JP2007515775A - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP2007515775A
JP2007515775A JP2006526914A JP2006526914A JP2007515775A JP 2007515775 A JP2007515775 A JP 2007515775A JP 2006526914 A JP2006526914 A JP 2006526914A JP 2006526914 A JP2006526914 A JP 2006526914A JP 2007515775 A JP2007515775 A JP 2007515775A
Authority
JP
Japan
Prior art keywords
layer
semiconductor device
electrode
conductive
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006526914A
Other languages
Japanese (ja)
Other versions
JP2007515775A5 (en
Inventor
シアンシオ、アンソニー
ディー. グリスウォルド、マーク
アール. イルダヤム、アムダハ
エイチ. モリソン、ジェニファー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NXP USA Inc
Original Assignee
NXP USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NXP USA Inc filed Critical NXP USA Inc
Publication of JP2007515775A publication Critical patent/JP2007515775A/en
Publication of JP2007515775A5 publication Critical patent/JP2007515775A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/75Electrodes comprising two or more layers, e.g. comprising a barrier layer and a metal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5222Capacitive arrangements or effects of, or between wiring layers
    • H01L23/5223Capacitor integral with wiring layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31645Deposition of Hafnium oxides, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/65Electrodes comprising a noble metal or a noble metal oxide, e.g. platinum (Pt), ruthenium (Ru), ruthenium dioxide (RuO2), iridium (Ir), iridium dioxide (IrO2)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

底部電極(11)及び又はキャパシタ誘電体上に導電性平滑化層(16、19)を形成することにより、幾何学的に高くされた電場を低下させると共に、電極を平滑化することで、形成されるMIMキャパシタの信頼性を向上させることができる。一実施形態において、難溶性窒化物で形成された第1のキャッピング層(14)上には、難溶性金属又は難溶性金属リッチ窒化物を含む第1の層(16)が形成される。更に、キャパシタ誘電体上には、難溶性金属(18)又は難溶性金属リッチ窒化物を含む第2の層(19)が形成される。導電性平滑化層(16、19)は、例えば、ゲート電極とゲート誘電体との間のトランジスタ等の他の半導体装置にも使用される。  Forming by smoothing the electrode while reducing the geometrically increased electric field by forming a conductive smoothing layer (16, 19) on the bottom electrode (11) and / or capacitor dielectric The reliability of the MIM capacitor to be improved can be improved. In one embodiment, a first layer (16) comprising a hardly soluble metal or a hardly soluble metal rich nitride is formed on the first capping layer (14) made of the hardly soluble nitride. Furthermore, a second layer (19) containing a hardly soluble metal (18) or a hardly soluble metal rich nitride is formed on the capacitor dielectric. The conductive smoothing layer (16, 19) is also used in other semiconductor devices such as a transistor between the gate electrode and the gate dielectric.

Description

本発明は、半導体装置の分野に係り、詳しくは、半導体装置に使用される金属−絶縁体−金属(MIM)キャパシタに関する。   The present invention relates to the field of semiconductor devices, and more particularly to metal-insulator-metal (MIM) capacitors used in semiconductor devices.

半導体装置の小型化が進み、キャパシタ機構等の占有面積を小さくすることが望まれている。そうした要望に応えるため、バルク半導体基板の近傍にあるトランジスタと同じ高さではなく、トランジスタ上に(例えば金属と同じ高さで)キャパシタを形成することが行われている。その一例として、頂部電極と底部電極との間にMIM誘電体を設けた金属−絶縁体−金属(MIM)キャパシタがある。   As semiconductor devices become smaller, it is desired to reduce the area occupied by the capacitor mechanism and the like. In order to meet such a demand, a capacitor is formed on a transistor (for example, at the same height as a metal) instead of the same height as a transistor in the vicinity of a bulk semiconductor substrate. An example is a metal-insulator-metal (MIM) capacitor with an MIM dielectric between the top and bottom electrodes.

金属層は、アルミニウム、銅又はそれらの合金を用いて形成される。通常、キャッピング層又は反射防止膜(ARC)は、金属層上に形成されており、それらは、金属層上に形成されたMIMキャパシタ用の底部電極として用いられる。工業的には、そのようなARC材料の一例としてTiNがある。底部電極としてARCを用いることは加工を容易にする点で望ましいが、MIM誘電体と接するTiNの表面は粗化されている。TiNの粗い表面は、その形状から電場を高め、MIM誘電体の信頼性を低下させてしまう。そこで、特にMIMキャパシタの電極としてTiNを用いる場合、電場の均一性を制御することが必要とされる。   The metal layer is formed using aluminum, copper, or an alloy thereof. Usually, a capping layer or anti-reflective coating (ARC) is formed on the metal layer, which is used as the bottom electrode for the MIM capacitor formed on the metal layer. Industrially, TiN is an example of such an ARC material. Using ARC as the bottom electrode is desirable in terms of ease of processing, but the surface of TiN in contact with the MIM dielectric is roughened. The rough surface of TiN increases the electric field due to its shape and reduces the reliability of the MIM dielectric. Therefore, particularly when TiN is used as the electrode of the MIM capacitor, it is necessary to control the uniformity of the electric field.

本発明は、限定例ではなく、実例により説明されており、ここでは、同じ部材番号が同じ要素を示している。当業者にとって、図中の要素が簡潔さや明瞭さのために図示されており、実寸に従う必要のないことは明らかである。例えば、図中の幾つかの要素について、その寸法は、本発明の実施形態の理解を深めるため、他の要素に対して誇張されているかもしれない。   The present invention has been described by way of illustration and not limitation, wherein like parts numbers indicate like elements. It will be apparent to those skilled in the art that the elements in the figures are illustrated for simplicity and clarity and need not be drawn to scale. For example, for some elements in the figures, the dimensions may be exaggerated relative to other elements to better understand the embodiments of the present invention.

本発明者らによって、MIMキャパシタは下層から粗さの影響を受け易いことが確認された。通常、一実施形態において、TiN層である金属線及びキャッピング層は底部電極を形成する(それとは別に、金属線又はTiN層のみが底部電極を形成する)。従って、底部電極をより一層滑らかにすることが求められている。工程の複雑化を犠牲にして平滑化層を形成する代わりに、MIMキャパシタの直下から金属層が取り除かれるか、それとは別に平滑化層が用いられる。つまり、金属線に使用する材料と関係なく、平滑化層を用いることができる。   It has been confirmed by the present inventors that the MIM capacitor is easily affected by roughness from the lower layer. Typically, in one embodiment, the TiN layer metal line and capping layer form the bottom electrode (alternatively, only the metal line or TiN layer forms the bottom electrode). Therefore, there is a demand for a smoother bottom electrode. Instead of forming the smoothing layer at the expense of process complexity, the metal layer is removed directly under the MIM capacitor or a smoothing layer is used separately. That is, the smoothing layer can be used regardless of the material used for the metal wire.

本発明の一実施形態に従い底部電極及び又はキャパシタ誘電体上に、例えば、適切な平滑性を有する難溶性物質(金属)リッチ窒化物層(例えば、チタンリッチ窒化物(TiRN)層)や純金属層等の平滑化層を形成することにより、幾何学的に高くされた電場を低下させると共に電極を平滑化して、形成されるMIMキャパシタの信頼性を向上させることができる。以下、本発明の実施形態について図面を参照して説明する。   In accordance with one embodiment of the present invention, for example, a poorly soluble material (metal) rich nitride layer (eg, a titanium rich nitride (TiRN) layer) or pure metal having suitable smoothness on the bottom electrode and / or capacitor dielectric. By forming a smoothing layer such as a layer, the geometrically increased electric field can be reduced and the electrode can be smoothed to improve the reliability of the formed MIM capacitor. Embodiments of the present invention will be described below with reference to the drawings.

図1〜図9は、半導体装置5について、本発明のMIMキャパシタを形成する一連の製造工程を経る同装置の一部を示す。具体的に言うと、図1は、金属間誘電体層9及び半導体基板10上に形成された第1又は底部金属層、或いは配線層11を示す。好ましい実施形態において、半導体基板10は、シリコンからなるが、ガリウム砒素及びシリコン・オン・インシュレータ(SOI)等の他の半導体材料を用いてもよい。通常、基板10は、多数及び多様な能動半導体装置(MOS及び又はバイポーラ・トランジスタ等)を含む。しかしながら、本発明の理解を深める上で、これらの装置に関する理解は必ずしも必要でないため、それらを図示してはいない。金属間誘電体層9は、任意の誘電体材料からなり、あらゆる方法により形成される。例えば、それは、二酸化ケイ素であってもよい。   1 to 9 show a part of the semiconductor device 5 that undergoes a series of manufacturing steps for forming the MIM capacitor of the present invention. Specifically, FIG. 1 shows the intermetal dielectric layer 9 and the first or bottom metal layer or wiring layer 11 formed on the semiconductor substrate 10. In a preferred embodiment, the semiconductor substrate 10 is made of silicon, but other semiconductor materials such as gallium arsenide and silicon on insulator (SOI) may be used. The substrate 10 typically includes a large number and variety of active semiconductor devices (such as MOS and / or bipolar transistors). However, in order to deepen the understanding of the present invention, an understanding of these devices is not necessarily shown and is not shown. The intermetal dielectric layer 9 is made of any dielectric material and formed by any method. For example, it may be silicon dioxide.

第1の導電層11は、物理蒸着(PVD)、化学蒸着(CVD)、原子層成膜(ALD)、電気メッキ、及びこれらの組み合わせを用いて半導体基板10上に形成される。好ましい実施形態において、第1の導電層11は、アルミニウム又は銅を含む。例えば、第1の導電層11は、銅又はアルミニウム銅合金からなる。一実施形態において、導電層11は、約600nmのアルミニウム銅合金からなる。別の実施形態において、第1の導電層11は主として銅からなる。更に、第1の導電層11は、実際には、複数の材料からも形成される。例えば、銅嵌め込み金属化法では、銅層よりも先に、タンタルや窒化タンタルからなる拡散バリアを形成する場合が多い。   The first conductive layer 11 is formed on the semiconductor substrate 10 using physical vapor deposition (PVD), chemical vapor deposition (CVD), atomic layer deposition (ALD), electroplating, or a combination thereof. In a preferred embodiment, the first conductive layer 11 includes aluminum or copper. For example, the first conductive layer 11 is made of copper or an aluminum copper alloy. In one embodiment, the conductive layer 11 is made of an aluminum copper alloy of about 600 nm. In another embodiment, the first conductive layer 11 is mainly made of copper. Further, the first conductive layer 11 is actually formed from a plurality of materials. For example, in the copper fitting metallization method, a diffusion barrier made of tantalum or tantalum nitride is often formed before the copper layer.

図1の構造を形成するため、PVD、CVD、ALD、電気メッキ、及びそれらの組み合わせにより、第1の導電層11上に第1のキャッピング層又は反射防止膜(ARC)14を形成してもよい。好ましくは、第1のキャッピング層14は、チタン、タンタル、窒化物、窒化タンタル(TaN)、窒化チタン(TiN)などを含む。第1のキャッピング層14は、好ましくは、難溶性窒化物である。一実施形態において、第1のキャッピング層14は、約10nm(100Å)〜100nm(1000Å)以上か、具体的には、約20nm(200Å)〜80nm(800Å)のTiNからなり、好ましくは、約65nm(650Å)である。別の実施形態において、第1のキャッピング層14は有機物であってもよい。更に言えば、第1のキャッピング層14は選択可能なものである。この実施形態において、次に形成される第1の平滑化層16は、第1の導電層11を覆うように、かつ第1の導電層11と接触するように形成される。図示される実施形態において、第1のキャッピング層14は底部電極である。しかしながら、第1のキャッピング層14が存在しないか、或いは導電性を有していない場合、第1の導電層11又は別の導電層が底部電極となる。   In order to form the structure of FIG. 1, a first capping layer or antireflection film (ARC) 14 may be formed on the first conductive layer 11 by PVD, CVD, ALD, electroplating, and a combination thereof. Good. Preferably, the first capping layer 14 includes titanium, tantalum, nitride, tantalum nitride (TaN), titanium nitride (TiN), or the like. The first capping layer 14 is preferably a hardly soluble nitride. In one embodiment, the first capping layer 14 is comprised of TiN of about 10 nm (100 Å) to 100 nm (1000 Å) or more, specifically about 20 nm (200 Å) to 80 nm (800 Å), preferably about 65 nm (650 cm). In another embodiment, the first capping layer 14 may be organic. More specifically, the first capping layer 14 is selectable. In this embodiment, the first smoothing layer 16 to be formed next is formed so as to cover the first conductive layer 11 and to be in contact with the first conductive layer 11. In the illustrated embodiment, the first capping layer 14 is a bottom electrode. However, if the first capping layer 14 is not present or has no electrical conductivity, the first conductive layer 11 or another conductive layer becomes the bottom electrode.

図2に示すように、PVD、CVD、ALD、電気メッキ、及びそれらの組み合わせにより、第1のキャッピング層14上に第1又は底部平滑層16が形成される。一実施形態において、第1の導電性平滑化層16は、約5nm(50Å)〜50nm(500Å)であるか、具体的には、約10nm(100Å)〜30nm(300Å)の難溶性金属(チタン等)であるか、又は難溶性物質リッチ窒化物(チタンリッチ窒化物(TiRN))である(TiRNは1:1よりも大きいTi:Nの化学量論比を有する)。一実施形態において、第1の導電性平滑化層16は、約15nm(150Å)の厚さを有する。   As shown in FIG. 2, the first or bottom smoothing layer 16 is formed on the first capping layer 14 by PVD, CVD, ALD, electroplating, and combinations thereof. In one embodiment, the first conductive smoothing layer 16 is about 5 nm (50 Å) to 50 nm (500 Å), or specifically about 10 nm (100 Å) to 30 nm (300 Å) poorly soluble metal ( Such as titanium) or a poorly soluble material rich nitride (titanium rich nitride (TiRN)) (TiRN has a Ti: N stoichiometry greater than 1: 1). In one embodiment, the first conductive smoothing layer 16 has a thickness of about 15 nm (150 inches).

第1の導電性平滑化層16は、第1のキャッピング層や底部電極14よりも表面粗度が小さい導電性材料からなる。実験により、80nm(800Å)のTiNは、約4.9nm(49Å)の(表面)粗度を有し、第1のキャッピング層としての65nm(650Å)のTiN、及び第1の導電性平滑化層としての15nm(150Å)のTiRNは、約2.5nm(25Å)の(表面)粗度を有することが明らかにされている。従って、一実施形態において、第1のキャッピング層14はTiNからなり、第1の導電性平滑化層16はTiRNからなる。好ましくは、平滑化層は、微粒子層又はアモルファス層からなる。これは、金属線上に形成されたときの難溶性窒化物が微粒子層ほど滑らかでない柱状粒子となるという理由から、これら微粒子層又はアモルファス層が、第1のキャッピング層に使用される難溶性窒化物よりも平滑となることが多いためである。   The first conductive smoothing layer 16 is made of a conductive material having a surface roughness smaller than that of the first capping layer or the bottom electrode 14. Experimentally, 80 nm (800 Å) TiN has a (surface) roughness of about 4.9 nm (49 、), 65 nm (650 Å) TiN as the first capping layer, and a first conductive smoothing. 15 nm (150 Å) TiRN as a layer has been shown to have a (surface) roughness of about 2.5 nm (25 Å). Therefore, in one embodiment, the first capping layer 14 is made of TiN and the first conductive smoothing layer 16 is made of TiRN. Preferably, the smoothing layer comprises a fine particle layer or an amorphous layer. This is because the hardly soluble nitride when formed on a metal wire becomes columnar particles that are not as smooth as the fine particle layer, so that the fine particle layer or the amorphous layer is used as the poorly soluble nitride used for the first capping layer. This is because it is often smoother.

好ましい実施形態において、加工の複雑さが軽減されるという理由から、第1のキャッピング層14はPVDにより形成されるTiNであり、第1の導電性平滑化層16はTiRNである。TiRN層を形成するため、アルゴン(又は他の非反応性ガス)をPVDチャンバ中に流してプラズマを生成する。アルゴンイオンが被毒TiNターゲットに衝突する。被毒TiNターゲットはチタン(Ti)ターゲットであり、窒素(N)プラズマと反応してその表面にTiNを形成する。アルゴンイオンが被毒ターゲットに衝突すると、半導体装置上にTiNが蒸着される。ターゲットが窒素を使い果たすと、蒸着膜のチタン含有量が高くなり、チタンリッチ層が形成される。この方法によって、化学量論量のTiNからチタンへと蒸着膜の含有量が調節され、最終的な(表面)粗度が制御される。従って、第1の導電性平滑化層16は、TiRN(難溶性−窒化物)及び又はチタン(難溶性金属)であってもよい。更に、第1の導電性平滑化層16は、窒素を含まないチタン等の難溶性金属であってもよい。   In a preferred embodiment, the first capping layer 14 is TiN formed by PVD and the first conductive smoothing layer 16 is TiRN because the processing complexity is reduced. To form the TiRN layer, argon (or other non-reactive gas) is flowed into the PVD chamber to generate a plasma. Argon ions strike the poisoned TiN target. The poisoned TiN target is a titanium (Ti) target, which reacts with nitrogen (N) plasma to form TiN on its surface. When argon ions collide with the poisoned target, TiN is deposited on the semiconductor device. When the target runs out of nitrogen, the titanium content of the deposited film increases and a titanium-rich layer is formed. By this method, the content of the deposited film is adjusted from stoichiometric amount of TiN to titanium, and the final (surface) roughness is controlled. Accordingly, the first conductive smoothing layer 16 may be TiRN (slightly soluble-nitride) and / or titanium (slightly soluble metal). Further, the first conductive smoothing layer 16 may be a hardly soluble metal such as titanium that does not contain nitrogen.

CVD、PVD、ALD、又はこれらの組み合わせを用いて、第1の導電性平滑化層16上にキャパシタ誘電体層18が形成される。一実施形態において、キャパシタ誘電体層18は、好ましくは、酸化タンタル及び酸化ハフニウム等の高い直線性(例えば、正規化静電容量の変化量について通常は100ppm未満の電圧)を有する金属酸化物からなる。しかしながら、直線性がほとんど必須でない一般的な利用分野では、例えば、酸化ジルコニウム、チタン酸バリウム・ストロンチウム(BST)及びチタン酸ストロンチウム(STO)等の他の金属酸化物が好適な場合がある。又は、二酸化ケイ素等の高誘電率材料でない絶縁体を用いることもできる。本明細書で使用する場合、高誘電率材料とは、二酸化ケイ素よりも高い誘電率を有する材料である。キャパシタ誘電体層18は、高誘電率材料ではない誘電体層であってもよい。例えば、キャパシタ誘電体層18は、Siであるプラズマリッチ窒化物(PEN)であってもよい。一方、粗面化の影響がより大きくなり、表面平滑化の重要性が増すという理由から、平滑化層の存在は、静電容量密度を高くしてキャパシタ誘電体の寸法を設定する点でより有利なものとなる。 A capacitor dielectric layer 18 is formed on the first conductive smoothing layer 16 using CVD, PVD, ALD, or a combination thereof. In one embodiment, the capacitor dielectric layer 18 is preferably made from a metal oxide having high linearity (eg, a voltage typically less than 100 ppm for normalized capacitance variation) such as tantalum oxide and hafnium oxide. Become. However, other metal oxides such as, for example, zirconium oxide, barium strontium titanate (BST), and strontium titanate (STO) may be suitable for general applications where linearity is almost indispensable. Alternatively, an insulator that is not a high dielectric constant material such as silicon dioxide can be used. As used herein, a high dielectric constant material is a material that has a higher dielectric constant than silicon dioxide. The capacitor dielectric layer 18 may be a dielectric layer that is not a high dielectric constant material. For example, the capacitor dielectric layer 18 may be plasma rich nitride (PEN), which is Si x N y . On the other hand, for the reason that the effect of roughening becomes larger and the importance of surface smoothing increases, the presence of the smoothing layer is more effective in increasing the capacitance density and setting the dimensions of the capacitor dielectric. It will be advantageous.

図3の構造を形成するため、キャパシタ誘電体層18上に第2又は頂部平滑化層19が形成される。第2の導電性平滑化層19は、第1の導電性平滑化層16の場合に使用される任意の方法で形成してもよく、第1の導電性平滑化層16に関して記載された任意の材料から形成してもよく、第1の導電性平滑化層16に関して記載されたものと同じ寸法で形成してもよい。一方、第1の導電性平滑化層16及び第2の導電性平滑化層19は、同じ方法で形成したり、同じ材料で形成したり、同じ寸法で形成する必要はない。但し、同じ製法及び又は材料を用いることで加工の複雑さは軽減される。更に、第2の導電性平滑化層19は、次に形成される第2の導電層よりも粗度を小さくすべきである。   A second or top smoothing layer 19 is formed on the capacitor dielectric layer 18 to form the structure of FIG. The second conductive smoothing layer 19 may be formed by any method used in the case of the first conductive smoothing layer 16, and any of those described with respect to the first conductive smoothing layer 16. And may be formed with the same dimensions as described for the first conductive smoothing layer 16. On the other hand, the first conductive smoothing layer 16 and the second conductive smoothing layer 19 need not be formed by the same method, the same material, or the same dimensions. However, the complexity of processing is reduced by using the same manufacturing method and / or material. Furthermore, the roughness of the second conductive smoothing layer 19 should be less than that of the second conductive layer to be formed next.

図4に示すように、第2又は頂部導電層20は、好ましくはPVDを用いて第2の導電性平滑化層19上に形成されるが、CVD、ALD又はそれらの組み合わせなどを含む他の方法を用いて形成してもよい。頂部導電層20は、キャパシタの第2の(頂部)電極を形成するため、金属窒化物(例えば、窒化タンタル及び窒化チタン)、導電性酸化物(例えば、酸化ルテニウム及び酸化イリジウム)、金属(例えば、銅及びアルミニウム)、金属合金、これらの組み合わせ、及び類似物等の導電性材料により形成される。一実施形態において、頂部導電層20は、窒素とタンタル又はチタン(窒化チタン又は窒化タンタルの形態)とからなる。   As shown in FIG. 4, the second or top conductive layer 20 is preferably formed on the second conductive smoothing layer 19 using PVD, but other methods including CVD, ALD, or combinations thereof, etc. You may form using a method. The top conductive layer 20 forms a second (top) electrode of the capacitor to form a metal nitride (eg, tantalum nitride and titanium nitride), conductive oxide (eg, ruthenium oxide and iridium oxide), metal (eg, , Copper and aluminum), metal alloys, combinations thereof, and the like. In one embodiment, the top conductive layer 20 comprises nitrogen and tantalum or titanium (in the form of titanium nitride or tantalum nitride).

図5について説明すると、第1のフォトレジスト層22は、次に頂部導電層20及び第2の導電性平滑化層19をエッチングするため、成膜されて、パターニングされる。従来のエッチング用化学薬品を用いて頂部導電層20及び第2の導電性平滑化層19をエッチングした後、図6に示すような頂部電極24(又は第2の電極24)が形成される。   Referring to FIG. 5, a first photoresist layer 22 is then deposited and patterned to etch the top conductive layer 20 and the second conductive smoothing layer 19. After the top conductive layer 20 and the second conductive smoothing layer 19 are etched using conventional etching chemicals, a top electrode 24 (or second electrode 24) as shown in FIG. 6 is formed.

頂部電極24を形成する際、キャパシタ誘電体層18は、頂部導電層20及び第2の導電性平滑化層19を確実にエッチングするためにオーバーエッチングされる。このオーバーエッチングは、必要に応じて、キャパシタ誘電体層18をキャパシタ領域外又は該領域を越えて所望の厚さにまで小さくするように調整される。MIMキャパシタの一部でない領域ではキャパシタ誘電体層18が完全に除去されないため、金属酸化物の誘電率がMIMキャパシタ外の領域で静電容量を望ましくないほどに上昇させてしまう虞がある。そのエッチングによって、キャパシタ誘電体層18を完全に除去することが理想的である。しかしながら、図示した実施形態において、そのようにすると、キャパシタ誘電体層18、第1の導電性平滑化層16及び又は底部電極14の表面の境界部分に損傷を与える虞がある。   In forming the top electrode 24, the capacitor dielectric layer 18 is over-etched to ensure that the top conductive layer 20 and the second conductive smoothing layer 19 are etched. This overetching is adjusted as necessary to reduce the capacitor dielectric layer 18 to the desired thickness outside or beyond the capacitor area. Since the capacitor dielectric layer 18 is not completely removed in a region that is not part of the MIM capacitor, the dielectric constant of the metal oxide may undesirably increase the capacitance in the region outside the MIM capacitor. Ideally, the capacitor dielectric layer 18 is completely removed by the etching. However, in the illustrated embodiment, doing so may damage the boundary portion of the surface of the capacitor dielectric layer 18, the first conductive smoothing layer 16 and / or the bottom electrode 14.

頂部電極24をパターニングした後、半導体装置5上には、第1の導電層11、キャッピング層14、第1の導電性平滑化層16及びキャパシタ誘電体層18をエッチングするために別のフォトレジスト(不図示)が形成され、その結果、図6に示す構造体が得られる。   After patterning the top electrode 24, another photoresist is etched on the semiconductor device 5 to etch the first conductive layer 11, the capping layer 14, the first conductive smoothing layer 16 and the capacitor dielectric layer 18. (Not shown) is formed, and as a result, the structure shown in FIG. 6 is obtained.

図7に示すように、層間誘電体(ILD)28が半導体基板10上に成膜される。ILDは、例えばテトラエトキシシラン(TEOS)を用いて形成されるフッ素化二酸化ケイ素等の任意の誘電体材料から形成してもよい。第2のフォトレジスト層27は、図8に示すビア開口部29を形成すべくILD層28をエッチングするため、成膜されて、パターニングされる。ビアエッチングの化学薬剤は、第2の導電層20に対して選択的である。従来のエッチング方法及び化学薬剤を用いることもできる。   As shown in FIG. 7, an interlayer dielectric (ILD) 28 is formed on the semiconductor substrate 10. The ILD may be formed from any dielectric material such as fluorinated silicon dioxide formed using, for example, tetraethoxysilane (TEOS). A second photoresist layer 27 is deposited and patterned to etch the ILD layer 28 to form the via openings 29 shown in FIG. The via etch chemistry is selective to the second conductive layer 20. Conventional etching methods and chemical agents can also be used.

ビア開口部29を形成した後、図9に示す導電性ビア30を形成するため、ビア開口部29内には導電性材料が形成される。頂部電極24と底部電極14とを接続するコンタクト形成するため、ビア開口部29内に導電材料が形成される。好ましい実施形態において、電気メッキにより銅を成膜し、これを化学機械研磨することにより、導電性ビア30が形成される。   After forming the via opening 29, a conductive material is formed in the via opening 29 to form the conductive via 30 shown in FIG. In order to form a contact connecting the top electrode 24 and the bottom electrode 14, a conductive material is formed in the via opening 29. In a preferred embodiment, the conductive via 30 is formed by depositing copper by electroplating and chemical mechanical polishing this.

こうして得られた図9に示すMIMキャパシタは、電極(頂部及び底部)とキャパシタ誘電体との間の表面粗さを小さくし、その結果、信頼性が高くなるといった利点を有している。さらに、界面がより平滑になると、MIMキャパシタの寸法を設定する際にその自由度が増す。それに加え、経時的絶縁破壊(TDDB)が増大する。   The MIM capacitor shown in FIG. 9 thus obtained has the advantage that the surface roughness between the electrodes (top and bottom) and the capacitor dielectric is reduced, resulting in higher reliability. Furthermore, the smoother interface increases the degree of freedom in setting the dimensions of the MIM capacitor. In addition, dielectric breakdown over time (TDDB) increases.

図示した実施形態において、MIMキャパシタは、頂部電極24の寸法が底部電極14よりも小さく設定されている。別の実施形態において、頂部電極24の寸法は、底部電極14よりも大きく設定されてもよい。この実施形態において、底部電極14用コンタクトは、底部電極上に形成されるのではなく、同底部電極14の直下に形成されるという理由から、底部電極14よりも先に形成される。各図に明瞭に示されていないが、関連する構造は、IC配線回路を構成する必須部分として常にチップ上に存在している。   In the illustrated embodiment, the MIM capacitor has a top electrode 24 dimensioned smaller than the bottom electrode 14. In another embodiment, the dimensions of the top electrode 24 may be set larger than the bottom electrode 14. In this embodiment, the contact for the bottom electrode 14 is formed before the bottom electrode 14 because it is formed not directly on the bottom electrode but directly below the bottom electrode 14. Although not clearly shown in the drawings, the related structure always exists on the chip as an essential part constituting the IC wiring circuit.

以上、利益、他の利点及び問題解決法について具体的な実施形態を参照して説明してきた。しかしながら、それらの利益、利点及び問題解決法、並びに、利益、利点や解決法をもたらす要因となり、また、それらをより顕著にする要素は、全ての特許請求の範囲に必須な、必要な、又は本質的な特徴であるか、或いは要素であると解釈すべきではない。本明細書に使用される場合、「含む」、「包含」等の用語や、それらとは別の変形表現は、非排他的包含を網羅するため、列挙された構成要素を含む工程、方法、物品又は装置は、それらの構成要素のみを含むものではなく、明瞭に挙げられておらず、そのような工程、方法、物品又は装置に固有でない他の構成要素を含むことができる。   The foregoing has described benefits, other advantages, and solutions to problems with reference to specific embodiments. However, those benefits, advantages and problem-solving, as well as the factors that bring about benefits, benefits and solutions, and the elements that make them more prominent, are essential to all claims, are necessary, or It should not be interpreted as an essential feature or element. As used herein, terms such as “comprise”, “include”, and alternative variations thereof, include non-exclusive inclusions to include steps, methods, An article or device is not intended to include only those components, but may include other components not explicitly listed and not unique to such processes, methods, articles or devices.

以上の明細書において、本発明について具体的な実施形態を参照して説明してきた。しかしながら、当業者にとって、添付の特許請求の範囲に係る本発明の範囲を逸脱しない限り、各種の修正及び変更が行えることは明らかである。例えば、MIMキャパシタは、デュアル・ダマシン集積を用いて形成される。更に、MIMキャパシタに関する平滑化層の使用を記載したが、信頼性を高めるため、誘電体と接触する粗い表面のいかなる箇所であっても平滑化層が用いられる。例えば、平滑化層は、図10に示すように、ゲート誘電体と接触し、かつトランジスタ51の一部を構成するように形成してもよい。半導体装置50は、半導体基板52を含む。半導体基板52内には、ソース領域54及びドレイン領域55が形成される。トランジスタは、ソース領域54、ドレイン領域55、ゲート誘電体56(例えば高誘電率材料等の任意の誘電体材料でもよい)、平滑化層58(好ましくは導電性であり、平滑化層に関して前述した任意の材料でもよい)及びゲート電極60(金属、ポリシリコン等でもよい)などを含む。この実施形態において、平滑化層は、導電層(即ち、ゲート電極60)及び誘電体層(例えば、ゲート誘電体56)と接触しており、その場合の平滑化層は、導電層よりも表面粗度が小さくされている。   In the foregoing specification, the invention has been described with reference to specific embodiments. However, it will be apparent to those skilled in the art that various modifications and variations can be made without departing from the scope of the present invention as set forth in the claims below. For example, MIM capacitors are formed using dual damascene integration. Furthermore, although the use of a smoothing layer for MIM capacitors has been described, the smoothing layer is used anywhere on the rough surface that contacts the dielectric to increase reliability. For example, the smoothing layer may be formed to contact the gate dielectric and form part of the transistor 51, as shown in FIG. The semiconductor device 50 includes a semiconductor substrate 52. A source region 54 and a drain region 55 are formed in the semiconductor substrate 52. The transistor may include a source region 54, a drain region 55, a gate dielectric 56 (eg, any dielectric material such as a high dielectric constant material), a smoothing layer 58 (preferably conductive and described above with respect to the smoothing layer. And any other material) and gate electrode 60 (which may be metal, polysilicon, or the like). In this embodiment, the smoothing layer is in contact with the conductive layer (ie, gate electrode 60) and the dielectric layer (eg, gate dielectric 56), where the smoothing layer is more surface than the conductive layer. The roughness is reduced.

従って、明細書及び図面は、限定的な意味ではなく、例示的なものとみなすべきであり、そのような全ての変更例は、いずれも本発明の範囲に含まれている。   The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense, and all such modifications are included within the scope of the invention.

本発明の一実施形態により底部電極を有する半導体装置の部分断面図。1 is a partial cross-sectional view of a semiconductor device having a bottom electrode according to an embodiment of the present invention. 本発明の一実施形態により第1のバリア層を形成した後の図1の半導体装置を示す図。FIG. 2 is a diagram illustrating the semiconductor device of FIG. 1 after forming a first barrier layer according to an embodiment of the present invention. 本発明の一実施形態により第1の誘電体層及び第2のバリア層を形成した後の図2の半導体装置を示す図。FIG. 3 illustrates the semiconductor device of FIG. 2 after forming a first dielectric layer and a second barrier layer according to an embodiment of the present invention. 本発明の一実施形態により頂部電極及びエッチング停止層を形成した後の図3の半導体装置を示す図。FIG. 4 illustrates the semiconductor device of FIG. 3 after forming a top electrode and an etch stop layer according to one embodiment of the invention. 本発明の一実施形態によりパターニングフォトレジスト層を形成した後の図4の半導体装置を示す図。FIG. 5 illustrates the semiconductor device of FIG. 4 after forming a patterned photoresist layer according to one embodiment of the present invention. 本発明の一実施形態によりエッチング停止層、頂部電極及び第2のバリア層をパターニングした後の図4の半導体装置を示す図。FIG. 5 illustrates the semiconductor device of FIG. 4 after patterning the etch stop layer, the top electrode, and the second barrier layer according to one embodiment of the invention. 本発明の一実施形態により第2の誘電体層を形成した後の図6の半導体装置を示す図。FIG. 7 shows the semiconductor device of FIG. 6 after forming a second dielectric layer according to one embodiment of the present invention. 本発明の一実施形態によりフォトレジスト層を形成してビアをエッチングした後の図7の半導体装置を示す図。FIG. 8 shows the semiconductor device of FIG. 7 after forming a photoresist layer and etching vias according to one embodiment of the present invention. 本発明の一実施形態によりビアに導電性材料を充填した後の図8の半導体装置を示す図。FIG. 9 is a diagram illustrating the semiconductor device of FIG. 8 after a via is filled with a conductive material according to an embodiment of the present invention. 本発明の別の実施形態により形成されたトランジスタを有する半導体装置の部分断面図。FIG. 6 is a partial cross-sectional view of a semiconductor device having a transistor formed according to another embodiment of the present invention.

Claims (20)

半導体基板と、
前記半導体基板上に形成された第1の電極と、
前記第1の電極上に形成され、前記第1の電極よりも小さい表面粗度を有する第1の導電性平滑化層と、
前記第1の導電性平滑化層上に形成された誘電体層と、
前記誘電体層上に形成された第2の電極と
を有する半導体装置。
A semiconductor substrate;
A first electrode formed on the semiconductor substrate;
A first conductive smoothing layer formed on the first electrode and having a smaller surface roughness than the first electrode;
A dielectric layer formed on the first conductive smoothing layer;
And a second electrode formed on the dielectric layer.
請求項1記載の半導体装置において、
前記誘電体層と前記第2の電極との間に形成された第2の導電性平滑化層を更に有し、前記第2の導電性平滑化層は、前記第2の電極よりも小さい粗度を有する半導体装置。
The semiconductor device according to claim 1,
And further comprising a second conductive smoothing layer formed between the dielectric layer and the second electrode, wherein the second conductive smoothing layer is smaller than the second electrode. A semiconductor device having a degree.
請求項2記載の半導体装置において、
前記第2の導電性平滑化層は難溶性金属を含む半導体装置。
The semiconductor device according to claim 2,
The second conductive smoothing layer is a semiconductor device containing a hardly soluble metal.
請求項1記載の半導体装置において、
前記第1の電極は、金属からなる第1の層と難溶性窒化物からなる第2の層とを有し、前記第2の電極は、金属からなる半導体装置。
The semiconductor device according to claim 1,
The first electrode has a first layer made of metal and a second layer made of hardly soluble nitride, and the second electrode is a semiconductor device made of metal.
請求項1記載の半導体装置において、
前記第1の電極及び前記第2の電極は難溶性窒化物からなる半導体装置。
The semiconductor device according to claim 1,
A semiconductor device in which the first electrode and the second electrode are made of hardly soluble nitride.
請求項5記載の半導体装置において、
前記難溶性窒化物は、窒化チタン及び窒化タンタルよりなる群から選択された材料からなる半導体装置。
The semiconductor device according to claim 5.
The hardly soluble nitride is a semiconductor device made of a material selected from the group consisting of titanium nitride and tantalum nitride.
請求項1記載の半導体装置において、
前記第1の導電性平滑化層はチタンリッチ窒化物からなる半導体装置。
The semiconductor device according to claim 1,
The first conductive smoothing layer is a semiconductor device made of titanium-rich nitride.
請求項1記載の半導体装置において、
前記誘電体層は高誘電率材料からなる半導体装置。
The semiconductor device according to claim 1,
The dielectric layer is a semiconductor device made of a high dielectric constant material.
請求項1記載の半導体装置において、
前記第1の電極、前記第1の導電性平滑化層、前記誘電体層及び前記第2の電極は、金属−絶縁体−金属(MIM)キャパシタの一部を構成する半導体装置。
The semiconductor device according to claim 1,
The semiconductor device in which the first electrode, the first conductive smoothing layer, the dielectric layer, and the second electrode form part of a metal-insulator-metal (MIM) capacitor.
請求項9記載の半導体装置において、
前記第1の電極上にキャッピング層を更に有し、前記キャッピング層は難溶性窒化物からなり、前記第1の電極は金属からなる半導体装置。
The semiconductor device according to claim 9.
A semiconductor device further comprising a capping layer on the first electrode, wherein the capping layer is made of a hardly soluble nitride, and the first electrode is made of a metal.
導電層と、
前記導電層と接触するように形成され、前記導電層よりも小さい表面粗度を有する平滑化層と、
前記平滑化層と接触するように形成された誘電体層と
を有する半導体装置。
A conductive layer;
A smoothing layer formed in contact with the conductive layer and having a smaller surface roughness than the conductive layer;
And a dielectric layer formed so as to be in contact with the smoothing layer.
請求項11記載の半導体装置において、
前記平滑化層はチタンリッチ窒化物からなる半導体装置。
The semiconductor device according to claim 11.
The smoothing layer is a semiconductor device made of titanium-rich nitride.
請求項12記載の半導体装置において、
前記導電層は窒化チタンからなり、前記平滑化層はチタンからなる半導体装置。
The semiconductor device according to claim 12, wherein
A semiconductor device in which the conductive layer is made of titanium nitride and the smoothing layer is made of titanium.
請求項11記載の半導体装置において、
前記導電層、前記平滑化層及び前記誘電体層は、トランジスタ及びキャパシタよりなる群から選択される装置の一部を構成する半導体装置。
The semiconductor device according to claim 11.
The conductive layer, the smoothing layer, and the dielectric layer constitute a part of a device selected from the group consisting of a transistor and a capacitor.
請求項11記載の半導体装置において、
前記導電層は第1の層からなり、該第1の層は金属と難溶性窒化物からなる第2の層とを有する半導体装置。
The semiconductor device according to claim 11.
The conductive layer includes a first layer, and the first layer includes a second layer formed of a metal and a hardly soluble nitride.
請求項11記載の半導体装置において、
前記誘電体層は高誘電体材料からなる半導体装置。
The semiconductor device according to claim 11.
The dielectric layer is a semiconductor device made of a high dielectric material.
半導体基板と、
前記半導体基板上に形成され、金属からなる第1の層とその第1の層上に第2の層とを備え、前記第2の層が難溶性窒化物からなる第1の電極と、
前記第1の電極上に形成され、チタンリッチ窒化物からなる前記第1の平滑化層と、
前記第1の平滑化層上に形成された誘電体層と、
前記誘電体層上に形成され、難溶性窒化物からなる第3の層とその第3の層上に第4の層とを備え、前記第4の層が金属からなる第2の電極と
を有する半導体装置。
A semiconductor substrate;
A first electrode formed on the semiconductor substrate, comprising a first layer made of metal and a second layer on the first layer, wherein the second layer is made of a hardly soluble nitride;
The first smoothing layer formed on the first electrode and made of titanium-rich nitride; and
A dielectric layer formed on the first smoothing layer;
A third layer formed on the dielectric layer and made of a hardly soluble nitride; and a fourth layer on the third layer; and the fourth layer made of a metal. A semiconductor device having the same.
請求項17記載の半導体装置において、
前記難溶性窒化物は、窒化チタン及び窒化タンタルよりなる群から選択された材料からなる半導体装置。
The semiconductor device according to claim 17.
The hardly soluble nitride is a semiconductor device made of a material selected from the group consisting of titanium nitride and tantalum nitride.
請求項17記載の半導体装置において、
前記難溶性金属はチタンからなる半導体装置。
The semiconductor device according to claim 17.
The poorly soluble metal is a semiconductor device made of titanium.
半導体装置の製造方法において、
半導体基板を提供するステップと、
前記半導体基板上に第1の電極を形成するステップと、
前記第1の電極上に第1の導電性平滑化層を形成するステップであって、前記第1の平滑化層が前記第1の電極よりも低い表面粗度を有するステップと、
前記第1の平滑化層上に誘電体層を形成するステップと、
前記誘電体層上に第2の電極を形成するステップと
を有する方法。
In a method for manufacturing a semiconductor device,
Providing a semiconductor substrate;
Forming a first electrode on the semiconductor substrate;
Forming a first conductive smoothing layer on the first electrode, wherein the first smoothing layer has a lower surface roughness than the first electrode;
Forming a dielectric layer on the first smoothing layer;
Forming a second electrode on the dielectric layer.
JP2006526914A 2003-09-23 2004-08-31 Semiconductor device and manufacturing method thereof Pending JP2007515775A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/668,694 US7078785B2 (en) 2003-09-23 2003-09-23 Semiconductor device and making thereof
PCT/US2004/028262 WO2005036597A2 (en) 2003-09-23 2004-08-31 Semiconductor device and making thereof

Publications (2)

Publication Number Publication Date
JP2007515775A true JP2007515775A (en) 2007-06-14
JP2007515775A5 JP2007515775A5 (en) 2007-09-06

Family

ID=34313543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006526914A Pending JP2007515775A (en) 2003-09-23 2004-08-31 Semiconductor device and manufacturing method thereof

Country Status (7)

Country Link
US (1) US7078785B2 (en)
EP (1) EP1668673A2 (en)
JP (1) JP2007515775A (en)
KR (1) KR101054673B1 (en)
CN (1) CN101160663B (en)
TW (1) TWI349367B (en)
WO (1) WO2005036597A2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219229A (en) * 2009-03-16 2010-09-30 Fujitsu Semiconductor Ltd Semiconductor device and method of manufacturing the same
US8680599B2 (en) 2010-08-27 2014-03-25 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
JP2014120770A (en) * 2012-12-12 2014-06-30 Freescale Semiconductor Inc Integrated circuit including integrated passive device and method of manufacturing the same
US9459792B2 (en) 2006-09-06 2016-10-04 Apple Inc. Portable electronic device for photo management
US10073584B2 (en) 2016-06-12 2018-09-11 Apple Inc. User interfaces for retrieving contextually relevant media content
US10296166B2 (en) 2010-01-06 2019-05-21 Apple Inc. Device, method, and graphical user interface for navigating and displaying content in context
US10324973B2 (en) 2016-06-12 2019-06-18 Apple Inc. Knowledge graph metadata network based on notable moments
US10564826B2 (en) 2009-09-22 2020-02-18 Apple Inc. Device, method, and graphical user interface for manipulating user interface objects
US10803135B2 (en) 2018-09-11 2020-10-13 Apple Inc. Techniques for disambiguating clustered occurrence identifiers
US10846343B2 (en) 2018-09-11 2020-11-24 Apple Inc. Techniques for disambiguating clustered location identifiers
JP2021101480A (en) * 2017-07-26 2021-07-08 株式会社村田製作所 Capacitor
US11086935B2 (en) 2018-05-07 2021-08-10 Apple Inc. Smart updates from historical database changes
US11243996B2 (en) 2018-05-07 2022-02-08 Apple Inc. Digital asset search user interface
US11307737B2 (en) 2019-05-06 2022-04-19 Apple Inc. Media browsing user interface with intelligently selected representative media items
US11334209B2 (en) 2016-06-12 2022-05-17 Apple Inc. User interfaces for retrieving contextually relevant media content
US11334229B2 (en) 2009-09-22 2022-05-17 Apple Inc. Device, method, and graphical user interface for manipulating user interface objects
US11446548B2 (en) 2020-02-14 2022-09-20 Apple Inc. User interfaces for workout content
US11782575B2 (en) 2018-05-07 2023-10-10 Apple Inc. User interfaces for sharing contextually relevant media content

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100539198B1 (en) * 2003-03-10 2005-12-27 삼성전자주식회사 Metal-Insulator-Metal capacitor and method for manufacturing the same
US6964908B2 (en) * 2003-08-19 2005-11-15 International Business Machines Corporation Metal-insulator-metal capacitor and method of fabricating same
JP2005191182A (en) * 2003-12-25 2005-07-14 Nec Electronics Corp Semiconductor device and its manufacturing method
JP4308691B2 (en) * 2004-03-19 2009-08-05 富士通マイクロエレクトロニクス株式会社 Semiconductor substrate and method for manufacturing semiconductor substrate
US7351448B1 (en) * 2004-07-27 2008-04-01 The United States Of America As Represented By The Secretary Of The Navy Anti-reflective coating on patterned metals or metallic surfaces
KR100644046B1 (en) * 2004-12-29 2006-11-10 동부일렉트로닉스 주식회사 Method for manufacturing the capacitor of semiconductor device
US7217643B2 (en) * 2005-02-24 2007-05-15 Freescale Semiconductors, Inc. Semiconductor structures and methods for fabricating semiconductor structures comprising high dielectric constant stacked structures
JP4461386B2 (en) * 2005-10-31 2010-05-12 Tdk株式会社 Thin film device and manufacturing method thereof
US7483258B2 (en) * 2005-12-13 2009-01-27 Taiwan Semiconductor Manufacturing Co., Ltd. MIM capacitor in a copper damascene interconnect
KR20070075018A (en) * 2006-01-11 2007-07-18 삼성전자주식회사 Method for fabricating semiconductor device
JP4977400B2 (en) * 2006-05-09 2012-07-18 日本電気株式会社 Semiconductor device and manufacturing method thereof
US7956400B2 (en) * 2006-06-15 2011-06-07 Freescale Semiconductor, Inc. MIM capacitor integration
US7488643B2 (en) * 2006-06-21 2009-02-10 International Business Machines Corporation MIM capacitor and method of making same
US7582549B2 (en) 2006-08-25 2009-09-01 Micron Technology, Inc. Atomic layer deposited barium strontium titanium oxide films
JP4953877B2 (en) * 2006-08-30 2012-06-13 京セラ株式会社 Capacitors and high frequency components
KR100869751B1 (en) * 2007-09-07 2008-11-21 주식회사 동부하이텍 Semiconductor device and method of fabricating the same
KR20090070447A (en) * 2007-12-27 2009-07-01 주식회사 동부하이텍 Semiconductor device and method for manufacturing the same
JP5502302B2 (en) 2008-09-26 2014-05-28 ローム株式会社 Semiconductor device and manufacturing method thereof
US8298902B2 (en) * 2009-03-18 2012-10-30 International Business Machines Corporation Interconnect structures, methods for fabricating interconnect structures, and design structures for a radiofrequency integrated circuit
JP4802286B2 (en) * 2009-08-28 2011-10-26 富士フイルム株式会社 Photoelectric conversion element and imaging element
FR2971362B1 (en) * 2011-02-04 2013-09-06 St Microelectronics Crolles 2 METHOD FOR MANUFACTURING TIN / TA2O5 / TIN CAPACITOR
CN102254821B (en) * 2011-07-11 2012-12-19 中国科学院上海微系统与信息技术研究所 Metal oxide semiconductor (MOS) capacitor based on silicon-on-insulator (SOI) material and method for making MOS capacitor
CN102394216B (en) * 2011-11-30 2013-12-18 上海华力微电子有限公司 Metal-oxide-metal capacitor manufacturing method
CN102394217B (en) * 2011-11-30 2013-11-13 上海华力微电子有限公司 Manufacturing method of metal- silicon nitride-metal capacitor
CN102437024B (en) * 2011-11-30 2013-12-04 上海华力微电子有限公司 Method for manufacturing multilayer metal-silicon oxide-metal (MOM) capacitor
US8980723B2 (en) 2012-06-15 2015-03-17 Texas Instruments Incorporated Multiple depth vias in an integrated circuit
CN103346067B (en) * 2013-06-26 2017-02-22 上海华虹宏力半导体制造有限公司 Method for forming semiconductor device and method for forming MIM capacitor
US10515949B2 (en) * 2013-10-17 2019-12-24 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated circuit and manufacturing method thereof
US10497773B2 (en) * 2014-03-31 2019-12-03 Taiwan Semiconductor Manufacturing Co., Ltd. Method to improve MIM device performance
US9368392B2 (en) 2014-04-10 2016-06-14 Taiwan Semiconductor Manufacturing Co., Ltd. MIM capacitor structure
US9391016B2 (en) * 2014-04-10 2016-07-12 Taiwan Semiconductor Manufacturing Co., Ltd. MIM capacitor structure
US9219110B2 (en) 2014-04-10 2015-12-22 Taiwan Semiconductor Manufacturing Co., Ltd. MIM capacitor structure
US9425061B2 (en) 2014-05-29 2016-08-23 Taiwan Semiconductor Manufacturing Co., Ltd. Buffer cap layer to improve MIM structure performance
US9257498B1 (en) 2014-08-04 2016-02-09 Taiwan Semiconductor Manufacturing Co., Ltd. Process to improve performance for metal-insulator-metal (MIM) capacitors
US9793339B2 (en) 2015-01-08 2017-10-17 Taiwan Semiconductor Manufacturing Co., Ltd. Method for preventing copper contamination in metal-insulator-metal (MIM) capacitors
US11038010B2 (en) * 2015-01-29 2021-06-15 Taiwan Semiconductor Manufacturing Company Limited Capacitor structure and method of making the same
TWI622176B (en) * 2015-12-04 2018-04-21 力晶科技股份有限公司 Structure of mim capacitor and the method for fabricating the same
US20180138263A1 (en) * 2016-11-14 2018-05-17 United Microelectronics Corp. Semiconductor structure and method for forming the same
US20190148370A1 (en) * 2017-11-13 2019-05-16 Taiwan Semiconductor Manufacturing Co., Ltd. Device including mim capacitor and resistor
CN115360164A (en) 2017-11-13 2022-11-18 台湾积体电路制造股份有限公司 Device comprising MIM capacitor and resistor
US20190229053A1 (en) * 2018-01-22 2019-07-25 United Microelectronics Corp. Metal-insulator-metal capacitor structure and manufacturing method thereof
US10290701B1 (en) * 2018-03-28 2019-05-14 Taiwan Semiconductor Manufacturing Company Ltd. MIM capacitor, semiconductor structure including MIM capacitors and method for manufacturing the same
CN110970557A (en) * 2018-09-28 2020-04-07 中芯国际集成电路制造(上海)有限公司 Capacitor device and method of forming the same
KR20200055424A (en) * 2018-11-13 2020-05-21 삼성전기주식회사 Printed circuit board
CN117229535A (en) 2019-03-26 2023-12-15 日铁化学材料株式会社 Method for producing crosslinked cured product, and crosslinked cured product
CN112201643B (en) * 2019-07-08 2023-04-07 中芯国际集成电路制造(北京)有限公司 Semiconductor device and forming method
US11171199B2 (en) * 2019-08-23 2021-11-09 Taiwan Semiconductor Manufacturing Co., Ltd. Metal-insulator-metal capacitors with high breakdown voltage
CN114373732A (en) * 2020-10-15 2022-04-19 中芯国际集成电路制造(上海)有限公司 Capacitor structure and forming method thereof
CN113517400B (en) * 2021-09-13 2021-12-31 广州粤芯半导体技术有限公司 Metal capacitor structure and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1116910A (en) * 1997-06-24 1999-01-22 Sony Corp Semiconductor device and its manufacturing method
JP2002043517A (en) * 2000-07-21 2002-02-08 Sony Corp Semiconductor device and its manufacturing method
JP2002141472A (en) * 2000-11-06 2002-05-17 Matsushita Electric Ind Co Ltd Semiconductor device and manufacturing method therefor
JP2002203915A (en) * 2000-11-01 2002-07-19 Sony Corp Capacitor element and its manufacturing method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747361A (en) 1991-05-01 1998-05-05 Mitel Corporation Stabilization of the interface between aluminum and titanium nitride
EP0618597B1 (en) * 1993-03-31 1997-07-16 Texas Instruments Incorporated Lightly donor doped electrodes for high-dielectric-constant materials
US5759916A (en) 1996-06-24 1998-06-02 Taiwan Semiconductor Manufacturing Company Ltd Method for forming a void-free titanium nitride anti-reflective coating(ARC) layer upon an aluminum containing conductor layer
US6005277A (en) 1996-07-15 1999-12-21 Taiwan Semiconductor Manufacturing Company, Ltd. ARC layer enhancement for reducing metal loss during via etch
KR100287180B1 (en) 1998-09-17 2001-04-16 윤종용 Method for manufacturing semiconductor device including metal interconnection formed using interface control layer
US6340827B1 (en) 1999-01-13 2002-01-22 Agere Systems Guardian Corp. Diffusion barrier for use with high dielectric constant materials and electronic devices incorporating same
US6099701A (en) * 1999-06-28 2000-08-08 Taiwan Semiconductor Manufacturing Company AlCu electromigration (EM) resistance
US20030011043A1 (en) * 2001-07-14 2003-01-16 Roberts Douglas R. MIM capacitor structure and process for making the same
KR100818058B1 (en) * 2002-06-28 2008-03-31 매그나칩 반도체 유한회사 Method for forming mim capacitor
US6982230B2 (en) * 2002-11-08 2006-01-03 International Business Machines Corporation Deposition of hafnium oxide and/or zirconium oxide and fabrication of passivated electronic structures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1116910A (en) * 1997-06-24 1999-01-22 Sony Corp Semiconductor device and its manufacturing method
JP2002043517A (en) * 2000-07-21 2002-02-08 Sony Corp Semiconductor device and its manufacturing method
JP2002203915A (en) * 2000-11-01 2002-07-19 Sony Corp Capacitor element and its manufacturing method
JP2002141472A (en) * 2000-11-06 2002-05-17 Matsushita Electric Ind Co Ltd Semiconductor device and manufacturing method therefor

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11601584B2 (en) 2006-09-06 2023-03-07 Apple Inc. Portable electronic device for photo management
US9459792B2 (en) 2006-09-06 2016-10-04 Apple Inc. Portable electronic device for photo management
US10904426B2 (en) 2006-09-06 2021-01-26 Apple Inc. Portable electronic device for photo management
US10356309B2 (en) 2006-09-06 2019-07-16 Apple Inc. Portable electronic device for photo management
JP2010219229A (en) * 2009-03-16 2010-09-30 Fujitsu Semiconductor Ltd Semiconductor device and method of manufacturing the same
US10788965B2 (en) 2009-09-22 2020-09-29 Apple Inc. Device, method, and graphical user interface for manipulating user interface objects
US11334229B2 (en) 2009-09-22 2022-05-17 Apple Inc. Device, method, and graphical user interface for manipulating user interface objects
US11972104B2 (en) 2009-09-22 2024-04-30 Apple Inc. Device, method, and graphical user interface for manipulating user interface objects
US10564826B2 (en) 2009-09-22 2020-02-18 Apple Inc. Device, method, and graphical user interface for manipulating user interface objects
US10296166B2 (en) 2010-01-06 2019-05-21 Apple Inc. Device, method, and graphical user interface for navigating and displaying content in context
US10732790B2 (en) 2010-01-06 2020-08-04 Apple Inc. Device, method, and graphical user interface for navigating and displaying content in context
US11592959B2 (en) 2010-01-06 2023-02-28 Apple Inc. Device, method, and graphical user interface for navigating and displaying content in context
US11099712B2 (en) 2010-01-06 2021-08-24 Apple Inc. Device, method, and graphical user interface for navigating and displaying content in context
US8680599B2 (en) 2010-08-27 2014-03-25 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
JP2014120770A (en) * 2012-12-12 2014-06-30 Freescale Semiconductor Inc Integrated circuit including integrated passive device and method of manufacturing the same
US10324973B2 (en) 2016-06-12 2019-06-18 Apple Inc. Knowledge graph metadata network based on notable moments
US11941223B2 (en) 2016-06-12 2024-03-26 Apple Inc. User interfaces for retrieving contextually relevant media content
US10891013B2 (en) 2016-06-12 2021-01-12 Apple Inc. User interfaces for retrieving contextually relevant media content
US11681408B2 (en) 2016-06-12 2023-06-20 Apple Inc. User interfaces for retrieving contextually relevant media content
US10073584B2 (en) 2016-06-12 2018-09-11 Apple Inc. User interfaces for retrieving contextually relevant media content
US11334209B2 (en) 2016-06-12 2022-05-17 Apple Inc. User interfaces for retrieving contextually relevant media content
JP2021101480A (en) * 2017-07-26 2021-07-08 株式会社村田製作所 Capacitor
US11243996B2 (en) 2018-05-07 2022-02-08 Apple Inc. Digital asset search user interface
US11086935B2 (en) 2018-05-07 2021-08-10 Apple Inc. Smart updates from historical database changes
US11782575B2 (en) 2018-05-07 2023-10-10 Apple Inc. User interfaces for sharing contextually relevant media content
US10803135B2 (en) 2018-09-11 2020-10-13 Apple Inc. Techniques for disambiguating clustered occurrence identifiers
US10846343B2 (en) 2018-09-11 2020-11-24 Apple Inc. Techniques for disambiguating clustered location identifiers
US11307737B2 (en) 2019-05-06 2022-04-19 Apple Inc. Media browsing user interface with intelligently selected representative media items
US11625153B2 (en) 2019-05-06 2023-04-11 Apple Inc. Media browsing user interface with intelligently selected representative media items
US11947778B2 (en) 2019-05-06 2024-04-02 Apple Inc. Media browsing user interface with intelligently selected representative media items
US11638158B2 (en) 2020-02-14 2023-04-25 Apple Inc. User interfaces for workout content
US11611883B2 (en) 2020-02-14 2023-03-21 Apple Inc. User interfaces for workout content
US11716629B2 (en) 2020-02-14 2023-08-01 Apple Inc. User interfaces for workout content
US11452915B2 (en) 2020-02-14 2022-09-27 Apple Inc. User interfaces for workout content
US11446548B2 (en) 2020-02-14 2022-09-20 Apple Inc. User interfaces for workout content
US11564103B2 (en) 2020-02-14 2023-01-24 Apple Inc. User interfaces for workout content
US11985506B2 (en) 2020-02-14 2024-05-14 Apple Inc. User interfaces for workout content

Also Published As

Publication number Publication date
WO2005036597A3 (en) 2007-12-06
CN101160663A (en) 2008-04-09
EP1668673A2 (en) 2006-06-14
TW200518338A (en) 2005-06-01
WO2005036597A2 (en) 2005-04-21
US20050062130A1 (en) 2005-03-24
US7078785B2 (en) 2006-07-18
TWI349367B (en) 2011-09-21
KR20070017953A (en) 2007-02-13
CN101160663B (en) 2010-10-27
KR101054673B1 (en) 2011-08-08

Similar Documents

Publication Publication Date Title
JP2007515775A (en) Semiconductor device and manufacturing method thereof
US8593784B2 (en) Thin film structure that may be used with an adhesion layer
US6537912B1 (en) Method of forming an encapsulated conductive pillar
TWI389297B (en) Mim capacitor in a semiconductor device and method therefor
US20020135071A1 (en) Integrated circuit device contact plugs having a liner layer that exerts compressive stress thereon and methods of manufacturing same
US20060006449A1 (en) Semiconductor integrated circuit devices having a hybrid dielectric layer and methods of fabricating the same
US20030011043A1 (en) MIM capacitor structure and process for making the same
KR20040060443A (en) Capacitor of a semiconductor device and manufacturing method whereof
JP2005526378A (en) Method for forming MIM capacitor
US20120057270A1 (en) Capacitor and method for making same
US7199001B2 (en) Method of forming MIM capacitor electrodes
US10497773B2 (en) Method to improve MIM device performance
KR100424183B1 (en) Method for forming capacitor of semiconductor device
KR100613282B1 (en) Capacitor in semiconductor device and manufacturing method thereof
KR100827521B1 (en) Capacitor of semiconductor device and method for manufacturing the same
US20230343642A1 (en) Film scheme to reduce plasma-induced damage
US20240203870A1 (en) Flexible mol and/or beol structure
KR100605231B1 (en) Method of fabricating MIM capacitor
KR0161451B1 (en) Semiconductor memory device and its fabrication
KR100542498B1 (en) Method of fabricating MIM capacitor
JP2004363151A (en) Semiconductor storage device and its manufacturing method
KR100722986B1 (en) Method for fabricating capacitor
KR100351011B1 (en) Method for forming a DRAM capacitor and capacitor made thereby
TWI492365B (en) Metal-insulator-metal capacitor structure
JP2001135800A (en) Capacitor and manufacturing method for the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070719

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109