JP2007504651A - スピン転移スイッチングを利用し且つ複数のビットを記憶する磁気メモリ素子 - Google Patents

スピン転移スイッチングを利用し且つ複数のビットを記憶する磁気メモリ素子 Download PDF

Info

Publication number
JP2007504651A
JP2007504651A JP2006524840A JP2006524840A JP2007504651A JP 2007504651 A JP2007504651 A JP 2007504651A JP 2006524840 A JP2006524840 A JP 2006524840A JP 2006524840 A JP2006524840 A JP 2006524840A JP 2007504651 A JP2007504651 A JP 2007504651A
Authority
JP
Japan
Prior art keywords
layer
current
magnetic element
magnetization
pinned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006524840A
Other languages
English (en)
Inventor
ピー. グエン、ポール
ホワイ、イーミン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grandis Inc
Original Assignee
Grandis Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grandis Inc filed Critical Grandis Inc
Publication of JP2007504651A publication Critical patent/JP2007504651A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5607Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using magnetic storage elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3263Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being symmetric, e.g. for dual spin valve, e.g. NiO/Co/Cu/Co/Cu/Co/NiO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

複数のビットを記憶可能な磁気素子を提供するための方法及びシステムを開示する。本方法及びシステムには、第1固定層、第1非磁性層、第1自由層、接続層、第2固定層、第2非磁性層及び第2自由層を設ける段階が含まれる。第1固定層は、強磁性体であり、第1方向に固定された第1固定層磁化を有する。第1非磁性層は、第1固定層と第1自由層との間にある。第1自由層は、強磁性体であり、第1自由層磁化を有する。第2固定層は、強磁性体であり、第2方向に固定された第2固定層磁化を有する。接続層は、第2固定層と第1自由層との間にある。第2非磁性層は、第2固定層と第2自由層との間にある。第2自由層は、強磁性体であり、第2自由層磁化を有する。磁気素子は、書き込み電流が磁気素子を通過する際のスピン転移により第1自由層磁化及び第2自由層磁化が方向を変更可能となるように構成される。

Description

本発明は、一般的に、磁気システムに関し、限定するものではないが、特に、小型の磁気素子であって、スイッチングにスピン転移効果を用い、また、磁気ランダムアクセスメモリ("MRAM")等の磁気メモリに用い得る磁気素子を含む小型の磁気素子を提供するための方法及びシステムに関する。
様々な種類の磁気技術では、磁気素子を利用してデータの記憶や読み込みを行う。例えば、従来のMRAM技術において用いられる従来の磁気素子は、スピン・トンネル接合である。図1Aは、スピン・トンネル接合10である1つのそのような従来の磁気素子10を示す。従来のスピン・トンネル接合10には、反強磁性(AFM)層12、固定層14、障壁層16、及び自由層18が含まれる。従来の固定層14は、強磁性体であり、通常、AFM層12によって固定される磁化を有する。本明細書で用いる用語「強磁性体」には、強磁性、フェリ磁性、及びスペリ磁性(sperimagnetic )材料が含まれる。従来の強磁性自由層18は、絶縁障壁層16によって固定層から分離される。障壁層16は、固定層14と自由層18との間において電荷キャリアが通過し得る程、充分に薄い。同様に、従来のハードディスク磁気記録技術では、磁気抵抗再生ヘッド用の磁気素子には、スピン・バルブ等の従来の磁気素子が含まれる。スピン・バルブは、従来のスピン・トンネル接合10と同様の構造を有する。しかしながら、障壁層16は、導電性の非磁性スペーサ層によって置き換えられる。スピン・バルブには、通常、AFM層によって固定される磁化を有する強磁性固定層が含まれる。また、スピン・バルブには、Cu等の導電性の非磁性スペーサ層によって固定層から分離された強磁性自由層が含まれる。スピン・トンネル接合及びスピン・バルブの強磁性固定層及び自由層は、合成であってもよい。
従来のスピン・トンネル接合10をプログラムするために、通常、1つ又は複数の書き込み線(図示せず)に電流を流すことによって、外部磁場が印加される。磁場に反応して、従来の自由層18の磁化は、従来の固定層14の磁化に平行又は反平行に並ぶ。磁場が除去されると、従来の自由層18の磁化は、元のままである。従来の自由層18の磁化が従来の固定層14の磁化に平行である場合、従来のスピン・トンネル接合10は、低抵抗状態である。従来の自由層18の磁化が従来の固定層14の磁化に反平行である場合、従来のスピン・トンネル接合10は、高抵抗状態である。例えば、従来の自由層18及び従来の固定層14の磁化が平行であるとした場合、従来の磁気素子10の総抵抗値は、R−ΔRである。また、従来の自由層18及び従来の固定層14の磁化が反平行である場合、抵抗値は、R+ΔRである。従って、従来の磁気素子10は、Rの中間抵抗値を有すると見なし得る。中間抵抗値は、デバイス動作範囲の中央の抵抗値である。これらの2つの状態R−ΔR及びR+ΔRに基づき、1ビットの情報(0又は1に対応)が、従来のスピン・トンネル接合10に記憶される。
更に、他の従来の磁気素子は、従来のスピン・トンネル接合10に基づく。例えば、二重の従来のスピン・トンネル接合を用い得る。そのような従来の磁気素子では、第2固定層、及び第2固定層と自由層18との間の第2障壁層を設け得る。他の従来の磁気素子は、図1B及び図2に示すように、第2障壁層の代わりに導通層を用い得る。そのような場合、従来の磁気素子は、共通の自由層を共有するスピン・バルブ及びスピン・トンネル接合の組合せと見なし得る。
図2は、複数のデータビットを記憶可能な他の従来の磁気素子20を示す。磁気素子20には、導電層22によって分離された2つのスピン・トンネル接合30及び40が含まれる。スピン・トンネル接合30には、障壁層34によって分離された固定層32及び自由層36が含まれる。同様に、スピン・トンネル接合40には、障壁層44によって分離された固定層42及び自由層46が含まれる。理解しやすいように、AFM層は、示していない。しかしながら、AFM層は、通常、固定層32及び42の磁化を固定するために用いられる。導電層22は、スピン・トンネル接合30及び40を電気的に接続する。従来の自由層36及び46は、従来の自由層36の磁化が、従来の自由層46の磁化と異なる磁場において方向を変えるように構成される。このことは、通常、従来の自由層36及び46の膜厚を異ならせることによって実現される。更に、障壁層34及び44は、異なる膜厚を有するため、従来のスピン・トンネル接合は、異なる抵抗を有する。
従来の磁気素子20をプログラムするために、通常、1つ又は複数の書き込み線(図示せず)を流れる駆動電流を用いて、外部磁場が印加される。説明の目的のために、従来の自由層36の保磁力がH1であり、従来の自由層46の保磁力がH2であると仮定する。また、H1は、H2より小さいと仮定する。"00"を記憶する場合は、第1方向に、例えば、従来の固定層32の磁化方向に平行な方向でH1及びH2より大きい磁場Hを常に最初に印加する。従って、従来の自由層36及び46の磁化は、平行である。更に、従来の自由層36及び46の磁化は、双方共、固定層32及び42の磁化に平行である。又、"10"の場合、Hを同じ方向に印加し、そして除去する。次に、第2磁場を印加する。第2磁場の大きさは、H1とH2との間である。第2磁場の方向は、Hの方向と反対であり、従って、従来の固定層32及び42の磁化と反平行である。結果的に、従来の自由層36の磁化は、従来の固定層32の磁化に反平行であり、従来の自由層46の磁化は、従来の固定層42の磁化に平行である。"01"の場合、まず、Hを反対方向に、即ち、従来の固定層32及び42の磁化に反平行に印加する。そして、磁場を除去する。そして、従来の固定層32及び43の磁化に平行なH1とH2との間の磁場を印加する。その結果、従来の自由層36の磁化は、従来の固定層32の磁化に平行に向き、従来の自由層46の磁化は、従来の固定層42の磁化に反平行に向く。"11"の場合、Hを従来の固定層32及び42の磁化に反平行の方向に印加する。従って、"00"、"01"、"10"及び"11"に対応する2つのビットが、磁気素子50に記憶される。
状態"00"、"01"、"10"、及び"11"は、異なる抵抗に対応する。スピン・トンネル接合30の抵抗値は、自由層36及び固定層32の磁化が並んでいる場合、R1−ΔR1であり、あるいは、自由層36及び固定層32の磁化が反平行である場合、R1+ΔR1である。R1は、スピン・トンネル接合30の中間抵抗値であると見なし得る。また、ΔR1は、中間抵抗値から安定な状態(平行又は反平行な磁化)の内の1つへの変化量と見なし得る。スピン・トンネル接合40の抵抗値は、自由層46及び固定層42の磁化が平行に並んでいる場合、R2−ΔR2である。スピン・トンネル接合40の抵抗値は、自由層46及び固定層42の磁化が反平行である場合、R1+ΔR1である。R2は、スピン・トンネル接合40の中間抵抗値であると見なし得る。また、ΔR2は、中間抵抗値から安定な状態(平行又は反平行な磁化)の内の1つへの変化量と見なし得る。従来の磁気素子20が要求通りに機能するためには、R1は、R2と異なるべきであり、ΔR1は、ΔR2と異なるべきである。従って、"00"は、従来の磁気素子20の抵抗値R1−ΔR1+R2−ΔR2に対応する。"01"は、従来の磁気素子20の抵抗値R1−ΔR1+R2+ΔR2に対応する。"10"は、従来の磁気素子20の抵抗値R1+ΔR1+R2−ΔR2に対する抵抗値に対応する。"11"は、従来の磁気素子20の抵抗値R1+ΔR1+R2+ΔR2に対する抵抗値に対応する。
従来のスピン・トンネル接合を用いる従来の磁気素子10及び20を用いることで従来の磁気メモリは機能し得るが、当業者であれば、より高いメモリセル密度での従来の磁気素子10及び20の用途には障害があることを容易に認識し得る。特に、従来の磁気素子10、20は、ビット線(図示せず)及び書き込み線(図示せず)を流れる駆動電流により生成された外部磁場を用いて書き込まれる。言い換えれば、自由層18、36及び46の磁化は、ビット線及び書き込み線を流れる駆動電流により生成された外部磁場によって切り換えられる。スイッチング磁場として知られている自由層18、36及び46の磁化を切り換えるのに必要な磁場は、従来の磁気素子10及び20の幅に反比例する。その結果、スイッチング磁場は、従来のメモリが有する従来の磁気素子10及び20が小さくなるにつれて大きくなる。スイッチング磁場が大きいため、ビット線を通して、特に、書き込み線を通して駆動するために必要な電流は、磁気メモリセル密度が大きくなると急激に大きくなる。この大きな電流は、従来の磁気素子10又は20を用いる従来の磁気メモリでは、多くの問題を引き起こし得る。例えば、クロストーク及び消費電力が増大する。更に、所望の従来のメモリ素子10又は20においてスイッチング磁場を生成する電流を駆動するのに必要な駆動回路の面積や複雑さも増大する。更に、従来の書き込み電流は、磁気メモリセルを切り換えるのに充分なほど大きくなければならないが、隣接セルが間違って切り換えられるほど大きい必要はない。(製造及び材料の不均一さの為に)他のものより切り換えが困難なセルは確実に書き込みすることができないため、書き込み電流振幅に関するこの上限は信頼性の問題を引き起こす可能性がある。
従って、必要とされるのは、充分な再生信号を提供しつつ、高密度のメモリアレイにおいて、低消費電力、低クロストーク、及び高い信頼性で使用可能な磁気メモリ素子を提供するためのシステム及び方法である。本発明は、そのような磁気メモリ素子に対するニーズに対処する。
本発明は、複数のビットを記憶可能な磁気素子を提供するための方法及びシステムを提供する。本方法及びシステムには、第1固定層、第1非磁性層、第1自由層、接続層、第2固定層、第2非磁性層、及び第2自由層を設ける段階が含まれる。第1固定層は、強磁性体であり、第1方向に固定された第1固定層磁化を有する。第1非磁性層は、第1固定層と第1自由層との間にある。第1自由層は、強磁性体であり、第1自由層磁化を有する。第2固定層は、強磁性体であり、第2方向に固定された第2固定層磁化を有する。接続層は、第2固定層と第1自由層との間にある。第2非磁性層は、第2固定層と第2自由層との間にある。第2自由層は、強磁性体であり、第2自由層磁化を有する。第1及び第2非磁性層は、絶縁障壁層であってよい。あるいは、導電金属層であってよい。好適な実施形態において、第1及び第2非磁性層は、導電層である。また、この好適な実施形態において、磁気素子には、第1障壁層、第2障壁層、第3固定層及び第4固定層が含まれる。そのような実施形態において、第1障壁層は、第1自由層と第3固定層との間にある。第2障壁層は、第2自由層と第4固定層との間にある。また、この好適な実施形態において、固定層の磁化は、隣接する反強磁性層によって固定され、また、接続層は、共有反強磁性層である。他の選択肢として、積層の高さを低減するために、固定層及びその隣接する(又は共有される)固定用AFM層は、反強磁性的に結合された硬質磁性層/Ru/硬質磁性層、又は、硬質磁性層/Ru/軟質磁性層の三層構造によって置き換え得るが、この場合において、"硬質"及び"軟質"はそれぞれ、高及び低磁気的異方性を有する強磁性層を意味する。軟質層は、Co、Fe、Ni及びそれらの合金であってよい。また、硬質層は、CoCrPt等の硬質磁石材料であってよい。磁気素子は、書き込み電流が磁気素子を通過する際のスピン転移により、第1自由層磁化及び第2自由層磁化が方向を変更可能となるように構成されている。
本明細書に記載したシステム及び方法によれば、本発明は、複数のビットを記憶し、また、磁場スイッチングメカニズムよりも局所化されたスピン転移スイッチングを用いて書き込み可能な磁気素子を提供する。
本発明は、磁気素子の改善に関する。以下の説明は、当業者が本発明を構築し使用可能とするために提示し、又、特許出願の文脈とその要求事項の範囲で行う。好適な実施形態に対する様々な変形例は、当業者には容易に理解し得ると思われ、又、本明細書における一般的な原理は、他の実施形態にも適用し得る。従って、本発明は、例示した実施形態に限定することを意図せず、本明細書で述べる原理及び特徴と一致する最も広い範囲と合致するものである。
従来の磁気記憶技術は、スピン・バルブ及びスピン・トンネル接合等の磁気素子をその小型化が進むにつれて益々利用するようになった。しかしながら、従来の方法を用いてそのような素子を作製し動作させることは困難である。スピン転移として知られる近年発見された現象は、磁気記憶技術では関心が高い。スピン転移に関する現在の情報は、スロンチェウスキ(J.C. Slonczewski)による「磁性多層体の電流駆動式励磁」、磁気及び磁性材料機関紙、第159巻、L1−L5頁(1996年)、バーガ(L. Berger )による「電流によって駆動される磁性多層体によるスピン波放出」、Phys. Rev. B、第54巻、9353頁(1996年)、並びに、アルバート(F. J. Albert)、カティン(J. A. Katine)、及びブーマン(R. A. Buhman)による「Co薄膜ナノ磁石のスピン偏極式電流スイッチング」、Appl. Phys. Lett. 、第77巻、第23号、3809−3811頁(2000年)に詳細に述べられている。従って、スピン転移現象の以下の説明は、その領域における電流情報に基づくものであり、本発明の範囲を制限しようとするものではない。
スピン転移効果は、強磁性体−標準金属多層体のスピン依存電子輸送特性から生じる。面垂直電流(CPP:Current Perpendicular to Plane)構成において、スピン偏極電流が、磁性多層体に流れる場合、強磁性層に入射する電子のスピン角運動量は、強磁性層の磁気モーメントと相互作用する。この相互作用を介して、電子は、それらの角運動量の一部を強磁性層に転移する。その結果、電流密度が充分に高い(約10〜10A/cm)場合、及び多層体の大きさが小さく(約200ナノメートル未満)、従って自己磁場効果が重要ではない場合には、スピン偏極電流は、強磁性層の磁化方向を切り換え得る。更に、スピン転移により強磁性層の磁化方向を切り換えるようにするために、強磁性層は充分に薄くしなければならず、例えばCoの場合、好適には約10ナノメートル未満でなければならない。
スピン転移現象は、外部スイッチング磁場の使用の代替えとして、又はそれに追加してCPP構成に用いることができ、従来のスピン・バルブ又は従来のスピン・トンネル接合の自由層の磁化方向を切り換え得る。スピン転移は、他のメカニズムを圧倒する現象であり、従って、従来の磁気素子の大きさが小さい場合、数百ナノメートルの範囲で観察可能になる。外部磁場の印加とは対照的に、スピン転移現象は、局所化された現象である。従って、スピン転移は、より小さい磁気素子を有する更に高密度の磁気メモリにおける磁気素子に書き込むために用い得る。
当業者であれば、スピン転移現象を用いて、スピン・バルブ又はスピン・トンネル接合等の従来の磁気素子に書き込むことに障害が存在することを容易に認識し得る。従来のスピン・バルブの場合、CPP構成では、信号が大幅に低減される。従来のスピン・トンネル接合は、その抵抗が大きいため、信号が大きくなり得るが、スピン転移効果を誘発するのに必要な高い電流密度は、抵抗損失のために、薄い絶縁障壁を破壊することがある。
上述したように、従来の他の磁気素子が、種々の程度の特異性で提案されており、又、利用されている。そのような従来の磁気素子には、二重スピン・バルブ、二重スピン・トンネル接合、並びにスピン・バルブ及びスピン・トンネル接合の組合せが含まれる。
図1Bは、磁気素子として用い得る二重スピン・トンネル/バルブ構造体70と呼ばれる磁気素子の一実施形態を示す図である。二重スピン・トンネル/バルブ構造体70は、好適には、適切なシード層上に作製される。二重スピン・トンネル/バルブ構造体70には、反強磁性(AFM)層71が含まれ、この上に、固定層72が作製される。固定層72は、強磁性体であり、その磁化が、AFM層71によって固定される。また、二重スピン・トンネル/バルブ構造体70には、絶縁性であり、電荷キャリアが固定層72と自由層74との間を通過するに充分な程薄い障壁層73が含まれる。自由層74は、強磁性体であり、スピン転移現象により変更し得る磁化を有する。また、二重スピン・トンネル/バルブ構造体70には、導電性であり、Cu等の材料を含み得る非磁性スペーサ層75が含まれる。また、二重スピン・トンネル/バルブ構造体70には、強磁性体であり、AFM層77によって固定される磁化を有する第2固定層76が含まれる。二重スピン・トンネル/バルブ構造体70は、スピン・トンネル接合(層71、72、73及び74を含む)及びスピン・バルブ(層74、75、76及び77を含む)で構成されると見なすことができ、自由層を共有する。結果的に、スピン転移を用いた書き込みを可能としつつ、大きな再生信号を得ることができる。単一の強磁性体膜として説明したが、層72、74及び76は合成であってよく、及び/又は、不純物を注入することにより二重スピン・トンネル/バルブ構造体70の熱的安定性を改善し得る。更には、静磁気的に結合された自由層を有し、二重スピン・トンネル/バルブ構造体を含む他の磁気素子について述べた。結果的に、スピン・トンネル接合又は二重スピン・トンネル/バルブ構造体等の磁気素子を用いる他の構造体も提供し得る。
二重スピン・トンネル/バルブ構造体70は、自由層74の磁化が、スピン転移を用いて切り換えられるように構成される。結果的に、二重スピン・トンネル/バルブ構造体70の大きさは、数百ナノメートルの範囲の好適に小さなものであり、自己磁場効果を低減する。好適な実施形態において、二重スピン・トンネル/バルブ構造体70の大きさは、200ナノメートル未満であり、より好適には、約100ナノメートルである。二重スピン・トンネル/バルブ構造体70は、好適には、図2の紙面に対して垂直に、約50ナノメートルの奥行きを有する。この奥行きは、好適には二重スピン・トンネル/バルブ構造体70の幅より小さく、二重スピン・トンネル/バルブ構造体70が何らかの形状異方性を有し、自由層74が好適な方向を有することを保証する。更に、自由層74の膜厚は、充分に小さいため、スピン転移は、自由層の磁化を回転させて固定層72及び76の磁化と並ばせるに充分なほど強い。好適な実施形態において、自由層74は、10nm以下の膜厚を有する。更に、上記した好適な大きさを有する二重スピン・トンネル/バルブ構造体70の場合、約10Amp/cmの充分な電流密度が比較的小さい電流で実現し得る。例えば、0.06×0.12μmの楕円形状を有する二重スピン・トンネル/バルブ構造体70の場合、約10Amp/cmの電流密度は、約0.5mAの電流で実現し得る。その結果、極めて大きい電流を出力するための特別な回路の使用を回避し得る。
上述した磁気素子は、意図した目的のためには充分に機能し得るが、当業者であれば、この磁気素子を高密度のメモリで用いるのが望ましいことを認識し得る。
本発明は、複数のビットを記憶可能な磁気素子を提供するための方法及びシステムを提供する。本方法及びシステムには、第1固定層、第1非磁性層(導電性)、第1自由層、接続層、第2固定層、第2非磁性層、及び第2自由層を設ける段階が含まれる。第1固定層は、強磁性体であり、第1方向に固定された第1固定層磁化を有する。第1非磁性層は、第1固定層と第1自由層との間に存在する。第1自由層は、強磁性体であり、第1自由層磁化を有する。第2固定層は、強磁性体であり、第2方向に固定された第2固定層磁化を有する。接続層は、第2固定層と第1自由層との間にある。第2非磁性層は、第2固定層と第2自由層との間にある。第2自由層は、強磁性体であり、第2自由層磁化を有する。磁気素子は、書き込み電流が磁気素子を通過する際のスピン転移により第1自由層磁化及び第2自由層磁化が方向を変更可能となるように構成される。
本発明を、或る構成要素及び或る数の構造体を有する特定の磁気素子の観点から説明する。しかしながら、当業者であれば、この方法及びシステムが、他の数のスピン・バルブ、スピン・トンネル接合、及び/又は二重スピン・トンネル/バルブ構造体等のような、異なる及び/又は追加の構成要素や構造体を有する他の磁気メモリ素子に対しても有効に動作することを容易に認識し得る。本発明は、本発明と整合性を有する異なる及び/又は他の特徴を有する他の磁気メモリとも整合性がある。また、本発明を、スピン転移現象の現時点での理解を背景にして説明する。結果的に、当業者であれば、本方法及びシステムの作用の理論的な説明が、スピン転移の現時点での理解に基づいて行われることを容易に認識し得る。また、当業者は、本方法及びシステムが、基板に対して特定の関係を有する構造について説明されることを容易に認識し得る。一方で、当業者は、本方法及びシステムが他の構造体と整合性があることを容易に認識し得る。例えば、本発明は、トップアンドボトム・スピン・バルブ並びにトップアンドボトム・スピン・トンネル接合と整合性がある。更に、本方法及びシステムを、或る層が、合成でできている場合について説明する。しかしながら、当業者であれば、他の及び/又は追加の層が合成であり得ることを容易に認識し得る。更に、本発明は、単一の及び/又は合成強磁性層を有する磁気素子と整合性がある。更に、本発明に基づく方法の実施形態を、単一の磁気素子を提供する場合について説明するが、当業者であれば、本方法が、複数の磁気素子、例えばアレイ状での提供と整合性があることを容易に認識し得る。また、本発明を、書き込み電流を特定の方向に印加する、書き込み電流が特定の大きさを有する、及び特定の数の書き込み電流を印加する場合について説明する。しかしながら、当業者であれば、本発明が他の及び/又は異なる書き込み電流とも整合性があることを容易に認識し得る。また、本発明を、層間において磁化が特定の方向を有する場合について説明する。しかしながら、当業者であれば、本発明が他の方向とも整合性があることを容易に認識し得る。
本発明に基づく方法及びシステムを更に詳細に示すために、次に図3Aにおいて、複数のビットを記憶し、書き込みにスピン転移現象を利用可能な本発明に基づく一実施形態の磁気素子100を示す。磁気素子100は、スピン転移現象を用いて書き込まれるように構成され、接続層102によって分離された2つのスピン・トンネル接合110及び120が含まれる。
スピン・トンネル接合110には、自由層118と、好適には障壁層116である非磁性層と、固定層114と、が含まれる。自由層118及び固定層114は、強磁性体である。固定層114の磁化は、特定の方向に固定される。好適には、スピン・トンネル接合110には、固定層114の磁化を固定するAFM層112が含まれる。しかしながら、他の実施形態において、固定層114の磁化は、他の方法で固定し得る。障壁層116は、電荷キャリアが固定層114と自由層118との間を通過可能となるように構成される。スピン・トンネル接合120には、自由層128と、好適には障壁層126である非磁性層と、固定層124と、が含まれる。自由層128及び固定層124は、強磁性体である。固定層124の磁化は、特定の方向に固定される。好適には、スピン・トンネル接合120には、固定層124の磁化を固定するAFM層122が含まれる。しかしながら、他の実施形態において、固定層124の磁化は、他の方法で固定し得る。障壁層126は、電荷キャリアが固定層124と自由層128との間を通過可能となるように構成される。固定層118及び128は、好適には、図3Aに示す方向に固定される。
スピン・トンネル接合110及び120はスピン転移現象を用いて書き込まれるように構成されることから、スピン・トンネル接合110及び120の大きさは、好適には、二重スピン・トンネル/バルブ構造体70のそれと同様である。結果的に、スピン・トンネル接合110及び120の大きさは、好適には、小さく数百ナノメートルの範囲である。好適な実施形態において、スピン・トンネル接合110及び120の大きさは、200ナノメートル未満であり、好適には、約100ナノメートルである。スピン・トンネル接合110及び120は、好適には、図3の紙面に対して垂直に、約50ナノメートルの奥行きを有する。この奥行きは、好適には、スピン・トンネル接合110及び120の幅より小さく、スピン・トンネル接合110及び120は、何らかの形状異方性を有し、自由層118及び128が好適な方向を有することを保証する。更に、自由層118及び128の膜厚は、充分に小さいため、スピン転移は、自由層磁化を回転させて固定層114及び124の磁化と並ばせるのに充分なほど強い。好適な実施形態において、自由層118及び128は、10nm以下の膜厚を有する。更に、上記した好適な大きさを有するスピン・トンネル接合110及び120の場合、約10Amp/cmの充分な電流密度が比較的小さい電流で実現し得る。例えば、0.06×0.12μmの楕円形状を有するスピン・トンネル接合110及び120の場合、約10Amp/cmの電流密度は、約0.5mAの電流で実現し得る。その結果、極めて大きい電流を出力するための特別な回路の使用を回避し得る。
動作時、データは、磁気素子100の上面から磁気素子100の底面へ順方向に、電流I1Fを用いて、また、磁気素子100の底面から磁気素子100の上面へ逆方向に、電流I1Rを用いて、スピン・トンネル接合110に書き込み得る。電流I1Fが順方向に印加される場合、多数電子は、固定層114から自由層118に(電子は負に帯電しているため、電流I1Fの方向と反対に)移動する。多数電子のスピンは、固定層114の磁化に平行である。多数電子は、スピン転移を介して、それらの角運動量を自由層118に転移し得る。電流I1Fが供給される場合、充分な数の多数電子が、それらの角運動量を転移して、自由層118の磁化を固定層114の磁化に揃える。電流I1Rが逆方向に印加される場合、自由層118から固定層114に(電流I1Rの方向と反対に)移動する少数電子は、固定層114から反射される。少数電子の角運動量は、固定層114の磁化と反対の方向である。電流I1Rが供給される場合、充分な数の少数電子が、それらの角運動量を転移して、自由層118の磁化を固定層114の磁化と反平行に揃える。
同様に、スピン・トンネル接合120は、磁気素子100の上面から磁気素子100の底面へ順方向に、電流I2Fを用いて、また、磁気素子100の底面から磁気素子100の上面へ逆方向に、電流I2Rを用いて、書き込まれる。スピン転移は、上述したものと同様な方法で、自由層128の磁化を方向付けし得る。好適な実施形態において、I1Fは、I2Fより大きく、I1Rは、I2Rより大きい。磁気素子110及び120の抵抗及び書き込み電流の相違は、磁気素子110及び120の層を調整することによって、達成し得る。例えば、自由層118及び128は、異なる膜厚を有し得る。同様に、障壁層116及び126は、異なる膜厚を有し得る。
スピン転移を用いて書き込まれるように構成されることに加えて、スピン・トンネル接合110及び120は、好適には、異なる中間抵抗値を有するように、また、異なる電流を用いて書き込まれるように構成される。例えば、スピン・トンネル接合110及び120の中間抵抗値は、それぞれR1及びR2である。スピン・トンネル接合110の抵抗値は、自由層118及び固定層114の磁化が、平行及び反平行である場合、それぞれR1−ΔR1及びR1+ΔR1である。スピン・トンネル接合120の抵抗値は、自由層128及び固定層124の磁化が、平行及び反平行である場合、それぞれR2−ΔR2及びR2+ΔR2である。好適な実施形態において、R1、ΔR1、R2及びΔR2は異なるため、磁気素子100の4つの異なる状態は、区別し得る。
接続層102は、スピン・トンネル接合110とスピン・トンネル接合120との間にある。接続層102は、好適には、導電性である。従って、CPP方向に磁気素子100を通過する電流は、スピン・トンネル接合110と120との間を容易に通過する。その結果、一方のスピン・トンネル接合110に用いられる同じ書き込み電流及び読み出し電流を、他方のスピン・トンネル接合120に用い得る。
図3Bは、複数のビットを記憶し、スピン転移を用いて書き込み可能な磁気素子に書き込むための本発明に基づく方法140の一実施形態の概略フローチャートである。方法140について、図3Aに示す磁気素子100について説明する。図3A及び3Bにおいて、磁気素子に書き込む際、用いられる書き込み電流(1つ又は複数)は、自由層118及び128の所望の配向を保証する。"00"を書き込もうとする場合、自由層118及び128の磁化を固定層114及び124の磁化に平行に並べる少なくとも1つの書き込み電流を、ステップ142で、磁気素子に印加する。従って、ステップ142は、磁気素子100を流れる順方向のI1F及びI2Fより大きい単一の書き込み電流を供給することを含み得る。"01"を書き込もうとする場合、ステップ144で、自由層128の磁化を固定層124の磁化に反平行に、また、自由層118の磁化を固定層114の磁化に平行に並べる1つ又は複数の書き込み電流を印加する。"10"を書き込もうとする場合、ステップ146で、自由層128の磁化を固定層124の磁化に平行に、また、自由層118の磁化を固定層114の磁化に反平行に並べる1つ又は複数の書き込み電流を印加する。"11"を書き込もうとする場合、ステップ148で、自由層118及び128の磁化を、それぞれ、固定層114及び124の磁化に反平行に並べる1つ又は複数の書き込み電流を印加する。
図3Cは、複数のビットを記憶し、スピン転移を用いて書き込み可能な磁気素子に書き込むための本発明に基づく方法150の一実施形態を示す。方法150について、図3Aに示す磁気素子100について説明する。図3A及び3Cにおいて、磁気素子に書き込む際、用いられる書き込み電流(1つ又は複数)は、自由層118及び128の所望の配向を保証する。
ステップ152で、"00"を磁気素子100に書き込もうとしているかどうか判断する。そうである場合、ステップ154で、第1書き込み電流を順方向に(図3Aの紙面底部側へ)印加する。第1書き込み電流は、I1F及びI2Fより大きい。その結果、スピン転移は、それぞれ、自由層118及び128を固定層114及び124に平行に向ける。この状態の磁気素子100の抵抗値は、R1−ΔR1+R2−ΔR2である。
"00"を書き込もうとしていない場合、ステップ156で、"01"を書き込もうとしているかどうか判断する。そうである場合、ステップ158で、I1F及びI2Fより大きい書き込み電流を順方向に印加する。好適には、この書き込み電流は、第1書き込み電流に等しい。結果的に、自由層118及び128は、それぞれ固定層114及び124に平行に向く。次に、ステップ160で、第2書き込み電流を逆方向に(図3Aにおいて上側へ)印加する。第2書き込み電流は、I2Rより大きいが、I1Rより小さい。結果的に、第2書き込み電流によって誘起されたスピン転移は、自由層128の磁化を反転させて固定層124の磁化に反平行になるようにするが、自由層118の磁化は、固定層114に平行なままである。この状態の磁気素子100の抵抗値は、R1−ΔR1+R2+ΔR2である。
"01"を書き込もうとしていない場合、ステップ162で、"10"を書き込もうとしているかどうか判断する。そうである場合、ステップ164で、第3書き込み電流を逆方向に印加する。結果的に、自由層118及び128は、それぞれ固定層114及び124に反平行に向く。次に、ステップ166で、第4書き込み電流を順方向に印加する。第4書き込み電流は、I2Fより大きいが、I1Fより小さい。結果的に、第2書き込み電流によって誘起されたスピン転移は、自由層128の磁化を反転させて固定層124の磁化に平行になるようにするが、自由層118の磁化は、固定層124の磁化に反平行なままである。この状態の磁気素子100の抵抗値は、R1+ΔR1+R2−ΔR2である。
"10"を書き込もうとしていない場合、"11"が書き込まれる。結果的に、ステップ170を介して、I1R及びI2Rより大きく、また、好適には第3書き込み電流に等しい書き込み電流を逆方向に印加する。従って、自由層118及び128の磁化は、それぞれ固定層114及び124の磁化に反平行に向く。この状態の磁気素子100の抵抗値は、R1+ΔR1+R2+ΔR2である。
磁気素子100を読み出すために、I1F、I2F、I2R、及びI2Rより小さい読み出し電流を供給する。従って、読み出し電流は、印加される書き込み電流のどれよりも小さい。従って、読み出し電流は、磁気素子に書き込まれたデータを変えない。磁気素子100の抵抗値は、読み出し電流及び出力信号に基づき決定し得る。磁気素子の抵抗に基づき、記憶された"00"、"01"、"10"、又は"11"のデータが決定し得る。抵抗値が、R1−ΔR1+R2−ΔR2である場合、"00"が記憶される。抵抗値が、R1−ΔR1+R2+ΔR2である場合、"01"が記憶される。抵抗値が、R1+ΔR1+R2−ΔR2である場合、"10"が記憶される。抵抗値が、R1+ΔR1+R2+ΔR2である場合、"11"が記憶される。
方法140及び/又は150を用いると、複数のビットは、スピン転移を用いて磁気素子100に記憶し得る。外部電流によって駆動されるスイッチング磁場は、不要である。それに代わって、更に局所化された信頼性の高い現象が、磁気素子100への書き込みに用いられ、クロストークが減少する。更に、上記の好適な大きさを有する磁気素子100の場合、約10Amp/cmの充分な電流密度が比較的小さい電流で実現し得る。例えば、0.06×0.12μmの楕円形状を有する磁気素子の場合、約10Amp/cmの電流密度は、約0.5mAの電流で実現し得る。その結果、極めて大きい電流を出力するための特別な回路の使用を回避し得る。更に、複数のビットが単一の磁気素子100に記憶されることから、磁気素子100を内蔵する(単位面積当たり更に多くのビットを記憶する)高密度メモリを作製し得る。
図4Aは、複数のビットを記憶し、書き込みにスピン転移現象を利用可能な本発明に基づく磁気素子100´の第2実施形態の図である。磁気素子100´の構成要素の多くが、図3Aに示す磁気素子100のそれと同様である。従って、これらの構成要素は、同様な名称を付す。例えば、磁気素子100´には、スピン・トンネル接合110´及び120´が含まれる。しかしながら、接続層102は、共有AFM層102´によって置き換えられている。更に、AFM層112及び122は省略している。それに代わって、単一の共有AFM層102´が、接続層(接続層102と同じ)、及び固定層114´及び124´の磁化を固定するために用いられる層(AFM層102及び112と同じ)の双方として機能する。他の選択肢として、積層の高さを更に低減するために、固定層114´及び124´及び固定用AFM層102´は、反強磁性的に結合された硬質磁性層/Ru/硬質磁性層、又は、硬質磁性層/Ru/軟質磁性層の三層構造によって置き換え得る。ここで、"硬質"及び"軟質"は、それぞれ大小の磁気異方性を有する強磁性層を意味する。軟質層は、Co、Fe、Ni及びそれらの合金であってよい。また、硬質層は、CoCrPt等の硬質磁石材料であってよい。そのような代替構造体100´´を図4Bに示す。図4A及び4Bにおいて、磁気素子100´と同様である磁気素子100´´の構成要素は、同様な名称を付す。例えば、磁気素子100´´には、自由層128´´及び118´´が含まれる。しかしながら、硬質磁性層111、Ru層113、及び、硬質又は軟質磁性層115は、磁気素子100´の固定層114´及び124´、並びにAFM層102´の代わりに用いられる。
磁気素子100´及び100´´も、スピン転移を用いて書き込まれるように、また、複数のビットを記憶するように構成される。結果的に、磁気素子100´及び100´´は、多くの同じ特性を共有し、磁気素子100と実質的に同じ方法で書き込まれる。図3B及び3Cに示す方法140及び150は、従って、それぞれ、図4A及び4Bに示す磁気素子100´及び100´´にデータを書き込むために用い得る。磁気素子100´及び100´´を介した駆動電流は、スピン転移を用いてデータを書き込むために用い得ることから、外部電流によって駆動されるスイッチング磁場は不要である。それに代わって、更に局所化された信頼性の高い現象が、磁気素子100´及び100´´への書き込みに用いられ、クロストークが減少する。更に、上記の好適な大きさを有する磁気素子100´及び100´´の場合、約10Amp/cmの充分な電流密度が比較的小さい電流で実現し得る。例えば、0.06×0.12μmの楕円形状を有する磁気素子の場合、約10Amp/cmの電流密度は、約0.5mAの電流で実現し得る。その結果、極めて大きい電流を出力するための特別な回路の使用を回避し得る。更に、複数のビットが単一の磁気素子100´及び100´´に記憶されることから、磁気素子100´及び100´´を内蔵する(単位面積当たり更に多くのビットを記憶する)高密度メモリを作製し得る。更に、磁気素子100´は、単一の共有AFM層102´を用いて、スピン・トンネル接合110´と120´とを接続することから、別個のAFM層は、省略し得る。同様に、層111、113、及び115を用いることから、追加のAFM層は、磁気素子100´´では省略している。その結果、磁気素子100´及び100´´は、積層高さを低減し得る。積層高さが低減されると、磁気素子100´及び100´´のパターン形成が容易になり、また、組み立てが簡単にできる。
図5Aは、複数のビットを記憶し、書き込みにスピン転移現象を利用し、二重スピン・トンネル/バルブ構造体を利用可能な本発明に基づく磁気素子200の第3実施形態の図である。従って、磁気素子200には、接続層202によって分離された二重スピン・トンネル/バルブ構造体210及び230が含まれる。二重スピン・トンネル/バルブ構造体210には、固定層214、非磁性層216、自由層218、障壁層220、及び固定層222が含まれる。また、好適には、二重スピン・トンネル/バルブ構造体210には、それぞれ、固定層214及び222の磁化を固定するために用いられるAFM層212及び224が含まれる。二重スピン・トンネル/バルブ構造体230には、固定層234、非磁性層236、自由層238、障壁層240、及び固定層242が含まれる。また、好適には、二重スピン・トンネル/バルブ構造体230には、それぞれ、固定層234及び242の磁化を固定するために用いられるAFM層232及び244が含まれる。固定層214及び242は、それらの磁化が第1方向に固定されている。固定層222及び234は、それらの磁化が第2方向に、好適には、第1方向に反平行に固定されている。第2方向は、幾つかの手法によって達成し得る。1つの手法は、合成構造体(図示せず)用の固定層222及び234を用いることである。他の手法は、(設定温度及び磁場において)AFM層232及び242用のAFM材料と異なるAFM層224及び232用のAFM材料を用いることである。そして、固定層222及び234の磁化方向は、異なるAFM設定温度及び磁場を用いて、固定層214及び242の磁化方向とは独立に設定し得る。好適には、自由層218及び238は、好適な方向を有するが、そうでない場合、スピン転移により転移された角運動量に自由に応答する。障壁層220及び240は、電荷キャリアが通過し得る絶縁体である。非磁性スペーサ層216及び236は、導電体である。各二重スピン・トンネル/バルブ構造体210及び230は、スピン・バルブ部及びスピン・トンネル部を有すると見なし得る。二重スピン・トンネル/バルブ構造体210のスピン・トンネル接合部には、固定層222、障壁層220及び自由層218が含まれる。二重スピン・トンネル/バルブ構造体210のスピン・バルブ部には、固定層214、非磁性スペーサ層216及び自由層218が含まれる。同様に、二重スピン・トンネル/バルブ構造体230のスピン・トンネル接合部には、固定層242、障壁層240及び自由層238が含まれる。二重スピン・トンネル/バルブ構造体230のスピン・バルブ部には、固定層234、非磁性スペーサ層236及び自由層238が含まれる。
動作時、二重スピン・トンネル/バルブ構造体210及び230は、各々、スピン転移を用いて書き込まれるように構成される。現在、スピン転移現象は、主として、二重スピン・トンネル/バルブ構造体210及び230のスピン・バルブ部を用いて提供される。例えば、順方向に駆動される電流の場合、固定層214から自由層218に移動する電子は、それらの角運動量を自由層218に転移し得る。その結果、自由層218の磁化は、固定層214の磁化と並び得る。更に、固定層222から反射する少数電子は、自由層218の磁化を固定層214の磁化に平行に向けるように支援し得る。同様に、逆方向に駆動される電流の場合、自由層218からの少数電子は、固定層214から反射する。これらの少数電子は、自由層218に戻り、自由層218の磁化を固定層214の磁化に反平行に揃えるようにする。更に、固定層222からの多数電子は、自由層218の磁化を固定層214の磁化に反平行に向けるように支援し得る。従って、電流は、固定層214から自由層218及び固定層222を介して逆方向に駆動し得る。二重スピン・トンネル/バルブ構造体230は、同様に機能する。
それらはスピン転移現象を用いて書き込まれるように構成されることから、二重スピン・トンネル/バルブ構造体210及び230の大きさは、好適には、二重スピン・トンネル/バルブ構造体70のそれと同様である。二重スピン・トンネル/バルブ構造体210及び230の大きさは、好適には、200ナノメートル未満であり、また、好適には、約100ナノメートルである。二重スピン・トンネル/バルブ構造体210及び230は、図5Aの紙面に対して垂直に、約50ナノメートルの奥行きを有する。この奥行きは、好適には、二重スピン・トンネル/バルブ構造体接合210及び230の幅より小さいため、二重スピン・トンネル/バルブ構造体210及び230は何らかの形状異方性を有し、自由層218及び238が好適な方向を有することを保証する。更に、自由層218及び238の膜厚は充分に小さいため、スピン転移は、自由層磁化を回転させて固定層212及び222、及び、固定層234及び242の磁化と並ばせるのに充分なほど強い。好適な実施形態において、自由層218及び238は、10nm以下の膜厚を有する。更に、上記した好適な大きさを有する二重スピン・トンネル/バルブ構造体210及び230の場合、約10Amp/cmの充分な電流密度が比較的小さい電流で実現し得る。例えば、0.06×0.12μmの楕円形状を有する二重スピン・トンネル/バルブ構造体210及び230の場合、約10Amp/cmの電流密度は、約0.5mAの電流で実現し得る。その結果、極めて大きい電流を出力するための特別な回路の使用を回避し得る。
スピン転移を用いて書き込まれるように構成されることに加えて、二重スピン・トンネル/バルブ構造体210及び230は、好適には、異なる中間抵抗値を有するように、また、異なる電流を用いて書き込まれるように構成される。例えば、二重スピン・トンネル/バルブ構造体210及び230の中間抵抗値は、それぞれR1及びR2である。二重スピン・トンネル/バルブ構造体210の抵抗値は、自由層218の磁化及び固定層222の磁化が、平行及び反平行である場合、それぞれR1−ΔR1及びR1+ΔR1である。スピン・トンネル接合230の抵抗値は、自由層238の磁化及び固定層242の磁化が、平行及び反平行である場合、それぞれR2−ΔR2及びR2+ΔR2である。更に、スピン・トンネル接合210は、磁気素子200の上面から磁気素子200の底面へ順方向に、電流I1Fを用いて、また、磁気素子200の底面から磁気素子200の上面へ逆方向に、電流I1Rを用いて、書き込まれる。同様に、スピン・トンネル/バルブ構造230は、磁気素子200の上面から磁気素子200の底面へ順方向に、電流I2Fを用いて、また、磁気素子200の底面から磁気素子200の上面へ逆方向に、電流I2Rを用いて、書き込まれる。好適な実施形態において、I1Fは、I2Fより大きく、I1Rは、I2Rより大きい。二重スピン・トンネル/バルブ構造体210及び230の抵抗及び書き込み電流の相違は、二重スピン・トンネル/バルブ構造体210及び230の層を調整することによって、達成し得る。例えば、自由層218及び238は、異なる膜厚を有し得る。同様に、障壁層220及び240は、異なる膜厚を有し得る。
接続層202は、二重スピン・トンネル/バルブ構造体210と230との間にある。接続層202は、好適には導電性である。従って、CPP方向に磁気素子2100を通過する電流は、スピン・トンネル接合110と120との間を容易に通過する。その結果、一方のスピン・トンネル接合210に用いられる同じ書き込み電流及び読み出し電流を、他方のスピン・トンネル接合250に用い得る。しかしながら、読み出し電流は、好適には、どの書き込み電流よりも小さい。結果的に、自由層218及び238の磁化の方向は読み出し時に変化しない。
磁気素子200は、磁気素子100及び100´と実質的に同じ方法で、例えば、法140又は150を用いて、書き込み及び読み出しを行い得る。結果的に、磁気素子200は、磁気素子100及び100´と同じ多くの効果を共有する。スピン転移にも寄与し得る追加の固定層214及び234が存在することから、自由層218及び238の磁化を切り換えるのに必要な電流は、更に低減し得る。二重スピン・トンネル/バルブ構造体210及び230が用いられ、また、スピン転移を活用して磁気素子に書き込むことから、外部スイッチング磁場を生成する外部電流は、磁気素子200の自由層218及び238への書き込みに対しては、もはや不要である。それに代わって、磁気素子200を流れる駆動電流が用いられる。その結果、更に局所化されたスイッチングメカニズムが利用され、また、消費電力が減少することから、クロストークが減少する。また、磁気素子200は、磁気素子200の障壁層(層220及び240)が存在することから、CPP構成で読み出される場合、従来のスピン・バルブより出力信号がかなり大きくなる。更に、磁気素子200は、複数のビットを記憶し得ることから、磁気素子200は、更に高密度のメモリに用い得る。
図5Bは、複数のビットを記憶し、書き込みにスピン転移現象を利用し、二重スピン・トンネル/バルブ構造体を利用可能な本発明に基づく磁気素子200´の第4実施形態の図である。磁気素子200´は、磁気素子200と同様である。従って、構成要素の多くに同様な名称を付す。しかしながら、非磁性スペーサ層236´及び216´並びに障壁層220´及び240´の部分は、それぞれ反転している。しかしながら、磁気素子200´は、磁気素子200と実質的に同じ方法で機能する。結果的に、二重スピン・トンネル/バルブ構造体210´及び230´は、電流を駆動して磁気素子200´に流すことによって、また、上述したようにスピン転移を活用することによって、書き込み得る。従って、磁気素子200´は、磁気素子200と同じ多くの利点を有する。
図6Aは、複数のビットを記憶し、書き込みにスピン転移現象を利用し、二重スピン・トンネル/バルブ構造体210´´及び230´´を利用可能な本発明に基づく磁気素子200´´の第5の好適な実施形態の図である。しかしながら、磁気素子200´´には、共有AFM層202´´が含まれる。従って、単一の共有AFM層202´´を有用して、磁気素子200及び200´の別個のAFM層224及び232並びに別個の接続層202は省略している。従って、磁気素子200´´の積層高さは低減し得る。他の選択肢として、積層の高さを更に低減するために、固定層222´´及び242´´並びに共有AFM層202´´は、反強磁性的に結合された硬質磁性層/Ru/硬質磁性層、又は、硬質磁性層/Ru/軟質磁性層の三層構造によって置き換えてもよい。ここで、"硬質"及び"軟質"は、それぞれ、大小の磁気異方性を有する強磁性層を意味する。軟質層は、Co、Fe、Ni及びそれらの合金であってよい。また、硬質層は、CoCrPt等の硬質磁石材料であってよい。そのような実施形態200´´´を図6Bに示す。磁気素子200´´´は、図6Aに示す磁気素子200´´の構成要素と同様な構成要素を有する。従って、そのような構成要素には、同様な名称を付す。磁気素子200´´´には、硬質磁性層221、Ru層223、及び、硬質又は軟質磁性層225が含まれ、磁気素子200´´の固定層222´´及び242´´並びにAFM層202´´の代わりに用いられる。
更に、磁気素子200´´には、合成自由層218´´及び238´´、また更に、合成固定層234´´及び242´´が含まれる。合成自由層218´´には、非磁性層227によって分離された磁性層226及び228が含まれる。非磁性層227は、好適には導電性であり、また、磁性層226及び228が反強磁性的に並べられるように磁気的に接続され構成された膜厚を有する。合成自由層238´´には、非磁性層258によって分離された磁性層256及び260が含まれる。非磁性層258は、好適には導電性であり、また、磁性層256及び260が反強磁性的に並べられるように磁気的に接続され構成された膜厚を有する。合成固定層234´´には、非磁性層252によって分離された磁性層250及び254が含まれる。非磁性層252は、好適には導電性であり、また、磁性層250及び254が反強磁性的に並べられるように磁気的に接続され構成された膜厚を有する。合成固定層242´´には、非磁性層264によって分離された磁性層262及び266が含まれる。非磁性層264は、好適には導電性であり、また、磁性層262及び266が反強磁性的に並べられるように磁気的に接続され構成された膜厚を有する。合成固定層234´´及び/又は242´´は、固定層214´´及び222´´のモーメントと反対の正味のモーメントを有する。
好適な実施形態において、磁気素子200´´は、磁気素子200及び200´と実質的に同じ方法で書き込み及び読み出しされるように構成される。従って、二重スピン・トンネル/バルブ構造体210´´及び230´´は、それぞれ、書き込み電流I1F及びI1R並びに書き込み電流I2F及びI2Rを有する。更に、二重スピン・トンネル/バルブ構造体210´´及び230´´の抵抗値は異なる。好適には、二重スピン・トンネル/バルブ構造210´´の抵抗値は、自由層218´´の上部強磁性層228が、固定層222´´に対して平行及び反平行に並んでいる場合、それぞれ、約R1−ΔR1及びR1+ΔR1である。同様に、好適には、二重スピン・トンネル/バルブ構造体230´´の抵抗値は、自由層238´´の下部強磁性層260が、固定層242´´の上部層262に対して平行及び反平行に並んでいる場合、それぞれ、約R2−ΔR2及びR2+ΔR2である。従って、磁気素子200´´の4つの状態は、抵抗値R1−ΔR1+R2−ΔR2("00")、R1−ΔR1+R2+ΔR2("01")、R1+ΔR1+R2−ΔR2("10")、及びR1+ΔR1+R2+ΔR2("11")に対応する。
磁気素子200´´は、磁気素子100及び100´と実質的に同じ方法で、例えば、方法140又は150を用いて、書き込み及び読み出しを行い得る。結果的に、磁気素子200は、磁気素子100及び100´と同じ多くの効果を共有する。二重スピン・トンネル/バルブ構造体210´´及び230´´が用いられ、また、スピン転移を活用して磁気素子に書き込むことから、外部スイッチング磁場を生成する外部電流は、磁気素子200´´の自由層218´´及び238´´への書き込みに対しては、もはや不要である。それに代わって、磁気素子200´´を介した駆動電流が用いられる。その結果、更に局所化されたスイッチングメカニズムが利用され、また、消費電力が減少することから、クロストークが減少する。また、磁気素子200´´は、磁気素子200´´の障壁層(層220´´及び240´´)が存在することから、CPP構成で読み出される場合、従来のスピン・バルブより出力信号がかなり大きくなる。更に、磁気素子200´´は、複数のビットを記憶し得ることから、磁気素子200´´は、更に高密度のメモリに用い得る。
更に、自由層218´´及び238´´は、合成であることから、それらの磁化は、切り換えが簡単である。結果的に、より小さい書き込み電流を用い得る。言い換えると、電流I1F、I2F、I1R、及びI2Rは、単一の自由層と比べて小さい。更に、障壁の向かいにある固定層222´´及び242´´もスピン転移に寄与し得る。好適な実施形態において、固定層214´´及び222´´並びに磁性層254及び262は、それぞれ、付加的にスピン転移効果を自由層218´´及び238´´に与えるように向く。従って、自由層218´´及び238´´の磁化を切り換えるのに必要な電流は、更に低減し得る。結果的に、磁気素子200´´は、更に高密度の磁気メモリにおける記憶素子としての用途に適する。
同様に、磁気素子200´´´は、磁気素子200´´の多くの効果を共有する。更に、固定層222´´及び242´´並びにAFM層202´´の代わりに、層221、223、及び225を用いることから、磁気素子200´´´の積層高さは、更に、低減される。その結果、処理が簡略化される。
図7は、複数のビットを記憶し、書き込みにスピン転移現象を利用可能な磁気素子を提供するための本発明に基づく方法300の一実施形態の概略フローチャートを示す。磁気素子200´´が好適な磁気素子であることから、方法300については、磁気素子200´´と共に説明する。しかしながら、方法300は、磁気素子100、100´、100´´、200、及び200´等の他の磁気素子に用い得る。
第1構造体は、ステップ302を介して設けられる。好適な実施形態において、ステップ302は、二重スピン・トンネル/バルブ構造体210´´等の二重スピン・トンネル/バルブ構造体を設けるために用いられる。他の実施形態において、二重スピン・トンネル/バルブ構造体210又はスピン・トンネル接合110もしくは110´が、ステップ302において設けられる。結果的に、好適には、ステップ302には、第1固定層、第1非磁性スペーサ層、第1自由層、第1障壁層、第1固定層、接続層、第2固定層、第2障壁層、第2自由層、第2非磁性スペーサ層、及び第2固定層を設けることが含まれる。また、好適には、ステップ302には、いずれかのシード層及び、幾つかの実施形態において、固定層に隣接するAFM層を設けることが含まれる。接続層は、ステップ304で設けられる。好適な実施形態において、ステップ304には、共有AFM層202´´を設けることが含まれる。しかしながら、他の実施形態において、接続層202、202´、102、又は102´を設け得る。第2構造体は、ステップ306で設けられる。第2構造体は、好適には、二重スピン・トンネル/バルブ構造体230´´である。しかしながら、他の実施形態において、二重スピン・トンネル/バルブ構造体230もしくは230´又はスピン・トンネル接合120もしくは120´は、ステップ306で設けられる。そして、ステップ304及び306は、ステップ308で、任意に繰り返し得る。従って、ステップ308により、3つ以上のスピン・トンネル接合及び3つ以上の二重スピン・トンネル/バルブ構造体を提供し得る。また、好ましくはないが、磁気素子に設けられる構造体の種類を混ぜることも可能である。例えば、磁気素子(図示せず)には、接続層によって分離されたスピン・トンネル接合及び二重スピン・トンネル/バルブ構造体を含み得る。更に、方法300は、第1及び第2構造体を別々に設けるが、方法300は、第1及び第2構造体の配置を別々に規定し得る。
図8は、複数のビットを記憶し、書き込みにスピン転移現象を利用可能な磁気素子を提供するための本発明に基づく方法350の一実施形態の更に詳細なフローチャートである。磁気素子200´´が好適な磁気素子であることから、方法350については、磁気素子200´´と共に説明する。しかしながら、方法350は、磁気素子100、100´、100´´、200、及び200´等の他の磁気素子にも用い得る。AFM層212´´は、好適には、ステップ352で、シード層上に設けられる。好適な実施形態において、ステップ352は、標準のスパッタリングを用いて行われ、AFM材料は、好適には、120オングストロームのPtMnである。固定層214´´は、ステップ354で設けられる。固定層214´´は、好適には、スパッタリングされたCo、CoFe、他の強磁性体合金又は半金属である。好適な実施形態において、また、ステップ354には、膜厚が約20オングストロームの固定層を設けることが含まれる。非磁性スペーサ層216´´は、ステップ356で設けられる。ステップ356には、膜厚が15〜40オングストロームの間の銅層を設けることを含み得る。しかしながら、他の非磁性導電体も選択し得る。合成自由層218´´は、ステップ358で設けられる。ステップ358には、層226、227、及び228を設けることが含まれる。磁性層226及び228には、Co、Ni、Fe、それらの合金、又は半金属を含み得る。磁性層226及び228の膜厚は、同様であってよく、例えば、25及び30オングストローム又は双方共25オングストロームであってよい。また、ステップ358には、磁性層226及び228を反強磁性的に並べさせる非磁性層227を設けることが含まれる。例えば、非磁性層227は、8.5オングストロームのRuであってよい。障壁層220´´は、ステップ360で設けられる。ステップ360には、10〜30オングストロームの間のアルミナ又は他の非磁性絶縁体を設けることを含み得る。固定層222´´は、ステップ362で設けられる。ステップ362は、ステップ354と同じであってよい。二重スピン・トンネル/バルブ構造体210´´は、ステップ364で、例えば、イオン・ミリング(ion milling )を用いて任意に規定し得る。従って、ステップ364により、二重スピン・トンネル/バルブ構造体210´´の配置を二重スピン・トンネル/バルブ構造体230´´とは別々に規定し得る。しかしながら、他の実施形態において、ステップ364は、省略してもよい。
共有AFM層202´´又は接続層は、ステップ366で設けられる。ステップ366において成膜された共有AFM層202´´は、好適には、200〜300オングストロームのPtMnである。
合成固定層242´´は、ステップ368で設けられる。ステップ368には、層262、264、及び266を設けることが含まれる。磁性層262及び266には、Co、Ni、Fe、それらの合金、又は半金属を含み得る。上部磁性層262の膜厚は、例えば35オングストロームで、底部磁性層266の膜厚、例えば、15オングストロームより大きい方が良い。膜厚が異なると、磁性層262及び266の磁化を、AFM層232´´の方位を設定する高温アニールによって、所望の方向に設定し得る。また、ステップ368には、磁性層262及び268を反強磁性的に並べ得る非磁性層264を設けることが含まれる。例えば、非磁性層264は、8.5オングストロームのRuであってよい。障壁層240´´は、ステップ370で成膜される。ステップ370には、10オングストローム未満のアルミナ又は他の非磁性絶縁体を設けることを含み得る。従って、ステップ360において形成される障壁層240´´の膜厚は、ステップ370において形成される障壁層220´´の膜厚と異なる。その結果、二重スピン・トンネル/バルブ構造体210´´は、必要に応じて、二重スピン・トンネル/バルブ構造体230´´とは異なる抵抗を有する。合成自由層238´´は、ステップ372で設けられる。ステップ372には、層256、258、及び260を設けることが含まれる。磁性層256及び260には、Co、Ni、Fe、それらの合金、又は半金属を含み得る。層256、258、及び260の膜厚及び材料は、書き込み電流I2F及びI2Rが異なり、また、好適には、自由層218´´のそれより小さくなるように選択される。磁性層256及び260の膜厚は、同様であってよく、例えば、15及び17オングストローム、又は、双方共15オングストロームであってよい。また、ステップ372には、磁性層256及び260を反強磁性的に並べさせ得る非磁性層258を設けることが含まれる。例えば、非磁性層258は、8.5オングストロームのRuであってよい。
非磁性スペーサ層236´´は、ステップ374で設けられる。好適には、ステップ374には、20〜40オングストロームの銅を成膜する段階が含まれる。しかしながら、他の非磁性導電性材料も用い得る。例えば、固定層234´´及び自由層238´´との相互拡散が小さいTaを選択してもよい。合成固定層234´´は、ステップ376で設けられる。ステップ376には、層250、252、及び254を設けることが含まれる。磁性層250及び254には、Co、Ni、Fe、それらの合金、又は半金属を含み得る。底部磁性層254の膜厚は、例えば、35オングストロームで、上部磁性層250の膜厚、例えば、15オングストロームより大きい方が良い。膜厚が異なると、磁性層250及び254の磁化を、AFM層232´´の方位を設定する高温アニールによって、所望の方向に設定し得る。結果的に、磁性層254の磁化は、製造が完了すると、磁性層262の磁化と並ぶ。また、ステップ376には、磁性層250及び254を反強磁性的に並べ得る非磁性層252を設けることが含まれる。例えば、非磁性層252は、8.5オングストロームのRuであってよい。AFM層232´´は、ステップ378で設けられる。好適には、ステップ378には、160オングストロームのPtMnを設けることが含まれる。そして、二重スピン・トンネル/バルブ構造体230´´の大きさは、ステップ380で規定し得る。好適には、ステップ380は、イオン・ミリングステップを用いて行われる。更に、一実施形態において、二重スピン・トンネル/バルブ構造体210´´の大きさは、ステップ380において規定し得る。そのような実施形態において、ステップ364は、好適には、省略される。
方法300及び/又は350を用いて、スピン転移を用いて書き込み可能であり、また複数のビットを記憶可能な磁気素子を作製する。従って、磁気素子100、100´、200、200´、及び200´´を設け得る。結果的に、そのような磁気素子100、100´、200´、200´、及び200´´を利用するMRAM等の磁気メモリを作製し得る。磁気素子100、100´、200´、200´、及び200´´等の磁気素子を用いることから、メモリの密度は高くなり、回路は単純化され、更に局所化された現象を用いて書き込むことができる。
また、上述した多ビット磁気素子の構造体は、積層当たり記憶されるビットの数を大きくするのではなく、再生信号を強化するためだけに用い得る。信号強化をしたい場合、積層には、最小及び最大の抵抗状態だけを用いて書き込み及び読み出しを行う。更に、具体的には、2ビット積層の場合、最小及び最大の抵抗状態は、(00)及び(11)である。この2ビット積層を信号強化だけに用いる場合、これは、その2つのスピン転移ユニットの再生信号の合計である再生信号を有する1ビット積層になる。
複数のビットを記憶し、スピン転移を用いて書き込み可能な磁気素子を提供するための方法及びシステムを開示した。本発明について、例示した実施形態に基づき説明したが、当業者であれば、実施形態の変更が可能なこと、また、そのような変更は本発明の思想と範囲内にあることを容易に認識し得る。従って、当業者であれば、添付の請求項の思想と範囲から逸脱することなく、多くの変形を行い得る。
従来の磁気メモリに用いられる従来の磁気素子を示す図。 磁気素子として用いられる二重スピン・トンネル/バルブ構造体の一実施形態を示す図。 従来の磁気メモリに用いられる複数のビットを記憶可能な他の従来の磁気素子を示す図。 複数のビットを記憶し、書き込みにスピン転移現象を利用可能な本発明に基づく磁気素子の一実施形態を示す図。 複数のビットを記憶し、書き込みにスピン転移現象を利用可能な磁気素子に書き込むための本発明に基づく方法の一実施形態の概略フローチャートを示す図。 複数のビットを記憶し、書き込みにスピン転移現象を利用可能な磁気素子に書き込むための本発明に基づく方法の一実施形態の更に詳細なフローチャートを示す図。 複数のビットを記憶し、書き込みにスピン転移現象を利用可能な本発明に基づく磁気素子の第2実施形態を示す図。 複数のビットを記憶し、書き込みにスピン転移現象を利用可能な本発明に基づく磁気素子の第2実施形態の代替版を示す図。 複数のビットを記憶し、書き込みにスピン転移現象を利用し、二重スピン・トンネル/バルブ構造体を利用可能な本発明に基づく磁気素子の第3実施形態を示す図。 複数のビットを記憶し、書き込みにスピン転移現象を利用し、二重スピン・トンネル/バルブ構造体を利用可能な本発明に基づく磁気素子の第4実施形態を示す図。 複数のビットを記憶し、書き込みにスピン転移現象を利用し、二重スピン・トンネル/バルブ構造体を利用可能な本発明に基づく磁気素子の第5の好適な実施形態を示す図。 複数のビットを記憶し、書き込みにスピン転移現象を利用し、二重スピン・トンネル/バルブ構造体を利用可能な本発明に基づく磁気素子の第5の好適な実施形態の代替版を示す図。 複数のビットを記憶し、書き込みにスピン転移現象を利用可能な磁気素子を提供するための本発明に基づく方法の一実施形態の概略フローチャートを示す図。 複数のビットを記憶し、書き込みにスピン転移現象を利用可能な磁気素子を提供するための本発明に基づく方法の一実施形態の更に詳細なフローチャートを示す図。

Claims (11)

  1. 複数のビットを記憶可能な磁気素子であって、
    強磁性体であり、第1方向に固定された第1固定層磁化を有する第1固定層と、
    導電性の第1非磁性層と、
    強磁性体であり、第1自由層磁化を有する第1自由層であって、前記第1固定層と前記第1自由層との間に前記第1非磁性層が存在する前記第1自由層と、
    接続層と、
    強磁性体であり、第2方向に固定された第2固定層磁化を有する第2固定層であって、前記第2固定層と前記第1自由層との間に前記接続層が存在する前記第2固定層と、
    導電性の第2非磁性層と、
    強磁性体であり、第2自由層磁化を有する第2自由層であって、前記第2固定層と前記第2自由層との間に前記第2非磁性層が存在する前記第2自由層と、
    を備え、
    前記磁気素子は、書き込み電流が前記磁気素子を通過する際のスピン転移により、前記第1自由層磁化及び前記第2自由層磁化が方向を変更可能となるように構成される、磁気素子。
  2. 請求項1に記載の磁気素子において、
    前記第1自由層は、第1電流方向の第1書き込み電流及び第2電流方向の第2書き込み電流を用いて書き込まれるように構成され、
    前記第2自由層は、前記第1電流方向の第3書き込み電流及び前記第2方向の第4書き込み電流を用いて書き込まれるように構成され、
    前記第1書き込み電流、前記第2書き込み電流、前記第3書き込み電流及び前記第4書き込み電流は異なる、磁気素子。
  3. 請求項1に記載の磁気素子において、
    前記接続層は、前記第2固定層及び前記第1固定層に隣接する反強磁性層である、磁気素子。
  4. 請求項1に記載の磁気素子において、
    前記接続層、前記第1固定層及び前記第2固定層は、硬質磁性層/Ru/硬質磁性層、又は、硬質磁性層/Ru/軟質磁性層を含む合成反強磁性体を形成する、磁気素子。
  5. 請求項1に記載の磁気素子において、
    前記第1非磁性層及び前記第2非磁性層の少なくとも1つは絶縁性の障壁層であり、
    前記第1非磁性層が前記絶縁性の障壁層である場合、前記第1非磁性層によって、電荷キャリアが前記第1固定層と前記第1自由層との間を通過可能であり、
    前記第2非磁性層が前記絶縁性の障壁層である場合、前記第2非磁性層によって、電荷キャリアが前記第2固定層と前記第2自由層との間を通過可能である、磁気素子。
  6. 複数のビットを記憶可能な磁気素子であって、
    第1固定層、第1非磁性スペーサ層、第1自由層、第1障壁層及び第2固定層を含み、前記第1固定層と前記第1自由層との間に前記第1非磁性スペーサ層が存在し、前記第1自由層と前記第2固定層との間に前記第1障壁層が存在する第1二重スピン・トンネル/バルブ構造体と、
    接続層と、
    第3固定層、第2非磁性スペーサ層、第2自由層、第2障壁層及び第4固定層を含み、前記第3固定層と前記第2自由層との間に前記第2非磁性スペーサ層が存在し、前記第2自由層と前記第4固定層との間に前記第2障壁層が存在する第2二重スピン・トンネル/バルブ構造体と、
    を備える磁気素子。
  7. 請求項6に記載の磁気素子において、
    前記第1二重スピン・トンネル/バルブ構造体は、第1電流方向の第1書き込み電流及び第2電流方向の第2書き込み電流を用いて書き込まれるように構成され、
    前記第2二重スピン・トンネル/バルブ構造体は、前記第1電流方向の第3書き込み電流及び前記第2電流方向の第4書き込み電流を用いて書き込まれるように構成され、
    前記第1書き込み電流、前記第2書き込み電流、前記第3書き込み電流及び前記第4書き込み電流は異なる、磁気素子。
  8. 請求項6に記載の磁気素子において、
    前記接続層は、前記第2固定層磁化及び前記第4固定層磁化を固定するための反強磁性体である、磁気素子。
  9. 請求項6に記載の磁気素子において、
    前記接続層は、前記第2固定層と前記第4固定層との間に挟まれた合成反強磁性の硬質/Ru/硬質層、又は、合成反強磁性の軟質/Ru/軟質層である、磁気素子。
  10. 複数のビットを記憶可能な磁気素子をプログラミングするための方法であって、
    第1状態を書き込む場合、第1電流を前記磁気素子に流すことであって、前記磁気素子は、第1固定層、第1非磁性層、第1自由層、接続層、第2固定層、第2非磁性層、及び第2自由層を含み、前記第1固定層は、強磁性体であり第1方向に固定された第1固定層磁化を有し、前記第1非磁性層は、前記第1固定層と前記第1自由層との間に存在し、前記第1自由層は、強磁性体であり第1自由層磁化を有し、前記第2固定層は、強磁性体であり第2方向に固定された第2固定層磁化を有し、前記接続層は、前記第2固定層と前記第1自由層との間に存在し、前記第2非磁性層は、前記第2固定層と前記第2自由層との間に存在し、前記第2自由層は、強磁性体であり第2自由層磁化を有し、前記磁気素子は、スピン転移により前記第1自由層磁化及び前記第2自由層磁化が方向を変更可能とするように構成され、前記第1電流は、前記第1自由層磁化を前記第1固定層磁化に平行に並べるに充分であるとともに、前記第2自由層磁化を前記第2固定層磁化に平行に並べるに充分である、前記第1電流を前記磁気素子に流すこと、
    少なくとも第2電流を前記磁気素子に印加することであって、前記少なくとも第2電流は、前記第1自由層磁化を前記第1固定層磁化に平行なままにするとともに、前記第2自由層磁化を前記第2固定層磁化に反平行に並べる、前記少なくとも第2電流を前記磁気素子に印加すること、
    第3状態を書き込む場合、少なくとも第3電流を前記磁気素子に印加することであって、前記少なくとも第3電流は、前記第1自由層磁化を前記第1固定層磁化に反平行に並べるとともに、前記第2自由層磁化を前記第2固定層磁化に反平行に並べる、前記少なくとも第3電流を前記磁気素子に印加すること、
    第4状態を書き込む場合、前記第1電流を印加した後に少なくとも第4電流を前記磁気素子に印加することであって、前記少なくとも第4電流は、前記第1自由層磁化を前記第1固定層磁化に反平行な状態のままにするとともに、前記第2自由層磁化を前記第2固定層磁化に平行に並べる、前記少なくとも第4電流を前記磁気素子に印加すること、
    を備える、方法。
  11. 請求項10に記載の方法において、
    前記第1自由層は、前記磁気素子を流れる第1電流方向の第1書き込み電流及び第2電流方向の第2書き込み電流を用いて書き込まれるように構成され、前記第2自由層は、前記磁気素子を流れる前記第1電流方向の第3書き込み電流及び前記第2電流方向の第4書き込み電流を用いて書き込まれるように構成され、前記第3書き込み電流は前記第1書き込み電流より小さく、前記第4書き込み電流は前記第2書き込み電流より小さく、前記第1電流は、前記第1電流方向であるとともに、前記第1書き込み電流及び前記第3書き込み電流より大きく、
    前記少なくとも第2電流は、前記第1電流方向に印加される第5電流と、それに続いて前記第2電流方向に印加される第6電流とを含み、前記第5電流は、前記第1書き込み電流及び前記第3書き込み電流より大きく、前記第6電流は、前記第2書き込み電流より小さく、かつ前記第4書き込み電流より大きく、
    前記少なくとも第3電流は、前記第2電流方向の第7電流と、それに続く前記第1電流方向の第8電流とを含み、前記第7電流は、前記第2書き込み電流及び前記第4書き込み電流より大きく、前記第8電流は、前記第1書き込み電流より小さく、かつ前記第3書き込み電流より大きく、
    前記少なくとも第4電流は、前記第2電流方向の第9電流を含み、前記第9電流は、前記第2書き込み電流及び前記第4書き込み電流より大きい、方法。
JP2006524840A 2003-08-26 2004-08-24 スピン転移スイッチングを利用し且つ複数のビットを記憶する磁気メモリ素子 Pending JP2007504651A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/649,119 US6985385B2 (en) 2003-08-26 2003-08-26 Magnetic memory element utilizing spin transfer switching and storing multiple bits
PCT/US2004/027708 WO2005020242A2 (en) 2003-08-26 2004-08-24 Magnetic memory element utilizing spin transfer switching and storing multiple bits

Publications (1)

Publication Number Publication Date
JP2007504651A true JP2007504651A (ja) 2007-03-01

Family

ID=34216873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006524840A Pending JP2007504651A (ja) 2003-08-26 2004-08-24 スピン転移スイッチングを利用し且つ複数のビットを記憶する磁気メモリ素子

Country Status (7)

Country Link
US (1) US6985385B2 (ja)
EP (1) EP1658614B1 (ja)
JP (1) JP2007504651A (ja)
KR (1) KR100713270B1 (ja)
CN (1) CN1842874A (ja)
DE (1) DE602004015803D1 (ja)
WO (1) WO2005020242A2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114108A (ja) * 2009-11-26 2011-06-09 Fujitsu Ltd スピン注入型磁気ランダムアクセスメモリ
WO2012008349A1 (ja) * 2010-07-16 2012-01-19 株式会社日立製作所 磁気抵抗素子、磁気メモリセル及び磁気ランダムアクセスメモリ
JP2012114288A (ja) * 2010-11-25 2012-06-14 Fujitsu Ltd 磁気抵抗素子および半導体メモリ
JP2013055088A (ja) * 2011-08-31 2013-03-21 Fujitsu Ltd 磁気抵抗素子及び磁気記憶装置
JP2013197317A (ja) * 2012-03-20 2013-09-30 Toshiba Corp 磁気記憶素子及び不揮発性記憶装置
JP2014041693A (ja) * 2010-04-28 2014-03-06 Hitachi Ltd 半導体記憶装置
US8750034B2 (en) 2010-08-17 2014-06-10 Fujitsu Limited Magnetoresistance element and semiconductor memory device
WO2017010549A1 (ja) * 2015-07-16 2017-01-19 国立大学法人東北大学 磁気抵抗効果素子および磁気メモリ
JP2018522404A (ja) * 2015-06-05 2018-08-09 アレグロ・マイクロシステムズ・エルエルシー 磁界に対する応答が改善されたスピンバルブ磁気抵抗効果素子

Families Citing this family (206)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7573737B2 (en) * 2003-08-19 2009-08-11 New York University High speed low power magnetic devices based on current induced spin-momentum transfer
US7911832B2 (en) 2003-08-19 2011-03-22 New York University High speed low power magnetic devices based on current induced spin-momentum transfer
US6980469B2 (en) * 2003-08-19 2005-12-27 New York University High speed low power magnetic devices based on current induced spin-momentum transfer
US8755222B2 (en) 2003-08-19 2014-06-17 New York University Bipolar spin-transfer switching
JP4747507B2 (ja) * 2004-04-16 2011-08-17 ソニー株式会社 磁気メモリ及びその記録方法
US7057921B2 (en) * 2004-05-11 2006-06-06 Grandis, Inc. Spin barrier enhanced dual magnetoresistance effect element and magnetic memory using the same
US7502248B2 (en) * 2004-05-21 2009-03-10 Samsung Electronics Co., Ltd. Multi-bit magnetic random access memory device
US7576956B2 (en) * 2004-07-26 2009-08-18 Grandis Inc. Magnetic tunnel junction having diffusion stop layer
JP4568152B2 (ja) * 2004-09-17 2010-10-27 株式会社東芝 磁気記録素子及びそれを用いた磁気記録装置
TWI283477B (en) * 2004-11-16 2007-07-01 Ind Tech Res Inst Magnetic random access memory with lower switching field
US20060114620A1 (en) * 2004-11-30 2006-06-01 Tdk Corporation Granular type free layer and magnetic head
WO2006077549A1 (en) * 2005-01-24 2006-07-27 Nxp B.V. Magnetic rom information carrier with additional stabilizing layer
US7180113B2 (en) * 2005-02-10 2007-02-20 Infineon Technologies Ag Double-decker MRAM cell with rotated reference layer magnetizations
JP2006287081A (ja) * 2005-04-04 2006-10-19 Fuji Electric Holdings Co Ltd スピン注入磁区移動素子およびこれを用いた装置
JP2006303159A (ja) * 2005-04-20 2006-11-02 Fuji Electric Holdings Co Ltd スピン注入磁区移動素子およびこれを用いた装置
JP2007005664A (ja) * 2005-06-27 2007-01-11 Fuji Electric Holdings Co Ltd スピン注入磁化反転素子
US20070019337A1 (en) * 2005-07-19 2007-01-25 Dmytro Apalkov Magnetic elements having improved switching characteristics and magnetic memory devices using the magnetic elements
US7224601B2 (en) 2005-08-25 2007-05-29 Grandis Inc. Oscillating-field assisted spin torque switching of a magnetic tunnel junction memory element
JP2007080952A (ja) * 2005-09-12 2007-03-29 Fuji Electric Holdings Co Ltd 多値記録スピン注入磁化反転素子およびこれを用いた装置
US7777261B2 (en) 2005-09-20 2010-08-17 Grandis Inc. Magnetic device having stabilized free ferromagnetic layer
US7973349B2 (en) * 2005-09-20 2011-07-05 Grandis Inc. Magnetic device having multilayered free ferromagnetic layer
US7859034B2 (en) * 2005-09-20 2010-12-28 Grandis Inc. Magnetic devices having oxide antiferromagnetic layer next to free ferromagnetic layer
JP2007095765A (ja) * 2005-09-27 2007-04-12 Fuji Electric Holdings Co Ltd 多値記録スピン注入磁化反転素子およびこれを用いた装置
US7430135B2 (en) * 2005-12-23 2008-09-30 Grandis Inc. Current-switched spin-transfer magnetic devices with reduced spin-transfer switching current density
US8508984B2 (en) * 2006-02-25 2013-08-13 Avalanche Technology, Inc. Low resistance high-TMR magnetic tunnel junction and process for fabrication thereof
US7732881B2 (en) * 2006-11-01 2010-06-08 Avalanche Technology, Inc. Current-confined effect of magnetic nano-current-channel (NCC) for magnetic random access memory (MRAM)
US8063459B2 (en) * 2007-02-12 2011-11-22 Avalanche Technologies, Inc. Non-volatile magnetic memory element with graded layer
US20070253245A1 (en) * 2006-04-27 2007-11-01 Yadav Technology High Capacity Low Cost Multi-Stacked Cross-Line Magnetic Memory
US8084835B2 (en) * 2006-10-20 2011-12-27 Avalanche Technology, Inc. Non-uniform switching based non-volatile magnetic based memory
US8018011B2 (en) * 2007-02-12 2011-09-13 Avalanche Technology, Inc. Low cost multi-state magnetic memory
US8183652B2 (en) * 2007-02-12 2012-05-22 Avalanche Technology, Inc. Non-volatile magnetic memory with low switching current and high thermal stability
US8363457B2 (en) * 2006-02-25 2013-01-29 Avalanche Technology, Inc. Magnetic memory sensing circuit
US8058696B2 (en) 2006-02-25 2011-11-15 Avalanche Technology, Inc. High capacity low cost multi-state magnetic memory
US20080246104A1 (en) * 2007-02-12 2008-10-09 Yadav Technology High Capacity Low Cost Multi-State Magnetic Memory
US8535952B2 (en) * 2006-02-25 2013-09-17 Avalanche Technology, Inc. Method for manufacturing non-volatile magnetic memory
US20070246787A1 (en) * 2006-03-29 2007-10-25 Lien-Chang Wang On-plug magnetic tunnel junction devices based on spin torque transfer switching
US8120949B2 (en) * 2006-04-27 2012-02-21 Avalanche Technology, Inc. Low-cost non-volatile flash-RAM memory
US7851840B2 (en) * 2006-09-13 2010-12-14 Grandis Inc. Devices and circuits based on magnetic tunnel junctions utilizing a multilayer barrier
US7724469B2 (en) * 2006-12-06 2010-05-25 Seagate Technology Llc High frequency field assisted write device
US20090218645A1 (en) * 2007-02-12 2009-09-03 Yadav Technology Inc. multi-state spin-torque transfer magnetic random access memory
US8542524B2 (en) * 2007-02-12 2013-09-24 Avalanche Technology, Inc. Magnetic random access memory (MRAM) manufacturing process for a small magnetic tunnel junction (MTJ) design with a low programming current requirement
US7869266B2 (en) * 2007-10-31 2011-01-11 Avalanche Technology, Inc. Low current switching magnetic tunnel junction design for magnetic memory using domain wall motion
US7742329B2 (en) * 2007-03-06 2010-06-22 Qualcomm Incorporated Word line transistor strength control for read and write in spin transfer torque magnetoresistive random access memory
US7539047B2 (en) * 2007-05-08 2009-05-26 Honeywell International, Inc. MRAM cell with multiple storage elements
US7957179B2 (en) * 2007-06-27 2011-06-07 Grandis Inc. Magnetic shielding in magnetic multilayer structures
US7982275B2 (en) * 2007-08-22 2011-07-19 Grandis Inc. Magnetic element having low saturation magnetization
US8194436B2 (en) * 2007-09-19 2012-06-05 Nec Corporation Magnetic random access memory, write method therefor, and magnetoresistance effect element
US8100228B2 (en) * 2007-10-12 2012-01-24 D B Industries, Inc. Portable anchorage assembly
US9812184B2 (en) 2007-10-31 2017-11-07 New York University Current induced spin-momentum transfer stack with dual insulating layers
US7688615B2 (en) * 2007-12-04 2010-03-30 Macronix International Co., Ltd. Magnetic random access memory, manufacturing method and programming method thereof
US8013406B2 (en) * 2008-01-02 2011-09-06 The Hong Kong University Of Science And Technology Method and apparatus for generating giant spin-dependent chemical potential difference in non-magnetic materials
US8802451B2 (en) 2008-02-29 2014-08-12 Avalanche Technology Inc. Method for manufacturing high density non-volatile magnetic memory
US7936597B2 (en) * 2008-03-25 2011-05-03 Seagate Technology Llc Multilevel magnetic storage device
US8659852B2 (en) 2008-04-21 2014-02-25 Seagate Technology Llc Write-once magentic junction memory array
US7999336B2 (en) 2008-04-24 2011-08-16 Seagate Technology Llc ST-RAM magnetic element configurations to reduce switching current
US8098520B2 (en) * 2008-04-25 2012-01-17 Seagate Technology Llc Storage device including a memory cell having multiple memory layers
US7852663B2 (en) * 2008-05-23 2010-12-14 Seagate Technology Llc Nonvolatile programmable logic gates and adders
US7855911B2 (en) * 2008-05-23 2010-12-21 Seagate Technology Llc Reconfigurable magnetic logic device using spin torque
US7804709B2 (en) 2008-07-18 2010-09-28 Seagate Technology Llc Diode assisted switching spin-transfer torque memory unit
US8223532B2 (en) 2008-08-07 2012-07-17 Seagate Technology Llc Magnetic field assisted STRAM cells
US8054677B2 (en) 2008-08-07 2011-11-08 Seagate Technology Llc Magnetic memory with strain-assisted exchange coupling switch
US7935435B2 (en) * 2008-08-08 2011-05-03 Seagate Technology Llc Magnetic memory cell construction
US7881098B2 (en) * 2008-08-26 2011-02-01 Seagate Technology Llc Memory with separate read and write paths
US7894248B2 (en) * 2008-09-12 2011-02-22 Grandis Inc. Programmable and redundant circuitry based on magnetic tunnel junction (MTJ)
US7985994B2 (en) 2008-09-29 2011-07-26 Seagate Technology Llc Flux-closed STRAM with electronically reflective insulative spacer
US7826256B2 (en) 2008-09-29 2010-11-02 Seagate Technology Llc STRAM with compensation element
US7940551B2 (en) 2008-09-29 2011-05-10 Seagate Technology, Llc STRAM with electronically reflective insulative spacer
US7746687B2 (en) * 2008-09-30 2010-06-29 Seagate Technology, Llc Thermally assisted multi-bit MRAM
US8487390B2 (en) * 2008-10-08 2013-07-16 Seagate Technology Llc Memory cell with stress-induced anisotropy
US8169810B2 (en) 2008-10-08 2012-05-01 Seagate Technology Llc Magnetic memory with asymmetric energy barrier
US8089132B2 (en) 2008-10-09 2012-01-03 Seagate Technology Llc Magnetic memory with phonon glass electron crystal material
US8039913B2 (en) * 2008-10-09 2011-10-18 Seagate Technology Llc Magnetic stack with laminated layer
US7880209B2 (en) * 2008-10-09 2011-02-01 Seagate Technology Llc MRAM cells including coupled free ferromagnetic layers for stabilization
US20100091564A1 (en) * 2008-10-10 2010-04-15 Seagate Technology Llc Magnetic stack having reduced switching current
US8217478B2 (en) 2008-10-10 2012-07-10 Seagate Technology Llc Magnetic stack with oxide to reduce switching current
US20100102405A1 (en) * 2008-10-27 2010-04-29 Seagate Technology Llc St-ram employing a spin filter
US9165625B2 (en) * 2008-10-30 2015-10-20 Seagate Technology Llc ST-RAM cells with perpendicular anisotropy
US8045366B2 (en) * 2008-11-05 2011-10-25 Seagate Technology Llc STRAM with composite free magnetic element
KR101048353B1 (ko) 2008-11-07 2011-07-14 한양대학교 산학협력단 2 단자 마그네틱 메모리 셀과 스핀 fet를 이용한 메모리 소자
US8043732B2 (en) 2008-11-11 2011-10-25 Seagate Technology Llc Memory cell with radial barrier
US7826181B2 (en) * 2008-11-12 2010-11-02 Seagate Technology Llc Magnetic memory with porous non-conductive current confinement layer
US8289756B2 (en) 2008-11-25 2012-10-16 Seagate Technology Llc Non volatile memory including stabilizing structures
US7940600B2 (en) 2008-12-02 2011-05-10 Seagate Technology Llc Non-volatile memory with stray magnetic field compensation
US7859892B2 (en) * 2008-12-03 2010-12-28 Seagate Technology Llc Magnetic random access memory with dual spin torque reference layers
US7826259B2 (en) * 2009-01-29 2010-11-02 Seagate Technology Llc Staggered STRAM cell
US8053255B2 (en) 2009-03-03 2011-11-08 Seagate Technology Llc STRAM with compensation element and method of making the same
US7936598B2 (en) * 2009-04-28 2011-05-03 Seagate Technology Magnetic stack having assist layer
US8686520B2 (en) * 2009-05-29 2014-04-01 International Business Machines Corporation Spin-torque magnetoresistive structures
US8183653B2 (en) 2009-07-13 2012-05-22 Seagate Technology Llc Magnetic tunnel junction having coherent tunneling structure
US7999338B2 (en) 2009-07-13 2011-08-16 Seagate Technology Llc Magnetic stack having reference layers with orthogonal magnetization orientation directions
US8445979B2 (en) 2009-09-11 2013-05-21 Samsung Electronics Co., Ltd. Magnetic memory devices including magnetic layers separated by tunnel barriers
CN101672903B (zh) * 2009-09-23 2011-09-14 电子科技大学 一种惠斯通电桥式自旋阀磁传感器的制备方法
CN102074329B (zh) * 2009-11-23 2012-04-18 中国科学院物理研究所 一种磁性多层膜及其磁逻辑元件和磁性随机存取存储器
US8270208B2 (en) * 2010-02-08 2012-09-18 International Business Machines Corporation Spin-torque based memory device with read and write current paths modulated with a non-linear shunt resistor
US8300454B2 (en) * 2010-09-17 2012-10-30 Micron Technology, Inc. Spin torque transfer memory cell structures and methods
US9666639B2 (en) 2010-09-17 2017-05-30 Micron Technology, Inc. Spin torque transfer memory cell structures and methods
US8358534B2 (en) * 2010-09-17 2013-01-22 Micron Technology, Inc. Spin torque transfer memory cell structures and methods
US8310868B2 (en) * 2010-09-17 2012-11-13 Micron Technology, Inc. Spin torque transfer memory cell structures and methods
US8199570B2 (en) 2010-10-07 2012-06-12 Seagate Technology Llc Multi-bit memory with selectable magnetic layer
EP2447949B1 (en) * 2010-10-26 2016-11-30 Crocus Technology Multi level magnetic element
US8279662B2 (en) 2010-11-11 2012-10-02 Seagate Technology Llc Multi-bit magnetic memory with independently programmable free layer domains
US8405171B2 (en) 2010-11-16 2013-03-26 Seagate Technology Llc Memory cell with phonon-blocking insulating layer
US8508973B2 (en) 2010-11-16 2013-08-13 Seagate Technology Llc Method of switching out-of-plane magnetic tunnel junction cells
US8203870B2 (en) 2010-11-23 2012-06-19 Seagate Technology Llc Flux programmed multi-bit magnetic memory
EP2506265B1 (en) * 2011-03-28 2019-06-05 Crocus Technology Magnetic random access memory cell with a dual junction for ternary content addressable memory applications
KR20130015927A (ko) * 2011-08-05 2013-02-14 에스케이하이닉스 주식회사 멀티 레벨을 갖는 자기 저항 메모리 장치 및 그 구동방법
US8767446B2 (en) 2011-10-12 2014-07-01 International Business Machines Corporation Multi-bit spin-momentum-transfer magnetoresistence random access memory with single magnetic-tunnel-junction stack
US8698259B2 (en) 2011-12-20 2014-04-15 Samsung Electronics Co., Ltd. Method and system for providing a magnetic tunneling junction using thermally assisted switching
KR101446338B1 (ko) * 2012-07-17 2014-10-01 삼성전자주식회사 자기 소자 및 그 제조 방법
US20140037991A1 (en) 2012-07-31 2014-02-06 International Business Machines Corporation Magnetic random access memory with synthetic antiferromagnetic storage layers
US8852762B2 (en) 2012-07-31 2014-10-07 International Business Machines Corporation Magnetic random access memory with synthetic antiferromagnetic storage layers and non-pinned reference layers
US9047964B2 (en) 2012-08-20 2015-06-02 Qualcomm Incorporated Multi-level memory cell using multiple magnetic tunnel junctions with varying MGO thickness
US9082888B2 (en) 2012-10-17 2015-07-14 New York University Inverted orthogonal spin transfer layer stack
US9082950B2 (en) 2012-10-17 2015-07-14 New York University Increased magnetoresistance in an inverted orthogonal spin transfer layer stack
US9130155B2 (en) 2013-03-15 2015-09-08 Samsung Electronics Co., Ltd. Magnetic junctions having insertion layers and magnetic memories using the magnetic junctions
US8982613B2 (en) 2013-06-17 2015-03-17 New York University Scalable orthogonal spin transfer magnetic random access memory devices with reduced write error rates
US9529060B2 (en) 2014-01-09 2016-12-27 Allegro Microsystems, Llc Magnetoresistance element with improved response to magnetic fields
DE102014110438B4 (de) * 2014-07-24 2020-11-12 Infineon Technologies Ag XMR-Sensorvorrichtung
US9263667B1 (en) 2014-07-25 2016-02-16 Spin Transfer Technologies, Inc. Method for manufacturing MTJ memory device
US9337412B2 (en) 2014-09-22 2016-05-10 Spin Transfer Technologies, Inc. Magnetic tunnel junction structure for MRAM device
CN104362165B (zh) * 2014-10-10 2017-06-16 北京航空航天大学 一种基于磁场辅助的多级单元磁存储器件及制造方法
US9418683B2 (en) 2014-10-29 2016-08-16 International Business Machines Corporation Mass production of multichannel current perpendicular to plane head modules via preferred milling
US9299369B1 (en) 2014-10-29 2016-03-29 International Business Machines Corporation Multichannel data storage apparatus having abrasion resistant barrier
US9449622B2 (en) 2014-10-29 2016-09-20 International Business Machines Corporation Differing magnetic read sensors on a magnetic head
US9728712B2 (en) 2015-04-21 2017-08-08 Spin Transfer Technologies, Inc. Spin transfer torque structure for MRAM devices having a spin current injection capping layer
US10468590B2 (en) 2015-04-21 2019-11-05 Spin Memory, Inc. High annealing temperature perpendicular magnetic anisotropy structure for magnetic random access memory
US9853206B2 (en) 2015-06-16 2017-12-26 Spin Transfer Technologies, Inc. Precessional spin current structure for MRAM
US9773974B2 (en) 2015-07-30 2017-09-26 Spin Transfer Technologies, Inc. Polishing stop layer(s) for processing arrays of semiconductor elements
US10163479B2 (en) 2015-08-14 2018-12-25 Spin Transfer Technologies, Inc. Method and apparatus for bipolar memory write-verify
JP2017059740A (ja) * 2015-09-18 2017-03-23 富士通株式会社 磁気トンネル接合素子及び半導体記憶装置
US9741926B1 (en) 2016-01-28 2017-08-22 Spin Transfer Technologies, Inc. Memory cell having magnetic tunnel junction and thermal stability enhancement layer
US10460781B2 (en) 2016-09-27 2019-10-29 Spin Memory, Inc. Memory device with a dual Y-multiplexer structure for performing two simultaneous operations on the same row of a memory bank
US11119936B2 (en) 2016-09-27 2021-09-14 Spin Memory, Inc. Error cache system with coarse and fine segments for power optimization
US11119910B2 (en) 2016-09-27 2021-09-14 Spin Memory, Inc. Heuristics for selecting subsegments for entry in and entry out operations in an error cache system with coarse and fine grain segments
US10446210B2 (en) 2016-09-27 2019-10-15 Spin Memory, Inc. Memory instruction pipeline with a pre-read stage for a write operation for reducing power consumption in a memory device that uses dynamic redundancy registers
US10628316B2 (en) 2016-09-27 2020-04-21 Spin Memory, Inc. Memory device with a plurality of memory banks where each memory bank is associated with a corresponding memory instruction pipeline and a dynamic redundancy register
US10366774B2 (en) 2016-09-27 2019-07-30 Spin Memory, Inc. Device with dynamic redundancy registers
US10437723B2 (en) 2016-09-27 2019-10-08 Spin Memory, Inc. Method of flushing the contents of a dynamic redundancy register to a secure storage area during a power down in a memory device
US10360964B2 (en) 2016-09-27 2019-07-23 Spin Memory, Inc. Method of writing contents in memory during a power up sequence using a dynamic redundancy register in a memory device
US10437491B2 (en) 2016-09-27 2019-10-08 Spin Memory, Inc. Method of processing incomplete memory operations in a memory device during a power up sequence and a power down sequence using a dynamic redundancy register
US11151042B2 (en) 2016-09-27 2021-10-19 Integrated Silicon Solution, (Cayman) Inc. Error cache segmentation for power reduction
US10818331B2 (en) 2016-09-27 2020-10-27 Spin Memory, Inc. Multi-chip module for MRAM devices with levels of dynamic redundancy registers
US10991410B2 (en) 2016-09-27 2021-04-27 Spin Memory, Inc. Bi-polar write scheme
US10546625B2 (en) 2016-09-27 2020-01-28 Spin Memory, Inc. Method of optimizing write voltage based on error buffer occupancy
WO2018136003A1 (en) * 2017-01-17 2018-07-26 Agency For Science, Technology And Research Memory cell, memory array, method of forming and operating memory cell
US10672976B2 (en) 2017-02-28 2020-06-02 Spin Memory, Inc. Precessional spin current structure with high in-plane magnetization for MRAM
US10665777B2 (en) 2017-02-28 2020-05-26 Spin Memory, Inc. Precessional spin current structure with non-magnetic insertion layer for MRAM
US10620279B2 (en) 2017-05-19 2020-04-14 Allegro Microsystems, Llc Magnetoresistance element with increased operational range
US11022661B2 (en) 2017-05-19 2021-06-01 Allegro Microsystems, Llc Magnetoresistance element with increased operational range
US10032978B1 (en) 2017-06-27 2018-07-24 Spin Transfer Technologies, Inc. MRAM with reduced stray magnetic fields
US10489245B2 (en) 2017-10-24 2019-11-26 Spin Memory, Inc. Forcing stuck bits, waterfall bits, shunt bits and low TMR bits to short during testing and using on-the-fly bit failure detection and bit redundancy remapping techniques to correct them
US10656994B2 (en) 2017-10-24 2020-05-19 Spin Memory, Inc. Over-voltage write operation of tunnel magnet-resistance (“TMR”) memory device and correcting failure bits therefrom by using on-the-fly bit failure detection and bit redundancy remapping techniques
US10529439B2 (en) 2017-10-24 2020-01-07 Spin Memory, Inc. On-the-fly bit failure detection and bit redundancy remapping techniques to correct for fixed bit defects
US10481976B2 (en) 2017-10-24 2019-11-19 Spin Memory, Inc. Forcing bits as bad to widen the window between the distributions of acceptable high and low resistive bits thereby lowering the margin and increasing the speed of the sense amplifiers
US10679685B2 (en) 2017-12-27 2020-06-09 Spin Memory, Inc. Shared bit line array architecture for magnetoresistive memory
US10811594B2 (en) 2017-12-28 2020-10-20 Spin Memory, Inc. Process for hard mask development for MRAM pillar formation using photolithography
US10395711B2 (en) 2017-12-28 2019-08-27 Spin Memory, Inc. Perpendicular source and bit lines for an MRAM array
US10516094B2 (en) 2017-12-28 2019-12-24 Spin Memory, Inc. Process for creating dense pillars using multiple exposures for MRAM fabrication
US10424726B2 (en) 2017-12-28 2019-09-24 Spin Memory, Inc. Process for improving photoresist pillar adhesion during MRAM fabrication
US10395712B2 (en) 2017-12-28 2019-08-27 Spin Memory, Inc. Memory array with horizontal source line and sacrificial bitline per virtual source
US10891997B2 (en) 2017-12-28 2021-01-12 Spin Memory, Inc. Memory array with horizontal source line and a virtual source line
US10360962B1 (en) 2017-12-28 2019-07-23 Spin Memory, Inc. Memory array with individually trimmable sense amplifiers
US10886330B2 (en) 2017-12-29 2021-01-05 Spin Memory, Inc. Memory device having overlapping magnetic tunnel junctions in compliance with a reference pitch
US10840439B2 (en) 2017-12-29 2020-11-17 Spin Memory, Inc. Magnetic tunnel junction (MTJ) fabrication methods and systems
US10424723B2 (en) 2017-12-29 2019-09-24 Spin Memory, Inc. Magnetic tunnel junction devices including an optimization layer
US10360961B1 (en) 2017-12-29 2019-07-23 Spin Memory, Inc. AC current pre-charge write-assist in orthogonal STT-MRAM
US10367139B2 (en) 2017-12-29 2019-07-30 Spin Memory, Inc. Methods of manufacturing magnetic tunnel junction devices
US10236047B1 (en) 2017-12-29 2019-03-19 Spin Memory, Inc. Shared oscillator (STNO) for MRAM array write-assist in orthogonal STT-MRAM
US10840436B2 (en) 2017-12-29 2020-11-17 Spin Memory, Inc. Perpendicular magnetic anisotropy interface tunnel junction devices and methods of manufacture
US10546624B2 (en) 2017-12-29 2020-01-28 Spin Memory, Inc. Multi-port random access memory
US10270027B1 (en) 2017-12-29 2019-04-23 Spin Memory, Inc. Self-generating AC current assist in orthogonal STT-MRAM
US10236048B1 (en) 2017-12-29 2019-03-19 Spin Memory, Inc. AC current write-assist in orthogonal STT-MRAM
US10199083B1 (en) 2017-12-29 2019-02-05 Spin Transfer Technologies, Inc. Three-terminal MRAM with ac write-assist for low read disturb
US10784439B2 (en) 2017-12-29 2020-09-22 Spin Memory, Inc. Precessional spin current magnetic tunnel junction devices and methods of manufacture
US10141499B1 (en) 2017-12-30 2018-11-27 Spin Transfer Technologies, Inc. Perpendicular magnetic tunnel junction device with offset precessional spin current layer
US10229724B1 (en) 2017-12-30 2019-03-12 Spin Memory, Inc. Microwave write-assist in series-interconnected orthogonal STT-MRAM devices
US10339993B1 (en) 2017-12-30 2019-07-02 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with skyrmionic assist layers for free layer switching
US10319900B1 (en) 2017-12-30 2019-06-11 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with precessional spin current layer having a modulated moment density
US10236439B1 (en) 2017-12-30 2019-03-19 Spin Memory, Inc. Switching and stability control for perpendicular magnetic tunnel junction device
US10255962B1 (en) 2017-12-30 2019-04-09 Spin Memory, Inc. Microwave write-assist in orthogonal STT-MRAM
US10468588B2 (en) 2018-01-05 2019-11-05 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with skyrmionic enhancement layers for the precessional spin current magnetic layer
US10438996B2 (en) 2018-01-08 2019-10-08 Spin Memory, Inc. Methods of fabricating magnetic tunnel junctions integrated with selectors
US10438995B2 (en) 2018-01-08 2019-10-08 Spin Memory, Inc. Devices including magnetic tunnel junctions integrated with selectors
US10777345B2 (en) 2018-02-21 2020-09-15 Allegro Microsystems, Llc Spin valve with bias alignment
US10431275B2 (en) 2018-03-02 2019-10-01 Samsung Electronics Co., Ltd. Method and system for providing magnetic junctions having hybrid oxide and noble metal capping layers
US10388861B1 (en) 2018-03-08 2019-08-20 Spin Memory, Inc. Magnetic tunnel junction wafer adaptor used in magnetic annealing furnace and method of using the same
US10446744B2 (en) 2018-03-08 2019-10-15 Spin Memory, Inc. Magnetic tunnel junction wafer adaptor used in magnetic annealing furnace and method of using the same
US10734573B2 (en) 2018-03-23 2020-08-04 Spin Memory, Inc. Three-dimensional arrays with magnetic tunnel junction devices including an annular discontinued free magnetic layer and a planar reference magnetic layer
US10784437B2 (en) 2018-03-23 2020-09-22 Spin Memory, Inc. Three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer
US11107974B2 (en) 2018-03-23 2021-08-31 Spin Memory, Inc. Magnetic tunnel junction devices including a free magnetic trench layer and a planar reference magnetic layer
US11107978B2 (en) 2018-03-23 2021-08-31 Spin Memory, Inc. Methods of manufacturing three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer
US10411185B1 (en) 2018-05-30 2019-09-10 Spin Memory, Inc. Process for creating a high density magnetic tunnel junction array test platform
US10559338B2 (en) 2018-07-06 2020-02-11 Spin Memory, Inc. Multi-bit cell read-out techniques
US10692569B2 (en) 2018-07-06 2020-06-23 Spin Memory, Inc. Read-out techniques for multi-bit cells
US10593396B2 (en) 2018-07-06 2020-03-17 Spin Memory, Inc. Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations
US10600478B2 (en) 2018-07-06 2020-03-24 Spin Memory, Inc. Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations
US10650875B2 (en) 2018-08-21 2020-05-12 Spin Memory, Inc. System for a wide temperature range nonvolatile memory
US10699761B2 (en) 2018-09-18 2020-06-30 Spin Memory, Inc. Word line decoder memory architecture
US11621293B2 (en) 2018-10-01 2023-04-04 Integrated Silicon Solution, (Cayman) Inc. Multi terminal device stack systems and methods
US10971680B2 (en) 2018-10-01 2021-04-06 Spin Memory, Inc. Multi terminal device stack formation methods
US10580827B1 (en) 2018-11-16 2020-03-03 Spin Memory, Inc. Adjustable stabilizer/polarizer method for MRAM with enhanced stability and efficient switching
EP3664094B1 (en) * 2018-12-06 2022-08-24 IMEC vzw A magnetic tunnel junction unit and a memory device
US11107979B2 (en) 2018-12-28 2021-08-31 Spin Memory, Inc. Patterned silicide structures and methods of manufacture
US11217626B2 (en) 2019-08-30 2022-01-04 Allegro Microsystems, Llc Dual tunnel magnetoresistance (TMR) element structure
US11127518B2 (en) 2019-08-30 2021-09-21 Allegro Microsystems, Llc Tunnel magnetoresistance (TMR) element having cobalt iron and tantalum layers
GB2588151B (en) * 2019-10-09 2022-05-04 Huo Suguo Hybrid perpendicular and in-plane STT-MRAM

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11510317A (ja) * 1995-07-25 1999-09-07 エナージー コンバーション デバイセス インコーポレイテッド 電気的に消去可能で直接上書き可能な複数ビット単一セル記憶素子及びそれらで作製されるアレイ
JP2001156357A (ja) * 1999-09-16 2001-06-08 Toshiba Corp 磁気抵抗効果素子および磁気記録素子
JP2001313377A (ja) * 2000-03-09 2001-11-09 Hewlett Packard Co <Hp> メモリセル装置及びその製造方法
JP2003229544A (ja) * 2002-02-04 2003-08-15 Mitsubishi Electric Corp 磁気記憶装置
JP2003298023A (ja) * 2002-03-29 2003-10-17 Toshiba Corp 磁気メモリ及び磁気メモリ装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2744115B2 (ja) * 1990-05-21 1998-04-28 株式会社東芝 疑似スタティックramの制御回路
US5930164A (en) 1998-02-26 1999-07-27 Motorola, Inc. Magnetic memory unit having four states and operating method thereof
US6911710B2 (en) 2000-03-09 2005-06-28 Hewlett-Packard Development Company, L.P. Multi-bit magnetic memory cells
US6426910B1 (en) * 2000-08-30 2002-07-30 Micron Technology, Inc. Enhanced fuse configurations for low-voltage flash memories
FR2817999B1 (fr) 2000-12-07 2003-01-10 Commissariat Energie Atomique Dispositif magnetique a polarisation de spin et a empilement(s) tri-couche(s) et memoire utilisant ce dispositif
FR2817998B1 (fr) 2000-12-07 2003-01-10 Commissariat Energie Atomique Dispositif magnetique a polarisation de spin et a rotation d'aimantation, memoire et procede d'ecriture utilisant ce dispositif
US6744086B2 (en) 2001-05-15 2004-06-01 Nve Corporation Current switched magnetoresistive memory cell
US6418048B1 (en) * 2001-08-15 2002-07-09 Read-Rite Corporation Spin-dependent tunneling sensor suitable for a magnetic memory
US6741496B2 (en) 2001-09-27 2004-05-25 Intel Corporation Electron spin mechanisms for inducing magnetic-polarization reversal
US6829161B2 (en) * 2003-01-10 2004-12-07 Grandis, Inc. Magnetostatically coupled magnetic elements utilizing spin transfer and an MRAM device using the magnetic element
US6847547B2 (en) 2003-02-28 2005-01-25 Grandis, Inc. Magnetostatically coupled magnetic elements utilizing spin transfer and an MRAM device using the magnetic element
KR100530164B1 (ko) * 2003-06-04 2005-11-28 최학문 책·걸상용 높이 조절장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11510317A (ja) * 1995-07-25 1999-09-07 エナージー コンバーション デバイセス インコーポレイテッド 電気的に消去可能で直接上書き可能な複数ビット単一セル記憶素子及びそれらで作製されるアレイ
JP2001156357A (ja) * 1999-09-16 2001-06-08 Toshiba Corp 磁気抵抗効果素子および磁気記録素子
JP2001313377A (ja) * 2000-03-09 2001-11-09 Hewlett Packard Co <Hp> メモリセル装置及びその製造方法
JP2003229544A (ja) * 2002-02-04 2003-08-15 Mitsubishi Electric Corp 磁気記憶装置
JP2003298023A (ja) * 2002-03-29 2003-10-17 Toshiba Corp 磁気メモリ及び磁気メモリ装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114108A (ja) * 2009-11-26 2011-06-09 Fujitsu Ltd スピン注入型磁気ランダムアクセスメモリ
JP2014041693A (ja) * 2010-04-28 2014-03-06 Hitachi Ltd 半導体記憶装置
WO2012008349A1 (ja) * 2010-07-16 2012-01-19 株式会社日立製作所 磁気抵抗素子、磁気メモリセル及び磁気ランダムアクセスメモリ
JPWO2012008349A1 (ja) * 2010-07-16 2013-09-09 株式会社日立製作所 磁気抵抗素子、磁気メモリセル及び磁気ランダムアクセスメモリ
US8750034B2 (en) 2010-08-17 2014-06-10 Fujitsu Limited Magnetoresistance element and semiconductor memory device
JP5617923B2 (ja) * 2010-08-17 2014-11-05 富士通株式会社 磁気抵抗素子及び半導体記憶装置
JP2012114288A (ja) * 2010-11-25 2012-06-14 Fujitsu Ltd 磁気抵抗素子および半導体メモリ
JP2013055088A (ja) * 2011-08-31 2013-03-21 Fujitsu Ltd 磁気抵抗素子及び磁気記憶装置
JP2013197317A (ja) * 2012-03-20 2013-09-30 Toshiba Corp 磁気記憶素子及び不揮発性記憶装置
US8928055B2 (en) 2012-03-20 2015-01-06 Kabushiki Kaisha Toshiba Magnetic memory element
JP2018522404A (ja) * 2015-06-05 2018-08-09 アレグロ・マイクロシステムズ・エルエルシー 磁界に対する応答が改善されたスピンバルブ磁気抵抗効果素子
WO2017010549A1 (ja) * 2015-07-16 2017-01-19 国立大学法人東北大学 磁気抵抗効果素子および磁気メモリ
JPWO2017010549A1 (ja) * 2015-07-16 2018-05-31 国立大学法人東北大学 磁気抵抗効果素子および磁気メモリ
US10164174B2 (en) 2015-07-16 2018-12-25 Tohoku University Magnetoresistance effect element and magnetic memory
US10658572B2 (en) 2015-07-16 2020-05-19 Tohoku University Magnetoresistance effect element and magnetic memory

Also Published As

Publication number Publication date
KR20060087525A (ko) 2006-08-02
EP1658614B1 (en) 2008-08-13
US20050045913A1 (en) 2005-03-03
CN1842874A (zh) 2006-10-04
DE602004015803D1 (de) 2008-09-25
EP1658614A2 (en) 2006-05-24
WO2005020242A3 (en) 2005-06-30
EP1658614A4 (en) 2007-06-27
WO2005020242A2 (en) 2005-03-03
US6985385B2 (en) 2006-01-10
KR100713270B1 (ko) 2007-05-04

Similar Documents

Publication Publication Date Title
US6985385B2 (en) Magnetic memory element utilizing spin transfer switching and storing multiple bits
US7859034B2 (en) Magnetic devices having oxide antiferromagnetic layer next to free ferromagnetic layer
US7242048B2 (en) Magnetic elements with ballistic magnetoresistance utilizing spin-transfer and an MRAM device using such magnetic elements
US8476723B2 (en) Magnetic element having low saturation magnetization
US6958927B1 (en) Magnetic element utilizing spin-transfer and half-metals and an MRAM device using the magnetic element
US7973349B2 (en) Magnetic device having multilayered free ferromagnetic layer
EP1552526B1 (en) Magnetic element utilizing spin transfer and an mram device using the magnetic element
TWI597823B (zh) 磁性接面
US7777261B2 (en) Magnetic device having stabilized free ferromagnetic layer
JP5961785B2 (ja) スイッチングが改良されたハイブリッド磁気トンネル接合要素を提供するための方法およびシステム
US8988934B2 (en) Multibit cell of magnetic random access memory with perpendicular magnetization
US8411494B2 (en) Three-dimensional magnetic random access memory with high speed writing
US20130005052A1 (en) Magnetic tunnel junction with iron dusting layer between free layer and tunnel barrier
US20050063222A1 (en) Current confined pass layer for magnetic elements utilizing spin-transfer and an MRAM device using such magnetic elements
US20040061154A1 (en) Thermally stable magnetic elements utilizing spin transfer and an MRAM device using the magnetic element
JP2004193595A (ja) 磁気セル及び磁気メモリ
KR20070106701A (ko) 스핀-전달 스위칭을 위해 구성된 고 스핀 분극 층들을 갖는 mtj 소자 및 자기 소자를 이용한 스핀트로닉 장치
CN105355780B (zh) 一种磁性元件、存储器系统及其写操作方法
US20140252438A1 (en) Three-Dimensional Magnetic Random Access Memory With High Speed Writing
JP2001256773A (ja) 磁気メモリセルのアクセス方法及び磁気メモリセル

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109