JP2007333227A - Heat pump type water heater - Google Patents

Heat pump type water heater Download PDF

Info

Publication number
JP2007333227A
JP2007333227A JP2006162095A JP2006162095A JP2007333227A JP 2007333227 A JP2007333227 A JP 2007333227A JP 2006162095 A JP2006162095 A JP 2006162095A JP 2006162095 A JP2006162095 A JP 2006162095A JP 2007333227 A JP2007333227 A JP 2007333227A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
heat pump
outdoor air
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006162095A
Other languages
Japanese (ja)
Other versions
JP2007333227A5 (en
JP4785630B2 (en
Inventor
Yuji Shimamura
島村  裕二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006162095A priority Critical patent/JP4785630B2/en
Publication of JP2007333227A publication Critical patent/JP2007333227A/en
Publication of JP2007333227A5 publication Critical patent/JP2007333227A5/ja
Application granted granted Critical
Publication of JP4785630B2 publication Critical patent/JP4785630B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump type water heater capable of carrying out water supply operation, heating operation and defrosting operation at the same time. <P>SOLUTION: The heat pump type water heater is constituted to detect whether frost formation has occurred in an outdoor air heat exchanger 13 during the operation of a heat pump cycle 1 in which a CO<SB>2</SB>refrigerant is circulated, and a heat pump cycle 2 in which an R410A refrigerant is circulated, and to carry out defrosting operation for eliminating frost of the outdoor air heat exchanger 13 in either one of the heat pump cycle 1 and heat pump cycle 2 when detecting the frost formation of the outdoor air heat exchanger 13. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は,圧縮機や膨張器などが設けられたヒートポンプサイクル内に循環する冷媒との熱交換によって水を加熱して給湯するヒートポンプ式給湯機に関し,特に,二つのヒートポンプサイクルを具備するヒートポンプ式給湯機に関するものである。   The present invention relates to a heat pump type hot water heater that supplies water by heating water by heat exchange with a refrigerant circulating in a heat pump cycle provided with a compressor, an expander, and the like. It relates to a water heater.

従来から,圧縮機や膨張器などが設けられたヒートポンプサイクル内に循環する冷媒との熱交換によって水を加熱して給湯するヒートポンプ式給湯機が周知である。前記冷媒は,例えば炭酸ガス冷媒やHFC冷媒などである。前記ヒートポンプ式給湯機では,前記冷媒との熱交換により加熱された温水を直接給湯口から給湯する瞬間給湯運転や前記温水を貯湯タンクに貯留する貯湯運転などの各種の給湯運転が実行される。
また,特許文献1には,CO2冷媒(炭酸ガス冷媒の一例)が用いられたヒートポンプサイクル(以下,「CO2サイクル」という)と,R410A冷媒(HFC冷媒の一例)が用いられたヒートポンプサイクル(以下,「R410Aサイクル」という)との二つのヒートポンプサイクルを併せ持つヒートポンプ式給湯機が示されている。このように構成されたヒートポンプ式給湯機では,高温の温水が必要な場合にCO2サイクルが用いられ,低温の温水でよい場合にはR410Aサイクルが用いられる。
2. Description of the Related Art Conventionally, a heat pump type hot water heater that supplies water by heating water by heat exchange with a refrigerant circulating in a heat pump cycle provided with a compressor, an expander, and the like is well known. The refrigerant is, for example, a carbon dioxide refrigerant or an HFC refrigerant. In the heat pump type hot water supply device, various hot water supply operations such as an instantaneous hot water supply operation in which hot water heated by heat exchange with the refrigerant is directly supplied from a hot water supply port and a hot water storage operation in which the hot water is stored in a hot water storage tank are executed.
Patent Document 1 discloses a heat pump cycle using a CO 2 refrigerant (an example of a carbon dioxide refrigerant) (hereinafter referred to as “CO 2 cycle”) and a heat pump cycle using an R410A refrigerant (an example of an HFC refrigerant). A heat pump type water heater having two heat pump cycles (hereinafter referred to as “R410A cycle”) is shown. In the heat pump type water heater configured as described above, the CO 2 cycle is used when high-temperature hot water is required, and the R410A cycle is used when low-temperature hot water is sufficient.

ところで,ヒートポンプ式給湯機では,前記給湯運転の実行時に,冷媒と室外空気との間で熱交換を行う室外空気熱交換器に着霜が生じた場合には,その給湯運転を中断して,その霜を取り除くための除霜運転が実行される。例えば,この除霜運転は,前記ヒートポンプサイクル内に循環される冷媒の循環方向を切り替えて,圧縮機から吐出された高温の冷媒を前記室外空気熱交換器に流入させることによって実現される。
また,従来から,冷媒と室内空気との間で熱交換を行う室内空気熱交換器と,該冷媒と室外空気との間で熱交換を行う室外空気熱交換器とを有する空気調和機でも同様に,暖房運転時に前記室外空気熱交換器の着霜が発生した場合には,冷房運転に切り替えて前記室外空気熱交換器に高温の冷媒を流入させることにより除霜運転が実現される。
特開2005−83585号公報
By the way, in the heat pump type water heater, when frost formation occurs in the outdoor air heat exchanger that performs heat exchange between the refrigerant and the outdoor air during the hot water supply operation, the hot water supply operation is interrupted. A defrosting operation for removing the frost is performed. For example, this defrosting operation is realized by switching the circulation direction of the refrigerant circulated in the heat pump cycle and allowing the high-temperature refrigerant discharged from the compressor to flow into the outdoor air heat exchanger.
The same applies to an air conditioner having an indoor air heat exchanger that exchanges heat between refrigerant and room air and an outdoor air heat exchanger that exchanges heat between the refrigerant and outdoor air. In addition, when frost formation occurs in the outdoor air heat exchanger during the heating operation, the defrosting operation is realized by switching to the cooling operation and allowing a high-temperature refrigerant to flow into the outdoor air heat exchanger.
Japanese Patent Laying-Open No. 2005-83585

しかしながら,前記除霜運転では前記室外空気熱交換器に高温の冷媒を流入させる必要があるため,前記給湯運転や前記暖房運転と前記除霜運転とを同時に実行することができないという問題がある。
従って,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,給湯運転や暖房運転と除霜運転とを同時に実行することのできるヒートポンプ式給湯機を提供することにある。
However, in the defrosting operation, since it is necessary to allow a high-temperature refrigerant to flow into the outdoor air heat exchanger, there is a problem that the hot water supply operation, the heating operation, and the defrosting operation cannot be performed simultaneously.
Therefore, the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a heat pump type hot water heater capable of simultaneously executing a hot water supply operation, a heating operation, and a defrosting operation. .

上記目的を達成するために本発明は,第一の冷媒が少なくとも第一の圧縮機及び第一の膨張器を経て循環される第一のヒートポンプサイクルと,前記第一の冷媒と異なる特性を持つ第二の冷媒が少なくとも第二の圧縮機及び第二の膨張器を経て循環される第二のヒートポンプサイクルと,前記第二の冷媒と室内空気との間で熱交換を行う室内空気熱交換器と,前記第一の冷媒及び/又は前記第二の冷媒と水との間で熱交換を行う水熱交換器と,前記第一の冷媒及び/又は前記第二の冷媒と室外空気との間で熱交換を行う共通の室外空気熱交換器と,を備えてなるヒートポンプ式給湯機に適用されるものであって,前記第一のヒートポンプサイクル及び/又は前記第二のヒートポンプサイクルの稼働中に,前記室外空気熱交換器における着霜の発生の有無を検出し,前記室外空気熱交換器の着霜が検出された場合に,前記第一のヒートポンプサイクル及び前記第二のヒートポンプサイクルのいずれか一方において前記室外空気熱交換器の霜を取り除く除霜運転を実行することを特徴とするヒートポンプ式給湯機として構成される。ここに,例えば前記第一の冷媒は炭酸ガス冷媒であって,前記第二の冷媒はHFC冷媒であることが考えられる。
このように構成された本発明に係るヒートポンプ式給湯機では,前記第一のヒートポンプサイクル及び前記第二のヒートポンプサイクルのいずれか一方で前記除霜運転が実行されるため,他方のヒートポンプサイクルでは給湯運転や暖房運転を実行することができる。即ち,前記除霜運転と前記給湯運転や前記暖房運転とを同時に実行することができる。
具体的には,前記室外空気熱交換器に,前記第一の冷媒が循環される第一の配管と,前記第二の冷媒が循環される第二の配管と,前記第一の配管及び前記第二の配管が貫装された伝熱板と,を設けておくことにより,一方のヒートポンプサイクルの稼働によって前記室外空気熱交換器に付着した霜を,他方のヒートポンプサイクルを稼働することによって除霜することができる。
To achieve the above object, the present invention has a first heat pump cycle in which a first refrigerant is circulated through at least a first compressor and a first expander, and has different characteristics from the first refrigerant. A second heat pump cycle in which the second refrigerant is circulated through at least the second compressor and the second expander, and an indoor air heat exchanger for exchanging heat between the second refrigerant and room air. A water heat exchanger that exchanges heat between the first refrigerant and / or the second refrigerant and water, and between the first refrigerant and / or the second refrigerant and outdoor air. And a common outdoor air heat exchanger for exchanging heat in a heat pump water heater, wherein the first heat pump cycle and / or the second heat pump cycle is in operation. , Frost formation in the outdoor air heat exchanger When the presence or absence of raw material is detected and frost formation of the outdoor air heat exchanger is detected, frost on the outdoor air heat exchanger is removed in either the first heat pump cycle or the second heat pump cycle. It is comprised as a heat pump type water heater characterized by performing the defrosting operation to remove. Here, for example, the first refrigerant may be a carbon dioxide refrigerant and the second refrigerant may be an HFC refrigerant.
In the heat pump type hot water heater according to the present invention configured as described above, since the defrosting operation is executed in one of the first heat pump cycle and the second heat pump cycle, hot water is supplied in the other heat pump cycle. Operation and heating operation can be executed. That is, the defrosting operation, the hot water supply operation, and the heating operation can be performed simultaneously.
Specifically, a first pipe through which the first refrigerant is circulated, a second pipe through which the second refrigerant is circulated, the first pipe and the outdoor air heat exchanger By providing a heat transfer plate with a second pipe penetrated, frost adhering to the outdoor air heat exchanger due to the operation of one heat pump cycle is removed by operating the other heat pump cycle. Can be frosted.

ところで,前記室外空気熱交換器への着霜の検出は,例えば,前記室外空気熱交換器の温度を検出し,その検出温度に基づいて行うことができる。また,前記室外空気熱交換器への着霜の有無によって,暖房運転時に前記室内空気熱交換器から流出される空気の温度が変化するため,該空気の温度を検出し,その検出温度に基づいて該室外空気熱交換器への着霜を検出することも考えられる。   By the way, the detection of frost formation on the outdoor air heat exchanger can be performed, for example, by detecting the temperature of the outdoor air heat exchanger and detecting the temperature. Further, since the temperature of the air flowing out from the indoor air heat exchanger during heating operation changes depending on the presence or absence of frost on the outdoor air heat exchanger, the temperature of the air is detected, and based on the detected temperature. It is also conceivable to detect frost formation on the outdoor air heat exchanger.

このとき,前記第一のヒートポンプサイクルが,前記第一の圧縮機,前記水熱交換器,前記第一の膨張器,前記室外空気熱交換器,前記第一の圧縮機が順に接続されたものである場合には,前記第一の膨張器を開放した状態で前記第一のヒートポンプサイクルを稼働することにより前記第一の圧縮機から吐出された高温高圧の前記第一の冷媒を前記室外空気熱交換器に流入させることにより,前記除霜運転を実現することができる。
また,前記第二のヒートポンプサイクルにおける前記第二の冷媒の循環方向を切り替える循環方向切替手段を設けておき,前記第二の圧縮機から吐出された高温の前記第二の冷媒を前記室外空気熱交換器に流入させるように,前記第二の冷媒の循環方向を前記循環方向切替手段によって切り替えることにより,前記除霜運転を実現することも考えられる。
At this time, in the first heat pump cycle, the first compressor, the water heat exchanger, the first expander, the outdoor air heat exchanger, and the first compressor are sequentially connected. When the first expander is opened, the high-temperature and high-pressure first refrigerant discharged from the first compressor is operated in the outdoor air by operating the first heat pump cycle. The defrosting operation can be realized by flowing into the heat exchanger.
In addition, a circulation direction switching unit that switches a circulation direction of the second refrigerant in the second heat pump cycle is provided, and the high-temperature second refrigerant discharged from the second compressor is converted into the outdoor air heat. It is also conceivable to realize the defrosting operation by switching the circulation direction of the second refrigerant by the circulation direction switching means so as to flow into the exchanger.

本発明によれば,前記第一のヒートポンプサイクル及び前記第二のヒートポンプサイクルのいずれか一方のヒートポンプサイクルで除霜運転を実行することにより,他方のヒートポンプサイクルでは給湯運転や暖房運転を実行することが可能となる。   According to the present invention, the defrosting operation is performed in one of the first heat pump cycle and the second heat pump cycle, and the hot water supply operation or the heating operation is performed in the other heat pump cycle. Is possible.

以下添付図面を参照しながら,本発明の実施の形態について説明し,本発明の理解に供する。尚,以下の実施の形態は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の実施の形態に係るヒートポンプ式給湯機Xの概略構成図,図2は前記ヒートポンプ式給湯機Xに設けられた室外機6の内部構成図,図3は前記室外機6に設けられた室外空気熱交換器13の部品図である。
図1に示すように,前記ヒートポンプ式給湯機Xは,冷媒が循環される二つのヒートポンプサイクル1(第一のヒートポンプサイクルの一例),2(第二のヒートポンプサイクルの一例),流水経路30a〜30d,貯湯タンク31,循環ポンプ34,前記ヒートポンプサイクル1及び2に共通する水熱交換器32,前記ヒートポンプサイクル1及び2に共通する室外空気熱交換器13,前記室外空気熱交換器13の温度を検出するサーミスタ等の温度センサ13a(熱交換器温度検出手段の一例),及び切換弁41〜45を備えて概略構成されている。また,前記ヒートポンプ式給湯機Xは,CPUやRAM,ROMなどを有してなり当該ヒートポンプ式給湯機Xを統括的に制御する不図示の制御部を備えている。
前記水熱交換器32は,前記ヒートポンプサイクル1や前記ヒートポンプサイクル2に循環される冷媒と,前記貯湯タンク31に戻る流水経路30a上,又は給水口から給湯口への流水経路30b上を流れる水との間で熱交換を行うものである。ここに,前記流水経路30aは,給水口から貯湯タンク31,循環ポンプ34,切換弁45,水熱交換器32,切換弁43,貯湯タンク31が順に接続された水の流通経路である。また,前記流水経路30bは,給水口から切換弁45,水熱交換器32,切換弁43,給湯口が順に接続された水の流通経路である。なお,前記流水経路30cは,前記貯湯タンク31から前記切換弁44を経て前記給湯口に続く温水の流通経路,前記流通経路30dは,前記給水口から前記切換弁44を経て前記給湯口に続く水の流通経路である。
前記室外空気熱交換器13は,前記ヒートポンプサイクル1や前記ヒートポンプサイクル2に循環される冷媒と室外空気との間で熱交換を行うものである。なお,前記室外空気熱交換器13については後段で詳述する。
前記貯湯タンク31の上層には前記水熱交換器32において前記冷媒との熱交換によって加熱された温水が,前記貯湯タンク31の下層には給水口から供給される水が貯留される。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings so that the present invention can be understood. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
FIG. 1 is a schematic configuration diagram of a heat pump type hot water heater X according to an embodiment of the present invention, FIG. 2 is an internal configuration diagram of an outdoor unit 6 provided in the heat pump type hot water heater X, and FIG. FIG. 4 is a component diagram of an outdoor air heat exchanger 13 provided in the machine 6.
As shown in FIG. 1, the heat pump type hot water heater X includes two heat pump cycles 1 (an example of a first heat pump cycle), 2 (an example of a second heat pump cycle) in which refrigerant is circulated, and a flowing water path 30a˜ 30d, hot water storage tank 31, circulation pump 34, water heat exchanger 32 common to the heat pump cycles 1 and 2, outdoor air heat exchanger 13 common to the heat pump cycles 1 and 2, and temperatures of the outdoor air heat exchanger 13 And a temperature sensor 13a such as a thermistor (an example of a heat exchanger temperature detection means) and switching valves 41 to 45 are schematically configured. The heat pump water heater X includes a CPU, a RAM, a ROM, and the like, and includes a control unit (not shown) that controls the heat pump water heater X in an integrated manner.
The water heat exchanger 32 includes water circulating in the heat pump cycle 1 and the heat pump cycle 2 and water flowing on the flowing water path 30a returning to the hot water storage tank 31 or on the flowing water path 30b from the water supply port to the hot water supply port. Heat exchange. Here, the flowing water path 30 a is a water flow path in which the hot water storage tank 31, the circulation pump 34, the switching valve 45, the water heat exchanger 32, the switching valve 43, and the hot water storage tank 31 are connected in order from the water supply port. The flowing water path 30b is a water circulation path in which the switching valve 45, the water heat exchanger 32, the switching valve 43, and the hot water supply port are connected in order from the water supply port. The flowing water path 30c passes from the hot water storage tank 31 through the switching valve 44 to the hot water supply port, and the flowing path 30d passes from the water supply port through the switching valve 44 to the hot water supply port. It is a distribution channel for water.
The outdoor air heat exchanger 13 performs heat exchange between the refrigerant circulated in the heat pump cycle 1 and the heat pump cycle 2 and outdoor air. The outdoor air heat exchanger 13 will be described in detail later.
Hot water heated by heat exchange with the refrigerant in the water heat exchanger 32 is stored in the upper layer of the hot water storage tank 31, and water supplied from a water supply port is stored in the lower layer of the hot water storage tank 31.

当該ヒートポンプ式給湯機Xでは,前記制御部(不図示)によって前記各構成要素が制御されることにより,給水口から供給された水を前記流水経路30b上に流した後,前記水熱交換器32によって加熱して給湯口から直接給湯する瞬間給湯運転や,給水口から供給された水を前記流水経路30a上に流した後,前記水熱交換器32によって加熱して前記貯湯タンク31に貯留する貯湯運転などの各種の給湯運転が行われる。
具体的に,前記瞬間給湯運転では,前記切換弁43及び45が前記制御部によって制御されることにより,前記給水口から供給された水が前記流水経路30bに沿って破線矢印方向に流通することとなる。但し,前記瞬間給湯運転が開始してからの一定時間は,前記水熱交換器32による加熱量が十分得られない。そのため,瞬間運転開始後の一定時間は,前記貯湯タンク31に貯留された温水が,前記流水経路30cを経て切換弁44において,前記給水口から前記流水経路30dを経て供給される水と混合されて温度調節された後,前記給湯口に供給される。これにより,前記給湯口から瞬時に温水を給湯することが可能である。そして,前記水熱交換器32によって給水口から供給された水を十分に加熱することが可能となった時点で,前記貯湯タンク31の給水は停止され,その後は,前記給水口から前記水熱交換器32を経て前記給湯口に続く流水経路30bを用いて瞬間給湯が行われる。なお,前記貯湯タンク31に貯留された高温の温水を前記給水口から供給される水と混合することなく,そのまま給湯することも可能である。
また,前記貯湯運転では,前記循環ポンプ34が駆動されることにより,前記流水経路30aに沿って実線矢印方向に水が流通することにより,貯湯タンク31に温水が貯留される。
In the heat pump type hot water heater X, the components are controlled by the control unit (not shown) so that the water supplied from the water supply port flows on the water flow path 30b, and then the water heat exchanger Instantaneous hot water supply operation in which the water is heated by 32 and directly supplied from the hot water supply port, or water supplied from the water supply port is made to flow on the flowing water path 30a and then heated by the water heat exchanger 32 and stored in the hot water storage tank 31 Various hot water supply operations such as hot water storage operation are performed.
Specifically, in the instantaneous hot water supply operation, the control valves 43 and 45 are controlled by the control unit so that the water supplied from the water supply port flows along the flowing water path 30b in the direction of the dashed arrow. It becomes. However, a sufficient amount of heating by the water heat exchanger 32 cannot be obtained for a certain time after the instantaneous hot water supply operation is started. Therefore, for a certain period of time after the start of the instantaneous operation, the hot water stored in the hot water storage tank 31 is mixed with the water supplied from the water supply port through the flowing water path 30d through the flowing water path 30c and the switching valve 44. After the temperature is adjusted, the hot water supply port is supplied. Thereby, hot water can be instantaneously supplied from the hot water supply port. Then, when it becomes possible to sufficiently heat the water supplied from the water supply port by the water heat exchanger 32, the water supply to the hot water storage tank 31 is stopped, and thereafter, the water heat is supplied from the water supply port. Instantaneous hot water supply is performed using a flowing water path 30b that passes through the exchanger 32 and continues to the hot water supply port. In addition, it is also possible to supply hot water as it is, without mixing the hot water stored in the hot water storage tank 31 with the water supplied from the water supply port.
In the hot water storage operation, when the circulation pump 34 is driven, water flows in the direction of the solid arrow along the flowing water path 30a, whereby hot water is stored in the hot water storage tank 31.

前記ヒートポンプサイクル1(以下,「CO2サイクル」という)は,圧縮機11(第一の圧縮機に相当),前記水熱交換器32,膨張器12(第一の膨張器に相当),前記室外空気熱交換器13,前記圧縮機11が順に接続された循環経路10を有している。
前記循環経路10では,前記制御部(不図示)によって前記圧縮機11が駆動されることにより,炭酸ガス冷媒の一例であるCO2冷媒(第一の冷媒の一例)が図示する矢印方向に循環される。ここに,前記CO2冷媒は,後述するR410A冷媒と異なる特性を持ち,冷媒の特性として水を高温(90℃程度)まで加熱することができるが,エネルギ消費効率が比較的低い。そのため,前記CO2サイクル1は,主に前記貯湯運転における水の加熱に用いられる。
具体的には,前記圧縮機11において圧縮して吐出された高温高圧の前記CO2冷媒が,前記水熱交換器32において前記流水経路30aまたは30b上を流れる水と熱交換されて冷却された後,前記膨張器12において膨張する。その後,前記膨張器12で膨張した低温低圧の前記CO2冷媒は,前記室外空気熱交換器13において室外空気と熱交換されて吸熱し気化した後,再度前記圧縮機11に流入する。
The heat pump cycle 1 (hereinafter referred to as “CO 2 cycle”) includes a compressor 11 (corresponding to a first compressor), the water heat exchanger 32, an expander 12 (corresponding to a first expander), An outdoor air heat exchanger 13 and a circulation path 10 to which the compressor 11 is connected in order are provided.
In the circulation path 10, when the compressor 11 is driven by the control unit (not shown), a CO 2 refrigerant (an example of a first refrigerant), which is an example of a carbon dioxide refrigerant, circulates in an arrow direction shown in the drawing. Is done. Here, the CO 2 refrigerant has characteristics different from the R410A refrigerant described later, and can heat water to a high temperature (about 90 ° C.) as a characteristic of the refrigerant, but has a relatively low energy consumption efficiency. Therefore, the CO 2 cycle 1 is mainly used for heating water in the hot water storage operation.
Specifically, the high-temperature and high-pressure CO 2 refrigerant compressed and discharged by the compressor 11 is cooled by heat exchange with water flowing on the flowing water path 30a or 30b in the water heat exchanger 32. Thereafter, the expander 12 expands. Thereafter, the low-temperature and low-pressure CO 2 refrigerant expanded in the expander 12 is heat-exchanged with the outdoor air in the outdoor air heat exchanger 13 to absorb heat and vaporize, and then flows into the compressor 11 again.

前記CO2サイクル1では,前記のように前記CO2冷媒が前記循環経路10に循環されることにより,前記流水経路30aまたは30b上を矢印方向に流れる水が,前記水熱交換器32における前記CO2冷媒との熱交換によって90℃程度まで加熱される。なお,前記水熱交換器32における前記CO2冷媒と水との流通方向が反対であるため,該CO2冷媒と水との熱交換は効率的に行われる。
このとき,前記瞬間給湯運転においては,前記流水経路30bを通るよう前記制御部(不図示)によって前記切換弁45が制御され,前記制御部(不図示)によって前記切換弁43が制御されることにより前記水熱交換器32において加熱された温水が前記給湯口に供給される。
また,前記貯湯運転においては,前記流水経路30aを通るよう前記制御部(不図示)によって前記切換弁45が制御され,前記制御部(不図示)によって前記切換弁43が制御されることにより,前記水熱交換器32において加熱された温水が前記貯湯タンク31に貯留されるように切り替えられる。
また,前記CO2サイクル1では,前記膨張器12を開放させた状態で前記循環経路10に前記CO2冷媒を循環させることにより,前記室外空気熱交換機13に高温の前記CO2冷媒を流入させて,該室外空気熱交換器13の除霜を行うことができる。この場合には,前記圧縮機11において圧縮して吐出された高温高圧の前記CO2冷媒が,前記室外空気熱交換器13に流入し,該室外空気熱交換器13において吸熱して気化した後,再度前記圧縮機11に流入する。
In the CO 2 cycle 1, the CO 2 refrigerant is circulated through the circulation path 10 as described above, so that water flowing in the direction of the arrow on the flowing water path 30 a or 30 b is transferred to the water heat exchanger 32. It is heated to about 90 ° C. by heat exchange with the CO 2 refrigerant. In addition, since the flow direction of the CO 2 refrigerant and water in the water heat exchanger 32 is opposite, heat exchange between the CO 2 refrigerant and water is performed efficiently.
At this time, in the instantaneous hot water supply operation, the switching valve 45 is controlled by the control unit (not shown) so as to pass through the flowing water path 30b, and the switching valve 43 is controlled by the control unit (not shown). Thus, hot water heated in the water heat exchanger 32 is supplied to the hot water supply port.
Further, in the hot water storage operation, the switching valve 45 is controlled by the control unit (not shown) so as to pass through the flowing water path 30a, and the switching valve 43 is controlled by the control unit (not shown), The hot water heated in the water heat exchanger 32 is switched so as to be stored in the hot water storage tank 31.
In the CO 2 cycle 1, the CO 2 refrigerant is caused to flow into the outdoor air heat exchanger 13 by circulating the CO 2 refrigerant through the circulation path 10 with the expander 12 opened. Thus, the outdoor air heat exchanger 13 can be defrosted. In this case, after the high-temperature and high-pressure CO 2 refrigerant compressed and discharged in the compressor 11 flows into the outdoor air heat exchanger 13 and absorbs heat and vaporizes in the outdoor air heat exchanger 13. , It flows into the compressor 11 again.

一方,前記ヒートポンプサイクル2(以下,「R410Aサイクル」という)は,HFC冷媒の一例であるR410A冷媒(第二の冷媒の一例)が循環される循環経路20及び循環経路40を有している。ここに,前記R410A冷媒は,前記CO2冷媒と異なる特性を持ち,CO2冷媒に比べて水を低温(65℃程度)までしか加熱することができないが,エネルギ消費効率(COP)は高いので,比較的低い沸上げ温度に適している。そのため,前記R410Aサイクル2は,主に前記瞬間給湯運転における水の加熱に用いられる。なお,前記R410A冷媒の他の例としては,例えばR407C/E,R404A,R507A,R134a等がある。また,前記ヒートポンプ式給湯機Xに用いられる冷媒は,炭酸ガス冷媒及びHFC冷媒に限られるものではなく,熱交換効率やエネルギ消費効率などの特性が異なる二つの冷媒を用いればよい。 On the other hand, the heat pump cycle 2 (hereinafter referred to as “R410A cycle”) has a circulation path 20 and a circulation path 40 through which an R410A refrigerant (an example of a second refrigerant), which is an example of an HFC refrigerant, is circulated. Here, the R410A refrigerant, the CO 2 has a refrigerant different properties, but can only heat the water compared to the CO 2 refrigerant to a low temperature (about 65 ° C.), since the energy consumption efficiency (COP) is high , Suitable for relatively low boiling temperature. Therefore, the R410A cycle 2 is mainly used for heating water in the instantaneous hot water supply operation. Other examples of the R410A refrigerant include R407C / E, R404A, R507A, and R134a. Further, the refrigerant used in the heat pump type hot water heater X is not limited to the carbon dioxide refrigerant and the HFC refrigerant, and two refrigerants having different characteristics such as heat exchange efficiency and energy consumption efficiency may be used.

前記循環経路20は,圧縮機21(第二の圧縮機に相当),四方弁24(循環方向切替手段の一例),切換弁41,前記水熱交換器32,切換弁42,膨張器22(第二の膨張器に相当),前記室外空気熱交換器13及び前記四方弁24が順に接続されて構成されている。
前記循環経路20では,前記制御部(不図示)によって前記圧縮機21が駆動されることにより,前記R410A冷媒が図1に示す実線矢印方向に循環される。具体的には,前記圧縮機21において圧縮して吐出された高温高圧の前記R410A冷媒が,前記四方弁24及び前記切換弁41を経て前記水熱交換器32に達する。そして,前記R410A冷媒は,前記水熱交換器32において前記流水経路30aまたは30b上を流れる水と熱交換されて冷却される。その後,前記R410A冷媒は,前記切換弁42を経て前記膨張器22において膨張する。そして,前記膨張器22で膨張した低温低圧の前記R410A冷媒は,前記室外空気熱交換器13において室外空気と熱交換されて吸熱し気化した後,前記四方弁24を経て再度前記圧縮機21に流入する。
前記R410Aサイクル2では,前記のように前記R410A冷媒が前記循環経路20において実線矢印方向に循環されることにより,前記流水経路30aまたは30b上を矢印方向に流れる水が,前記水熱交換器32における前記R410A冷媒との熱交換によって65℃程度まで加熱される。なお,前記水熱交換器32における前記R410A冷媒と水との流通方向が反対であるため,該R410A冷媒と水との熱交換は効率的に行われる。そして,前記水熱交換器32で加熱された温水は,前記給湯口或いは前記貯湯タンク31に給湯される。
The circulation path 20 includes a compressor 21 (corresponding to a second compressor), a four-way valve 24 (an example of a circulation direction switching means), a switching valve 41, the water heat exchanger 32, a switching valve 42, and an expander 22 ( The outdoor air heat exchanger 13 and the four-way valve 24 are connected in order.
In the circulation path 20, when the compressor 21 is driven by the control unit (not shown), the R410A refrigerant is circulated in the direction of the solid arrow shown in FIG. Specifically, the high-temperature and high-pressure R410A refrigerant compressed and discharged by the compressor 21 reaches the water heat exchanger 32 through the four-way valve 24 and the switching valve 41. The R410A refrigerant is cooled by heat exchange with water flowing on the flowing water path 30a or 30b in the water heat exchanger 32. Thereafter, the R410A refrigerant expands in the expander 22 via the switching valve 42. Then, the low-temperature and low-pressure R410A refrigerant expanded in the expander 22 is heat-exchanged with the outdoor air in the outdoor air heat exchanger 13 to absorb heat and vaporize, and then passes through the four-way valve 24 to the compressor 21 again. Inflow.
In the R410A cycle 2, as described above, the R410A refrigerant is circulated in the direction of the solid arrow in the circulation path 20, so that the water flowing in the direction of the arrow on the flowing water path 30a or 30b is transferred to the water heat exchanger 32. Is heated to about 65 ° C. by heat exchange with the R410A refrigerant. Since the flow direction of the R410A refrigerant and water in the water heat exchanger 32 is opposite, heat exchange between the R410A refrigerant and water is performed efficiently. The hot water heated by the water heat exchanger 32 is supplied to the hot water supply port or the hot water storage tank 31.

また,前記水熱交換器32は,前記CO2サイクル1及び前記R410Aサイクル2に共通するものであって,これらに循環される前記CO2冷媒及び前記R410A冷媒と,前記流水経路30a又は前記流水経路30b上を流れる水とを同時に熱交換させることが可能である。具体的には,前記水熱交換器32が,該水熱交換器32内に設けられた前記CO2冷媒の配管14と前記流水経路30a,30b上に設けられた配管33,前記R410A冷媒の配管25と前記配管33が共に接触するように構成されている。
したがって,前記ヒートポンプ式給湯機Xでは,前記CO2サイクル1及び前記R410Aサイクル2を同時に用いることにより,個々の熱交換効率以上の熱交換効率で水を加熱することができる。これにより,前記瞬間給湯運転時における給湯量を増加させることができる。
The water heat exchanger 32 is common to the CO 2 cycle 1 and the R410A cycle 2, and the CO 2 refrigerant and the R410A refrigerant circulated therethrough, the flowing water path 30a or the flowing water. It is possible to simultaneously exchange heat with water flowing on the path 30b. Specifically, the water heat exchanger 32 includes the pipe 14 of the CO 2 refrigerant provided in the water heat exchanger 32, the pipe 33 provided on the flowing water paths 30a and 30b, the R410A refrigerant. The pipe 25 and the pipe 33 are configured to come into contact with each other.
Therefore, in the heat pump type hot water supply apparatus X, water can be heated with a heat exchange efficiency higher than the individual heat exchange efficiency by using the CO 2 cycle 1 and the R410A cycle 2 at the same time. Thereby, the hot water supply amount at the time of the instantaneous hot water supply operation can be increased.

他方,前記循環経路40は,前記圧縮機21,前記四方弁24,前記切換弁41,室内空気熱交換器4,前記切換弁42,前記膨張器22,前記室外空気熱交換器13及び前記四方弁24が順に接続されて構成されている。
ここに,前記室内空気熱交換器4は,室内の冷暖房を行う空気調和機(不図示)に設けられ,前記循環経路40内に循環される前記R410A冷媒と室内空気との間で熱交換を行うことにより室内空気を加熱或いは冷却するものである。即ち,前記室内空気熱交換器4に高温或いは低温の前記R410A冷媒が流入されることにより,室内の暖房運転或いは冷房運転が実現される。
On the other hand, the circulation path 40 includes the compressor 21, the four-way valve 24, the switching valve 41, the indoor air heat exchanger 4, the switching valve 42, the expander 22, the outdoor air heat exchanger 13, and the four-way. Valves 24 are connected in order.
Here, the indoor air heat exchanger 4 is provided in an air conditioner (not shown) that performs indoor heating and cooling, and exchanges heat between the R410A refrigerant circulated in the circulation path 40 and room air. By doing so, the indoor air is heated or cooled. That is, when the R410A refrigerant having a high temperature or a low temperature flows into the indoor air heat exchanger 4, an indoor heating operation or a cooling operation is realized.

次に,図2〜4を用いて,前記室外空気熱交換器13について詳説する。
図2に示すように,前記室外空気熱交換器13は,前記温度センサ13a,前記圧縮機11,21,前記膨張器12,22,送風ファン64等と共に室外機6に内蔵されている。前記送風ファン64は,不図示のモータによって回転駆動されることにより前記室外空気熱交換器13に室外空気を送風する。このように,前記ヒートポンプ式給湯機Xでは,前記室外機6が前記CO2サイクル1及び前記R410Aサイクル2で共通している。なお,図示しないが,前記室外機6には,前記水熱交換器32や前記貯湯タンク31を内蔵してもよい。
前記温度センサ13aによって検出された前記室外空気熱交換器13の温度は,前記制御部(不図示)に入力される。そして,前記温度センサ13aによる検出温度は,前記制御部によって実行される後述の除霜処理(図4のフローチャート参照)における着霜発生の有無の判断指標として用いられる。
Next, the outdoor air heat exchanger 13 will be described in detail with reference to FIGS.
As shown in FIG. 2, the outdoor air heat exchanger 13 is built in the outdoor unit 6 together with the temperature sensor 13a, the compressors 11, 21, the expanders 12, 22, the blower fan 64, and the like. The blower fan 64 is driven to rotate by a motor (not shown) to blow outdoor air to the outdoor air heat exchanger 13. Thus, in the heat pump type hot water heater X, the outdoor unit 6 is shared by the CO 2 cycle 1 and the R410A cycle 2. Although not shown, the outdoor unit 6 may incorporate the water heat exchanger 32 and the hot water storage tank 31.
The temperature of the outdoor air heat exchanger 13 detected by the temperature sensor 13a is input to the control unit (not shown). The temperature detected by the temperature sensor 13a is used as a determination index for the presence or absence of frost formation in a defrosting process described later (see the flowchart of FIG. 4) executed by the control unit.

また,図3に示すように,前記室外空気熱交換器13は,前記CO2サイクル1に循環されるCO2冷媒が流通する配管61(第一の配管の一例)と,前記R410Aサイクル2に循環されるR410A冷媒が流通する配管62(第二の配管の一例)と,前記配管61及び前記配管62が貫装された複数の伝熱フィン63(伝熱板の一例)と,を備えて構成されている。
前記配管61は,前記伝熱フィン63に貫装された複数の配管が前記室外空気熱交換器13の両端でベンド管61a,61bによって連結されて構成されている。
同じく,前記配管62は,前記伝熱フィン63に貫装された複数の配管が前記室外空気熱交換器13の両端でベンド管62a,62bによって連結されて構成されている。
ここで,前記配管61及び前記配管62の各々は,前記室外空気熱交換器13において室外空気の流通方向と垂直な方向に配置された複数の配管が二本毎に交互に接続されたものである。これにより,前記配管61及び前記配管62の各々は,前記伝熱フィン63に交互に貫装された状態で配置されている。
前記室外空気熱交換器13では,前記伝熱フィン63を介して,前記配管61に流通するCO2冷媒や前記配管62に流通するR410A冷媒と前記送風ファン64によって送風された室外空気との間で熱交換が行われる。
Further, as shown in FIG. 3, the outdoor air heat exchanger 13 includes a pipe 61 (an example of a first pipe) through which the CO 2 refrigerant circulated in the CO 2 cycle 1 flows, and the R410A cycle 2. A pipe 62 (an example of a second pipe) through which the R410A refrigerant to be circulated is provided, and the pipe 61 and a plurality of heat transfer fins 63 (an example of a heat transfer plate) through which the pipe 62 is provided. It is configured.
The pipe 61 is configured by connecting a plurality of pipes penetrating the heat transfer fins 63 by bend pipes 61 a and 61 b at both ends of the outdoor air heat exchanger 13.
Similarly, the pipe 62 is configured by connecting a plurality of pipes penetrating the heat transfer fins 63 at both ends of the outdoor air heat exchanger 13 by bend pipes 62a and 62b.
Here, each of the pipe 61 and the pipe 62 is formed by alternately connecting a plurality of pipes arranged in a direction perpendicular to the outdoor air flow direction in the outdoor air heat exchanger 13 every two pipes. is there. Thereby, each of the said piping 61 and the said piping 62 is arrange | positioned in the state penetrated by the said heat-transfer fin 63 alternately.
In the outdoor air heat exchanger 13, between the CO 2 refrigerant flowing through the pipe 61 and the R410A refrigerant flowing through the pipe 62 and the outdoor air blown by the blower fan 64 through the heat transfer fins 63. Heat exchange takes place at.

ここで,前記ヒートポンプ式給湯機Xの前記R410Aサイクル2において実現される暖房運転及び冷房運転について説明する。
(1)暖房運転について
ユーザにより前記ヒートポンプ式給湯機Xに対して,不図示の操作部から暖房運転の開始が要求されると,該ヒートポンプ式給湯機Xでは,前記制御部(不図示)によって前記圧縮機21及び前記四方弁24が制御され,前記R410Aサイクル2の循環経路40において前記R410A冷媒の実線矢印方向(図1参照)の循環が開始される。このとき,前記四方弁24内部では図示する実線経路が確立されている。
これにより,前記循環経路40では,図示する実線矢印方向に前記R410A冷媒が循環される。具体的には,前記圧縮機21において圧縮して吐出された高温高圧の前記R410A冷媒が,前記四方弁24及び前記切換弁41を経て前記室内空気熱交換器4に達する。そして,前記R410A冷媒は,前記室内空気熱交換器4において室内の空気と熱交換されて冷却される。その後,前記R410A冷媒は,前記切換弁42を経て前記膨張器22において膨張する。そして,前記膨張器22において膨張した低温低圧の前記R410A冷媒は,前記室外空気熱交換器13において室外空気と熱交換されて吸熱し気化した後,前記四方弁24を経て再度前記圧縮機21に流入する。
前記R410Aサイクル2では,前記のように前記R410A冷媒が前記循環経路40において実線矢印方向に循環されることにより,室内の空気が,前記室内空気熱交換器4における前記R410A冷媒との熱交換によって加熱される。即ち,前記ヒートポンプ式給湯機Xによって暖房が実現される。
このように暖房運転が実行されているとき,前記室外空気熱交換器13には,低温の前記R410A冷媒が循環されるため,該室外空気熱交換器13に着霜が発生することがあるが,この付着した霜は後述する除霜処理(図4のフローチャート参照)において取り除かれる。
Here, the heating operation and the cooling operation realized in the R410A cycle 2 of the heat pump type hot water heater X will be described.
(1) Heating operation When the user requests the heat pump water heater X to start a heating operation from an operation unit (not shown), in the heat pump water heater X, the control unit (not shown) The compressor 21 and the four-way valve 24 are controlled, and the circulation of the R410A refrigerant in the direction of the solid arrow (see FIG. 1) is started in the circulation path 40 of the R410A cycle 2. At this time, the illustrated solid line path is established inside the four-way valve 24.
As a result, the R410A refrigerant is circulated in the circulation path 40 in the direction of the solid arrow shown in the figure. Specifically, the high-temperature and high-pressure R410A refrigerant compressed and discharged by the compressor 21 reaches the indoor air heat exchanger 4 through the four-way valve 24 and the switching valve 41. The R410A refrigerant is cooled by heat exchange with indoor air in the indoor air heat exchanger 4. Thereafter, the R410A refrigerant expands in the expander 22 via the switching valve 42. The low-temperature and low-pressure R410A refrigerant expanded in the expander 22 is heat-exchanged with the outdoor air in the outdoor air heat exchanger 13 to absorb heat and vaporize, and then passes again through the four-way valve 24 to the compressor 21 again. Inflow.
In the R410A cycle 2, the R410A refrigerant is circulated in the direction of the solid arrow in the circulation path 40 as described above, whereby the indoor air is exchanged with the R410A refrigerant in the indoor air heat exchanger 4. Heated. That is, heating is realized by the heat pump type hot water heater X.
When the heating operation is performed as described above, the outdoor air heat exchanger 13 is circulated through the low-temperature R410A refrigerant, so that the outdoor air heat exchanger 13 may be frosted. The attached frost is removed in a defrosting process (see the flowchart of FIG. 4) described later.

(2)冷房運転について
一方,ユーザにより前記ヒートポンプ式給湯機Xに対して,不図示の操作部から冷房運転の開始が要求されると,該ヒートポンプ式給湯機Xでは,前記制御部(不図示)によって前記圧縮機21及び前記四方弁24が制御され,前記R410Aサイクル2の循環経路40において前記R410A冷媒の破線矢印方向の循環が開始される。このとき,前記四方弁24内部では図示する破線経路(図1参照)が確立されている。
これにより,前記循環経路40では,図示する破線矢印方向(図1参照)に前記R410A冷媒が循環される。具体的には,前記圧縮機21において圧縮して吐出された高温高圧の前記R410A冷媒が,前記四方弁24を経て前記室外空気熱交換器13に達する。そして,前記R410A冷媒は,前記室外空気熱交換器13において室外空気と熱交換されて冷却される。その後,前記R410A冷媒は,前記膨張器22において膨張する。そして,前記膨張器22において膨張した低温低圧の前記R410A冷媒は,前記切換弁42を経て前記室内空気熱交換器4において室内空気と熱交換されて吸熱し気化した後,前記切換弁41及び前記四方弁24を経て再度前記圧縮機21に流入する。
このように,前記R410Aサイクル2では,前記R410A冷媒が前記循環経路40において破線矢印方向に循環されることにより,室内の空気が,前記室内空気熱交換器4における前記R410A冷媒との熱交換によって冷却される。即ち,前記ヒートポンプ式給湯機Xによって冷房が実現される。なお,このとき前記ヒートポンプ式給湯機Xでは,前記切換弁41及び42が前記制御部(不図示)によって制御されることにより,前記循環経路20における前記R410A冷媒の循環は阻止される。したがって,前記R410Aサイクル2によって冷房運転が実行されている場合であっても,前記CO2サイクル1による給湯運転を実行することは可能である。
また,このように前記R410Aサイクル2において冷房運転が実行されているとき,前記室外空気熱交換器13には,高温のR410A冷媒が流入することになる。したがって,前記室外空気熱交換器13に霜が付着している場合には,その霜を取り除くことができる。
(2) Cooling operation On the other hand, when the user requests the heat pump water heater X to start the cooling operation from an operation unit (not shown), the heat pump water heater X has the control unit (not shown). ), The compressor 21 and the four-way valve 24 are controlled, and the circulation of the R410A refrigerant in the direction of the broken line arrow is started in the circulation path 40 of the R410A cycle 2. At this time, a broken line path (see FIG. 1) shown in the figure is established inside the four-way valve 24.
As a result, the R410A refrigerant is circulated in the circulation path 40 in the direction of the broken arrow (see FIG. 1). Specifically, the high-temperature and high-pressure R410A refrigerant compressed and discharged by the compressor 21 reaches the outdoor air heat exchanger 13 through the four-way valve 24. The R410A refrigerant is cooled by exchanging heat with outdoor air in the outdoor air heat exchanger 13. Thereafter, the R410A refrigerant expands in the expander 22. The low-temperature and low-pressure R410A refrigerant expanded in the expander 22 is subjected to heat exchange with the indoor air in the indoor air heat exchanger 4 via the switching valve 42, and absorbs and vaporizes. It flows into the compressor 21 again through the four-way valve 24.
Thus, in the R410A cycle 2, the R410A refrigerant is circulated in the direction of the broken line arrow in the circulation path 40, so that indoor air is exchanged with the R410A refrigerant in the indoor air heat exchanger 4. To be cooled. That is, cooling is realized by the heat pump type hot water heater X. At this time, in the heat pump type hot water heater X, the switching valves 41 and 42 are controlled by the control unit (not shown), thereby preventing the circulation of the R410A refrigerant in the circulation path 20. Therefore, even if the cooling operation is being executed by the R410A cycle 2, the hot water supply operation by the CO 2 cycle 1 can be executed.
Further, when the cooling operation is being executed in the R410A cycle 2 as described above, the high-temperature R410A refrigerant flows into the outdoor air heat exchanger 13. Therefore, when frost adheres to the outdoor air heat exchanger 13, the frost can be removed.

このように構成された前記ヒートポンプ式給湯機Xでは,前記室外空気熱交換器13に着霜が発生した場合,その霜を取り除くための除霜運転が実行される。ここに,かかる処理を実行するときの前記制御部が除霜手段に相当する。
以下,図4のフローチャートに従って,前記ヒートポンプ式給湯機Xにおいて前記制御部により実行される除霜処理の手順の一例について説明する。なお,図示するS1,S2,…は処理手順(ステップ)番号を表す。
当該除霜処理は,前記ヒートポンプ式給湯機Xにおいて前記CO2サイクル1による給湯運転,前記R410Aサイクル2による給湯運転又は暖房運転が開始されたときに実行される。ここでは,前記ヒートポンプ式給湯機Xにおいて前記R410Aサイクル2による暖房運転が開始された場合を例に挙げて説明する。
In the heat pump type water heater X configured as described above, when frost is generated in the outdoor air heat exchanger 13, a defrosting operation for removing the frost is performed. Here, the said control part when performing this process corresponds to a defrosting means.
Hereinafter, according to the flowchart of FIG. 4, an example of the procedure of the defrost process performed by the said control part in the said heat pump type water heater X is demonstrated. In the figure, S1, S2,... Represent processing procedure (step) numbers.
The defrosting process is executed when the hot water supply operation according to the CO 2 cycle 1, the hot water supply operation according to the R410A cycle 2, or the heating operation is started in the heat pump hot water supply device X. Here, the case where the heating operation by the R410A cycle 2 is started in the heat pump hot water heater X will be described as an example.

まず,ステップS1では,前記室外空気熱交換器13に着霜が発生しているか否かを判定するべく,前記温度センサ13aによる検出温度が−3℃以下であるか否かが前記制御部によって判断される。なお,前記室外空気熱交換器13が着霜状態であることを判定するための温度は,−3℃に限られず適宜設定すれば良い。また,前記温度センサ13aの検出温度の単位時間当たりの変化率が所定値以上であるか否かなどによって判断してもかまわない。ここに,前記CO2サイクル1や前記R410Aサイクル2の稼働中に,前記温度センサ13aによる検出温度に基づいて前記室外空気熱交換器13の着霜の発生を検出するときの前記制御部が着霜検出手段(第一の着霜検出手段)に相当する。
ここで,前記検出温度が−3℃以下であると判断された場合には,前記室外空気熱交換器13に着霜が発生しているおそれがあるため,処理はステップS2に移行する。このステップS1の処理は,前記CO2サイクル1による給湯運転,前記R410Aサイクル2による給湯運転又は暖房運転が実行されている間,繰り返し実行される。
First, in step S1, in order to determine whether or not frost formation has occurred in the outdoor air heat exchanger 13, whether or not the temperature detected by the temperature sensor 13a is −3 ° C. or less is determined by the control unit. To be judged. In addition, the temperature for determining that the outdoor air heat exchanger 13 is in a frosted state is not limited to −3 ° C., and may be set as appropriate. Further, it may be determined based on whether or not the rate of change per unit time of the temperature detected by the temperature sensor 13a is equal to or greater than a predetermined value. Here, during the operation of the CO 2 cycle 1 and the R410A cycle 2, the control unit for detecting the occurrence of frost formation in the outdoor air heat exchanger 13 based on the temperature detected by the temperature sensor 13a is installed. This corresponds to frost detection means (first frost detection means).
Here, when it is determined that the detected temperature is −3 ° C. or lower, since the frost may be generated in the outdoor air heat exchanger 13, the process proceeds to step S2. The process of step S1 is repeatedly executed while the hot water supply operation by the CO 2 cycle 1, the hot water supply operation by the R410A cycle 2, or the heating operation is being executed.

ステップS2では,前記CO2サイクル1による給湯運転が実行されているか否かが前記制御部によって判断される。ここで,前記CO2サイクル1による給湯運転が実行されてると判断された場合には,処理はステップS3に移行し,実行されていないと判断された場合には,処理はステップS21に移行する。
ここでは,前記R410Aサイクル2による暖房運転だけが実行されているため,前記CO2サイクル1による給湯運転が実行されていないと判断され,処理はステップS21に移行する。
In step S2, the control unit determines whether or not the hot water supply operation by the CO 2 cycle 1 is being executed. If it is determined that the hot water supply operation by the CO 2 cycle 1 is being executed, the process proceeds to step S3. If it is determined that the hot water supply operation is not being performed, the process proceeds to step S21. .
Here, since only the heating operation by the R410A cycle 2 is executed, it is determined that the hot water supply operation by the CO 2 cycle 1 is not executed, and the process proceeds to step S21.

次に,前記ステップS21では,前記制御部によって,前記CO2サイクル1の膨張器12を開放させた状態で,該CO2サイクル1が稼働される。これにより,前述したように,前記CO2サイクル1では,前記圧縮機11から吐出された高温高圧のCO2冷媒が前記室外空気熱交換器13に流入されることになり,前記室外空気熱交換器13が除霜される。このように,前記CO2サイクル1で前記室外空気熱交換器13の除霜運転を実行するための処理を実行するときの前記制御部が第一の除霜運転実行手段に相当する。
このように,前記ヒートポンプサイクルXでは,前記R410Aサイクル2で暖房運転を実行している場合に,前記室外空気熱交換器13に着霜が発生すると,前記R410Aサイクル2とは異なる前記CO2サイクル1を用いて前記室外空気熱交換器13の除霜運転が行われるため,前記R410Aサイクル2による暖房運転を中断する必要がない。
Next, in step S21, by the control unit, in a state of being opened inflator 12 of the CO 2 cycle 1, the CO 2 cycle 1 is running. As a result, as described above, in the CO 2 cycle 1, the high-temperature and high-pressure CO 2 refrigerant discharged from the compressor 11 flows into the outdoor air heat exchanger 13, and the outdoor air heat exchange is performed. The vessel 13 is defrosted. Thus, corresponding to the control unit first defrosting operation execution means when executing the processing for executing the defrosting operation of the outdoor air heat exchanger 13 in the CO 2 cycle 1.
Thus, in the heat pump cycle X, when frosting occurs in the outdoor air heat exchanger 13 when the heating operation is executed in the R410A cycle 2, the CO 2 cycle different from the R410A cycle 2 is generated. 1 is used, the defrosting operation of the outdoor air heat exchanger 13 is performed, so that the heating operation by the R410A cycle 2 does not need to be interrupted.

その後,続くステップS4では,前記室外空気熱交換器13の着霜が解消されたか否かを判定するべく,前記温度センサ13aによる検出温度が5℃以上であるか否かが前記制御部によって判断される。なお,前記室外空気熱交換器13の着霜状態が解消されたことを判定するための温度は,5℃に限られず適宜設定すれば良い。前記ステップS4の処理は,前記温度センサ13aによる検出温度が5℃以上になるまで繰り返し実行される(S4のNo側)。
一方,前記検出温度が5℃以上であると判断された場合には(S4のYes側),処理はステップS5に移行して前記除霜運転が終了された後,前記ステップS1に戻る。
Thereafter, in the subsequent step S4, the controller determines whether or not the temperature detected by the temperature sensor 13a is 5 ° C. or higher in order to determine whether or not the frost formation on the outdoor air heat exchanger 13 has been eliminated. Is done. In addition, the temperature for determining that the frosting state of the outdoor air heat exchanger 13 has been eliminated is not limited to 5 ° C., and may be set as appropriate. The process of step S4 is repeatedly executed until the temperature detected by the temperature sensor 13a reaches 5 ° C. or higher (No side of S4).
On the other hand, when it is determined that the detected temperature is 5 ° C. or higher (Yes side of S4), the process proceeds to step S5, and after the defrosting operation is completed, the process returns to step S1.

ここでは,前記R410Aサイクル2で暖房運転の実行中に前記室外空気熱交換器13に着霜が発生した場合について述べたが,前記R410Aサイクル2で給湯運転の実行中に前記室外空気熱交換器13に着霜が発生した場合についても同様である。即ち,前記R410Aサイクルによる給湯運転と,前記CO2サイクル1による着霜運転とが同時に実行される。
一方,前記CO2サイクル1で給湯運転の実行中に前記室外空気熱交換器13に着霜が発生した場合には,前記ステップS2において前記CO2サイクル1による給湯運転が実行されていると判断されるため,処理はステップS3に移行することになる。
Here, the case where frost formation has occurred in the outdoor air heat exchanger 13 during execution of the heating operation in the R410A cycle 2 has been described. However, the outdoor air heat exchanger during execution of the hot water supply operation in the R410A cycle 2 has been described. The same applies to the case where frost is generated in the case 13. That is, the hot water supply operation by the R410A cycle and the frosting operation by the CO 2 cycle 1 are executed simultaneously.
On the other hand, if frost formation has occurred in the outdoor air heat exchanger 13 during execution of the hot water supply operation in the CO 2 cycle 1, it is determined in step S2 that the hot water supply operation in the CO 2 cycle 1 is being executed. Therefore, the process proceeds to step S3.

ステップS3では,前記制御部によって,前記四方弁24により前記R410Aサイクル2におけるR410A冷媒の循環方向が,該R410Aサイクル2で冷房運転を実行するための方向に切り替えられた後,前記圧縮機21の駆動が開始される。これにより,前記R410Aサイクル2では,前記圧縮機21から吐出された高温高圧のR410A冷媒が前記室外空気熱交換器13に流入されることになり,前記室外空気熱交換器13が除霜される。このように,前記R410Aサイクル2で前記室外空気熱交換器13の除霜運転を実行するための処理を実行するときの前記制御部が第二の除霜運転実行手段に相当する。
このように,前記ヒートポンプサイクルXでは,前記CO2サイクル1で給湯運転を実行している場合に,前記室外空気熱交換器13に着霜が発生すると,前記CO2サイクル1とは異なる前記R410Aサイクル2を用いて前記室外空気熱交換器13の除霜運転が行われるため,前記CO2サイクル1による給湯運転を中断する必要がない。
In step S3, the control unit changes the circulation direction of the R410A refrigerant in the R410A cycle 2 to the direction for performing the cooling operation in the R410A cycle 2 by the four-way valve 24, and then the compressor 21 Driving is started. Thereby, in the R410A cycle 2, the high-temperature and high-pressure R410A refrigerant discharged from the compressor 21 flows into the outdoor air heat exchanger 13, and the outdoor air heat exchanger 13 is defrosted. . Thus, the said control part when performing the process for performing the defrost operation of the said outdoor air heat exchanger 13 in the said R410A cycle 2 is equivalent to a 2nd defrost operation execution means.
Thus, in the heat pump cycle X, when running hot water supply operation by the CO 2 cycle 1, when frost formation occurs on the outdoor air heat exchanger 13, said different from that of the CO 2 cycle 1 R410A Since the defrosting operation of the outdoor air heat exchanger 13 is performed using the cycle 2, it is not necessary to interrupt the hot water supply operation by the CO 2 cycle 1.

また,前記ヒートポンプ式給湯機Xでは,前記CO2サイクル1による給湯運転と,前記R410Aサイクル2による給湯運転や暖房運転とが同時に実行される場合がある。このとき,前記室外空気熱交換器13に着霜が発生した場合には,前記CO2サイクル1及び前記R410Aサイクル2のいずれか一方のヒートポンプサイクルを優先し,他方のヒートポンプサイクルを用いて前記室外空気熱交換器13の除霜運転を実行すればよい。これにより,一方のヒートポンプサイクルによる給湯運転や暖房運転は継続することができる。なお,いずれのヒートポンプサイクルを優先させるかについての設定は予め初期設定してもよいが,ユーザで任意に変更可能とすることが望ましい。
なお,前記除霜処理(図4のフローチャート参照)では,前記ステップS2において,前記CO2サイクル1による給湯運転が実行されていると判断された場合には,前記R410Aサイクル2による給湯運転や暖房運転の実行の有無にかかわらず,該R410Aサイクル2で冷房運転が実行されるように処理される。即ち,前記CO2サイクル1による給湯運転を前記R410Aサイクル2による給湯運転や暖房運転よりも優先させるように設定されている場合を一例として示している。
In the heat pump type hot water heater X, the hot water supply operation by the CO 2 cycle 1 and the hot water supply operation and the heating operation by the R410A cycle 2 may be executed simultaneously. At this time, when frost is generated in the outdoor air heat exchanger 13, priority is given to one of the heat pump cycles of the CO 2 cycle 1 and the R410A cycle 2, and the outdoor heat pump cycle is used to The defrosting operation of the air heat exchanger 13 may be executed. Thereby, the hot water supply operation and heating operation by one heat pump cycle can be continued. In addition, although the setting about which heat pump cycle should be prioritized may be initially set in advance, it is desirable that the user can arbitrarily change it.
In the defrosting process (see the flowchart in FIG. 4), if it is determined in step S2 that the hot water supply operation by the CO 2 cycle 1 is being executed, the hot water supply operation or heating by the R410A cycle 2 is performed. Regardless of whether or not the operation is performed, the R410A cycle 2 is processed so that the cooling operation is performed. That is, the case where the hot water supply operation by the CO 2 cycle 1 is set to have priority over the hot water supply operation and the heating operation by the R410A cycle 2 is shown as an example.

また,前記実施の形態では,前記室外空気熱交換器13に温度センサ13aを設けておき,該温度センサ13aの検出温度に基づいて前記室外空気熱交換器13の着霜の発生の有無を判定する場合について説明した。
一方,前記室外空気熱交換器13に着霜が発生すると,前記R410Aサイクル2において実行される暖房運転における空気の加熱効率が低下する。即ち,前記室内空気熱交換器4から流出される空気の温度が着霜が発生していない場合に比べて低下する。
そこで,前記室内空気熱交換器4においてR410A冷媒と熱交換された後,該室内空気熱交換器4から流出される空気の温度を検出する空気温度検出センサ(流出温度検出手段の一例)を設けておき,該空気温度検出センサによる検出温度に基づいて前記室外空気熱交換器13の着霜の発生の有無を判定することが他の実施例として考えられる。このとき,前記室外空気熱交換器13の着霜の発生の有無を判定するときの前記制御部が着霜検出手段(第二の着霜検出手段)に相当する。
なお,前記室外空気熱交換器13の着霜を検出するための手法は,ここで説明したものに限られず,各種の従来手法を用いれば良い。例えば,前記室外空気熱交換器13の温度や室外空気の温度,前記室内空気熱交換器4から流出される空気の温度,電流値等のいずれか一つ或いは複数が所定の条件が充足したか否かによって着霜を検出すれば良い。
Moreover, in the said embodiment, the temperature sensor 13a is provided in the said outdoor air heat exchanger 13, and the presence or absence of frost formation of the said outdoor air heat exchanger 13 is determined based on the detected temperature of this temperature sensor 13a. Explained when to do.
On the other hand, when frost is generated in the outdoor air heat exchanger 13, the heating efficiency of air in the heating operation executed in the R410A cycle 2 is lowered. That is, the temperature of the air flowing out from the indoor air heat exchanger 4 is lower than that when no frost is generated.
Therefore, an air temperature detection sensor (an example of the outflow temperature detection means) that detects the temperature of the air that flows out of the indoor air heat exchanger 4 after heat exchange with the R410A refrigerant in the indoor air heat exchanger 4 is provided. In addition, it is conceivable as another embodiment to determine whether or not frost formation has occurred in the outdoor air heat exchanger 13 based on the temperature detected by the air temperature detection sensor. At this time, the said control part when determining the presence or absence of generation | occurrence | production of the frost of the said outdoor air heat exchanger 13 is equivalent to a frost detection means (2nd frost detection means).
In addition, the method for detecting the frost formation of the outdoor air heat exchanger 13 is not limited to that described here, and various conventional methods may be used. For example, whether one or more of the temperature of the outdoor air heat exchanger 13, the temperature of the outdoor air, the temperature of the air flowing out of the indoor air heat exchanger 4, the current value, etc. satisfy a predetermined condition What is necessary is just to detect frost formation by whether or not.

本発明の実施の形態に係るヒートポンプ式給湯機Xの概略構成図。The schematic block diagram of the heat pump type water heater X which concerns on embodiment of this invention. 本発明の実施の形態に係るヒートポンプ式給湯機Xに設けられた室外機6の内部構成図。The internal block diagram of the outdoor unit 6 provided in the heat pump type water heater X which concerns on embodiment of this invention. 室外機6に設けられた室外空気熱交換器13の部品図。FIG. 3 is a component diagram of an outdoor air heat exchanger 13 provided in the outdoor unit 6. 本発明の実施の形態に係るヒートポンプ式給湯機Xにおいて実行される除霜処理の手順の一例を説明するフローチャート。The flowchart explaining an example of the procedure of the defrost process performed in the heat pump type water heater X which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1…ヒートポンプサイクル(第一のヒートポンプサイクルの一例)
2…ヒートポンプサイクル(第二のヒートポンプサイクルの一例)
4…室内空気熱交換器
6…室外機
11,21…圧縮機
12,22…膨張器
13…室外空気熱交換器(室外空気熱交換器の一例)
13a…温度センサ(熱交換器温度検出手段の一例)
14,25,33…配管
10,20,40…循環経路
24…四方弁(循環方向切替手段の一例)
30a〜30d…流水経路
31…貯湯タンク
32…水熱交換器
41〜45…切換弁
61…配管(第一の配管の一例)
62…配管(第二の配管の一例)
63…伝熱フィン(伝熱板)
64…送風ファン
1 ... heat pump cycle (an example of a first heat pump cycle)
2 ... Heat pump cycle (an example of a second heat pump cycle)
4 ... Indoor air heat exchanger 6 ... Outdoor units 11, 21 ... Compressors 12, 22 ... Expander 13 ... Outdoor air heat exchanger (an example of an outdoor air heat exchanger)
13a ... Temperature sensor (an example of heat exchanger temperature detection means)
14, 25, 33 ... piping 10, 20, 40 ... circulation path 24 ... four-way valve (an example of circulation direction switching means)
30a-30d ... Flowing water path 31 ... Hot water storage tank 32 ... Water heat exchangers 41-45 ... Switching valve 61 ... Piping (an example of the first piping)
62 ... Piping (an example of the second piping)
63 ... Heat transfer fin (heat transfer plate)
64 ... Blower fan

Claims (7)

第一の冷媒が少なくとも第一の圧縮機及び第一の膨張器を経て循環される第一のヒートポンプサイクルと,
前記第一の冷媒と異なる特性を持つ第二の冷媒が少なくとも第二の圧縮機及び第二の膨張器を経て循環される第二のヒートポンプサイクルと,
前記第二の冷媒と室内空気との間で熱交換を行う室内空気熱交換器と,
前記第一の冷媒及び/又は前記第二の冷媒と水との間で熱交換を行う水熱交換器と,
前記第一の冷媒及び/又は前記第二の冷媒と室外空気との間で熱交換を行う共通の室外空気熱交換器と,
を備えてなるヒートポンプ式給湯機であって,
前記第一のヒートポンプサイクル及び/又は前記第二のヒートポンプサイクルの稼働中に,前記室外空気熱交換器における着霜の発生を検出する着霜検出手段と,
前記着霜検出手段により前記室外空気熱交換器の着霜が検出された場合に,前記第一のヒートポンプサイクル及び前記第二のヒートポンプサイクルのいずれか一方において前記室外空気熱交換器の霜を取り除く除霜運転を実行する除霜手段と,
を備えてなることを特徴とするヒートポンプ式給湯機。
A first heat pump cycle in which a first refrigerant is circulated through at least a first compressor and a first expander;
A second heat pump cycle in which a second refrigerant having different characteristics from the first refrigerant is circulated through at least a second compressor and a second expander;
An indoor air heat exchanger for exchanging heat between the second refrigerant and room air;
A water heat exchanger for exchanging heat between the first refrigerant and / or the second refrigerant and water;
A common outdoor air heat exchanger for exchanging heat between the first refrigerant and / or the second refrigerant and outdoor air;
A heat pump type water heater comprising:
Frost detection means for detecting the occurrence of frost in the outdoor air heat exchanger during operation of the first heat pump cycle and / or the second heat pump cycle;
When the frost detection of the outdoor air heat exchanger is detected by the frost detection means, the frost of the outdoor air heat exchanger is removed in one of the first heat pump cycle and the second heat pump cycle. A defrosting means for performing a defrosting operation;
A heat pump water heater characterized by comprising:
前記第一の冷媒が炭酸ガス冷媒であって,前記第二の冷媒がHFC冷媒である請求項1に記載のヒートポンプ式給湯機。   The heat pump type hot water heater according to claim 1, wherein the first refrigerant is a carbon dioxide refrigerant, and the second refrigerant is an HFC refrigerant. 前記室外空気熱交換器が,前記第一の冷媒が循環される第一の配管と,前記第二の冷媒が循環される第二の配管と,前記第一の配管及び前記第二の配管が貫装された伝熱板と,を有してなる請求項1又は2のいずれかに記載のヒートポンプ式給湯機。   The outdoor air heat exchanger includes: a first pipe through which the first refrigerant is circulated; a second pipe through which the second refrigerant is circulated; the first pipe and the second pipe. The heat pump type hot water heater according to claim 1, further comprising a heat transfer plate provided through the heat transfer plate. 前記室外空気熱交換器の温度を検出する熱交換器温度検出手段を更に備えてなり,
前記着霜検出手段が,前記熱交換器温度検出手段による検出温度に基づいて前記室外空気熱交換器の着霜の発生を検出する第一の着霜検出手段を含んでなる請求項1〜3のいずれかに記載のヒートポンプ式給湯機。
And further comprising heat exchanger temperature detecting means for detecting the temperature of the outdoor air heat exchanger,
The said frost detection means comprises the 1st frost detection means which detects generation | occurrence | production of the frost of the said outdoor air heat exchanger based on the temperature detected by the said heat exchanger temperature detection means. The heat pump type water heater according to any one of the above.
前記室内空気熱交換器から流出された空気の温度を検出する流出温度検出手段を更に備えてなり,
前記着霜検出手段が,前記流出温度検出手段による検出温度に基づいて前記室外空気熱交換器の着霜の発生を検出する第二の着霜検出手段を含んでなる請求項1〜4のいずれかに記載のヒートポンプ式給湯機。
Further comprising outflow temperature detecting means for detecting the temperature of the air discharged from the indoor air heat exchanger,
The said frost detection means includes the 2nd frost detection means which detects generation | occurrence | production of the frost of the said outdoor air heat exchanger based on the temperature detected by the said outflow temperature detection means. The heat pump type hot water heater described in Crab.
前記第一のヒートポンプサイクルが,前記第一の圧縮機,前記水熱交換器,前記第一の膨張器,前記室外空気熱交換器,前記第一の圧縮機が順に接続されたものであって,
前記除霜手段が,前記第一の膨張器を開放した状態で前記第一のヒートポンプサイクルを稼働することにより前記第一の圧縮機から吐出された高温の前記第一の冷媒を前記室外空気熱交換器に流入させる第一の除霜運転実行手段を含んでなる請求項1〜5のいずれかに記載のヒートポンプ式給湯機。
In the first heat pump cycle, the first compressor, the water heat exchanger, the first expander, the outdoor air heat exchanger, and the first compressor are connected in order. ,
The defrosting means operates the first heat pump cycle in a state in which the first expander is opened, thereby converting the high temperature first refrigerant discharged from the first compressor into the outdoor air heat. The heat pump type hot water heater according to any one of claims 1 to 5, further comprising first defrosting operation execution means for flowing into the exchanger.
前記第二のヒートポンプサイクルにおける前記第二の冷媒の循環方向を切り替える循環方向切替手段を更に備えてなり,
前記除霜手段が,前記第二の圧縮機から吐出された高温の前記第二の冷媒を前記室外空気熱交換器に流入させるように,前記第二の冷媒の循環方向を前記循環方向切替手段によって切り替える第二の除霜運転実行手段を含んでなる請求項1〜6のいずれかに記載のヒートポンプ式給湯機。
A circulation direction switching means for switching the circulation direction of the second refrigerant in the second heat pump cycle;
The circulation direction switching means changes the circulation direction of the second refrigerant so that the defrosting means causes the high-temperature second refrigerant discharged from the second compressor to flow into the outdoor air heat exchanger. The heat pump type hot water supply apparatus according to any one of claims 1 to 6, further comprising second defrosting operation execution means that is switched depending on whether or not.
JP2006162095A 2006-06-12 2006-06-12 Heat pump water heater Expired - Fee Related JP4785630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006162095A JP4785630B2 (en) 2006-06-12 2006-06-12 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006162095A JP4785630B2 (en) 2006-06-12 2006-06-12 Heat pump water heater

Publications (3)

Publication Number Publication Date
JP2007333227A true JP2007333227A (en) 2007-12-27
JP2007333227A5 JP2007333227A5 (en) 2008-10-16
JP4785630B2 JP4785630B2 (en) 2011-10-05

Family

ID=38932868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006162095A Expired - Fee Related JP4785630B2 (en) 2006-06-12 2006-06-12 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP4785630B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101204300B1 (en) 2011-11-10 2012-11-23 선문대학교 산학협력단 Duality Cycle of Heat pump system and Defrosting a method for The Same
CN102245983B (en) * 2008-12-16 2014-03-26 三菱电机株式会社 Operation method of heat pump hot-water supply device
JP2016038109A (en) * 2014-08-05 2016-03-22 株式会社コロナ Composite heat source heat pump device
JP2017062097A (en) * 2015-09-25 2017-03-30 東芝キヤリア株式会社 Heat pump device and heat pump system
KR102584167B1 (en) * 2023-07-05 2023-10-05 (주)유천써모텍 Stable low-temperature cold water and high-temperature water heating and domestic hot water supply using series and parallel heat exchange technology geothermal heat source heat pump

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886529A (en) * 1994-09-20 1996-04-02 Nippondenso Co Ltd Air conditioner
JP2001082802A (en) * 1999-09-13 2001-03-30 Denso Corp Heat pump type hot water apparatus
JP2005083585A (en) * 2003-09-04 2005-03-31 Mitsubishi Electric Corp Heat pump-type hot water supply system
JP2005180742A (en) * 2003-12-17 2005-07-07 Hitachi Ltd Heat pump type water heater, and its operating method
JP2005188879A (en) * 2003-12-26 2005-07-14 Matsushita Electric Ind Co Ltd Heat pump type hot water supplier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886529A (en) * 1994-09-20 1996-04-02 Nippondenso Co Ltd Air conditioner
JP2001082802A (en) * 1999-09-13 2001-03-30 Denso Corp Heat pump type hot water apparatus
JP2005083585A (en) * 2003-09-04 2005-03-31 Mitsubishi Electric Corp Heat pump-type hot water supply system
JP2005180742A (en) * 2003-12-17 2005-07-07 Hitachi Ltd Heat pump type water heater, and its operating method
JP2005188879A (en) * 2003-12-26 2005-07-14 Matsushita Electric Ind Co Ltd Heat pump type hot water supplier

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102245983B (en) * 2008-12-16 2014-03-26 三菱电机株式会社 Operation method of heat pump hot-water supply device
KR101204300B1 (en) 2011-11-10 2012-11-23 선문대학교 산학협력단 Duality Cycle of Heat pump system and Defrosting a method for The Same
JP2016038109A (en) * 2014-08-05 2016-03-22 株式会社コロナ Composite heat source heat pump device
JP2017062097A (en) * 2015-09-25 2017-03-30 東芝キヤリア株式会社 Heat pump device and heat pump system
KR102584167B1 (en) * 2023-07-05 2023-10-05 (주)유천써모텍 Stable low-temperature cold water and high-temperature water heating and domestic hot water supply using series and parallel heat exchange technology geothermal heat source heat pump

Also Published As

Publication number Publication date
JP4785630B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP5411643B2 (en) Refrigeration cycle apparatus and hot water heater
JP5053430B2 (en) Air conditioner
JP2007232282A (en) Heat pump type water heater
JP2008101819A (en) Air conditioner
JP6410839B2 (en) Refrigeration cycle equipment
JP6548742B2 (en) Air conditioner
JP4785630B2 (en) Heat pump water heater
JP2008121982A (en) Refrigerating cycle device
JP2007178091A (en) Heat pump water heater
JP6141089B2 (en) Cold / hot water supply system and air conditioner
JP4890320B2 (en) Heat pump hot water supply system
JP3966889B2 (en) Heat pump water heater
JP4413188B2 (en) Heat pump water heater
JP6123650B2 (en) Heat pump cycle equipment
WO2010131516A1 (en) Hot-water supply system
JP2007321995A (en) Refrigerating cycle device
JP7093236B2 (en) Air conditioner and control method
JP2011257098A (en) Heat pump cycle device
JP2011202845A (en) Air conditioner
JP2012007751A (en) Heat pump cycle device
JP5367607B2 (en) Heat pump water heater
JP4455518B2 (en) Heat pump water heater
JP5413594B2 (en) Heat pump type water heater
KR20100116891A (en) Defrosting driving method of air conditioner
JP2009250580A (en) Heat pump device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080903

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080903

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110314

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4785630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees