作によって得られた位相・振幅ベクトルとすると、“a・b”の結果が揺らぎの大きさに相当する。算出結果を1に規格化していれば、実部が1に近いほど揺らぎが小さいと判断できる。規格化した結果の実部の大きさが0.999以下であれば、異常であると判断する。このように、揺らぎを定量化して、閾値判定することで、異常が検出される。
(無線信号送受信部の構成例)
次に、図2を用いて、無線信号送受信部1の具体的な構成例を説明する。図2の例では、iBurst(登録商標)規格に準拠したシステムの基地局における無線信号送受信部1の構成例を示している。iBurst(登録商標)規格に準拠したシステムでは、マルチキャリアを採用した時分割多元接続/時分割双方向伝送(TDMA/TDD)方式が用いられている。
マルチキャリア、マルチアンテナのTDMA/TDDシステムでは、複数キャリアで共通の回路、キャリア毎、アンテナ毎に異なる回路を使用している箇所等が存在する。複数のキャリアで共通のチップを使用している場合、そのチップに故障が生じた場合、1つのキャリアにのみ影響するということは通常は起こりにくい。
このように、エラー発生状態からどこのチップ(回路)に故障が生じているのかをある程度の確率で検出可能である。したがって、ハードウェア構成がどのような単位でまとめられているのか、どこで発生した故障であるのかを考慮して故障箇所が推定される。
図2に示す構成に対しては、図1に示した判定用パラメータ取得部5は、判定用パラメータをアンテナ毎、キャリア毎、及びタイムスロット毎に取得する。異常検出部7は、異常が発生したか否かをアンテナ毎、キャリア毎、及びタイムスロット毎に判定する。また、キャリブレーション制御部12では周波数帯はキャリブレーションを実行するキャリアに応じて設定する。
図2に示す無線信号送受信部1は、第1〜第12アンテナ#1〜#12と、PA・RF部100と、シリアライザ/デシリアライザ部(以下、「SER/DES部」)140と、キャリアブロック部150と、キャリア制御部160と、タイムスロット制御部170とを備える。
PA・RF部100は、PA部110と、RF部120とを備える。PA部110は、第1〜第4PA回路111〜114を備える。第1〜第4PA回路111〜114のそれぞれは、図示を省略する2つの送受信切替スイッチと、2つの送受信切替スイッチの間に並列に接続されたPA及びローノイズアンプ(LNA)を備える。送信時にはPAを用いた無線信号の増幅を行い、受信時はLNAを用いた無線信号の増幅を行う。
RF部120は、第1〜第12RF回路121〜132を備える。第1〜第12RF回路121〜132のそれぞれは、受信時には、無線周波数帯域からベースバンド帯域へのダウンコンバートと、アナログ/デジタル(A/D)変換を行う。これに対して送信時には、デジタル/アナログ(D/A)変換と、ベースバンド帯域から無線周波数帯域へのアップコンバートを行う。SER/DES部140は、RF部120とキャリアブロック部150との間で入出力される信号を授受する。
キャリアブロック部150は、第1及び第2キャリアブロック回路151,152を備える。第1及び第2キャリアブロック回路151,152のそれぞれは、フィールド・プログラマブル・ゲート・アレイ(FPGA)により構成される。また、第1及び第2キャリアブロック回路151,152のそれぞれは、受信時には、アンテナ毎に入力される受信信号をキャリア毎に振り分け、送信時には、キャリア毎に入力される送信信号をアンテナ毎に振り分ける。
キャリア制御部160は、第1〜第8キャリア制御回路161〜168を備える。第1〜第8キャリア制御回路161〜168のそれぞれは、FPGAにより構成される。また、第1〜第8キャリア制御回路161〜168のそれぞれは、受信時には、キャリア毎に入力される受信信号をタイムスロット毎に分割し、送信時には、タイムスロット毎に入力される送信信号をキャリア毎に統合する。
タイムスロット制御部170は、第1〜第24タイムスロット制御回路171〜194を備える。第1〜第24タイムスロット制御回路171〜194のそれぞれは、デジタル・シグナル・プロセッサ(DSP)により構成される。また、第1〜第24タイムスロット制御回路171〜194のそれぞれは、受信時には、検波やキャリブレーションウェイトの演算等を行い、送信時には、ウェイトの乗算等を行う。なお、検波処理は、キャリブレーション動作時と通常通信時では異なる検波方式を採っても良い。キャリブレーション時には、受信アンテナウェイトに依存しない各アンテナの位相振幅の差の情報(受信特性情報)を得られるよう動作する。更に、通常通信時にはキャリブレーションウェイト及び受信ウェイト情報を用いて送信ウェイトが算出される。
(異常の発生状態例)
次に、図2に示した無線信号送受信部1の構成例における異常の発生状態例について説明する。
第1〜第4PA回路111〜114のそれぞれは、3つのアンテナからなるアンテナブロック毎に1つ割り当てられている。第1〜第12RF回路121〜132のそれぞれは、各アンテナに対応して設けられている。SER/DES部140は、全アンテナ・全キャリアに共通して1つ設けられている。
第1及び第2キャリアブロック回路(FPGA)151,152のそれぞれは、4つのキャリアからなるキャリアブロック毎に1つ割り当てられている。具体的には、第1〜第4キャリアCA1〜CA4には、第1キャリアブロック回路151が割り当てられ、第5〜第8キャリアCA5〜CA8には、第2キャリアブロック回路152が割り当てられている。
第1〜第8キャリア制御回路(FPGA)161〜168のそれぞれは、各キャリアに対応して設けられている。
第1〜第24タイムスロット制御回路(DSP)171〜194のそれぞれは、各タイムスロットに対応して設けられている。具体的には、第1、第4、第7、第10、第13、第16、第19、及び第22タイムスロット制御回路(DSP)171,174,177,180,183,186,189,192は、第1タイムスロットTS1に対応している。第2、第5、第8、第11、第14、第17、第18、及び第23タイムスロット制御回路(DSP)172,175,178,181,184,187,190,193は、第2タイムスロットTS2に対応している。第3、第6、第9、第12、第15、第18、第19、及び第24タイムスロット制御回路(DSP)173,176,179,182,185,188,191,194は、第3タイムスロットTS3に対応している。
このような構成において、異常の発生状態と推定故障箇所との対応付けについて図3を用いて説明する。図3では状態1〜状態6の合計6パターンを例示している。
状態1は、全キャリア・全タイムスロットで特定のアンテナに異常が検出された状態であり、特定のアンテナに対応するPA回路又はRF回路が故障していると推定可能である。例えば、図4に示すように、全キャリア・全タイムスロットでアンテナ1が異常を示している場合、第1PA回路111又は第1RF回路121が故障していると考えられる。
状態2は、図5に示すように、全キャリア・全タイムスロット・全アンテナに異常が検出された状態であり、SER/DES部140が故障していると推定可能である。
状態3は、全タイムスロットで特定のキャリアブロックに異常が検出された状態であり、特定のキャリアブロックについてのキャリアブロック回路が故障していると推定可能である。例えば、図6に示すように、全タイムスロットで特定のキャリアブロック(キャリア1〜4)が異常を示している場合、第1キャリアブロック回路151が故障していると考えられる。
状態4は、全タイムスロットで特定のキャリアに異常が検出された状態であり、特定のキャリアについてのキャリア制御回路が故障していると推定可能である。例えば、図7に示すように、全タイムスロットでキャリア1が異常を示している場合、第1キャリア制御回路161が故障していると考えられる。
状態5は、特定のキャリアの特定のタイムスロットに異常が検出された状態であり、特定のタイムスロットについてのタイムスロット制御回路が故障していると推定可能である。
状態6は、全キャリアで特定のアンテナブロックに異常が検出された状態であり、特定のアンテナブロックについてのPA回路が故障していると推定可能である。例えば、図8に示すように、全タイムスロットで第1〜第3アンテナ#1〜#3が異常を示している場合、第1PA回路111が故障していると考えられる。
図4〜図8に示したようなテーブルを、異常検出部7が予め保持しておくことにより、エラー発生状態から故障箇所を即座に検出可能となる。
(故障推定フロー例)
次に、図9に示すフローチャートを参照して、本発明の実施形態に係る故障推定方法の一例について説明する。
ステップS101において、図1の検査用信号生成部2は、制御部からキャリブレーション実行要求が通知されるまで待ち状態となる。キャリブレーション実行要求が通知されると、ステップS102へ移行する。
ステップS102において、制御部10は、基準アンテナを選択する。
ステップS103において、上述した手順により、キャリブレーションが実行される。この結果、基準アンテナを基準とした各アンテナのキャリブレーションベクトル情報、送信特性情報、及び受信特性情報が得られる。なお、キャリブレーションベクトルとは、基準アンテナの送受信信号振幅位相を基準とし他場合の、他アンテナの送受信信号振幅位相である。キャリブレーションの過程で、判定用パラメータ取得部5は、判定用パラメータを取得する。
ステップS104において、異常検出部7は、異常(キャリブレーションエラー)をアンテナ毎、キャリア毎に判定する。
ステップS105において、異常検出部7は、ステップS104で異常が検出されたか否か確認する。異常が検出されていない場合、ステップS101に処理が戻る。異常が検出された場合、ステップS106に移行する。
ステップS106において、故障箇所推定部8は、複数キャリアに渡って異常が検出されたか否かを判定する。複数キャリアに渡って異常が検出された場合、ステップS107に移行する。特定のキャリアにのみ異常が検出された場合、ステップS108に移行する。複数のキャリアで異常が検出され、それが1つのアンテナで発生した異常であれば、該当アンテナを故障とみなすことができる。
ステップS107において、故障箇所推定部8は、複数アンテナに渡って異常が検出されたか否かを判定する。複数アンテナに渡って異常が検出された場合、ステップS108に移行する。特定のアンテナにのみ異常が検出された場合、ステップS109に移行する。
ステップS109では、制御部10は、異常のあるアンテナ及びキャリアの運用を停止する。故障箇所推定部8は、SER/DES部140に故障が発生していると推定する。故障箇所通知部9は、異常が発生した旨(アラーム)とともに、故障箇所を外部に通知する。
ステップS108において、制御部10は、基準アンテナの異常の可能性があるため、基準アンテナを変更して再度キャリブレーションを行うように制御する。
ステップS111において、故障箇所推定部8は、ステップS108の結果、異常であるアンテナが減少したか否かを判定する。異常であるアンテナが減少した場合、ステップS112に移行する。異常であるアンテナが減少しない場合、ステップS113に移行する。
ステップS112においては、制御部10は、基準アンテナの変更を維持し、前回まで基準としていたアンテナを運用停止とする。また、故障箇所推定部8は、運用停止としたアンテナに対応するRF部132のRF回路を故障箇所として推定する。ステップS114において、故障箇所通知部9は、異常が発生した旨と共に、故障箇所を外部に通知する。
ステップS113においては、制御部10は、異常のあるアンテナを運用停止し、正常動作をしているアンテナのみでサービスを続行する。故障箇所推定部8は、SER/DES部140に故障が発生していると推定する。ステップS115において、故障箇所通知部9は、異常が発生した旨と共に故障箇所を外部に通知する。
一方、ステップS108において、制御部10は、キャリブレーションを実行していたタイムスロットを変更して再度キャリブレーションを行い、異常検出部7は、異常が回避できるかどうかをステップS116にてチェックする。異常が回避できた場合、ステップS117に移行する。異常が回避できない場合、ステップS118に移行する。
ステップS117において、故障箇所推定部8は、タイムスロット制御部170から故障箇所を検出する。そして、故障箇所通知部9は、異常が発生した旨と共に故障箇所を外部に通知する。
ステップS118において、故障箇所推定部8は、キャリア制御部160から故障箇所を推定する。制御部10は、異常の発生しているキャリアの運用を停止する。ステップS119において、故障箇所通知部9は、異常が発生した旨と共に故障箇所を外部に通知する。
以上詳細に説明したように、本発明の実施形態によれば、アンテナキャリブレーション動作を利用して、故障箇所を推定することができる。また、故障が判明した際、該当キャリアでの通信サービスを停止する代わりに、故障発生箇所と正常動作箇所を切り分け、正常動作箇所のみを使用してサービスを行うようにすることで、故障発生時にも最低限の通信サービスを確保できるようになる。修理の時には、故障箇所を切り分けていることから、迅速に修理、改善のための処置を行うことができる。
更に、従来のキャリブレーションでは発見できなかった異常を早期に発見することが可能となることにより、無用な電波放出を防ぐことが可能となり通信品質を向上させることが可能になる。
(その他の実施形態)
上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなる。
上述した実施形態においては、無線基地局の故障箇所を推定する一例を説明したが、移動通信端末の故障箇所を推定する場合に応用しても良い。
また、TDMA方式を採用する無線通信装置について説明したが、複数のアンテナを具備する無線通信装置であれば、符号分割多重接続(CDMA)方式等の他の無線通信方式を採用する場合にも応用可能である。
更に、上述した実施形態においては、アンテナキャリブレーションを利用して、無線信号送受信部1の故障箇所を推定する一例について説明した。しかしながら、アンテナキャリブレーションを利用せずに、故障箇所の推定動作のみを行ってもかまわない。この場合、キャリブレーションウェイト算出部15を動作させることなく、判定用パラメータ取得部5が判定用パラメータを取得する。
このように本発明は、ここでは記載していない様々な実施形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な特許請求の範囲の発明特定事項によってのみ限定されるものである。
本発明の実施形態に係る無線通信装置の構成例を示すブロック図である。 本発明の実施形態に係る送受信部の内部構成例を示すブロック図である。 本発明の実施形態に係る故障箇所推定部の機能を説明するための表である。 本発明の実施形態に係る異常検出部が検出する異常の発生状態の一例を示す表である(その1)。 本発明の実施形態に係る異常検出部が検出する異常の発生状態の一例を示す表である(その2)。 本発明の実施形態に係る異常検出部が検出する異常の発生状態の一例を示す表である(その3)。 本発明の実施形態に係る異常検出部が検出する異常の発生状態の一例を示す表である(その4)。 本発明の実施形態に係る異常検出部が検出する異常の発生状態の一例を示す表である(その5)。 本発明の実施形態に係る無線通信装置の故障箇所推定処理の一例を示すフローチャートである。
符号の説明
#1〜#n…アンテナ
1…無線信号送受信部
1a…PA・RF部
1b…信号処理部
2…検査用信号生成部
3…合成・分配部
4…検査用信号送受信部
5…判定用パラメータ取得部
6…検波部
7…異常推定部
8…故障箇所推定部
9…故障箇所通知部
10…制御部
11…通信I/F部
12…キャリブレーション制御部
13…送信ウェイト処理部
14…ウェイト算出部
15…キャリブレーションウェイト算出部
16…受信ウェイト処理部
100…PA・RF部
110…PA部
111…第1PA回路
111〜114…PA回路
120…RF部
121〜132…RF回路
140…SER/DES部
150…キャリアブロック部
151,152…キャリアブロック回路
160…キャリア制御部
161〜168…キャリア制御回路
170…タイムスロット制御部
171〜194…タイムスロット制御回路

Claims (7)

  1. 複数のアンテナを具備する無線通信装置であって、
    前記複数のアンテナを用いて無線信号の送受信を行う無線信号送受信部と、
    各アンテナ間での前記無線信号の振幅偏差又は位相偏差の少なくとも一方を判定するための判定用パラメータを取得する判定用パラメータ取得部と、
    前記判定用パラメータに基づいて、前記各アンテナで送受信される無線信号の周波数について、前記各アンテナの異常を検出する異常検出部と、
    前記異常を検出した場合、当該異常のある前記各アンテナと前記周波数との対応付けに基づいて、前記無線信号送受信部内の故障箇所を推定する故障箇所推定部と
    を備えることを特徴とする無線通信装置。
  2. 前記故障箇所推定部は、前記異常のある前記各アンテナと前記周波数との第1の対応付けと、前記無線信号送受信部内の構成箇所と、の第2の対応付けに基づいて、前記故障箇所を推定することを特徴とする請求項1に記載の無線通信装置。
  3. 前記故障箇所推定部によって前記故障箇所が推定された場合、前記無線信号送受信部内で前記故障箇所を除いた箇所である正常箇所を用いて、前記無線信号送受信部の動作を継続させる制御部を更に備えることを特徴とする請求項1又は2に記載の無線通信装置。
  4. 前記故障箇所推定部によって前記故障箇所が推定された場合、前記異常が検出された旨と共に前記故障箇所を外部に通知する故障箇所通知部を更に備えることを特徴とする請求項1〜3のいずれか1項に記載の無線通信装置。
  5. 前記無線信号が、マルチキャリア信号且つ時分割信号であり、
    前記判定用パラメータ取得部は、前記判定用パラメータをアンテナ毎、キャリア毎、及びタイムスロット毎に取得し、
    前記異常検出部は、前記異常の検出をアンテナ毎、キャリア毎、及びタイムスロット毎に行うことを特徴とする請求項1〜4のいずれか1項に記載の無線通信装置。
  6. 前記判定用パラメータ取得部は、前記振幅偏差又は前記位相偏差の少なくとも一方を校正するアンテナキャリブレーションの際に前記判定用パラメータを取得することを特徴とする請求項1〜5のいずれか1項に記載の無線通信装置。
  7. 複数のアンテナを具備する無線通信装置に適用される故障推定方法であって、
    前記複数のアンテナを用いて、無線信号送受信部が無線信号の送受信を行うステップと、
    各アンテナ間での前記無線信号の振幅偏差又は位相偏差の少なくとも一方を判定するための判定用パラメータを取得するステップと、
    前記判定用パラメータに基づいて、前記各アンテナで送受信される無線信号の周波数について、前記各アンテナの異常を検出するステップと、
    前記異常を検出した場合、当該異常のある前記各アンテナと前記周波数との対応付けに基づいて、前記無線信号送受信部内の故障箇所を推定するステップ
    とを含むことを特徴とする故障推定方法。




JP2006207241A 2006-07-28 2006-07-28 無線通信装置及び故障推定方法 Pending JP2008035286A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006207241A JP2008035286A (ja) 2006-07-28 2006-07-28 無線通信装置及び故障推定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006207241A JP2008035286A (ja) 2006-07-28 2006-07-28 無線通信装置及び故障推定方法

Publications (1)

Publication Number Publication Date
JP2008035286A true JP2008035286A (ja) 2008-02-14

Family

ID=39124232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006207241A Pending JP2008035286A (ja) 2006-07-28 2006-07-28 無線通信装置及び故障推定方法

Country Status (1)

Country Link
JP (1) JP2008035286A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2433442A1 (en) * 2009-05-20 2012-03-28 Telefonaktiebolaget LM Ericsson (publ) Automatic detection of erroneous connections between antenna ports and radio frequency paths
US8532401B2 (en) 2008-07-09 2013-09-10 Fuji Xerox Co., Ltd. Image processing apparatus, image processing method, and computer-readable medium and computer data signal
CN112534728A (zh) * 2018-09-18 2021-03-19 阿尔卑斯阿尔派株式会社 放大器模块
JP7416915B2 (ja) 2019-08-30 2024-01-17 華為技術有限公司 アンテナ較正装置およびアンテナ較正方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06137909A (ja) * 1992-10-26 1994-05-20 Hitachi Ltd プラント監視装置
JPH09138270A (ja) * 1995-11-16 1997-05-27 Toshiba Corp フェーズドアレイアンテナ装置
JPH10254539A (ja) * 1997-03-10 1998-09-25 Nissan Motor Co Ltd 機械装置の駆動系の異常診断方法
JP2003158559A (ja) * 2001-11-22 2003-05-30 Mitsubishi Electric Corp 自己診断装置
JP2005260339A (ja) * 2004-03-09 2005-09-22 Nippon Hoso Kyokai <Nhk> フェーズドアレーアンテナ装置及び該フェーズドアレーアンテナ装置における給電制御プログラム
JP2005348235A (ja) * 2004-06-04 2005-12-15 Ntt Docomo Inc アレーアンテナ受信装置及び送信装置
JP2006115267A (ja) * 2004-10-15 2006-04-27 Hitachi Communication Technologies Ltd 無線通信装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06137909A (ja) * 1992-10-26 1994-05-20 Hitachi Ltd プラント監視装置
JPH09138270A (ja) * 1995-11-16 1997-05-27 Toshiba Corp フェーズドアレイアンテナ装置
JPH10254539A (ja) * 1997-03-10 1998-09-25 Nissan Motor Co Ltd 機械装置の駆動系の異常診断方法
JP2003158559A (ja) * 2001-11-22 2003-05-30 Mitsubishi Electric Corp 自己診断装置
JP2005260339A (ja) * 2004-03-09 2005-09-22 Nippon Hoso Kyokai <Nhk> フェーズドアレーアンテナ装置及び該フェーズドアレーアンテナ装置における給電制御プログラム
JP2005348235A (ja) * 2004-06-04 2005-12-15 Ntt Docomo Inc アレーアンテナ受信装置及び送信装置
JP2006115267A (ja) * 2004-10-15 2006-04-27 Hitachi Communication Technologies Ltd 無線通信装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8532401B2 (en) 2008-07-09 2013-09-10 Fuji Xerox Co., Ltd. Image processing apparatus, image processing method, and computer-readable medium and computer data signal
EP2433442A1 (en) * 2009-05-20 2012-03-28 Telefonaktiebolaget LM Ericsson (publ) Automatic detection of erroneous connections between antenna ports and radio frequency paths
EP2433442A4 (en) * 2009-05-20 2013-05-22 Ericsson Telefon Ab L M AUTOMATIC DETECTION OF INCORRECT CONNECTIONS BETWEEN ANTENNA PORTS AND HIGH FREQUENCY PATHS
US8670722B2 (en) 2009-05-20 2014-03-11 Telefonaktiebolaget L M Ericsson (Publ) Automatic detection of erroneous connections between antenna ports and radio frequency paths
CN112534728A (zh) * 2018-09-18 2021-03-19 阿尔卑斯阿尔派株式会社 放大器模块
JP7416915B2 (ja) 2019-08-30 2024-01-17 華為技術有限公司 アンテナ較正装置およびアンテナ較正方法

Similar Documents

Publication Publication Date Title
US10069591B2 (en) Method and apparatus for distributed spectrum sensing for wireless communication
US7570620B2 (en) Malfunction detection method and base station apparatus utilizing the same
US11082104B2 (en) Apparatus for configuring reference signal beams based on accuracy of user equipment localization
TW201836394A (zh) 基地台、使用者裝置、用於基地台的傳輸控制方法以及用於使用者裝置的資料傳輸方法
WO2020101757A1 (en) Method and apparatus for determining dynamic beam correspondence for phased array antenna
US20160359718A1 (en) Method for calibrating an over-the-air (ota) test system for testing multiple radio frequency (rf) data packet signal transceivers
US20170288746A1 (en) Method and apparatus for channel sounding for a mu-mimo wireless communication network
JP2017028373A (ja) 無線通信装置
JP2008211482A (ja) 故障検出方法及び無線通信装置
JP2008035286A (ja) 無線通信装置及び故障推定方法
JP2019503116A (ja) 大規模アンテナシステムのチャネルランク低減の方法及び装置
US6070091A (en) Method for detecting performance degradation in radio base stations due to intermodulation products
US9942827B2 (en) Dynamic crossband link method and wireless extender
JP5371707B2 (ja) 基地局装置
US7376404B2 (en) System and method for detecting a fault in a multiple receiver system
US9369226B2 (en) Method and apparatus for controlling performance in a radio node
US11689299B2 (en) Wireless communication apparatus with calibration
JP2017059933A (ja) 通信システム、基地局及びアンテナ制御方法
JP2022544417A (ja) 無線通信ネットワークにおけるデータストリームの分離能力の検討
CN111971912B (zh) 表现不佳无线电分支的标识
JP4074553B2 (ja) 通信装置及びそれにおける検査方法
JP5888424B2 (ja) 無線送信装置、定在波比測定装置及び定在波比測定方法
JP2015139156A (ja) 無線装置及びその故障診断方法
JP4794583B2 (ja) マルチアンテナ通信装置及び送信方法
JP2003318844A (ja) アンテナ・セルフチェック機能付き受信機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090316

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090930

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329