JP2007500356A - シグナルインテグリティ自己テストアーキテクチャ - Google Patents

シグナルインテグリティ自己テストアーキテクチャ Download PDF

Info

Publication number
JP2007500356A
JP2007500356A JP2006530879A JP2006530879A JP2007500356A JP 2007500356 A JP2007500356 A JP 2007500356A JP 2006530879 A JP2006530879 A JP 2006530879A JP 2006530879 A JP2006530879 A JP 2006530879A JP 2007500356 A JP2007500356 A JP 2007500356A
Authority
JP
Japan
Prior art keywords
module
monitor
integrated circuit
measurement signal
circuit device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006530879A
Other languages
English (en)
Inventor
ヘンドリクス ジェイ エム フェーンドリック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=33484000&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2007500356(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of JP2007500356A publication Critical patent/JP2007500356A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3183Generation of test inputs, e.g. test vectors, patterns or sequences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/30Marginal testing, e.g. by varying supply voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3185Reconfiguring for testing, e.g. LSSD, partitioning
    • G01R31/318505Test of Modular systems, e.g. Wafers, MCM's
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31722Addressing or selecting of test units, e.g. transmission protocols for selecting test units
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/18Address generation devices; Devices for accessing memories, e.g. details of addressing circuits
    • G11C29/30Accessing single arrays
    • G11C2029/3202Scan chain
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • G11C2029/5002Characteristic

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

少なくとも1つのモジュールを有する集積回路装置であって、該モジュール内の温度、給電ノイズ及びクロストーク等のような装置パラメータをモニタするのに適した少なくとも1つの関連するモジュールモニタを組み込んでいるモジュールを有する集積回路装置をテストするのに適した方法が、記載されている。

Description

本発明は、概ね、集積回路アーキテクチャの分野に関し、より詳細にはシグナルインテグリティ自己テスト(SIST)アーキテクチャの分野に関する。
製造技術の進歩により、大規模かつ高密度な回路を単一の半導体装置上に搭載することが可能になっている。これは、特に、前記回路が規則的な/セル状の構造として実現されている場合である。このようなセル構造の一例は、ランダムアクセスメモリ(RAM)装置である。RAM装置は、最高の回路密度を有するものの一種である。前記のような高密度の装置に関連する主な問題は、テストに関するものである。高い信頼性を保持するために、装置テスト手順は、前記装置において生じ得る可能性のある故障を良好にカバーする必要がある。
既に取り付けられ動作している装置が、該装置が適正に動作しているかを保証するためのテストを受ける必要があることは、しばしばあることである。いわゆる「実速度(at−speed)」テストには、高性能の外部ATE(自動テスト機器)の使用が必要である。前記のような高性能ATEは、特殊化されている機器であるので、一般的ではない。更に、テストされるべき装置を、外部ATEによって該装置をテストをするために、動作位置から移動することは、しばしば不便であり、実際、不可能である。この欠点を考慮して、様々な埋め込み型テスト技術が使用されている。前記のような埋め込み型の取り組み方は、一般に「組込自己テスト」(BIST)と呼ばれている。BISTは、通常、テストパターンの生成、及び取得されるシグネチャの分析のために、1つ以上の組込線形帰還シフトレジスタ(LFSR)を使用する。
装置内に埋込可能な多くの種類のBISTアーキテクチャが存在する。例えば、BILBO(組込ロジック・ブロック・オブザーバ)アーキテクチャは、2つのLFSRを使用し、一方をテスト生成に、他方をシグネチャ分析に使用する。第2の例は、CSTP(環状自己テストパス)と呼ばれており、1つのLFSRを生成及び分析の両方に使用する。
BISTの方法は、「オンライン」又は「オフライン」において実施されることができる。オンラインテストは、被試験装置が通常動作をしている間に実施され、更に、同時及び非同時の2つの種類に細分化されることができる。オンライン同時テストは、被試験装置の通常動作と同時に動作するのに対し、オンライン非同時テストは、被試験装置がアイドル状態にある際に動作する。
オフラインテストは、被試験装置が、別途の、専用の、テストモードである際に、実施される。オフラインテストは、機能又は構造オフラインテストに分類されることができる。機能オフラインテストは被試験装置の機能記述に基づいているのに対し、構造オフラインテストは被試験装置の物理構造に基づいている。
図1及び2は、BISTテストアーキテクチャを使用するオフライン構造テストに対する既知の取り組み方を示している。図1において、テスト信号3は、入力生成器5に供給される。入力生成器5は、(擬似ランダムな)組み合わせの、被試験装置7に供給されるべきテスト入力を生成する。この結果は、出力分析器9に渡され、該出力分析器9は、被試験装置7が特定のテストを合格している又は不合格になっているかを判定する。
図2は、装置16が、テストされるべき複数の個々の回路を有する状況を示している。BISTコントローラ11は、テストパターン生成器13に供給されるテスト情報を受け取る。テストパターン生成器13は、テストパターンを分配システム15に渡し、次いで、該分配システム15は装置16内でテストされるべき前記回路に前記テストパターンを通過させる。収集システム17は、この結果、特定の当該テストの結果が合格又は不合格に対応するかどうかと、この結果がどの回路に該当するかを判定するために、前記テストの結果を出力応答分析器19に渡す。BISTコントローラ11は、テストの全過程を制御する。
しかしながら、テスト結果と、装置のその場での挙動との間に、増大している不一致性が存在する。半導体の特徴寸法及び電圧の連続的なスケーリングは、集積回路(IC)の設計の強固性における劇的な傾向をもたらしてきた。
例えば、トランジスタの数の増加及びスイッチング速度の増加は、例えば、クロストーク、給電ノイズ及び基板ノイズのような受容しがたいレベルのノイズを生じることによって、タイミング及びシグナルインテグリティに対する著しい影響を有する。
図3は、例えば、図1の装置7において使用されることができる2つの平行なトレース(相互接続)A−B及びC−Dを示している。駆動ライン21上の信号S(f)は、AからBに伝播する。この信号は、第2トレースライン23に容量的及び誘導的に結合される。2つのトレースライン21、23の間の容量結合によって生じる相互容量結合信号Sが存在し、該相互容量結合信号Sは、同じ極性を有して順方向(C->D)及び逆方向(D->C)の両方に第2トレースライン23に沿って進行する。2つのトレースライン21、23の間の誘導結合によって生じる相互誘導結合信号Sも存在し、この信号は、被害を受ける(victim)トレースライン23に沿って、一方の極性を有して順方向(C->D)に、かつ、逆の極性を有して逆方向(D->C)に進行する。
同質材料において、相互静電容量と相互順方向インダクタンスとは、ほぼ等しく、互いに相殺する傾向にある。しかしながら、これらは、前記逆方向においては加算的であり、シグナルインテグリティに著しい問題を生じる。
信号周波数fが(又は、基となる信号S(f)の調和の周波数成分)が増加するほど、トレース間の間隔xは減少し、クロストークは増加し、この結果、過度の信号遅延によって当該装置の性能が低下する。
上述に加え、給電及びしきい電圧の低下は、ノイズ許容範囲を狭め、当該テスト及び装置の動作に更なる困難性を生じる。
組込自己テストに加え、バウンダリスキャンテストが、例えばIEEE 1149.1プロトコルを使用して当該装置上で実施されることもできる。バウンダリスキャンテストは、完全な基板レベルのテストプロトコルを形成するチップレベルにおける組込テスト回路に頼っている。しかしながら、全ての論理、メモリ及び/又はアナログブロックが、設計のピンへの直接的なアクセスを有し得るわけではなく、このことは、完全な機能テストが実施されることができないことを意味する。従って、スキャンテストは、実際の利用におけるものとは異なる切り替え活性度を示し得て、このことは、前記チップは、当該テストの間は正確に動作し、利用の際に不合格になるかもしれない、又は利用の際に正確に動作することができ、テストの際に不合格になり得ることを意味する。
図4は、IEEE1149.1のテストプロトコルによるスキャンテストの典型的な配置を示している。バウンダリスキャン装置において、各デジタル一次入力信号及び一次出力信号が、バウンダリスキャンセル(例えば、図4の35)と称されるメモリ素子に供給される。バウンダリスキャンセルの集まりは、図4に示されているパラレルイン、パラレルアウトシフトレジスタ内に配されている。パラレルロード動作によって、装置の入力ピンにおける信号の値が入力セルにロードされ、内部論理から装置出力ピンに通過する信号の値は出力セルにロードされる。
データは、シフトレジスタの周囲でシフトされることができ、「テスト・データ・イン」(TDI)と称される専用装置入力ピン25から開始し、「テスト・データ・アウト」(TDO)と称される専用装置出力ピン27において終了する。図5は、典型的なバウンダリスキャンセル35を模式的に図示している。各セルは、自身のパラレル入力PIにおいてデータをキャプチャし、自身のパラレル出力POにおいてデータを更新し、SOからのデータをその隣のSIに直列的にスキャンし、又は透明に振舞っても良い(即ちPIはPOに通過する)。
複雑なチップアーキテクチャの場合、バウンダリスキャンセルはICコアの内部機能の全てにアクセスすることができるわけではない。従って、上述で説明したように、特にチップアーキテクチャがより複雑になり、装置の特徴が小型化され続けているため、完全な機能テストは、この方法(又はBIST方法)を使用して実現可能ではない。従って、装置の完全な機能テストのための仕方を獲得する必要があると同時に、半導体の特徴寸法及び電圧のスケーリングを可能にし続ける必要がある。
本発明は、シグナルインテグリティに影響を与える重要なチップパラメータ又は特性の完全なモニタを可能にするアーキテクチャを採用する。前記アーキテクチャによれば、チップ上のいかなる場所(例えば、全てのコア)もモニタされることができ、モニタは、いかなる時(例えば、テスト、デバック、診断及び製品設計の間)でも、利用中においても、行われることができる。
本発明の第1の見地によれば、少なくとも1つのモジュールを有する集積回路装置であって、前記モジュール又は各モジュールは当該モジュールの動作パラメータを示す測定信号を生成するように動作可能なモジュールモニタを組み込んでいる集積回路装置をテストする方法であって、モジュールモニタから測定信号を受け取るステップと、テスト結果を生成するように受け取られた前記信号を処理するステップとを含む方法が提供される。
本発明の第2の見地によれば、少なくとも1つのモジュールを有する集積回路装置であって、前記モジュール又は各モジュールは当該モジュールのそれぞれの動作パラメータを示す測定信号をそれぞれ生成するように動作可能である複数のモジュールモニタを組み込んでいる集積回路装置をテストする方法であって、モジュールモニタから測定信号を受け取るステップと、テスト結果を生成するように受け取られた前記信号を処理するステップとを含む方法が提供される。
本発明の第3の見地によれば、モジュールを有する集積回路装置であって、当該モジュールの動作パラメータを示す測定信号を生成するように動作可能であるモジュールモニタを組み込んでいるモジュールを有する集積回路装置が提供される。
本発明の第4の見地によれば、モジュールを有する集積回路装置であって、当該モジュールのそれぞれの動作パラメータを示す測定信号をそれぞれ生成するように動作可能である複数のモジュールモニタを組み込んでいるモジュールを有する集積回路装置が提供される。
本発明の第5の見地によれば、モジュールを有する集積回路装置であって、当該モジュールの動作パラメータを示す測定信号を生成するように動作可能であるモジュールモニタを組み込んでいるモジュールを有する集積回路装置をテストする装置が提供される。
本発明の第6の見地によれば、モジュールを有する集積回路装置であって、当該モジュールのそれぞれの動作パラメータを示す測定信号をそれぞれ生成するように動作可能である複数のモジュールモニタを組み込んでいるモジュールを有する集積回路装置をテストする装置が提供される。
本明細書において使用されている「有する」という語は、上述の特徴、整数(integer)、ステップ又は構成要素を詳述するのに使用されているが、1つ以上の他の特徴、整数、ステップ、構成要素又はこれらの集合の存在又は付加を排除するものではないことを強調しておく。
本発明のより良い理解のため、本発明がどのように効果的に実施されることができるかを示すように、例として添付図面を参照する。
図6は、本発明の模範的な実施例を表している。被試験装置は、複数のコア(又はモジュール)47を有している。簡潔さのために、当該被試験装置上のコアは、全て同じ大きさを有していると仮定している。この結果、図6に見られるように規則的なアーキテクチャが生じる。コア47とは、被試験装置内の機能ブロックである。コア47は、様々な機能を有し、互いに異なる大きさであっても良く、各コア47の内部論理は、例えば、標準的なセルライブラリの素子から実施されることができる。
図6の装置は、単に、本発明を説明するための例として示されている。図6の装置は、デコーダ57(図8)を介してコア47内のそれぞれのモニタ又はモニタのグループに接続されているモニタ選択バス39を含んでいる。コア47は、例えば、メモリモジュールであっても良く、又はアナログ若しくはデジタルモジュールの一部であっても良い。ICは、多数の前記のようなコアを有していても良い。前記モニタは、簡潔さのために図6には示されていない(図8参照)。特に、モニタが、(上述のように)コア47の論理が構築されている前記標準的なセルライブラリ内の素子と類似のアーキテクチャを有する場合、モニタは、コア47のアーキテクチャ内に容易に位置されることができ、コアは、本明細書に記載のものよりも、著しく多くのモニタを含むことができることも評価されるべきである。
前記モニタは、モニタ信号ライン(又はバス)41に接続されており、該モニタ信号ライン上でモニタ信号が伝送される。モニタ制御ブロック37は、どのコア47内のどのモニタが、モニタ信号ライン41に接続されるかを選択するように、モニタ選択バス39上のビットの値を制御する。このライン上の前記信号のレベルは、選択された前記コア内の選択されたモニタパラメータの出力に関連している。図6の実施例において、前記信号は、処理用の当該装置からの出力のためのボンディングパッド42に転送される。代替的には、(各個々のパラメータに関して)モニタ出力と比較される基準値を含んでおり、合格又は不合格の信号を生成する、基準及び比較回路43が設けられても良い。基準及び比較回路43は、図7に示されている。このようにして、前記チップは、シグナルインテグリティ自己テストを実施することができる。各コア内のモニタ信号は、例えば、温度、クロストーク、給電ノイズ及び整合を含むことができる。
図8は、図6及び7のコア47内のモニタ49、51、53、55の詳細図を表している。この例において、コア47は、4つのモニタ49、51、53、55を有している。各コア内に設けられているモニタの数は、本発明に対して重要ではない。異なるコアは、異なる数のモニタを有することができ、上述のように、前記数は、本明細書に記載されているものより、かなり多くても良い。
コア47内の論理は、標準的なセルライブラリからの論理素子を使用して実施されることができる。この場合、モニタは、前記標準的なセルライブラリ内の論理素子と、アーキテクチャ的に類似であることが好ましい。例えば、ライブラリ内の素子は、全て所定の高さ及び可変幅を有することができる。従って、例えば、前記のようなライブラリから、構築されているコア47内に実施されている前記モニタは、前記高さと同じであることが好ましい。このようにして、モニタは、前記のような標準的なセルライブラリからの構成要素を使用して構築されている設計に、容易に実施されることができる。
各コア47内のモニタの数は、モニタ選択バス39内で必要とされるビットの数を決定する。コア内に4個のモニタがある場合、前記モニタ選択バス39は、適切なモニタを選択することができるように、コアごとに2つのビットを含む。モニタ選択バス39は、モニタ制御ブロック37からデータを受け取り、デコーダ57(図8)は、前記データ(該データは、例えば、選択されるべきモニタに対応するバイナリ識別子であっても良い)をデコードする。デコーダ57は、モニタ制御ブロック37から受け取る前記データに基づいて、適切なモニタ49、51、53、55を選択する。前記モニタ制御ブロック37は、一定の状況下でSISTを自動的に開始するように予め設定されていても良く、又はSISTを開始するための外部指示を受け取っても良い。前記指示は、どのコア内のどのモニタが選択されるべきであるかに関する情報を含んでいても良く、これにより、モニタ制御ブロック37は、モニタ選択バス39に関する関連情報をデコーダ57に送信することが可能になる。各コア47内の各デコーダ57は、これが、自身が制御しているモニタがモニタ機能を実施するように要求されているかどうかを判断するために、モニタ制御ブロック37によってモニタ選択バス39上に送信される前記情報をデコードする。
各モニタは、例えば、温度、クロストーク、給電ノイズ又は整合のような、詳細なチップ(又はコア)のパラメータを検査することもできる。代替的には、前記モニタは、前記コアの大きさに関連する特定のパラメータの効果を決定するように、チップ(又はコア)において同じパラメータを検査することもできる。前記のような2つの取り組み方の組み合わせを採用しても良い。このように、例えば図8を参照すると、コア47は、該コア内の異なる位置において該コアの温度を検査する複数のモニタ(49、51、53、55)、及び/又は、各々が、例えば、温度、クロストーク、給電ノイズ及び整合又はこれらの組み合わせの1つを検査する複数のモニタを有することができる。
当業者であれば、コアパラメータの何らかの適切な組み合わせが、本発明によって具現化される前記アーキテクチャによって検査されることができると認識するであろう。ひとたび、特定のコアのパラメータ又は特性が検査されれば、この検査の結果は、モニタ49、51、53、55によってモニタ信号ライン(又はバス)41に渡される。この信号ライン/バス41は、そのレベルが、測定された前記パラメータ(例えば、クロストーク、給電ノイズ、活性度及び温度等)に関する値である直流信号を搬送する信号ラインであっても良い。当該モニタ信号がオンチップノイズの影響を受けるのを防止するように、差動信号法を支持しても良い。代替的には、測定される前記パラメータは、前記モニタ(センサ)の直後に、前記値をバイナリ符号化し、次いで、バイナリ符号化された前記値をバスを介して送信することにより、渡されても良い。次いで、この結果は、それに応じて処理されることができ、即ち、ボンディングパッド42を介してオフチップで、又は基準及び比較回路43を介してオンチップで処理されることができる。前記処理の結果に関して、何らかの必要なアクションがとられることができる。前記基準及び比較回路43からの結果は、更なるオフチップ処理が実行されることができるように、ボンディングパッド45に渡されることもできる。上述のように、例えば、BISTを使用して得られるテスト結果と、利用中の装置の挙動との間に、増加している不一致性がある。上述のシグナルインテグリティ自己テスト(SIST)は、有利には補間(complement)BISTであっても良い。例えば、SISTは、組込自己テストの実行前、実行中及び/又は実行後に、様々な装置パラメータに関する情報を供給するのに使用されることもできる。
典型的なオフラインBISTアーキテクチャを図示している。 典型的なオフラインBISTアーキテクチャを更に図示している。 2つの並行なトレースラインを図示している。 典型的なバウンダリスキャンテストアーキテクチャを図示している。 典型的なバウンダリスキャンテストアーキテクチャの素子を表している。 本発明によって具現化された集積回路装置を図示している。 本発明によって具現化された集積回路装置を図示している。 本発明の実施例と関連する装置のコアを図示している。

Claims (30)

  1. モジュールを有する集積回路装置であって、当該モジュールの動作パラメータを示す測定信号を生成するように動作可能なモジュールモニタを組み込んでいるモジュールを有する集積回路装置をテストする方法において、前記モジュールモニタから測定信号を受け取るステップと、テスト結果を生成するように、受け取られた前記測定信号を処理するステップとを含む方法。
  2. 前記測定信号を受け取るステップは、比較及び基準回路において前記測定信号を受け取るステップを含んでいる、請求項1に記載の方法。
  3. 前記測定信号を受け取るステップは、前記集積回路装置のボンディングパッドにおいて前記測定信号を受け取るステップを含んでいる、請求項1に記載の方法。
  4. 受け取られた前記測定信号を処理するステップは、前記受け取られた測定信号を基準値と比較するステップを含む、請求項1ないし3の何れか一項に記載の方法。
  5. 前記受け取られた測定信号と前記基準値との比較に応じて、合格/不合格信号を生成するステップを更に含む、請求項4に記載の方法。
  6. モジュールを有する集積回路装置であって、当該モジュールのそれぞれの動作パラメータを示す測定信号をそれぞれ生成するように動作可能な複数のモジュールモニタを組み込んでいるモジュールを有する集積回路装置をテストする方法であって、モジュールモニタから測定信号を受け取るステップと、テスト結果を生成するように、受け取られた前記測定信号を処理するステップとを含む方法。
  7. 前記測定信号を受け取るステップは、比較及び基準回路において前記測定信号を受け取るステップを含んでいる、請求項6に記載の方法。
  8. 前記測定信号を受け取るステップは、前記集積回路装置のボンディングパッドにおいて前記測定信号を受け取るステップを含んでいる、請求項6に記載の方法。
  9. 受け取られた前記測定信号を処理するステップは、前記受け取られた測定信号を基準値と比較するステップを含む、請求項6ないし8の何れか一項に記載の方法。
  10. 前記受け取られた測定信号と前記基準値との比較に応じて、合格/不合格信号を生成するステップを更に含む、請求項9に記載の方法。
  11. モジュールを有する集積回路装置であって、当該モジュールの動作パラメータを示す測定信号を生成するように動作可能なモジュールモニタを組み込んでいるモジュールを有する集積回路装置。
  12. それぞれのモジュール内のそれぞれのモジュールモニタを選択するように動作可能であるモニタ選択バスを更に有する、請求項11に記載の集積回路装置。
  13. 前記モニタ選択バス上の値を制御するように動作可能なモニタ制御ブロックを更に有する、請求項12に記載の集積回路装置。
  14. 選択された前記モジュールモニタからの出力信号を受け取るように接続されている基準及び比較回路を更に有する、請求項11に記載の集積回路装置。
  15. 前記モジュールモニタが標準的なセルアーキテクチャを有する、請求項11に記載の集積回路装置。
  16. モジュールを有する集積回路装置であって、モジュールのそれぞれの動作パラメータを示す測定信号をそれぞれ生成するように動作可能である複数のモジュールモニタを組み込んでいるモジュールを有する集積回路装置。
  17. それぞれのモジュール内のそれぞれのモジュールモニタを選択するように動作可能であるモニタ選択バスを更に有する、請求項16に記載の集積回路装置。
  18. 前記モニタ選択バス上の値を制御するように動作可能であるモニタ制御ブロックを更に有する、請求項17に記載の集積回路装置。
  19. 選択された前記モジュールモニタからの出力信号を受け取るように接続されている基準及び比較回路を更に有する、請求項16に記載の集積回路装置。
  20. 前記モジュールモニタが標準的なセルアーキテクチャを有する、請求項16に記載の集積回路装置。
  21. モジュールを有する集積回路装置をテストする装置であって、当該モジュールの動作パラメータを示す測定信号を生成するように動作可能であるモジュールモニタを組み込んでいるモジュールを有する集積回路装置をテストする装置。
  22. それぞれのモジュール内のそれぞれのモジュールモニタを選択するように動作可能であるモニタ選択バスを更に有する、請求項21に記載の装置。
  23. 前記モニタ選択バス上の値を制御するように動作可能であるモニタ制御ブロックを更に有する、請求項22に記載の装置。
  24. 選択された前記モジュールモニタからの出力信号を受け取るように接続されている基準及び比較回路を更に有する、請求項21に記載の装置。
  25. 前記モジュールモニタが標準的なセルアーキテクチャを有する、請求項21に記載の装置。
  26. モジュールを有する集積回路装置をテストする装置であって、前記モジュールのそれぞれの動作パラメータを示す測定信号をそれぞれ生成するように動作可能である複数のモジュールモニタを組み込んでいるモジュールを有する集積回路装置をテストする装置。
  27. それぞれのモジュール内のそれぞれのモジュールモニタを選択するように動作可能であるモジュールモニタ選択バスを更に有する、請求項26に記載の装置。
  28. 前記モニタ選択バス上の値を制御するように動作可能であるモニタ制御ブロックを更に有する、請求項27に記載の装置。
  29. 選択された前記モジュールモニタからの出力信号を受け取るように接続されている基準及び比較回路を更に有する、請求項26に記載の装置。
  30. 前記モジュールモニタが標準的なセルアーキテクチャを有する、請求項26に記載の装置。
JP2006530879A 2003-05-28 2004-05-18 シグナルインテグリティ自己テストアーキテクチャ Withdrawn JP2007500356A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP03101562 2003-05-28
PCT/IB2004/050731 WO2004106957A2 (en) 2003-05-28 2004-05-18 Signal integrity self-test architecture

Publications (1)

Publication Number Publication Date
JP2007500356A true JP2007500356A (ja) 2007-01-11

Family

ID=33484000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006530879A Withdrawn JP2007500356A (ja) 2003-05-28 2004-05-18 シグナルインテグリティ自己テストアーキテクチャ

Country Status (7)

Country Link
US (1) US7478302B2 (ja)
EP (1) EP1644748A2 (ja)
JP (1) JP2007500356A (ja)
KR (1) KR20060019556A (ja)
CN (1) CN1795393B (ja)
TW (1) TW200516268A (ja)
WO (1) WO2004106957A2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100731106B1 (ko) * 2005-12-29 2007-06-22 동부일렉트로닉스 주식회사 라이브러리 테스트 회로 및 그 방법
KR100884983B1 (ko) * 2007-06-26 2009-02-23 주식회사 동부하이텍 표준 셀 라이브러리의 성능 개선을 위한 측정 장치
US8118122B2 (en) * 2007-10-25 2012-02-21 GM Global Technology Operations LLC Method and system for monitoring signal integrity in a distributed controls system
EP2286256B1 (en) * 2008-05-29 2012-05-16 Nxp B.V. Dll for period jitter measurement
CN101770967A (zh) * 2009-01-03 2010-07-07 上海芯豪微电子有限公司 一种共用基底集成电路测试方法、装置和系统
US9311202B2 (en) * 2012-11-01 2016-04-12 Futurewei Technologies, Inc. Network processor online logic test
TWI589892B (zh) * 2015-04-22 2017-07-01 威盛電子股份有限公司 傳輸介面晶片以及內建式傳輸介面晶片測試方法
KR102342851B1 (ko) 2015-08-17 2021-12-23 삼성전자주식회사 반도체 칩, 테스트 시스템 및 반도체 칩의 테스트 방법
US10585817B2 (en) 2018-05-29 2020-03-10 Seagate Technology Llc Method of signal integrity and power integrity analysis for address bus
US10990739B1 (en) 2019-03-27 2021-04-27 Amazon Technologies, Inc. Scan channel fabric for tiled circuit designs
KR102657135B1 (ko) * 2019-05-15 2024-04-15 삼성디스플레이 주식회사 송수신 시스템
CN112198422A (zh) * 2020-10-19 2021-01-08 南京宏泰半导体科技有限公司 一种高速信号频率测量与信号完整性的测试方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4860290A (en) * 1987-06-02 1989-08-22 Texas Instruments Incorporated Logic circuit having individually testable logic modules
US5379308A (en) * 1992-04-20 1995-01-03 Intel Corporation Apparatus for a bus-based integrated circuit test architecture
US5459737A (en) * 1993-07-07 1995-10-17 National Semiconductor Corporation Test access port controlled built in current monitor for IC devices
JPH07159496A (ja) * 1993-10-12 1995-06-23 At & T Global Inf Solutions Internatl Inc 集積回路の検査のための装置及びその方法
US5418470A (en) 1993-10-22 1995-05-23 Tektronix, Inc. Analog multi-channel probe system
US5894224A (en) 1996-06-06 1999-04-13 U.S. Philips Corporation Method of testing a connection which includes a conductor in an integrated circuit
US5734661A (en) * 1996-09-20 1998-03-31 Micron Technology, Inc. Method and apparatus for providing external access to internal integrated circuit test circuits
US6239604B1 (en) * 1996-10-04 2001-05-29 U.S. Philips Corporation Method for inspecting an integrated circuit by measuring a voltage drop in a supply line of sub-circuit thereof
US6134675A (en) * 1998-01-14 2000-10-17 Motorola Inc. Method of testing multi-core processors and multi-core processor testing device
KR100832187B1 (ko) * 1998-08-24 2008-05-23 가부시키가이샤 히타치세이사쿠쇼 반도체 집적회로
US6421626B1 (en) * 1998-11-06 2002-07-16 Stmicroelectronics, Inc.. Low voltage/low power temperature sensor
US6687863B1 (en) * 1999-07-29 2004-02-03 Matsushita Electric Industrial Co., Ltd. Integrated circuit internal signal monitoring apparatus
US6560663B1 (en) * 1999-09-02 2003-05-06 Koninklijke Philips Electronics N.V. Method and system for controlling internal busses to prevent bus contention during internal scan testing
US6829730B2 (en) * 2001-04-27 2004-12-07 Logicvision, Inc. Method of designing circuit having multiple test access ports, circuit produced thereby and method of using same
KR100896538B1 (ko) * 2001-09-20 2009-05-07 엔엑스피 비 브이 전자 장치
US6842022B2 (en) * 2002-09-20 2005-01-11 Agilent Technologies, Inc. System and method for heterogeneous multi-site testing
US6823293B2 (en) * 2002-12-31 2004-11-23 International Business Machines Corporation Hierarchical power supply noise monitoring device and system for very large scale integrated circuits

Also Published As

Publication number Publication date
WO2004106957A2 (en) 2004-12-09
WO2004106957A3 (en) 2005-03-31
EP1644748A2 (en) 2006-04-12
KR20060019556A (ko) 2006-03-03
US20070079188A1 (en) 2007-04-05
TW200516268A (en) 2005-05-16
CN1795393A (zh) 2006-06-28
US7478302B2 (en) 2009-01-13
CN1795393B (zh) 2010-06-02

Similar Documents

Publication Publication Date Title
US6574762B1 (en) Use of a scan chain for configuration of BIST unit operation
JP4354051B2 (ja) 接続性テストシステム
US6701476B2 (en) Test access mechanism for supporting a configurable built-in self-test circuit and method thereof
JP3749541B2 (ja) 集積回路試験装置及び試験法
US6766486B2 (en) Joint test action group (JTAG) tester, such as to test integrated circuits in parallel
US11156661B2 (en) Reversible multi-bit scan cell-based scan chains for improving chain diagnostic resolution
US11073556B2 (en) Low pin count reversible scan architecture
KR19980071048A (ko) 웨이퍼와, 테스트 시스템 및 그 실행 방법과, 데이터프로세서 및 그 검사 방법
Steininger Testing and built-in self-test–A survey
Serra et al. Testing
US5487074A (en) Boundary scan testing using clocked signal
US6347387B1 (en) Test circuits for testing inter-device FPGA links including a shift register configured from FPGA elements to form a shift block through said inter-device FPGA links
Abramovici et al. Using embedded FPGAs for SoC yield improvement
Nagle et al. Design for testability and built-in self test: A review
JP2007500356A (ja) シグナルインテグリティ自己テストアーキテクチャ
US6834366B2 (en) Method of outputting internal information through test pin of semiconductor memory and output circuit thereof
US11815555B2 (en) Universal compactor architecture for testing circuits
US8140923B2 (en) Test circuit and method for testing of infant mortality related defects
US10963612B2 (en) Scan cell architecture for improving test coverage and reducing test application time
Wang et al. A self-test and self-diagnosis architecture for boards using boundary scans
Lubaszewski et al. On the design of self-checking boundary scannable boards
KR100694315B1 (ko) 다중 시스템 클럭 및 이종 코어를 포함하는 시스템 온 칩용연결선 지연 고장 테스트 제어기
US6986087B2 (en) Method and apparatus for improving testability of I/O driver/receivers
US6675337B1 (en) Built-in self verification circuit for system chip design
Han et al. A New Multi‐site Test for System‐on‐Chip Using Multi‐site Star Test Architecture

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070516

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080619

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091008