JP2007501184A - 耐腐食性低放射率コーティング - Google Patents

耐腐食性低放射率コーティング Download PDF

Info

Publication number
JP2007501184A
JP2007501184A JP2006533618A JP2006533618A JP2007501184A JP 2007501184 A JP2007501184 A JP 2007501184A JP 2006533618 A JP2006533618 A JP 2006533618A JP 2006533618 A JP2006533618 A JP 2006533618A JP 2007501184 A JP2007501184 A JP 2007501184A
Authority
JP
Japan
Prior art keywords
layer
infrared reflective
transparent dielectric
resistant
reflective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006533618A
Other languages
English (en)
Other versions
JP4519136B2 (ja
Inventor
ハーティッヒ、クラウス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Publication of JP2007501184A publication Critical patent/JP2007501184A/ja
Application granted granted Critical
Publication of JP4519136B2 publication Critical patent/JP4519136B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3613Coatings of type glass/inorganic compound/metal/inorganic compound/metal/other
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3618Coatings of type glass/inorganic compound/other inorganic layers, at least one layer being metallic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3626Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3639Multilayers containing at least two functional metal layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3681Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating being used in glazing, e.g. windows or windscreens
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/78Coatings specially designed to be durable, e.g. scratch-resistant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Abstract

耐腐食性低放射率コーティングが提供される。低放射率コーティングは、外側に向かって順に、耐腐食性内側赤外反射層、透明誘電中位層および外側赤外反射層とを含む。前記外側赤外反射層が実質的に銀からなり、前記耐腐食性赤外反射層が、前記外側赤外反射層とは異なる組成を有する。また、この性質を有するコーティングを堆積する方法、および、このコーティングを備えた基材が提供される。

Description

本発明は、ガラスおよびその他の基材のためのコーティングを提供する。更に詳しくは、本発明は、低放射率コーティングを提供する。本発明はまた、この性質を有するコーティングを堆積するための方法、および、このコーティングを備えた基材を提供する。
ガラスおよびその他の基材のための低放射率コーティングは、当該技術において周知である。それは、一般に、それぞれ2層以上の透明誘電層の間に配置された、1層以上の赤外反射層を含む。赤外反射層は、放射熱がコーティングを透過するのを(例えば、赤外線の反射によって)減少させる。これらの赤外反射層は、一般に、銀、金または銅などの導電性金属を含む。透明誘電層は、主に、可視反射を減少させ、色などのその他のコーティングの特性を制御するために使用される。慣用される透明誘電体は、亜鉛、錫およびチタンの酸化物、並びに、窒化ケイ素などの窒化物を含む。
多くの場合、低放射率コーティングにおける各赤外反射層は、銀を含む。銀は、高い導電性(故に、低い放射率)および高い可視透過を示し、無色であるため、最も一般的に使用される赤外反射物質である。各赤外反射層へ銀を使用することの欠点は、銀は機械的および化学的な耐性に乏しいということである。銀層は非常に柔らかく、そのため、銀系コーティングは機械的耐性に限界がある。銀層はまた、特に腐蝕し易い。よって、銀系のコーティングが損傷を受けるのを防ぐために、多大な注意が払われなければならない。例えば、製造期間(例えば、IGユニットへコーティングされた基材を組み入れる前および/またはその間)を考えてほしい。この期間中、コーティングされた基材は、しばしば、比較的過酷な条件に曝される。例えば、運搬、輸送および洗浄に関連した条件は、銀系コーティングが、かき傷を負ったり、磨耗したりする可能性がある。製造期間中、コーティングされた基材はまた、一般に、空気、水分およびその他の化学種に曝され、それらは全て、銀の腐蝕を生じ得る。よって、低放射率コーティングにおいて純粋な銀層が使用される場合、コーティング全体の耐性が、理想よりも低下する傾向にある。
赤外反射層の耐性を強化するための試みが為されている。例えば、ある場合には、内側および外側の銀層が、より耐性の高い反射物質で置換される。別の場合には、内側および外側の銀層が、より耐性の高い反射性金属を少量含む銀合金の層で置換される。例えば、伝えられるところでは、銀とパラジウムの合金が、純粋な銀よりも大きな耐性を有する赤外反射層を形成することが見出された。しかしながら、これらの代替案は、許容できないほど高い放射率を示すため、市場で拒絶されることが多い。故に、機械的および化学的に弱いにもかかわらず、純粋な銀が、低放射率コーティングの赤外反射層に一般に使用されている。
赤外反射銀層の特性は、それが堆積される表面に依存する。例えば、銀層を純粋な酸化亜鉛の上に直接に堆積することによって、銀層を、特に低い放射率を有するように成長させることができる。よって、低放射率コーティングにおいて、各赤外反射銀層を、純粋な酸化亜鉛層の直上に配置するということが、当該技術において広く慣用されている。
酸化亜鉛は、高品質の銀フィルムを成長させる上で有利であるが、幾つかの欠点を有している。一つの既知の欠点は、酸化亜鉛は高結晶性フィルムであるため、特に密ではない。よって、純粋な酸化亜鉛層は、理想よりも、空気、水分、ナトリウムイオンおよびその他の物質が、酸化亜鉛層を通過して移動し、銀層に到達して反応する可能性を防ぎにくいという傾向がある。更に、酸化亜鉛がスパッタリングによって堆積される場合、理想よりも頻繁にピンホールを生じる傾向がある。ピンホールは、空気、水分およびその他の化学種を銀層に接近させるため、これを回避するために多大な注意が払われる。酸化亜鉛のもう一つの欠点は、薄い酸化亜鉛層は、望まれるよりも大きな応力を示す傾向があるという点である。これは、接着力を最適よりも低下させるという結果を生じ、これは層剥離の可能性を生じさせる。これらの欠点にも関わらず、低放射率コーティングにおいて各銀層の直下に純粋な酸化亜鉛を付与することが、当該技術において慣用されている。
各赤外反射層が純粋な銀である従来の低放射率コーティングよりも、優れた耐性を達成する低放射率コーティングを提供することが望まれている。特に、放射率を過度に増加させることなく、このような結果を達成するコーティングを適用することが望まれている。
本発明は、低放射率コーティングを備えた基材に関する。コーティングは、外側に向かって順に(すなわち、基材から離れる方向に向かって)、耐腐食性内側赤外反射層、透明誘電中位層および外側赤外反射層を含む。外側赤外反射層は実質的に銀からなり、内側赤外反射層は、外側赤外反射層とは異なる組成を有する。好ましくは、透明中位層は、外側赤外反射層の直下に配置された、実質的に酸化亜鉛からなる層を含む。この酸化亜鉛層は、一般に、少なくとも約40オングストロームの厚みを有する。
幾つかの場合、内側赤外反射層は、耐腐食性銀合金を含む。好ましくは、合金は、主部分の銀と、副部分の耐性金属とを含み、前記耐性金属は銀以外の金属である。おそらく最適には、耐性金属の原子は、内側赤外反射層における金属原子の総数に対して、約10原子%未満を占める。好ましくは、耐性金属は、白金、パラジウム、銅、ニッケル、金、インジウム、亜鉛、ケイ素、ホウ素およびベリリウムからなる群より選択される金属である。
別の場合においては、内側赤外反射層は、導電性窒化物を含む。導電性窒化物は、窒化クロム、窒化ジルコニウム、窒化チタンおよび窒化ニオブからなる群より選択される窒化物であることが好ましい。
特定の実施形態において、低放射率コーティングは、更に、基材と耐腐食性内側赤外反射層との間に、透明誘電下地層を含む。この透明下地層は、一般に、耐腐食性内側赤外反射層の直下に配置された、耐性透明誘電層を含む。好ましくは、耐性透明誘電層は、亜鉛以外の望ましい金属を含む。この望ましい金属は、錫、アルミニウム、ビスマス、インジウム、チタン、ニオブおよびケイ素からなる群より選択される金属とすることができる。幾つかの場合において、耐性透明誘電層は、亜鉛および望ましい金属の両方を含む。例えば、耐性透明誘電層は、主部分の酸化亜鉛と、副部分の望ましい金属の酸化物を含み得る。おそらく最適には、耐性透明誘電層は、亜鉛・錫酸化物および/または亜鉛・アルミニウム酸化物を含む。幾つかの場合において、望ましい金属の原子は、耐性透明誘電層における金属原子の総数に対して、約10原子%未満を占める。幾つかの実施形態において、低放射率コーティングは、更に、前記外側赤外反射層よりも前記基材から離れた、透明誘電外側層を含む。
特定の特に好ましい実施形態において、本発明は、低放射率コーティングを備えた基材を提供し、低放射率コーティングは、外側に向かって順に、透明下地層、透明誘電下地層、耐腐食性内側赤外反射層、透明誘電中位層および外側赤外反射層を含む。この実施形態において、外側赤外反射層は実質的に銀からなり、耐腐食性内側赤外反射層は、外側赤外反射層とは異なる組成を有している。ここでは、二酸化ケイ素が、基材の直上に堆積される。連帯して、透明誘電下地層は、少なくとも1つの透明誘電フィルムを含む。更に、透明誘電中位層は、少なくとも5層の透明誘電中間層を含む。必須ではないが、二酸化ケイ素は、100オングストローム未満の厚みを有することが好ましい。幾つかの好ましい実施形態において、透明誘電中間層の各々は、200オングストローム未満の厚みを有する。幾つかの場合、このパラグラフに記載された全ての好ましい形態が組み合わされて付与され、透明誘電中位層は、外側赤外反射層の直下に実質的に酸化亜鉛からなる層を含み、透明誘電下地層は、耐腐食性内側赤外反射層の直下に耐性透明誘電層を含み、耐性透明誘電層は望ましい金属を含み、前記望ましい金属は亜鉛以外の金属である。特定の関連する方法において、このパラグラフに記載された各層/フィルムは、慣用のスパッタ法によって堆積される。
本発明はまた、例えば、基材上に低放射率コーティングを堆積することによって、コーティングされた基材を製造する方法を提供する。一般に、方法は、表面を有する基材を用意し、この表面上に低放射率コーティングを堆積することを含む。これは、外側に向かって順に、耐腐食性内側赤外反射層、透明誘電中位層および外側赤外反射層とを含む低放射率コーティングを堆積することを含むことが好ましい。一般に、外側赤外反射層は、実質的に銀からなるフィルムとして堆積され、耐腐食性赤外反射層は、外側赤外反射層とは異なる組成を有するフィルムとして堆積される。好ましくは、透明誘電中位層の堆積は、外側赤外反射層の直下に、実質的に酸化亜鉛からなる層を堆積することを含む。幾つかの場合において、酸化亜鉛層は、少なくとも約40オングストロームの厚みで堆積される。特定の好ましい方法において、中位層は、(前述したように)少なくとも5層の中間層を堆積することによって形成される。本実施形態の幾つかにおいては、内側赤外反射層は、耐腐食性銀合金を含むフィルムとして堆積される。例えば、内側赤外反射層は、主部分の銀と副部分の耐性金属とを含み、耐性金属が銀以外の金属であるフィルムとして堆積することができる。ここで、内側赤外反射層は、耐性金属の原子が、内側赤外反射層における金属原子の総数に対して、約10原子%未満を占めるフィルムとして、堆積されることが好ましい。幾つかの場合において、内側赤外反射層は、白金、パラジウム、銅、ニッケル、金、インジウム、亜鉛、ケイ素、ホウ素およびベリリウムからなる群より選択される耐性金属と、銀とを含むフィルムとして堆積される。別の例では、内側赤外反射層は、導電性窒化物を含むフィルムとして堆積することができる。この場合、中位層の堆積は、随意、内側赤外反射層の導電性窒化物の直上に、酸化物または窒化物の層を堆積することを含み得る。幾つかの場合において、内側赤外反射層は、窒化クロム、窒化ジルコニウム、窒化チタンおよび窒化ニオブからなる群より選択される導電性窒化物を含むフィルムとして堆積される。所望であれば、本方法は、更に、基材と耐腐食性内側赤外反射層との間に、透明誘電下地層を堆積する工程を含んでいてもよく、透明誘電下地層は、耐腐食性内側赤外反射層の直下に耐性透明誘電層を含み、耐性透明誘電層は望ましい金属を含み、望ましい金属は亜鉛以外の金属である。例えば、耐性透明誘電層は、錫、アルミニウム、ビスマス、インジウム、チタン、ニオブおよびケイ素からなる群より選択される望ましい金属を含むフィルムとして堆積することができる。好ましくは、耐性透明誘電層は、亜鉛および望ましい金属を含むフィルムとして堆積される。例えば、耐性透明誘電層は、主部分の酸化亜鉛と、副部分の望ましい金属の酸化物とを含むフィルムとして堆積することができる。幾つかの場合、耐性透明誘電層は、望ましい金属の原子が、耐性透明誘電層における金属原子の総数に対して、約10原子%未満を占めるフィルムとして堆積される。おそらく最適には、耐性透明誘電層は、亜鉛・錫酸化物および/または亜鉛・アルミニウム酸化物を含むフィルムとして堆積される。幾つかの場合において、方法は、更に、外側赤外反射層よりも基材から離して、透明誘電外側層を堆積することを含む。好ましくは、コーティングの各層は、スパッタリングによって基材上に堆積される。
以下の詳細な説明は図面を参照しながら読まれるものであり、図面においては、別の図面中の同様の要素には、同様の参照番号が付されている。図面は、一定の率で縮尺する必要のないものであり、選択された実施形態を表してはいるが、本発明の範囲を限定することを意図するものではない。当業者であれば、ここに示された実施例が、利用可能で且つ本発明の範囲内である、多くの好適な代替手段を有していることを認めるであろう。
本発明は、ガラスおよびその他の基材のための耐腐食性低放射率コーティングを提供する。「二層型(double-type)」低放射率コーティングにおける外側赤外反射層は、内側赤外反射層よりも、コーティングの全体的な放射率により大きな影響を及ぼすことが見出された。実際に、内側赤外反射層がコーティングの放射率に及ぼす影響は、驚くほど小さい。よって、本発明のコーティングにおいては、内側赤外反射層を、より耐性の高い(特に、耐腐食性の高い)赤外反射物質の層で置換する。驚くべきことに、このコーティングは、全体的なコーティングの放射率の増大を非常に小さくしながら、全体的なコーティングの耐性(特に、耐腐食性)の実質的な増大を達成する。
本発明は、耐腐食性低放射率コーティング40を備えた基材10を提供する。様々な基材が、本発明における使用に好適である。多くの場合、基材は、透明物質の板状物(すなわち、透明板)である。しかしながら、基材は、透明である必要はない。例えば、ある場合には、不透明基材が有用であり得る。しかしながら、大部分の応用に対しては、基材は、ガラスや透明プラスチックなどの透明または半透明物質を含むと予想される。多くの場合、基材はガラス板である。様々な既知のガラス種を使用することができ、ソーダ石灰ガラスが好ましいと予想される。
図1は、本発明のコーティング40の既存のものに代わる実施形態を示し、このコーティングは、外側に向かって順に(すなわち、基材から離れる方向に)、耐腐食性内側赤外反射層50、透明誘電中位層90および外側赤外反射層150を含む。このように、外側赤外反射層150は、透明誘電中位層90よりも基材10から離れており、透明誘電中位層90は、耐腐食性内側赤外反射層50よりも基材10から離れている。これらの層は、後の議論を考慮して明らかになるように、接触した連続物として付与される必要はない。
図2は、特定の好ましい実施形態を示し、コーティング40が、更に、下地層30および外側層130を含んでいる。下地層30および外側層130は任意であるが、双方とも好ましい。このように、特定の好ましい実施形態において、コーティング40は、外側に向かって順に、透明誘電下地層30、耐腐食性内側赤外反射層50、透明誘電中位層90、外側赤外反射層150および透明誘電外側層130を含む。繰返しになるが、これらの層は、接触している必要はない。
例えば、図3は、特定の好ましい実施形態を示し、コーティング40は、更に、それぞれ赤外反射層50および150の上方に配置された、保護層80および180を含む。これらの好ましい実施形態において、コーティング40は、外側に向かって順に、透明誘電下地層30、耐腐食性内側赤外反射層50、第1の保護層80、透明誘電中位層90、外側赤外反射層150、第2の保護層180および透明誘電外側層130を含む。ここで、繰返しになるが、層は、接触している必要はない。逆に、所望であれば、これらの層の間に他の層を介在させることができる。特定の実施形態においては、これらの層は、接触した連続物として付与される。
特定の好ましい実施形態が、本開示において詳説されるが、本発明の低放射率コーティング40は、耐腐食性赤外反射層50、透明誘電中位層90および外側赤外反射層150を含む、多くの異なる層構造で提供され得ることは、当業者に明らかである。
本発明のコーティング40において、内側赤外反射層50は、外側赤外反射層150とは異なる組成を有する(すなわち、異なる物質で形成される)。特に、外側赤外反射層150は実質的に銀からなるが、内側赤外反射層50はそうではない。代わりに、内側赤外反射層は、銀以外の少なくとも1種の金属(すなわち、「耐性」金属)を含む。幾つかの実施形態において、内側赤外反射層50は、耐腐食性銀合金を含む。別の実施形態において、内側赤外反射層50は、導電性窒化物を含む。両タイプの実施形態が、特に好ましい。
このように、幾つかの実施形態において、内側赤外反射層50は、耐腐食性銀合金を含む。ここで、銀は、少なくとも1種の耐性金属と組み合わせて(すなわち、少なくとも1種の耐性金属を含む合金として)付与される。耐性金属は、白金、パラジウム、銅、ニッケル、金、インジウム、亜鉛、ケイ素、ホウ素およびベリリウムからなる群より選択される金属であり得る。好ましくは、内側赤外反射層50は、主部分(すなわち、少なくとも50原子%)の銀と、副部分(すなわち、50原子%未満)の耐性金属とを含む。例えば、耐性金属の原子は、内側赤外反射層50における金属原子の約10原子%未満を占めることが好ましい。換言すると、この層50における金属原子の総数に対する耐性金属原子のパーセンテージは、約10%未満であることが好ましい。おそらく最適には、耐性金属の原子パーセンテージは、約1%未満(例えば、約0.001%〜約1.0%)である。内側赤外反射層50が、銀と、一種を超える耐性金属を含む形態においては、耐性金属の合計原子パーセンテージが、前述した範囲のうちの1以上にはいることが好ましい。このように、特定の好ましい実施形態において、内側赤外反射層50は、少なくとも約90原子%(おそらく最適には、少なくとも約99原子%)の銀と、少なくとも1種の耐性金属を約10原子%未満(おそらく最適には、約1原子%未満)で含む。
特定の好ましい実施形態において、内側赤外反射層50は、銀−銅、銀−ニッケルおよび銀−チタンからなる群より選択される耐腐食性銀合金を含む。これらの実施形態においては、銀が、過半の原子パーセンテージ(すなわち、少なくとも50%、好ましくは少なくとも約90%、おそらく最適には少なくとも約99%)で存在することが好ましい。これらの銀合金が有益ではあるが、内側赤外反射層50は、特定の銀合金を含むことを要求されるものではない。
一つの好ましい実施形態において、耐腐食性内側赤外反射層50は、銀および銅を含む(例えば、銀−銅合金である。)。この実施形態において、内側赤外反射層50は、主部分の銀と、副部分の銅とを含むことが好ましい。有用な銀−銅合金が、米国特許第4,462,883号に記載されており、ここに、その全内容を引用して組み入れる。ここで、合金は、1%〜30%の銅を含み、その残りが銀である。好ましい銀−銅合金が、米国特許第4,883,721号に記載されており、ここに、その全内容を引用して組み入れる。この特許において、合金は、5%〜10%の銅を含み、その残りが銀である。これらの特定の合金は、10%を超える銅を含む銀−銅合金よりも好ましい。よって、特定の好ましい方法においては、銀と1%〜10%の銅とで形成された金属合金ターゲットが、(例えば、不活性雰囲気において)スパッタリングされ、内側赤外反射層50が堆積される。従って、特定の実施形態においては、内側赤外反射層50は、実質的に銀および銅からなることが分かる。
別の実施形態において、耐腐食性内側赤外反射層50は、銀およびパラジウムを含む(例えば、その合金である。)。この実施形態において、内側赤外反射層50は、主部分の銀と、副部分のパラジウムとを含むことが好ましい。有用な銀−パラジウム合金が、米国特許第6,280,811号に記載されており、ここに、その全内容を引用して組み入れる。ここで、主部分の銀は約85原子%〜約99.9原子%であり、副部分のパラジウムは約0.1原子%〜約15原子%である。好ましくは、主部分の銀は約89原子%〜約99原子%であり、副部分のパラジウムは約1原子%〜約11原子%である。よって、特定の好ましい方法においては、約1原子%〜約11原子%のパラジウム(残りは銀である。)で形成された合金ターゲットが、(例えば、不活性雰囲気において)スパッタリングされて、内側赤外反射層50が堆積される。従って、特定の実施形態においては、内側赤外反射層50は、実質的に銀およびパラジウムからなることが分かる。
幾つかの実施形態において、耐腐食性内側赤外反射層50は、銀、パラジウム、銅、およびインジウムまたは亜鉛を含む(例えば、その合金である。)。この実施形態において、内側赤外反射層50は、過半の原子パーセンテージの銀を含むことが好ましい。これらの金属の有用な合金は、米国特許第5,037,708号に記載されており、ここに、その全内容を引用して組み入れる。好ましくは、この合金は、80質量%〜92.5質量%の銀と、4質量%〜9質量%のパラジウムと、2質量%〜10質量%の銅と、0.5質量%〜1質量%のインジウムまたは亜鉛とを含む。よって、特定の好ましい方法において、層50は、80質量%〜92.5質量%の銀と、4質量%〜9質量%のパラジウムと、2質量%〜10質量%の銅と、0.5質量%〜1質量%のインジウムまたは亜鉛とで形成された合金ターゲットを、(例えば、不活性雰囲気において)スパッタリングすることによって堆積される。従って、特定の実施形態においては、内側赤外反射層50は、実質的に、銀、パラジウム、銅、およびインジウムまたは亜鉛からなることが分かる。
別の実施形態において、耐腐食性内側赤外反射層50は、銀および金を含む(例えば、その合金である。)。この実施形態において、内側赤外反射層50は、主部分の銀と、副部分の金とを含むことが好ましい。有用な銀−金合金が、米国特許第6,280,811号に記載されており、ここに、その全内容を引用して組み入れる。好ましくは、この合金は、約90原子%〜約99.9原子%の銀と、約0.1原子%〜約10原子%の金とを含む。更に好ましくは、主部分の銀は、約91.5原子%〜約95原子%であり、副部分の金は、約5原子%〜約9.5原子%である。よって、特定の好ましい方法において、層50は、約91.5原子%〜約95原子%の銀と、約5原子%〜約9.5原子%の金とで形成された合金ターゲットを、(例えば、不活性雰囲気において)スパッタリングすることによって堆積される。従って、特定の実施形態においては、内側赤外反射層50は、実質的に、銀および金からなることが分かる。
幾つかの実施形態において、耐腐食性内側赤外反射層50は、銀、金およびパラジウムを含む(例えば、その合金である。)。この実施形態において、内側赤外反射層50は、主部分の銀と、副部分の金およびインジウムとを含むことが好ましい。このような性質の有用な合金が、米国特許第6,280,811号に記載されており、ここに、その全内容を引用して組み入れる。好ましくは、この合金は、約75原子%〜約99.8原子%の銀と、約0.1原子%〜約10原子%の金と、約0.1原子%〜約15原子%のパラジウムとを含む。更に好ましくは、主部分の銀は、約80.5原子%〜約94原子%であり、副部分の金は、約5原子%〜約9.5原子%であり、副部分のパラジウムは、約1原子%〜約10原子%である。よって、特定の好ましい方法において、層50は、約80.5原子%〜約94原子%の銀と、約5原子%〜約9.5原子%の金と、約1原子%〜約10原子%のパラジウムとで形成された合金ターゲットを、(例えば、不活性雰囲気において)スパッタリングすることによって堆積される。従って、特定の実施形態においては、内側赤外反射層50は、実質的に、銀、金およびパラジウムからなることが分かる。
別の実施形態において、耐腐食性内側赤外反射層50は、銀およびベリリウムを含む(例えば、その合金である。)。この実施形態において、内側赤外反射層50は、主部分の銀と、副部分のベリリウムとを含むことが好ましい。この種の有用な合金は、米国特許第6,280,811号に記載されており、ここに、その全内容を引用して組み入れる。好ましくは、この合金は、約90原子%〜約99.99原子%の銀と、約0.01原子%〜約10原子%のベリリウムとを含む。更に好ましくは、主部分の銀は、約94原子%〜約99.9原子%であり、副部分のベリリウムは、約0.1原子%〜約6原子%である。よって、特定の好ましい方法において、層50は、約94原子%〜約99.9原子%の銀と、約0.1原子%〜約6原子%のベリリウムとで形成された合金ターゲットを、(例えば、不活性雰囲気において)スパッタリングすることによって堆積される。従って、特定の実施形態においては、内側赤外反射層50は、実質的に、銀およびベリリウムからなることが分かる。
幾つかの実施形態において、耐腐食性内側赤外反射層50は、銀、亜鉛、銅およびケイ素を含む(例えば、その合金である。)。このような性質の有用な合金が、米国特許第5,882,441号に記載されており、ここに、その全内容を引用して組み入れる。好ましくは、この合金は、90質量%〜94質量%の銀と、3.50質量%〜7.35質量%の亜鉛と、1質量%〜3質量%の銅と、0.1質量%〜2.5質量%のケイ素とを含む。よって、特定の好ましい方法において、層50は、90質量%〜94質量%の銀と、3.50質量%〜7.35質量%の亜鉛と、1質量%〜3質量%の銅と、0.1質量%〜2.5質量%のケイ素とで形成された合金ターゲットを、(例えば、不活性雰囲気において)スパッタリングすることによって堆積される。従って、特定の実施形態においては、内側赤外反射層50は、実質的に、銀、亜鉛、銅およびケイ素からなることが分かる。
幾つかの実施形態において、耐腐食性内側赤外反射層50は、銀、亜鉛、銅、ニッケル、ケイ素およびインジウムを含む(例えば、その合金である。)。このような性質の有用な合金が、米国特許第5,817,195号に記載されており、ここに、その全内容を引用して組み入れる。好ましくは、この合金は、90質量%〜92.5質量%の銀と、5.75質量%〜7.5質量%の亜鉛と、0.25質量%から1質量%未満の銅と、0.25質量%〜0.5質量%のニッケルと、0.1質量%〜0.25質量%のケイ素と、0.0質量%〜0.5質量%のインジウムとを含む。よって、特定の好ましい方法において、層50は、90質量%〜92.5質量%の銀と、5.75質量%〜7.5質量%の亜鉛と、0.25質量%から1質量%未満の銅と、0.25質量%〜0.5質量%のニッケルと、0.1質量%〜0.25質量%のケイ素と、0.0質量%〜0.5質量%のインジウムとで形成された合金ターゲットを、(例えば、不活性雰囲気において)スパッタリングすることによって堆積される。従って、特定の実施形態においては、内側赤外反射層50は、実質的に、銀、亜鉛、銅、ニッケル、ケイ素およびインジウムからなることが分かる。
幾つかの実施形態において、耐腐食性内側赤外反射層50は、銀、ケイ素、ホウ素、亜鉛、銅、錫およびインジウムを含む(例えば、その合金である。)。このような性質の有用な合金が、米国特許第5,039,479号に記載されており、ここに、その全内容を引用して組み入れる。好ましくは、この合金は、約89質量%〜93.5質量%の銀と、約0.02質量%〜2質量%のケイ素と、約0.001質量%〜2質量%のホウ素と、約0.5質量%〜5質量%の亜鉛と、約0.5質量%〜6質量%の銅と、約0.25質量%〜6質量%の錫と、約0.01質量%〜0.25質量%のインジウムを含む。よって、特定の好ましい方法において、層50は、約89質量%〜93.5質量%の銀と、約0.02質量%〜2質量%のケイ素と、約0.001質量%〜2質量%のホウ素と、約0.5質量%〜5質量%の亜鉛と、約0.5質量%〜6質量%の銅と、約0.25質量%〜6質量%の錫と、約0.01質量%〜0.25質量%のインジウムとで形成された合金ターゲットを、(例えば、不活性雰囲気において)スパッタリングすることによって堆積される。従って、特定の実施形態においては、内側赤外反射層50は、実質的に、銀、ケイ素、ホウ素、亜鉛、銅、錫およびインジウムからなることが分かる。
別の実施形態において、耐腐食性性外反射層50は、導電性窒化物を含む。好ましい導電性窒化物は、窒化クロム、窒化ジルコニウム、窒化チタンおよび窒化ニオブを含む。これらの窒化物は、反射性であり、導電性である。内側赤外反射層50への導電性窒化物の使用は、コーティング全体の化学的安定性を大きく増大させるため、特に好ましい。内側赤外反射層を金属フィルムで形成した場合、反応性酸素に曝されたときに、酸化されやすい。窒化物フィルムは、金属フィルムのように容易には酸化され難い。故に、この実施形態において、コーティング40は特に化学的に安定であり、特に長い期間に渡って化学的に安定なままである。
内側赤外反射層50に導電性窒化物を使用する実施形態においては、内側赤外反射層50の上方に配置されるようなブロッカー層80が省略されるという利点がある。内側赤外反射層50が、高反応性の銀層ではなく、相対的に非反応性である窒化物で形成されるため、このブロッカー層80は、本実施形態においては有利に省略され得る。よって、透明誘電フィルムを、内側赤外反射層50の直上に、(例えば、酸化物または窒化物として)堆積することができる。
前述のように、特定の実施形態において、内側赤外反射層50は、少なくとも1種の耐性金属を含む。耐性金属は、銀以外の金属である。例えば、耐性金属は、白金、パラジウム、銅、ニッケル、金、インジウム、亜鉛、ケイ素、ホウ素およびベリリウムとすることができる。幾つかの別の実施形態において、内側赤外層50は、これら耐性金属のうちの1種を含む。例えば、内側赤外反射層50は、実質的に、耐腐食性のニッケル系合金からなるフィルムとすることができる。耐腐食性ニッケル合金の例には、ニクロムおよびニッケル-アルミニウムが含まれる。「ニクロム」という用語は、ニッケルおよびクロム(例えば、80質量%のニッケルおよび20質量%のクロム)の組合せを含む層を示すという、一般的な意味で使用される。
内側赤外反射層50は、好ましくは約50オングストローム〜約250オングストローム、更に好ましくは約50オングストローム〜約180オングストローム、おそらく最適には約65オングストローム〜約180オングストロームの厚みを有する。外側赤外反射層150は、内側赤外反射層50よりも幾分か厚いことが好ましい。例えば、特定の実施形態は、約90オングストローム〜約180オングストローム、更に好ましくは約96オングストローム〜155オングストローム、おそらく最適には約130オングストロームの外側赤外反射層150と組み合わせて、約50オングストローム〜約150オングストローム、更に好ましくは約58オングストローム〜約90オングストローム、おそらく最適には約80オングストロームの厚みで内側赤外反射層を与える。
前述のように、外側赤外反射層150は、実質的に銀(例えば、純粋な、または実質的に純粋な銀)からなる。好ましくは、この層150は、金属銀として堆積される。例えば、約3×10-3ミリバール〜約8×10-3ミリバールの圧力で、アルゴン雰囲気において、金属銀ターゲットをスパッタリングすることによって、外側赤外反射層150を堆積することができる。外側赤外反射層150は、好ましくは約50オングストローム〜約250オングストローム、更に好ましくは約50オングストローム〜約180オングストローム、おそらく最適には約65オングストローム〜約180オングストロームの厚みを有する。外側赤外反射層150を銀で形成することによって、驚くべきことに内側赤外反射層50を純粋な銀で形成しなくとも、本発明のコーティング40には、非常に低い放射率を付与される。
外側赤外反射層150の放射率を最小化するため、この層150は、(必須ではないが)好ましくは酸化亜鉛層の直上に配置される。すなわち、透明誘電中位層90が、外側赤外反射層150の直下に、実質的に酸化亜鉛からなる層を含むことが好ましい。これは、特に低い放射率と、特に高い可視透過を示す銀の成長を促進させる。酸化亜鉛層は、純粋な(または、実質的に純粋な)酸化亜鉛として堆積されることが好ましい。例えば、この層は、約4×10-3ミリバール〜約8×10-3ミリバールの圧力で、アルゴン/酸素雰囲気において、金属亜鉛ターゲットをスパッタリングすることによって、堆積することができる。この酸化亜鉛層の厚みは、望ましくは少なくとも約30オングストローム、更に好ましくは少なくとも約34オングストローム、おそらく最適には少なくとも約40オングストローム(例えば、約40オングストローム〜約250オングストローム)である。これらの最小厚みは、所望の低い放射率と高い可視透過を達成する。しかしながら、透明誘電中位層90全体を酸化亜鉛で形成する必要はない。むしろ、中位層90は、(必須ではないが)複数の透明誘電層を含むことが好ましい。
中位層90の層数は、所望に応じて変化させることができる。前述したように、外側赤外反射層150の直下の層は、実質的に酸化亜鉛からなることが好ましい。特定の実施形態において、中位層90は、酸化亜鉛の単層からなる。この実施形態において、酸化亜鉛層は、一般に、約150〜1200オングストロームの範囲の厚みを有する。しかしながら、中間層90に、少なくとも1層の非晶質または実質的に非晶質の層を含むことが有効である。非晶質層は、一般に、焼き入れまたはその他の熱処理の際に、重大な結晶成長を生じない点で有利である。その結果、熱処理中に、大きな結晶成長による好ましからざる曇りが現われ難い。更に、非晶質層は比較的密であり、よって、コーティング40に幾分か移動し得る酸素、窒素、水分およびその他の物質に対する、良好なバリアを与える。故に、外側赤外反射銀層150直下の純粋な酸化亜鉛の層とともに、少なくとも1層の非晶質層を含む中位層90を付与することが望ましい。このような性質の中位層190の例を、次に記述する。
このように、特定の実施形態において、中位層90は、少なくとも2層の透明誘電層を含む。中位層90が1層の透明誘電層からなるか、複数層の透明誘電層からなるかに関わらず、中位層90の光学厚み(すなわち、屈折率と物理的厚みとの積)は、約300〜2400オングストロームであることが好ましい。一実施形態において、中位層90は、窒化ケイ素層および酸化亜鉛層を含み、酸化亜鉛層は、窒化ケイ素の上方(すなわち、窒化ケイ素の外側)、且つ、外側赤外反射銀層150の直下に配置されている。過度の応力を避けるため、コーティング40の各窒化ケイ素層の厚みを(例えば、200オングストローム未満に)限定することが好ましい。窒化ケイ素は大きな応力を有する傾向にあり、各窒化ケイ素の厚みが増大するほど、この応力が大きな問題となる傾向にあるからである。特に有効な中位層90の設計は、米国特許出願番号09/728,435に開示されており、ここに、その全内容を引用して組み入れる。
このように、特定の実施形態において、中位層90は、複数の透明誘電層を含む。例えば、中間層90を、少なくとも3層の別個の層で形成することが、しばしば好ましい。特定の実施形態において、中位層90は、2つの酸化亜鉛層の間に配置された窒化ケイ素層を含む。このような性質の一実施形態において、中位層90は、任意の第1のブロッカー層80から外側に向かって、(1)約150〜250オングストローム、おそらく最適には約220オングストロームの厚みの酸化亜鉛と、(2)約40〜120オングストローム、おそらく最適には約220オングストロームの厚みの窒化ケイ素と、(3)約150〜250オングストローム、おそらく最適には約210オングストロームの厚みの酸化亜鉛とを含む。これら3つの中間層は接触している必要はない。しかしながら、中位層190は、有利には、これら3層が接触した連続物からなり得る。
特定の好ましい実施形態において、中位層90は、少なくとも5層の透明誘電中間層を含む。このような幾つかの実施形態において、透明誘電中間層の各々は、200オングストローム未満の厚みを有する。おそらく最適には、各透明誘電中間層は、約195オングストローム以下の厚みを有する。いくつかの例においては、中位層は、酸化物層と窒化物層との交互層を含む。このような例においては、各中間窒化物層は、各中間酸化物層よりも小さい厚みを有することが好ましい。好ましくは、各中間酸化物層の厚みを、約195オングストロームまでの範囲とする一方で、各中間窒化物層の厚みは約180オングストローム未満とされる。一実施形態において、中位層は、第1の多結晶質酸化物(または、亜酸化物)と、第2の実質的に非晶質の窒化物との交互層を含む。一例として、酸化亜鉛と窒化ケイ素との交互層が使用できる(例えば、3層の酸化亜鉛、2層の窒化ケイ素)。一実施形態において、中位層90は、任意の第1のブロッカー層80から外側に向かって、(1)約50〜200オングストローム、おそらく最適には約105オングストロームの厚みで、酸化亜鉛で形成された第1の中間層と、(2)約50〜200オングストローム、おそらく最適には約140オングストロームの厚みで、窒化ケイ素で形成された第2の中間層と、(3)約50〜300オングストローム、おそらく最適には約200オングストロームの厚みで、酸化亜鉛で形成された第3の中間層と、(4)約50〜200オングストローム、おそらく最適には約140オングストロームの厚みで、窒化ケイ素で形成された第4の中間層と、(5)約50〜200オングストローム、おそらく最適には約80オングストロームの厚みで、酸化亜鉛で形成された第5の中間層とを含む。これら5つの中間層は接触している必要はないが、中位層は、有利には、これら5層が接触した連続物からなり得る。
特定の特に有効な実施形態において、低放射率コーティングは、外側に向かって順に、透明下地層、透明誘電下地層、耐腐食性内側赤外反射層、透明誘電中位層および外側赤外反射層を含む。この実施形態において、外側赤外反射層は実質的に銀からなり、耐腐食性内側赤外反射層は、外側赤外反射層とは異なる(前述したような)組成を有する。この実施形態において、二酸化ケイ素は、基材の直上に堆積される。必須ではないが、好ましくは、二酸化ケイ素は、100オングストローム未満(最適には、約50オングストローム〜約90オングストローム)の厚みを有する。透明誘電下地層は、二酸化ケイ素の上方に堆積されるが、少なくとも1層の透明誘電フィルムを有している。本実施形態において、透明誘電中位層は、少なくとも5層の透明誘電中間層を含む。幾つかの例においては、透明誘電中間層の各々は、200オングストローム未満の厚みを有する。特定の独特な好ましい実施形態においては、本パラグラフに記載された好ましい形態の全てが組み合わされて与えられ、透明誘電中位層は、外側赤外反射層の直下に実質的に酸化亜鉛からなる層を含み、透明誘電下地層は、耐腐食性内側赤外反射層の直下に耐性透明誘電層を含み、耐性透明誘電層は、望ましい金属(後述する。)を含み、望ましい金属は、亜鉛以外の金属である。関連する特定の方法において、本パラグラフに記載された各層/フィルムは、慣用のスパッタ法によって堆積される。
(必須ではないが)本発明のコーティング40の耐性を最大化するため、耐腐食性内側赤外反射層50は、(好ましくは、亜鉛と少なくとも1種のその他の金属とを含む透明誘電化合物中に)亜鉛以外の金属を含む耐性透明誘電層の直上に配置されることが好ましい。すなわち、耐腐食性内側赤外反射層50の直下の層は、純粋な酸化亜鉛ではないことが好ましい。これは、純粋な酸化亜鉛を、低放射率コーティングにおいて各赤外反射層の直下に使用することが強く支持していた、従来の通念に反している。驚くべきことに、得られる耐性、応力および密度の上での利点は、放射率の僅かな増大という欠点よりも、非常に重要である。
好ましくは、耐腐食性内側赤外反射層50の直下の層は、少なくとも幾らかの錫、アルミニウム、ビスマス、インジウム、チタン、ニオブおよび/またはケイ素を含む。これらの望ましい金属のなかでも、錫およびアルミニウムが特に好ましく、錫が他になく好ましい。特定の好ましい実施形態において、この層は、酸化亜鉛を、少なくとも1種の他の金属の酸化物と組み合わせて(例えば、これをも含む透明誘電化合物として)含む。例えば、特定の特に好ましい実施形態において、内側赤外反射層50は、主部分の酸化亜鉛と、副部分のその他の金属(例えば、本パラグラフにおいて前に挙げた「追加の」または「望ましい」金属のうちの1種)の酸化物とを含む耐性透明誘電層の直上に、堆積される。好ましくは、追加の金属の原子は、耐性透明誘電層における金属原子の総数に対して、約10原子%未満を占める。追加の金属酸化物は、内側赤外反射層50の放射率を、純粋な酸化亜鉛の直上に堆積された場合の層50の放射率に比べて、僅かに増大させる。しかしながら、内側赤外反射層50がコーティング40全体の放射率に及ぼす影響は、外側赤外反射層150と比較して、驚くほど小さい。故に、酸化亜鉛を含む化合物に、少量のその他の金属酸化物を使用することは、コーティングの放射率の増大という点で、かろうじて検出可能である。更に、追加の金属酸化物が、酸化錫または酸化アルミニウム(または、それらの混合物)である場合、放射率の増大は、特に小さい。
図2に示した実施形態において、コーティング40は図1の要素の全てを含み、更に、下地層30および外側層130を含む。前述したように、本発明のコーティング40において、下地層30および外側層130は任意ではあるが、あることが好ましい。特定の実施形態において、下地層30は、基材10の表面12の直上に設けられる。別の独特な好ましい例においては、透明下地層(図示せず)が、基材10の表面12の上方に直接に形成され、下地層30が、透明下地層の上方に直接に形成される。このような実施形態において、透明下地層は、100オングストローム未満(最適には、約50オングストロム〜約90オングストローム)の厚みを有する二酸化ケイ素フィルムである。特に有効な透明下地層が、米国特許出願10/087,662に記載されており、ここに、その全内容を引用して組み入れる。
その最も単純な形態においては、好ましい下地層30は、単一の透明誘電層からなる。単層のみを使用する場合、下地層30は、前述したようなタイプの耐性透明誘電層であることが好ましい。すなわち、特定の実施形態において、下地層30は、亜鉛および少なくとも1種の別の金属の酸化物を含む、単一の透明誘電層である。例えば、単一の透明誘電層は、少なくとも幾らかの錫、アルミニウム、ビスマス、インジウム、チタン、ニオブおよび/またはケイ素を含み得る。このような特定の実施形態においては、下地層30は、耐腐食性内側赤外反射層50の直下に配置された、単一の亜鉛・錫酸化物層、または、単一の亜鉛・アルミニウム酸化物層である。
別の実施形態においては、下地層30は、複数の透明誘電層を含む。複数の透明誘電層を使用する場合、耐腐食性内側赤外反射層50の直下の層は、前述したようなタイプの耐性透明誘電層であることが好ましい。すなわち、特定の好ましい実施形態において、下地層30は、亜鉛以外の金属を含む(少なくとも幾らかの錫、アルミニウム、ビスマス、インジウム、チタン、ニオブおよび/またはケイ素を含む。)、少なくとも1層の耐性透明誘電層を含む、複数の透明誘電層を含む。このような特定の好ましい好ましい実施形態において、下地層30は、亜鉛・錫酸化物および/またな亜鉛・アルミニウム酸化物を含む、少なくとも1層の耐性透明誘電層を含む。この実施形態において、耐性透明誘電層は、内側赤外反射層50の直下にあることが好ましい。
下地層30は、あらゆる数の透明誘電層を含み得る。下地層30が1層の透明誘電層からなるか、複数の透明誘電層からなるかに関わらず、下地層30の光学厚みは、約150オングストローム〜約1200オングストロームであることが好ましい。ここで、「透明誘電」という用語は、1種以上の金属を含み、薄膜として適用されたときに実質的に透明である、非金属化合物(すなわち、純金属でも合金でもない)を意味する。この定義には、あらゆる金属酸化物、金属窒化物、金属炭化物、金属硫化物、金属ホウ化物など(および、酸窒化物などの、それらの組合せ)が含まれる。金属酸化物の例には、亜鉛、錫、インジウム、ビスマス、チタン、ハフニウム、ジルコニウムおよびそれらの混合物の酸化物が含まれる。金属酸化物は、適用が容易且つ低コストであるため、有益である。しかしながら、金属窒化物(例えば、窒化ケイ素)もまた、非常に有益に使用することができる。「金属」という用語は、金属と、ケイ素などの半金属(すなわち、メタロイド)の全てを含むと解される。
図2を引続き参照して、本発明のコーティング40は、外側赤外反射層150よりも基材10から離れて配置された、外側層130を含むことが好ましい。好ましい外側層130は、少なくとも1層の透明誘電層を含む。その最も単純な形態においては、好ましい外側層130は、単一の透明誘電層からなる。広範に渡る様々な透明誘電フィルムを、本発明のコーティング40の外側層として使用することができる。外側層130が単層である場合、化学的および機械的な耐性を有する物質が使用されることが好ましい。例えば、特定の実施形態は、窒化ケイ素、二酸化チタンまたは酸化錫の単層によって形成された外側層130を用いている。これらは、それぞれ、比較的良好な化学的および機械的耐性を示す。
特定の実施形態において、外側層130は、複数の透明誘電層を含む。外側層130が単一の透明誘電層からなるか、複数の透明誘電層からなるかに関わらず、外側層130の光学厚みは、約150オングストローム〜約1200オングストロームであることが好ましい。様々なフィルム積層体が、低放射率コーティングの外側層としての使用に好適であることが、当業者に周知であり、このようなあらゆるフィルム積層体を、本発明のコーティング40の外側層130として使用することができる。
外側層130の各層、並びに下地層30および中位層90の各層は、好ましくは約250オングストローム以下、更に好ましくは約225オングストローム以下、おそらく最適には200オングストローム未満の物理的厚みに限定され得る。更に、外側層130の各層、並びに下地層30および中位層90の各層が、それに隣接する各層と異なる物質で形成されることが好ましい。米国特許出願09/728,435に記載されているように、これは、熱処理中にコーティングに好ましからざる曇りが生じる可能性を低減すると思われる。
特定の実施形態(図示せず)において、外側層130は、少なくとも2層の透明誘電層を含む。例えば、第1の外側層を、任意の第2のブロッカー層180の直上に堆積し、第2の外側層を、この第1の外側層の直上に堆積することができる。第1の外側層は、酸化亜鉛などの、あらゆる望ましい透明誘電物質で形成することができる。第1の外側層の厚みは、好ましくは約25オングストローム〜約300オングストローム、更に好ましくは約50オングストローム〜約275オングストローム、おそらく最適には約70オングストローム〜約250オングストロームである。第2の外側層は、あらゆる望ましい透明誘電物質で形成することができるが、良好な化学的および機械的耐性を有する物質で形成されることが好ましい。例えば、この層は、窒化ケイ素で有利に形成することができる。第2の外側層の厚みは、好ましくは約25オングストローム〜約300オングストローム、更に好ましくは約50オングストローム〜約275オングストローム、おそらく最適には約70オングストローム〜約250オングストロームである。一つの好ましい実施形態において、第1の外側層は、約175オングストロームの厚みで酸化亜鉛によって形成され、第2の外側層は、約75オングストロームの厚みで窒化ケイ素によって形成される。別の好ましい実施形態においては、第1の外側層は、約225オングストロームの厚みで酸化亜鉛によって形成され、第2の外側層は、約96オングストロームの厚みで窒化ケイ素によって形成される。
図3に示す実施形態において、コーティング40は図2の全ての要素を含み、更に、それぞれ赤外反射層50および150の直上に配置された、保護(または「バリア」または「ブロッカー」)層80,180を含む。保護層80、180は、コーティング40において、厳密に必要とされるものではないが、あることが好ましい。
保護層80,180は、後続の層の堆積中および/または熱処理中に、下に存在する赤外反射層を化学的攻撃から保護し、赤外反射層の劣化(例えば、酸化)に対する耐性を付与するために設けられることが好ましい。各保護層の追加のまたはそれに代わる目的は、次に付与される層の、下に存在する赤外反射フィルムへの接着を強化することである。更に、保護層80,180は、幾つかの実施形態(例えば、保護層がニッケル-クロム化合物を含む場合)においては、応力低減層として設けられ得る。更に、保護層80,180の厚みを変化させて、コーティング40の色および/または遮光特性を調節することができる。
各保護層は、チタン、ニオブ、ニッケルおよびクロムからなる群より選択される金属を含む層として堆積することができる。更に、当業者が、保護層80,180で使用するためのその他の物質を選択することを望んでもよい。保護層80,180は、それぞれ、好ましくは約7〜30オングストローム、更に好ましくは約15〜22オングストローム、おそらく最適には約20オングストロームである。
本発明のコーティング40の層を堆積するために、あらゆる慣用の方法を使用することができる。好ましくは、各層は、スパッタリングによって堆積される。スパッタ法および装置は、当外技術において周知である。例えば、マグネトロンスパッタリングチャンバーおよび関連装置が、様々な供給元(例えば、レイボルド アンド ビーオーシー コーティング テクノロジー(Leybold and BOC Coating Technology))から商業的に入手可能である。有用なマグネトロンスパッタリング法および装置は、米国特許第4,166,018号(チャピン(Chapin))に記載されており、ここにその教示の全てを引用して組み入れる。
概して、マグネトロンスパッタリングは、基材上に堆積しようとする物質で形成された、少なくとも1つのターゲットを用意することを含む。このプロセスにおいて、清浄な基材(例えば、ガラス)は、(一般的には10-4Torr未満、更に一般的には2×10-5Torr未満にまで)排気されたコーティングチャンバー内に配置される。通常、ターゲットには負電荷が付与され、相対的に正電荷を帯びた陽極が、ターゲットに隣接させて配置される。(一般に、約1〜30mTorrの圧力範囲で)比較的少量の所望のガスをチャンバーに導入することによって、ガスのプラズマを確立することができる。プラズマ中の粒子(例えば、イオン)がターゲットに衝突し、ターゲットからターゲット物質を放出させ、それを基材上にスパッタリングする。このプロセスを促進するため、ターゲットの背後に磁石を配置し、プラズマをターゲットのスパッタ表面付近に適合させ、集中させることが知られている。
特定の実施形態において、本発明は、例えば、基材上に耐腐食性低放射率コーティングを堆積することによって、コーティングされた基材を製造する方法を提供する。方法は、一般に、所望の表面(例えば、主面)を有する基材を用意し、所望の表面上に前述したようなタイプの低放射率コーティングを堆積することを含む。一般に、方法は、所望の表面上に、低放射率コーティングを堆積することを含み、低放射率コーティングは、外側に向かって順に、任意の下地層30、耐腐食性内側赤外反射層50、任意の第1のブロッカー層80、透明誘電中位層90、外側赤外反射層150、任意の第2のブロッカー層180および任意の外側層130を含む。方法は、実質的に銀からなるフィルムとして外側赤外反射層150を堆積し、外側赤外反射層150とは異なる組成を有するフィルムとして耐腐食性内側赤外反射層50を堆積することを含む。好ましくは、耐腐食性内側赤外反射層50は、少なくとも1種の銀以外の金属を含むフィルムとして堆積される。例えば、この層150は、白金、パラジウム、銅、ニッケル、金、インジウム、亜鉛、ケイ素、ホウ素およびベリリウムからなる群から選択される少なくとも1種の耐性金属を含むフィルムとして、有利に堆積することができる。更に詳しくは、内側赤外反射層50は、(例えば、主原子パーセントの銀と、副原子パーセントの少なくとも1種の銀以外の金属とを含む)耐腐食性銀合金として、有利に堆積することができる。低放射率コーティング40の各層は、スパッタリングによって堆積されることが好ましい。
一つの例示的なコーティング40を、ここに記述する。ガラス板の主面の直上に、亜鉛・錫酸化物層を堆積した。この亜鉛・錫酸化物層は、約147オングストロームの厚みを有していた。この亜鉛・錫酸化物の層の直上に、銀およびパラジウムを含む銀合金層を堆積した。この銀合金層は、約60〜70オングストロームの厚みを有していた。銀合金層の直上に、チタン層を堆積した。このチタン層は、約17〜23オングストロームの厚みを有していた。このチタン層の直上に、酸化亜鉛層を堆積した。この酸化亜鉛層は、酸化雰囲気下で堆積されたため、その下のチタン層が部分的に酸化された。この酸化亜鉛層は、約175オングストロームの厚みを有していた。この酸化亜鉛層の直上に、窒化ケイ素の層を堆積した。この窒化ケイ素層は、約70オングストロームの厚みを有していた。この窒化ケイ素層の直上に、別の酸化亜鉛の層を堆積した。この酸化亜鉛層は、約130〜140オングストロームの厚みを有していた。この酸化亜鉛層の直上に、別の窒化ケイ素の層を堆積した。この窒化ケイ素層は、約105オングストロームの厚みを有していた。この窒化ケイ素層の直上に、別の酸化亜鉛層を堆積した。この酸化亜鉛層は、約187オングストロームの厚みを有していた。この酸化亜鉛層の直上に、銀の層を堆積した。この銀層は、約117オングストロームの厚みを有していた。銀層の直上に、別の酸化亜鉛の層を堆積した。この酸化亜鉛層は、約175オングストロームの厚みを有していた。最後に、この酸化亜鉛層の直上に、窒化ケイ素の層を堆積した。この窒化ケイ素層(コーティングの最外層である。)は、約75オングストロームの厚みを有していた。
別の例示的なコーティング40を、ここに記述する。ガラス板の主面の直上に、二酸化ケイ素の層を堆積した。二酸化ケイ素層は、約60オングストロームの厚みを有していた。二酸化ケイ素の層の直上に、亜鉛・錫酸化物の層を堆積した。この亜鉛・錫酸化物の層は、約140オングストロームの厚みを有していた。この亜鉛・錫酸化物の層の直上に、銀およびパラジウムを含む銀合金層を堆積した。この銀合金層は、約71オングストロームの厚みを有していた。銀合金層の直上に、ニオブの保護層を堆積した。このニオブの保護層は、約18オングストロームの厚みを有していた。このニオブの保護層の直上に、酸化亜鉛の層を堆積した。この酸化亜鉛の層は、約105オングストロームの厚みで堆積された。この酸化亜鉛の層の直上に、窒化ケイ素の層を堆積した。この窒化ケイ素層は、約124オングストロームの厚みを有していた。この窒化ケイ素の層の直上に、別の酸化亜鉛の層を堆積した。この酸化亜鉛層は、約124オングストロームの厚みで堆積された。この酸化亜鉛の層の直上に、別の窒化ケイ素の層を堆積した。この窒化ケイ素層は、約124オングストロームの厚みを有していた。この窒化ケイ素の層の直上に、別の酸化亜鉛の層を堆積した。この酸化亜鉛層は、約113オングストロームの厚みを有していた。この酸化亜鉛の層の直上に、銀の層を堆積した。銀層は、約116オングストロームの厚みを有していた。銀の層の直上に、ニオブの保護層を堆積した。このニオブ層は、約18オングストロームの厚みを有していた。このニオブ層の直上に、酸化亜鉛の層を堆積した。この酸化亜鉛の層は、約100オングストロームの厚みを有していた。この酸化亜鉛の層の直上に、窒化ケイ素の層を堆積した。この窒化ケイ素の層は、約40オングストロームの厚みを有していた。この窒化ケイ素の層の直上に、窒化チタンの層を堆積した。窒化チタンの層は、約16オングストロームの厚みを有していた。窒化チタンの層の直上に、窒化ケイ素の層を堆積した。この窒化ケイ素の層(コーティングの最外層である。)は、約122オングストロームの厚みを有していた。
本発明の好ましい実施形態と思われるものを記述してきたが、当業者であれば、本発明の思想から逸脱することなく、その他の、更なる変更および改良が可能であり、このような変更および改良の全てが、本発明の範囲内であることが理解されるべきである。
図1は、本発明の特定の実施形態に係るコーティングの模式的な断面図である。 図2は、本発明の特定の実施形態に係るコーティングの模式的な断面図である。 図3は、本発明の特定の実施形態に係るコーティングの模式的な断面図である。

Claims (49)

  1. 低放射率コーティングを備えた基材であって、前記低放射率コーティングが、外側に向かって順に、耐腐食性内側赤外反射層、透明誘電中位層および外側赤外反射層とを含み、前記外側赤外反射層が実質的に銀からなり、前記耐腐食性赤外反射層が、前記外側赤外反射層とは異なる組成を有する基材。
  2. 前記透明誘電中位層が、前記外側赤外反射層の直下の、実質的に酸化亜鉛からなる層を含む請求項1記載の基材。
  3. 前記酸化亜鉛層が、少なくとも約40オングストロームの厚みを有する請求項2記載の基材。
  4. 前記内側赤外反射層が、耐腐食性銀合金を含む請求項1記載の基材。
  5. 前記耐腐食性銀合金が、主部分の銀と、副部分の耐性金属とを含み、前記耐性金属は銀以外の金属である請求項4記載の基材。
  6. 前記耐性金属の原子が、前記内側赤外反射層における金属原子の総数に対して、約10原子%未満を占める請求項5記載の基材。
  7. 前記耐性金属が、白金、パラジウム、銅、ニッケル、金、インジウム、亜鉛、ケイ素、ホウ素およびベリリウムからなる群より選択される金属である請求項5記載の基材。
  8. 前記内側赤外反射層が、導電性窒化物を含む請求項1記載の基材。
  9. 前記導電性窒化物が、窒化クロム、窒化ジルコニウム、窒化チタンおよび窒化ニオブからなる群より選択される請求項8記載の基材。
  10. 前記透明誘電中位層は、前記内側赤外反射層の前記導電性窒化物の直上に堆積された、酸化物または窒化物を含む請求項8記載の基材。
  11. 前記透明誘電中位層が、少なくとも5層の透明誘電中間層を含む請求項1記載の基材。
  12. 前記透明誘電中間層の各々が、200オングストローム未満の厚みを有する請求項11記載の基材。
  13. 前記透明誘電中間層の各々が、約195オングストローム以下の厚みを有する請求項12記載の基材。
  14. 前記透明誘電中位層が、酸化物層と窒化物層との交互層を含む請求項11記載の基材。
  15. 前記透明誘電中位層が、第1の多結晶質酸化物と第2の実質的に非晶質窒化物との交互層を含む請求項14記載の基材。
  16. 各中間窒化物層が、各中間酸化物層よりも小さい厚みを有する請求項15記載の基材。
  17. 各中間窒化物層の厚みが、約180オングストローム未満であり、各中間酸化物層の厚みが、200オングストローム未満である請求項16記載の基材。
  18. 前記コーティングが、前記基材と前記耐腐食性内側赤外反射層との間に、透明誘電下地層を含み、前記透明誘電下地層が、前記耐腐食性内側赤外反射層の直下に、耐性透明誘電層を含み、前記耐性透明誘電層が望ましい金属を含み、前記望ましい金属が亜鉛以外の金属である請求項1記載の基材。
  19. 前記耐性透明誘電層が、亜鉛と前記望ましい金属とを含む請求項18記載の基材。
  20. 前記望ましい金属が、錫、アルミニウム、ビスマス、インジウム、チタン、ニオブおよびケイ素からなる群より選択される金属である請求項19記載の基材。
  21. 前記耐性透明誘電層は、主部分の酸化亜鉛と、副部分の前記望ましい金属の酸化物とを含む請求項18記載の基材。
  22. 前記望ましい金属の原子が、前記耐性透明誘電層における金属原子の総数に対して、約10原子%未満を占める請求項21記載の基材。
  23. 前記耐性透明誘電層は、亜鉛・錫酸化物および/または亜鉛・アルミニウム酸化物を含む請求項18記載の基材。
  24. 前記コーティングが、更に、前記基材と前記透明誘電下地層との間に、透明下地層を含み、前記透明下地層が、前記基材の直上に堆積された二酸化ケイ素を含む請求項1記載の基材。
  25. 前記二酸化ケイ素が、100オングストローム未満の厚みを有する請求項24記載の基材。
  26. 前記二酸化ケイ素が、約50オングストローム〜約100オングストロームの厚みを有する請求項25記載の基材。
  27. 前記コーティングが、前記外側赤外反射層よりも前記基材から離れた、透明誘電外側層を含む請求項1記載の基材。
  28. 低放射率コーティングを備えた基材であって、前記低放射率コーティングが、外側に向かって順に、前記基材の直上に堆積された二酸化ケイ素と、少なくとも1層の透明誘電フィルムを含む透明誘電下地層と、耐腐食性内側赤外反射層と、透明誘電中位層と、外側赤外反射層とを含み、前記外側赤外反射層は実質的に銀からなり、前記耐腐食性内側赤外反射層は、前記外側赤外反射層とは異なる組成を有しており、前記透明誘電中位層は、少なくとも5層の透明誘電中間層を含む、基材。
  29. 前記透明誘電中間層の各々が、200オングストローム未満の厚みを有する請求項28記載の基材。
  30. 前記二酸化ケイ素が、100オングストローム未満の厚みを有する請求項29記載の基材。
  31. 前記透明誘電中位層が、前記外側赤外反射層の直下に実質的に酸化亜鉛からなる層を含み、前記透明誘電下地層が、前記耐腐食性赤外反射層の直下に耐性透明誘電層を含み、前記耐性透明誘電層が望ましい金属を含み、前記望ましい金属が亜鉛以外の金属である請求項30記載の基材。
  32. コーティングされた基材の製造方法であって、
    a)表面を有する基材を用意する工程と、
    b)前記基材の前記表面上に低放射率コーティングを堆積する工程であって、前記低放射率コーティングは、外側に向かって順に、耐腐食性内側赤外反射層、透明誘電中位層および外側赤外反射層とを含み、前記外側赤外反射層が実質的に銀からなり、前記耐腐食性赤外反射層が、前記外側赤外反射層とは異なる組成を有するものである工程とを含む方法。
  33. 前記透明誘電中位層の堆積が、前記外側赤外反射層の直下に、実質的に酸化亜鉛からなる層を堆積することを含む請求項32記載の方法。
  34. 前記酸化亜鉛層が、少なくとも約40オングストロームの厚みで堆積される請求項33記載の方法。
  35. 前記内側赤外反射層が、耐腐食性銀合金を含むフィルムとして堆積される請求項32記載の方法。
  36. 前記内側赤外反射層が、主部分の銀と副部分の耐性金属とを含み、前記耐性金属が銀以外の金属であるフィルムとして堆積される請求項35記載の方法。
  37. 前記内側赤外反射層が、前記耐性金属の原子が、前記内側赤外反射層における金属原子の総数に対して、約10原子%未満を占めるフィルムとして、堆積される請求項36記載の方法。
  38. 前記内側赤外反射層が、白金、パラジウム、銅、ニッケル、金、インジウム、亜鉛、ケイ素、ホウ素およびベリリウムからなる群より選択される耐性金属を含むフィルムとして堆積される請求項36記載の方法。
  39. 前記内側赤外反射層が、導電性窒化物を含むフィルムとして堆積される請求項32記載の方法。
  40. 前記内側赤外反射層が、窒化クロム、窒化ジルコニウム、窒化チタンおよび窒化ニオブからなる群より選択される導電性窒化物を含むフィルムとして堆積される請求項39記載の方法。
  41. 前記中位層の堆積が、前記内側赤外反射層の前記導電性窒化物の直上に、酸化物または窒化物の層を堆積することを含む請求項39記載の基材。
  42. 更に、前記基材と前記耐腐食性内側赤外反射層との間に、透明誘電下地層を堆積する工程を含み、前記透明誘電下地層が、前記耐腐食性内側赤外反射層の直下に耐性透明誘電層を含み、前記耐性透明誘電層が望ましい金属を含み、前記望ましい金属が亜鉛以外の金属である請求項32記載の方法。
  43. 前記耐性透明誘電層が、亜鉛および前記望ましい金属を含むフィルムとして堆積される請求項42記載の方法。
  44. 前記耐性透明誘電層が、錫、アルミニウム、ビスマス、インジウム、チタン、ニオブおよびケイ素からなる群より選択される望ましい金属を含むフィルムとして堆積される請求項42記載の方法。
  45. 前記耐性透明誘電層が、主部分の酸化亜鉛と、副部分の前記望ましい金属の酸化物とを含むフィルムとして堆積される請求項42記載の方法。
  46. 前記耐性透明誘電層が、前記望ましい金属の原子が、前記耐性透明誘電層における金属原子の総数に対して、約10原子%未満を占めるフィルムとして堆積される請求項45記載の方法。
  47. 前記耐性透明誘電層が、亜鉛・錫酸化物および/または亜鉛・アルミニウム酸化物を含むフィルムとして堆積される請求項42記載の方法。
  48. 更に、前記外側赤外反射層よりも前記基材から離して、透明誘電外側層を堆積する工程を含む請求項42記載の方法。
  49. 前記低放射率コーティングが、スパッタリングによって堆積される請求項42記載の方法。

JP2006533618A 2003-06-10 2004-06-08 耐腐食性低放射率コーティング Expired - Fee Related JP4519136B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US47730203P 2003-06-10 2003-06-10
PCT/US2004/018193 WO2004110947A1 (en) 2003-06-10 2004-06-08 Corrosion-resistant low-emissivity coatings

Publications (2)

Publication Number Publication Date
JP2007501184A true JP2007501184A (ja) 2007-01-25
JP4519136B2 JP4519136B2 (ja) 2010-08-04

Family

ID=33551701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006533618A Expired - Fee Related JP4519136B2 (ja) 2003-06-10 2004-06-08 耐腐食性低放射率コーティング

Country Status (7)

Country Link
US (2) US7241506B2 (ja)
EP (1) EP1641722B1 (ja)
JP (1) JP4519136B2 (ja)
AT (1) ATE443032T1 (ja)
CA (1) CA2528630C (ja)
DE (1) DE602004023198D1 (ja)
WO (1) WO2004110947A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013229609A (ja) * 2012-04-26 2013-11-07 Changzhou Almaden Co Ltd 太陽光発電発熱システム
JP2014167163A (ja) * 2013-01-31 2014-09-11 Nitto Denko Corp 赤外線反射フィルムの製造方法
JP2016504253A (ja) * 2012-11-19 2016-02-12 ガーディアン インダストリーズ コーポレイションGuardian Industries Corp. 追加金属を有するスズ酸化物含有層を含む低放射率コーティングを有する被覆製品
JP2020510596A (ja) * 2017-03-01 2020-04-09 ガーディアン・グラス・エルエルシーGuardian Glass, Llc 銀系赤外線(IR)反射層を保護するための銀ドープ保護層を有する(低放射率)low−Eコーティングを有するコーティングされた物品、及びその製造方法
JP2021508616A (ja) * 2017-12-29 2021-03-11 ビトロ フラット グラス エルエルシー 日射調整コーティング及び日射調整コーティングを形成する方法

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2125361B1 (en) * 2006-12-28 2019-01-23 3M Innovative Properties Company Nucleation layer for thin film metal layer formation
US7833574B2 (en) * 2007-01-29 2010-11-16 Guardian Industries Corp. Method of making heat treated coated article using diamond-like carbon (DLC) coating and protective film
US8071166B2 (en) 2007-01-29 2011-12-06 Guardian Industries Corp. Method of making heat treated coated article using diamond-like carbon (DLC) coating and protective film
US8132426B2 (en) * 2007-01-29 2012-03-13 Guardian Industries Corp. Method of making heat treated coated article using diamond-like carbon (DLC) coating and protective film
US20080302416A1 (en) * 2007-06-05 2008-12-11 Green Volts, Inc. Durable silver based transparent conductive coatings for solar cells
US7807248B2 (en) * 2007-08-14 2010-10-05 Cardinal Cg Company Solar control low-emissivity coatings
US8026438B2 (en) * 2007-11-29 2011-09-27 Novasolar Holdings Limited Front transparent conductor assembly for thin-film photovoltaic cells and method
US20090191407A1 (en) * 2008-01-18 2009-07-30 Lewarchik Ronald J Coatings providing low surface emissivity
US8497015B2 (en) * 2008-03-11 2013-07-30 Ppg Industries Ohio, Inc. Reflective article
CN101598819B (zh) * 2008-06-04 2012-10-10 鸿富锦精密工业(深圳)有限公司 镀膜镜片制作方法
US8350451B2 (en) 2008-06-05 2013-01-08 3M Innovative Properties Company Ultrathin transparent EMI shielding film comprising a polymer basecoat and crosslinked polymer transparent dielectric layer
ES2770251T3 (es) * 2008-11-04 2020-07-01 Apogee Enterprises Inc Superficies de vidrio recubiertas y procedimiento para recubrir un sustrato de vidrio
SG178225A1 (en) 2009-08-03 2012-03-29 3M Innovative Properties Co Process for forming optically clear conductive metal or metal alloy thin films and films made therefrom
US20120107554A1 (en) * 2010-10-29 2012-05-03 Pfaff Gary L TCO Coating and Coated Substrate for High Temperature Applications
TWI472632B (zh) * 2011-01-14 2015-02-11 Hon Hai Prec Ind Co Ltd 鍍膜件及其製備方法
CN102603209A (zh) * 2011-01-25 2012-07-25 鸿富锦精密工业(深圳)有限公司 镀膜玻璃及其制备方法
TW201330015A (zh) * 2012-01-04 2013-07-16 Mke Technology Co Ltd 透明導電薄膜
WO2013152183A2 (en) * 2012-04-04 2013-10-10 Cardinal Cg Company Tco coating and coated substrate for high temperature applications
CN102786232A (zh) * 2012-09-05 2012-11-21 太仓耀华玻璃有限公司 一种多介质陶瓷低辐射镀膜玻璃
US20140272455A1 (en) * 2013-03-12 2014-09-18 Intermolecular Inc. Titanium nickel niobium alloy barrier for low-emissivity coatings
US10604834B2 (en) 2013-03-12 2020-03-31 Guardian Glass, LLC Titanium nickel niobium alloy barrier for low-emissivity coatings
US9239118B2 (en) 2013-04-24 2016-01-19 Hamilton Sundstrand Corporation Valve including multilayer wear plate
US8940400B1 (en) 2013-09-03 2015-01-27 Guardian Industries Corp. IG window unit including double silver coating having increased SHGC to U-value ratio, and corresponding coated article for use in IG window unit or other window
US8927069B1 (en) 2013-10-02 2015-01-06 Eritek, Inc. Method and apparatus for improving radio frequency signal transmission through low-emissivity coated glass
FR3013349B1 (fr) * 2013-11-15 2015-11-20 Saint Gobain Vitrage comprenant un substrat revetu d'un empilement comprenant au moins une couche fonctionnelle a base d'argent dope par du zinc
EP3146528A4 (en) * 2014-05-23 2018-01-03 The Regents of The University of Michigan Ultra-thin doped noble metal films for optoelectronics and photonics applications
US9416049B2 (en) * 2014-06-23 2016-08-16 Intermolecular, Inc. Low-e panels and methods for forming the same
EP3194477A4 (en) 2014-09-15 2018-05-30 Saint-Gobain Performance Plastics Corporation Optical film including an infrared absorption layer
US10571610B2 (en) 2014-11-21 2020-02-25 Saint-Gobain Performance Plastics Corporation Infra-red control optical films having metal nitride between encapsulating layers containing oxide
US9469566B2 (en) 2015-03-20 2016-10-18 Cardinal Cg Company Nickel-aluminum blocker film low-emissivity coatings
US9745792B2 (en) 2015-03-20 2017-08-29 Cardinal Cg Company Nickel-aluminum blocker film multiple cavity controlled transmission coating
US9752377B2 (en) * 2015-03-20 2017-09-05 Cardinal Cg Company Nickel-aluminum blocker film controlled transmission coating
CN104786591B (zh) * 2015-04-20 2017-04-12 林嘉佑 含银铜合金的低辐射镀膜玻璃及其制备方法
FR3038595A1 (fr) * 2015-07-06 2017-01-13 Saint Gobain Vitrage comprenant un revetement fonctionnel a base d'argent et d'indium
US10816703B2 (en) 2015-09-28 2020-10-27 Tru Vue, Inc. Near infrared reflective coatings
JP6703123B2 (ja) * 2016-02-05 2020-06-03 サン−ゴバン パフォーマンス プラスティックス コーポレイション 低腐食性太陽光制御積層体
KR102396179B1 (ko) 2016-04-19 2022-05-09 어포지 엔터프라이지즈, 인크. 코팅된 유리 표면 및 유리 기판을 코팅하는 방법
CN107867804B (zh) * 2016-09-27 2024-02-06 四川南玻节能玻璃有限公司 可膜面向下钢化的低辐射节能玻璃
US10227819B2 (en) * 2017-02-24 2019-03-12 Guardian Glass, LLC Coated article with low-E coating having doped silver IR reflecting layer(s)
US10233532B2 (en) 2017-03-01 2019-03-19 Guardian Glass, LLC Coated article with low-E coating having reflecting system with silver and zinc based barrier layer(s)
US10179946B2 (en) 2017-03-03 2019-01-15 Guardian Glass, LLC Coated article having low-E coating with IR reflecting layer(s) and niobium bismuth based high index layer and method of making same
US10196735B2 (en) 2017-03-03 2019-02-05 Guardian Glass, LLC Coated article having low-E coating with IR reflecting layer(s) and doped titanium oxide dielectric layer(s) and method of making same
US10253560B2 (en) 2017-03-03 2019-04-09 Guardian Glass, LLC Coated article with IR reflecting layer(s) and overcoat for improving solar gain and visible transmission
US10287673B2 (en) 2017-03-07 2019-05-14 Guardian Glass, LLC Coated article having low-E coating with IR reflecting layer(S) and yttrium inclusive high index nitrided dielectric layer
US10266937B2 (en) 2017-03-09 2019-04-23 Guardian Glass, LLC Coated article having low-E coating with IR reflecting layer(s) and hafnium inclusive high index nitrided dielectric layer
US10138159B2 (en) 2017-03-09 2018-11-27 Guardian Glass, LLC Coated article having low-E coating with IR reflecting layer(s) and high index nitrided dielectric film having multiple layers
US10138158B2 (en) 2017-03-10 2018-11-27 Guardian Glass, LLC Coated article having low-E coating with IR reflecting layer(s) and high index nitrided dielectric layers
AU2018261218B2 (en) 2017-05-04 2023-05-18 Apogee Enterprises, Inc. Low emissivity coatings, glass surfaces including the same, and methods for making the same
DE202017104061U1 (de) 2017-07-07 2018-10-09 Aixtron Se Beschichtungseinrichtung mit beschichteter Sendespule
US10611679B2 (en) 2017-10-26 2020-04-07 Guardian Glass, LLC Coated article including noble metal and polymeric hydrogenated diamond like carbon composite material having antibacterial and photocatalytic properties, and/or methods of making the same
US11028012B2 (en) 2018-10-31 2021-06-08 Cardinal Cg Company Low solar heat gain coatings, laminated glass assemblies, and methods of producing same
US11385383B2 (en) * 2018-11-13 2022-07-12 Raytheon Company Coating stress mitigation through front surface coating manipulation on ultra-high reflectors or other optical devices
TWI729956B (zh) * 2020-10-28 2021-06-01 行政院原子能委員會核能研究所 具抗濕功能的陽光控制膜及其製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000302486A (ja) * 1999-04-15 2000-10-31 Nippon Sheet Glass Co Ltd 日射遮蔽性透光板およびこれを用いた日射遮蔽性複層透光板
JP2004536013A (ja) * 2001-07-25 2004-12-02 サン−ゴバン グラス フランス 赤外線及び/又は太陽放射を反射する薄膜積層体を備えたグレージング

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4166018A (en) 1974-01-31 1979-08-28 Airco, Inc. Sputtering process and apparatus
US3961488A (en) * 1974-11-19 1976-06-08 A/S Akers Mek. Verksted Method for filling and emptying of cassions
JPS57195207A (en) 1981-05-26 1982-11-30 Olympus Optical Co Ltd Light absorbing film
DE3370195D1 (en) 1982-06-30 1987-04-16 Teijin Ltd Optical laminar structure
NO157212C (no) * 1982-09-21 1988-02-10 Pilkington Brothers Plc Fremgangsmaate for fremstilling av belegg med lav emisjonsevne.
US4883721A (en) 1987-07-24 1989-11-28 Guardian Industries Corporation Multi-layer low emissivity thin film coating
US4960310A (en) 1989-08-04 1990-10-02 Optical Corporation Of America Broad band nonreflective neutral density filter
US5506037A (en) 1989-12-09 1996-04-09 Saint Gobain Vitrage International Heat-reflecting and/or electrically heatable laminated glass pane
IT1240796B (it) 1990-03-12 1993-12-17 Siv Soc Italiana Vetro Vetro per autoveicoli, atto ad essere usato come schermo solare e come combinatore di immagini.
US4973446A (en) * 1990-06-07 1990-11-27 United Precious Metal Refining Co., Inc. Silver alloy compositions
US5039479A (en) * 1990-09-05 1991-08-13 United Precious Metal Refining Co., Inc. Silver alloy compositions, and master alloy compositions therefor
US5037708A (en) 1990-09-07 1991-08-06 Daniel Davitz Silver palladium alloy
US5296302A (en) 1992-03-27 1994-03-22 Cardinal Ig Company Abrasion-resistant overcoat for coated substrates
US5302449A (en) 1992-03-27 1994-04-12 Cardinal Ig Company High transmittance, low emissivity coatings for substrates
US5589280A (en) 1993-02-05 1996-12-31 Southwall Technologies Inc. Metal on plastic films with adhesion-promoting layer
US5337191A (en) 1993-04-13 1994-08-09 Photran Corporation Broad band pass filter including metal layers and dielectric layers of alternating refractive index
FR2710333B1 (fr) 1993-09-23 1995-11-10 Saint Gobain Vitrage Int Substrat transparent muni d'un empilement de couches minces agissant sur le rayonnement solaire et/ou infra-rouge.
US5376455A (en) * 1993-10-05 1994-12-27 Guardian Industries Corp. Heat-treatment convertible coated glass and method of converting same
US5817195A (en) 1995-12-13 1998-10-06 Astrolite Inc. Silver colored alloy with low percentage of nickel and copper
US5882441A (en) 1996-11-19 1999-03-16 Davitz; Daniel Silver colored alloy with low percentage copper
FR2766174B1 (fr) * 1997-07-21 1999-08-20 Saint Gobain Vitrage Substrat transparent revetu d'au moins une couche mince
US6007901A (en) 1997-12-04 1999-12-28 Cpfilms, Inc. Heat reflecting fenestration products with color corrective and corrosion protective layers
EP0963960A1 (fr) 1998-06-08 1999-12-15 Glaverbel Substrat transparent revêtu d'une couche d'argent
US6007889A (en) * 1998-06-22 1999-12-28 Target Technology, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
JP3477148B2 (ja) 1999-12-02 2003-12-10 カーディナル・シージー・カンパニー 耐曇り性透明フィルム積層体
US6919133B2 (en) * 2002-03-01 2005-07-19 Cardinal Cg Company Thin film coating having transparent base layer
KR101820843B1 (ko) 2011-02-18 2018-01-22 삼성전자주식회사 확산방지막을 구비한 엑스선 검출기

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000302486A (ja) * 1999-04-15 2000-10-31 Nippon Sheet Glass Co Ltd 日射遮蔽性透光板およびこれを用いた日射遮蔽性複層透光板
JP2004536013A (ja) * 2001-07-25 2004-12-02 サン−ゴバン グラス フランス 赤外線及び/又は太陽放射を反射する薄膜積層体を備えたグレージング

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013229609A (ja) * 2012-04-26 2013-11-07 Changzhou Almaden Co Ltd 太陽光発電発熱システム
JP2016504253A (ja) * 2012-11-19 2016-02-12 ガーディアン インダストリーズ コーポレイションGuardian Industries Corp. 追加金属を有するスズ酸化物含有層を含む低放射率コーティングを有する被覆製品
JP2014167163A (ja) * 2013-01-31 2014-09-11 Nitto Denko Corp 赤外線反射フィルムの製造方法
JP2020510596A (ja) * 2017-03-01 2020-04-09 ガーディアン・グラス・エルエルシーGuardian Glass, Llc 銀系赤外線(IR)反射層を保護するための銀ドープ保護層を有する(低放射率)low−Eコーティングを有するコーティングされた物品、及びその製造方法
JP7022142B2 (ja) 2017-03-01 2022-02-17 ガーディアン・グラス・エルエルシー 銀系赤外線(IR)反射層を保護するための銀ドープ保護層を有する(低放射率)low-Eコーティングを有するコーティングされた物品、及びその製造方法
JP2021508616A (ja) * 2017-12-29 2021-03-11 ビトロ フラット グラス エルエルシー 日射調整コーティング及び日射調整コーティングを形成する方法
JP7369696B2 (ja) 2017-12-29 2023-10-26 ビトロ フラット グラス エルエルシー 日射調整コーティング及び日射調整コーティングを形成する方法

Also Published As

Publication number Publication date
CA2528630C (en) 2012-09-25
EP1641722A1 (en) 2006-04-05
EP1641722B1 (en) 2009-09-16
US20050008852A1 (en) 2005-01-13
JP4519136B2 (ja) 2010-08-04
WO2004110947A1 (en) 2004-12-23
US20070248791A1 (en) 2007-10-25
ATE443032T1 (de) 2009-10-15
DE602004023198D1 (de) 2009-10-29
US7241506B2 (en) 2007-07-10
CA2528630A1 (en) 2004-12-23

Similar Documents

Publication Publication Date Title
JP4519136B2 (ja) 耐腐食性低放射率コーティング
EP3589596B1 (en) Coated article with low-e coating having protective doped silver or doped copper layer for protecting silver based ir reflecting layer(s), and method of making same
JP6113794B2 (ja) 低放射コーティングを包含する被覆物品、被覆物品を包含する断熱ガラスユニット、及び/又はそれらの製造方法
JP3998738B2 (ja) 半透明の材料からなる平板ならびにその製造方法
US6802943B2 (en) Coated article with improved barrier layer structure and method of making the same
US7537677B2 (en) Method of making low-E coating using ceramic zinc inclusive target, and target used in same
JP4031760B2 (ja) 低放射率コーティングを備えた基材
US6159621A (en) Glass substrate provided with a thin-film stack having reflective properties in the infrared and/or in the region of solar radiation
KR20140045329A (ko) 저방사율 코팅을 포함하는 코팅된 물품, 코팅된 물품을 포함하는 절연 유리 유닛, 및/또는 이의 제조방법
JP2000233947A5 (ja)
WO2012047249A2 (en) Silicon titanium oxide coating, coated article including silicon titanium oxide coating, and method of making the same
CA2593023C (en) Method of making coated article with ir reflecting layer(s) using krypton gas
KR20180095217A (ko) 반사성 코팅 기판
JPH03187735A (ja) 選択透過膜付きガラスの製造方法
US5993617A (en) Functional product
US10696584B1 (en) Coated article with low-E coating having protective contact layer including Ag, Ni, and Cr for protecting silver based IR reflecting layer(s), and method of making same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070116

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4519136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees