JP5413594B2 - Heat pump type water heater - Google Patents

Heat pump type water heater Download PDF

Info

Publication number
JP5413594B2
JP5413594B2 JP2009294221A JP2009294221A JP5413594B2 JP 5413594 B2 JP5413594 B2 JP 5413594B2 JP 2009294221 A JP2009294221 A JP 2009294221A JP 2009294221 A JP2009294221 A JP 2009294221A JP 5413594 B2 JP5413594 B2 JP 5413594B2
Authority
JP
Japan
Prior art keywords
hot water
pipe
valve means
heat
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009294221A
Other languages
Japanese (ja)
Other versions
JP2011133186A (en
Inventor
恵子 城本
俊彦 高橋
亮 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2009294221A priority Critical patent/JP5413594B2/en
Publication of JP2011133186A publication Critical patent/JP2011133186A/en
Application granted granted Critical
Publication of JP5413594B2 publication Critical patent/JP5413594B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、異なる2つの冷凍回路を熱交換器にて熱的に接続してなる2元サイクル式のヒートポンプ式給湯装置に関し、さらに詳しく言えば、高外気温時の単段サイクル運転時における熱交換効率の向上をはかる技術に関するものである。   The present invention relates to a two-cycle heat pump hot water supply apparatus in which two different refrigeration circuits are thermally connected by a heat exchanger, and more specifically, heat during single-stage cycle operation at high outside air temperature. The present invention relates to a technique for improving the exchange efficiency.

低外気温時にも安定した給湯水を生成するため、特許文献1には、低温側の冷凍回路と高温側冷凍回路とを備えた2元サイクル式のヒートポンプが提案されている。これによれば、低温側および高温側各元のそれぞれの圧縮機の圧縮比を小さくし、単段圧縮機をもつ1元システムに比べ、高い効率で運転することができる。   In order to generate stable hot water supply even at a low outside temperature, Patent Document 1 proposes a two-cycle heat pump including a low-temperature side refrigeration circuit and a high-temperature side refrigeration circuit. According to this, the compression ratios of the compressors on the low-temperature side and the high-temperature side can be reduced, and the operation can be performed with higher efficiency as compared with a one-way system having a single stage compressor.

しかしながら、特許文献1に記載された発明では、単段サイクル運転ができず、高外気温時にも2元サイクルでの運転が余儀なくされるため、高外気温時に熱交換効率が低下してしまう、という問題がある。   However, in the invention described in Patent Document 1, single-stage cycle operation cannot be performed, and operation in a two-way cycle is unavoidable even at high outside air temperature, so heat exchange efficiency decreases at high outside air temperature. There is a problem.

そこで、特許文献2には、低外気温時には2元サイクル運転を行い、高外気温時には単段サイクルで運転することで、熱交換効率の低下を防ぐようにしたヒートポンプ式給湯装置が開示されている。   Therefore, Patent Document 2 discloses a heat pump type hot water supply device that prevents a decrease in heat exchange efficiency by performing a dual cycle operation at a low outside temperature and a single stage operation at a high outside temperature. Yes.

しかしながら、特許文献2に記載された発明では、2元サイクルから単段サイクルに切り替えて運転を行う場合、高温側冷凍回路の蒸発能力を維持するために補助蒸発器を必要としており、その分、コスト高になる、という問題がある。   However, in the invention described in Patent Document 2, when the operation is switched from the binary cycle to the single-stage cycle, an auxiliary evaporator is required to maintain the evaporation capability of the high-temperature side refrigeration circuit. There is a problem of high costs.

特開平4−254156号公報JP-A-4-254156 特開平9−119726号公報JP-A-9-119726

したがって、本発明の課題は、異なる2つの冷凍回路を熱交換器にて熱的に接続してなる2元サイクル式のヒートポンプ式給湯装置において、補助蒸発器等の部品を追加することなく、特に高外気温時の単段サイクル運転時における熱交換効率を向上させることにある。   Therefore, an object of the present invention is to provide a two-cycle heat pump hot water supply apparatus in which two different refrigeration circuits are thermally connected by a heat exchanger, without adding components such as an auxiliary evaporator, in particular. The purpose is to improve the heat exchange efficiency during single-stage cycle operation at high outside temperatures.

上述した課題を解決するため、本発明は、第1圧縮機,第1凝縮器,第1膨張弁および第1蒸発器を含む第1冷凍回路と、第2圧縮機,第2凝縮器,第2膨張弁および第2蒸発器を含む第2冷凍回路と、上記第1凝縮器および/または上記第2凝縮器により加熱されて所定温度の給湯水を生成する給湯水生成回路とを備え、外気温度に応じて上記第1冷凍回路および/または上記第2冷凍回路が運転されるヒートポンプ式給湯装置において、上記給湯水生成回路の主配管に対して並列に接続された第1被加熱部および第2被加熱部と、上記第1凝縮器,上記第2蒸発器および上記第1被加熱部が熱交換可能に配置されている第1熱交換部と、上記第2被加熱部が上記第2凝縮器と熱交換可能に配置されている第2熱交換部と、上記第1被加熱部の水流路を開閉する第1弁手段および上記第2被加熱部の水流路を開閉する第2弁手段と、上記第2蒸発器の冷媒流入側と冷媒流出側に設けられた第3弁手段および第4弁手段と、上記各圧縮機および上記各弁手段を制御する制御手段とを備え、上記第1熱交換部は、上記第1被加熱部として水が流される第1内管と、上記第1凝縮器として上記第1圧縮機から吐出される冷媒ガスが流される第2内管と、内部に上記第1,第2の各内管を含み上記第2蒸発器として上記第2膨張弁からの冷媒を上記第2内管内の冷媒と熱交換する外管とを有する多重管熱交換器からなり、上記制御手段は、外気温度が所定温度未満の低外気温度時には、上記第2弁手段,上記第3弁手段および上記第4弁手段を開、上記第1弁手段を閉とし、上記第1,第2の各冷凍回路を運転して上記第2熱交換部により温水を生成し、外気温度が所定温度以上の高外気温度時には、上記第1弁手段を開、上記第2弁手段,上記第3弁手段および上記第4弁手段を閉として、上記第1冷凍回路のみを運転して上記第1熱交換部により温水を生成することを特徴としている。   In order to solve the above-described problems, the present invention provides a first refrigeration circuit including a first compressor, a first condenser, a first expansion valve, and a first evaporator, a second compressor, a second condenser, A second refrigeration circuit including a two expansion valve and a second evaporator, and a hot water generation circuit that is heated by the first condenser and / or the second condenser to generate hot water having a predetermined temperature, In the heat pump hot water supply apparatus in which the first refrigeration circuit and / or the second refrigeration circuit are operated according to temperature, the first heated portion connected in parallel to the main pipe of the hot water generation circuit and the second Two heated parts, a first heat exchanger in which the first condenser, the second evaporator, and the first heated part are arranged so as to be capable of exchanging heat, and the second heated part is the second heated part. A second heat exchanging part arranged so as to be able to exchange heat with the condenser, and the first heated object First valve means for opening and closing the water flow path, second valve means for opening and closing the water flow path of the second heated portion, and third valve means provided on the refrigerant inflow side and the refrigerant outflow side of the second evaporator And a fourth valve means, a control means for controlling the compressors and the valve means, and the first heat exchange section includes a first inner pipe through which water flows as the first heated section; A second inner pipe through which refrigerant gas discharged from the first compressor flows as the first condenser and the first and second inner pipes inside, and the second expansion as the second evaporator. A multi-tube heat exchanger having an outer pipe for exchanging heat from the valve with the refrigerant in the second inner pipe, and the control means includes the second valve when the outside air temperature is lower than a predetermined temperature. Means, the third valve means and the fourth valve means are opened, the first valve means is closed, and the first and first valve means are closed. Each of the refrigeration circuits is operated to generate hot water by the second heat exchange unit, and when the outside air temperature is a high outside air temperature higher than a predetermined temperature, the first valve means is opened, and the second valve means and the third valve are opened. And the fourth valve means are closed, only the first refrigeration circuit is operated, and hot water is generated by the first heat exchange unit.

本発明の好ましい態様によれば、上記制御手段は、上記高外気温度時、上記第3弁手段を閉、上記第4弁手段を開として上記第2圧縮機を運転して上記外管内をほぼ真空状態とする。   According to a preferred aspect of the present invention, the control means closes the third valve means and opens the fourth valve means to operate the second compressor at the high outside air temperature so that the inside of the outer pipe is substantially Set to vacuum.

本発明において、上記制御手段は、上記外管内をほぼ真空状態とするにあたって、上記第2圧縮機を所定時間運転したのち、上記第4弁手段を閉とする制御態様と、上記外管の内圧を検知する圧力センサーの検知信号に基づいて、上記第4弁手段を閉とする制御態様とを備え、そのいずれかを実行する。   In the present invention, the control means includes a control mode in which the fourth valve means is closed after the second compressor is operated for a predetermined time and the inner pressure of the outer pipe is set in a substantially vacuum state in the outer pipe. And a control mode in which the fourth valve means is closed based on a detection signal of a pressure sensor that detects the above, and any one of them is executed.

また、上記3重管熱交換器には、内径寸法が上記第1内管<上記第2内管<上記外管であり、上記第1内管,上記第2内管および上記外管がそれぞれほぼ同軸的に配管されている構成態様と、内径寸法が上記第2内管<上記第1内管<上記外管であり、上記第1内管の周りに上記外管がほぼ同軸的に配管され、上記第1内管内にその管壁に沿う、または管内の任意の位置に複数本の上記第2内管が配管されている構成態様とが含まれる。さらには、上記3重管熱交換器において、上記外管の内部に上記第2内管を同心状に配置し、上記第2内管の内周面に上記第2内管を外接円とする多角形状の上記第1内管を配置する構成態様も含まれる。   The triple pipe heat exchanger has an inner diameter dimension of the first inner pipe <the second inner pipe <the outer pipe, and the first inner pipe, the second inner pipe, and the outer pipe are respectively A configuration in which piping is made substantially coaxially, and an inner diameter dimension is the second inner pipe <the first inner pipe <the outer pipe, and the outer pipe is piped almost coaxially around the first inner pipe. And a configuration in which a plurality of the second inner pipes are piped along the pipe wall in the first inner pipe or at an arbitrary position in the pipe. Furthermore, in the triple pipe heat exchanger, the second inner pipe is concentrically disposed inside the outer pipe, and the second inner pipe is circumscribed on the inner peripheral surface of the second inner pipe. A configuration in which the polygonal first inner pipe is arranged is also included.

本発明によれば、特に外気温度が所定温度以上の高外気温度時には、第1弁手段を開、第2弁手段,第3弁手段および第4弁手段を閉として、第1冷凍回路のみを運転して第1熱交換部により温水を生成するようにしたことにより、第1冷凍回路に流れる冷媒と給湯水生成回路を流れる水との熱交換を効率よく行うことができる。また、外管内をほぼ真空状態とすることにより、第1熱交換部内に断熱層が形成されるため、熱交換効率がより一層高められる。   According to the present invention, particularly when the outside air temperature is a high outside air temperature equal to or higher than a predetermined temperature, the first valve means is opened, the second valve means, the third valve means, and the fourth valve means are closed, and only the first refrigeration circuit is provided. By operating and generating the hot water by the first heat exchange unit, heat exchange between the refrigerant flowing through the first refrigeration circuit and the water flowing through the hot water supply water generation circuit can be performed efficiently. Moreover, since the heat insulation layer is formed in the 1st heat exchange part by making the inside of an outer tube into a substantially vacuum state, heat exchange efficiency is improved further.

本発明の一実施形態に係るヒートポンプ式給湯装置の構成図。The block diagram of the heat pump type hot-water supply apparatus which concerns on one Embodiment of this invention. (a)〜(d)第1熱交換部の要部断面図および変形例。(A)-(d) Main part sectional drawing and a modification of a 1st heat exchange part. 低外気温時の運転状態を説明するための説明図。Explanatory drawing for demonstrating the driving | running state at the time of low outside temperature. 高外気温時の運転状態を説明するための説明図。Explanatory drawing for demonstrating the driving | running state at the time of high outside temperature. 真空引きステップの説明をするための説明図。Explanatory drawing for demonstrating a evacuation step.

次に、本発明の実施形態について図面を参照しながら説明するが、本発明はこの限りではない。このヒートポンプ式給湯装置1は、高外気温時と低外気温時に併せて選択的に駆動される2つの冷凍回路100,200と、主配管に接続される貯湯槽などの給湯機器に温水を供給する給湯水生成回路300とを備えた2元サイクル式のヒートポンプ式給湯装置である。   Next, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto. The heat pump hot water supply apparatus 1 supplies hot water to two refrigeration circuits 100 and 200 that are selectively driven at high and low outside temperatures, and hot water supply equipment such as a hot water tank connected to a main pipe. This is a two-cycle heat pump type hot water supply device that includes a hot water supply water generation circuit 300 that performs the above operation.

一方の冷凍回路100(以下、第1冷凍回路100とする)は、所定の第1冷媒が循環する第1冷媒配管110を有し、第1冷媒配管110には、第1冷媒を圧縮する第1圧縮機120と、第1圧縮機120で生成された高温高圧冷媒と水もしくは後述する第2冷凍回路200の第2冷媒との間で熱交換する第1熱交換部130(第1凝縮器)と、第1冷媒を凝縮圧から蒸発圧まで膨張させる第1膨張弁140と、蒸発圧まで膨張された第1冷媒と空気との間で熱交換を行う空気−冷媒熱交換器150(第1蒸発器)とが設けられている。   One refrigeration circuit 100 (hereinafter referred to as the first refrigeration circuit 100) has a first refrigerant pipe 110 through which a predetermined first refrigerant circulates, and the first refrigerant pipe 110 compresses the first refrigerant. 1 compressor 120 and a first heat exchange unit 130 (first condenser) for exchanging heat between the high-temperature and high-pressure refrigerant generated by the first compressor 120 and water or a second refrigerant of the second refrigeration circuit 200 described later. ), The first expansion valve 140 that expands the first refrigerant from the condensation pressure to the evaporation pressure, and the air-refrigerant heat exchanger 150 (the first one) that exchanges heat between the first refrigerant expanded to the evaporation pressure and the air. 1 evaporator).

他方の冷凍回路200(以下、第2冷凍回路200とする)は、所定の第2冷媒が循環する第2冷媒配管210を有し、第2冷媒配管210には、第2冷媒を圧縮する第2圧縮機220と、第2圧縮機220で生成された高温高圧冷媒と水との間で熱交換を行う第2熱交換部230(第2凝縮器)と、第2冷媒を凝縮圧から蒸発圧まで膨張する第2膨張弁240と、上記第1冷凍回路100と共用される第1熱交換部130(第2蒸発器)とが設けられている。   The other refrigeration circuit 200 (hereinafter referred to as the second refrigeration circuit 200) has a second refrigerant pipe 210 through which a predetermined second refrigerant circulates, and the second refrigerant pipe 210 compresses the second refrigerant. The second compressor 220, the second heat exchanger 230 (second condenser) that exchanges heat between the high-temperature and high-pressure refrigerant generated by the second compressor 220 and water, and the second refrigerant is evaporated from the condensed pressure. A second expansion valve 240 that expands to a pressure and a first heat exchange unit 130 (second evaporator) shared with the first refrigeration circuit 100 are provided.

第2冷凍回路200にはさらに、第1熱交換部130の入力側に第1冷媒開閉弁250(第3弁手段)が、出口側に第2冷媒開閉弁260(第4弁手段)がそれぞれ設けられており、第1熱交換部130内への第2冷媒の流入が制限されるようになっている。第1冷媒開閉弁250および第2冷媒開閉弁260は、例えばソレノイド式の開閉弁からなり、図示しない制御手段によって開閉が制御されている。   The second refrigeration circuit 200 further includes a first refrigerant on-off valve 250 (third valve means) on the input side of the first heat exchanging unit 130 and a second refrigerant on-off valve 260 (fourth valve means) on the outlet side. It is provided and the inflow of the second refrigerant into the first heat exchanging unit 130 is restricted. The first refrigerant on-off valve 250 and the second refrigerant on-off valve 260 are, for example, solenoid type on-off valves, and the opening / closing thereof is controlled by control means (not shown).

この実施形態において、第1および第2冷媒は、例えばHFC−134aやHFC−410Aなどのハイドロフルオロカーボン、または、HFO−1234yfやHFO−1234ze(E)などのハイドロフルオロオレフィン、または、HFE−245mcなどのほか、仕様に応じて任意に選択される。また、第1および第2圧縮機120,220は、ロータリ型やスクロール型など、出力や仕様に応じて任意に選択される。   In this embodiment, the first and second refrigerants are, for example, hydrofluorocarbons such as HFC-134a and HFC-410A, hydrofluoroolefins such as HFO-1234yf and HFO-1234ze (E), or HFE-245mc. Besides, it is arbitrarily selected according to the specification. The first and second compressors 120 and 220 are arbitrarily selected according to the output and specifications, such as a rotary type and a scroll type.

第1熱交換部130は、第2冷媒が搬送される外管131を有し、外管131の内部には、水の流路となる第1内管133と、第1冷媒の流路となる第2内管132とが設けられている。   The first heat exchanging unit 130 includes an outer pipe 131 through which a second refrigerant is conveyed. Inside the outer pipe 131, a first inner pipe 133 serving as a water flow path and a flow path for the first refrigerant are provided. The second inner tube 132 is provided.

この例において、第1熱交換部130は、図2(a)に示すように、外管131,第2内管132および第1内管133が、それぞれ同心円上に並んで配置された3重管からなり、外管131と第2内管132、および、第2内管132と第1内管133とが互いに熱交換可能に配置されている。   In this example, as shown in FIG. 2A, the first heat exchanging unit 130 includes a triple layer in which an outer tube 131, a second inner tube 132, and a first inner tube 133 are arranged in a concentric circle. The outer tube 131 and the second inner tube 132, and the second inner tube 132 and the first inner tube 133 are arranged so as to exchange heat with each other.

外管131および第1,第2内管133,132の材質は仕様に応じて任意であってよいが、耐圧強度や熱伝導率などを考慮して銅合金やアルミ合金が好ましい。とりわけ、外管131は、後述する真空引きした際に、変形しないように耐圧性を備えていることが好ましい。   The material of the outer tube 131 and the first and second inner tubes 133 and 132 may be arbitrary depending on the specifications, but a copper alloy or an aluminum alloy is preferable in consideration of pressure strength, thermal conductivity, and the like. In particular, the outer tube 131 preferably has pressure resistance so that it does not deform when evacuated as described later.

また、外管131および第1,第2内管133,132の相互の熱交換効率を高めるため、配管の内外に表面積を増やすためのフィンなどを設けてもよい。また、外管131の外周に断熱部材を巻き付けるなどして、外管131の熱が外気にリークしないようにして、より熱交換効率を高めるようにしてもよい。   Further, in order to increase the mutual heat exchange efficiency between the outer pipe 131 and the first and second inner pipes 133 and 132, fins for increasing the surface area may be provided inside and outside the pipe. Moreover, a heat insulating member may be wound around the outer periphery of the outer tube 131 so that the heat of the outer tube 131 does not leak to the outside air, thereby further improving the heat exchange efficiency.

この例において、第1熱交換部130は、同心の3重管が用いられているが、これ以外の態様として、図2(b)に示すように、外管131の内部に第1内管133を同心状に配置し、第1内管133の内壁に沿って小径な第2内管132を円周方向に沿って多数配置するようにしてもよい。   In this example, a concentric triple pipe is used for the first heat exchanging section 130, but as an aspect other than this, as shown in FIG. 2B, the first inner pipe is disposed inside the outer pipe 131. 133 may be arranged concentrically, and a plurality of second inner pipes 132 having a small diameter may be arranged along the circumferential direction along the inner wall of the first inner pipe 133.

これによれば、第2内管132を小径多数化することにより、第2内管132の表面積を増やすことができ、より熱交換効率を高めることができる。   According to this, by increasing the diameter of the second inner pipe 132, the surface area of the second inner pipe 132 can be increased, and the heat exchange efficiency can be further increased.

さらに別の態様としては、図2(c)に示すように、外管131の内部に第2内管132を同心状に配置し、第2内管132の内周面に第2内管132に内接する四角形状の第1内管133を配置してもよい。これによれば、第1内管133が第2内管の内周面に当接することで、表面積が増えるばかりでなく、配管の強度も高くなる。また、図2(d)に示すように、第1内管133と第2内管32とが側面で接触した状態で1つの管形状を形成した状態で外管131内に配置されていてもよい。   As another aspect, as shown in FIG. 2 (c), the second inner tube 132 is disposed concentrically inside the outer tube 131, and the second inner tube 132 is disposed on the inner peripheral surface of the second inner tube 132. A square-shaped first inner tube 133 that is inscribed in may be disposed. According to this, the first inner pipe 133 abuts on the inner peripheral surface of the second inner pipe, so that not only the surface area is increased, but also the strength of the pipe is increased. Further, as shown in FIG. 2 (d), even if the first inner tube 133 and the second inner tube 32 are in contact with each other on the side surface, one tube shape is formed and disposed in the outer tube 131. Good.

再び図1を参照して、空気−冷媒熱交換器150は、フィンチューブ型からなり、強制冷却用のファン151が設けられている。空気−冷媒熱交換器150の具体的な構成や配置については、本発明において任意的事項である。   Referring to FIG. 1 again, the air-refrigerant heat exchanger 150 is of a fin tube type, and is provided with a fan 151 for forced cooling. The specific configuration and arrangement of the air-refrigerant heat exchanger 150 are optional items in the present invention.

第2熱交換部230は、第2冷媒配管210の高圧冷媒(高温冷媒)と、後述する第2給湯水配管320との間で熱交換を行う熱交換ユニットであって、その具体的な形状や構成、配置は、本発明において任意的事項である。   The second heat exchange unit 230 is a heat exchange unit that exchanges heat between the high-pressure refrigerant (high-temperature refrigerant) in the second refrigerant pipe 210 and a second hot-water supply pipe 320 described later, and has a specific shape. The configuration and arrangement are optional items in the present invention.

給湯水生成回路300は、第1熱交換部130と熱交換を行う第1給湯水配管310と、第2熱交換部230との間で熱交換を行う第2給湯水配管320とを有し、それらが主配管301に並列に設けられている。第1給湯水配管310および第2給湯水配管320には、主配管からの水の流れを選択的に切り替るため、第1弁手段と第2弁手段とが設けられている。   The hot water supply circuit 300 includes a first hot water pipe 310 that exchanges heat with the first heat exchange unit 130 and a second hot water pipe 320 that exchanges heat with the second heat exchange unit 230. These are provided in parallel with the main pipe 301. The first hot water pipe 310 and the second hot water pipe 320 are provided with first valve means and second valve means for selectively switching the flow of water from the main pipe.

第1弁手段として、第1給湯水配管310の第1熱交換部130の入口側には第1給湯水開閉弁330が、出口側には第2給湯水開閉弁340がそれぞれ設けられている。第1給湯水開閉弁330および第2給湯水開閉弁340は、例えばソレノイド式の開閉弁からなり、図示しない制御手段により開閉が制御されている。   As the first valve means, a first hot water supply opening / closing valve 330 is provided on the inlet side of the first heat exchange section 130 of the first hot water supply pipe 310, and a second hot water supply opening / closing valve 340 is provided on the outlet side. . The 1st hot water supply on-off valve 330 and the 2nd hot water supply on-off valve 340 consist of solenoid type on-off valves, for example, and the opening / closing is controlled by the control means which is not illustrated.

第2弁手段として、第2給湯水配管320には、第2熱交換部の入口側に第3給湯水開閉弁350が、出口側に第4給湯水開閉弁360が設けられている。第3給湯水開閉弁350および第4給湯水開閉弁360も同様に、例えばソレノイド式の開閉弁からなり、図示しない制御手段により開閉が制御されている。   As the second valve means, the second hot water supply pipe 320 is provided with a third hot water on / off valve 350 on the inlet side of the second heat exchange section and a fourth hot water on / off valve 360 on the outlet side. Similarly, the third hot water supply opening / closing valve 350 and the fourth hot water supply opening / closing valve 360 are, for example, solenoid type opening / closing valves, and the opening / closing thereof is controlled by control means (not shown).

この例において、第1および第2給湯水配管310,320には、入口側と出口側とに2つの給湯水開閉弁330,340(350,360)が設けられているが、給湯水生成回路300において、給湯水開閉弁は、少なくとも入口側に設けられていれば、水の流入を選択することができる。   In this example, the first and second hot water supply pipes 310 and 320 are provided with two hot water supply on / off valves 330 and 340 (350 and 360) on the inlet side and the outlet side. In 300, if the hot water supply opening / closing valve is provided at least on the inlet side, the inflow of water can be selected.

次に、本発明のヒートポンプ式給湯装置1の運転手順の一例について説明する。まず、図3を参照して、低外気温時における運転手順について説明する。低外気温時において、図示しない制御部は、第1冷凍回路100と第2冷凍回路200とを同時に運転する二元サイクルで温水を生成する。温水を生成するに当たり、制御部は、まず、第1給湯水開閉弁330および第2給湯水開閉弁340に閉栓指令を出し、これを受け、第1給湯水開閉弁330および第2給湯水開閉弁340が閉じられる。   Next, an example of the operation procedure of the heat pump hot water supply apparatus 1 of the present invention will be described. First, with reference to FIG. 3, the operation procedure at the time of low outside air temperature will be described. At a low outside air temperature, a control unit (not shown) generates hot water in a two-way cycle in which the first refrigeration circuit 100 and the second refrigeration circuit 200 are operated simultaneously. In generating the hot water, the control unit first issues a closing command to the first hot water supply opening / closing valve 330 and the second hot water supply opening / closing valve 340, and in response to this, the first hot water supply opening / closing valve 330 and the second hot water supply opening / closing valve open / close. Valve 340 is closed.

同時に、制御部は、第3給湯水開閉弁350および第4給湯水開閉弁360に開栓指令を出し、第3給湯水開閉弁350および第4給湯水開閉弁360を開ける。これにより、給湯水は、第2給湯水配管320から第2熱交換部230に送り込まれる。   At the same time, the control unit issues an opening command to third hot water supply opening / closing valve 350 and fourth hot water supply opening / closing valve 360 to open third hot water supply opening / closing valve 350 and fourth hot water supply opening / closing valve 360. As a result, the hot water is sent from the second hot water pipe 320 to the second heat exchange unit 230.

給湯水を循環させる準備が整ったのち、制御部は、第1冷凍回路100を運転する。第1冷凍回路100において、冷媒は、第1圧縮機120にて所定の圧力まで圧縮された後、第1熱交換部130で第2冷凍回路200の低圧冷媒と熱交換することで凝縮され、第1膨張弁140に送られる。冷媒は、第1膨張弁140で蒸発圧力まで膨張されたのち、空気−冷媒熱交換器150に送られ、大気と熱交換される。   After preparing to circulate hot water, the control unit operates the first refrigeration circuit 100. In the first refrigeration circuit 100, after the refrigerant is compressed to a predetermined pressure by the first compressor 120, the refrigerant is condensed by exchanging heat with the low-pressure refrigerant of the second refrigeration circuit 200 in the first heat exchange unit 130, It is sent to the first expansion valve 140. The refrigerant is expanded to the evaporation pressure by the first expansion valve 140 and then sent to the air-refrigerant heat exchanger 150 to exchange heat with the atmosphere.

同時に制御部は、第2冷凍回路200を運転する。第2冷凍回路200において、冷媒は、まず、第2膨張器240で蒸発圧力まで膨張されたのち、第1熱交換部130の外管131内に送り込まれ、そこで隣接する第2内管132を流れる第1冷凍回路100の高圧冷媒との間で熱交換が行われる。   At the same time, the control unit operates the second refrigeration circuit 200. In the second refrigeration circuit 200, the refrigerant is first expanded to the evaporation pressure in the second expander 240, and then sent into the outer tube 131 of the first heat exchange unit 130, where the adjacent second inner tube 132 is passed through. Heat exchange is performed with the flowing high-pressure refrigerant of the first refrigeration circuit 100.

これにより、第2内管132を流れる高温の高圧冷媒によって、外管131内の低温な低圧冷媒が加熱される。第1熱交換部130によって加熱された低圧冷媒は、次に、第2圧縮機220にて所定の圧力まで圧縮される。   Thereby, the low-temperature low-pressure refrigerant in the outer pipe 131 is heated by the high-temperature high-pressure refrigerant flowing through the second inner pipe 132. The low-pressure refrigerant heated by the first heat exchange unit 130 is then compressed to a predetermined pressure by the second compressor 220.

第2圧縮機220にて、高温の高圧冷媒が生成され、第2熱交換部230に送り込まれる。これにより、給湯水との間で熱交換が行われることで凝縮され、第2膨張弁240に送り込まれる。これにより、低外気温時においても、常に安定した温度の温水を得ることができる。   In the second compressor 220, a high-temperature high-pressure refrigerant is generated and sent to the second heat exchange unit 230. As a result, heat is exchanged between the hot water supply and condensed, and is sent to the second expansion valve 240. Thereby, even when the outside temperature is low, hot water having a stable temperature can be obtained.

次に、外気温が比較的に高温の場合について、図4,5を参照して説明する。高外気温時において、第2冷凍回路200は基本的に停止状態とされ、第1冷凍回路100のみを用いたサイクルで温水が生成される。   Next, the case where the outside air temperature is relatively high will be described with reference to FIGS. At the time of high outside air temperature, the second refrigeration circuit 200 is basically stopped, and hot water is generated in a cycle using only the first refrigeration circuit 100.

まず、制御部は、第1給湯水開閉弁330および第2給湯水開閉弁340に開栓指令を出し、第1給湯水開閉弁330および第2給湯水開閉弁340を開く。同時に、第3給湯水開閉弁350および第4給湯水開閉弁360に閉栓指令を出し、第3給湯水開閉弁350および第4給湯水開閉弁360を閉じる。これにより、給湯水は、第1給湯水配管310を流れて第1熱交換部130に送り込まれる。   First, the control unit issues an opening command to the first hot water on / off valve 330 and the second hot water on / off valve 340, and opens the first hot water on / off valve 330 and the second hot water on / off valve 340. At the same time, a closing command is issued to the third hot water supply opening / closing valve 350 and the fourth hot water supply opening / closing valve 360, and the third hot water supply opening / closing valve 350 and the fourth hot water supply opening / closing valve 360 are closed. Accordingly, the hot water is supplied to the first heat exchange unit 130 through the first hot water pipe 310.

2元サイクルから単段サイクルに切り替えるに当たり、制御部は、まず最初に第1熱交換部130の外管131内に充填された冷媒を外管131内を真空にする真空引きステップを実行することによって第2圧縮機220、第2熱交換部230を含む、第1冷媒開閉弁250と第2冷媒開閉弁260との間の配管に回収する。   When switching from the dual cycle to the single-stage cycle, the control unit first executes a vacuuming step for evacuating the outer tube 131 with the refrigerant filled in the outer tube 131 of the first heat exchange unit 130. Thus, the refrigerant is collected in a pipe between the first refrigerant on-off valve 250 and the second refrigerant on-off valve 260 including the second compressor 220 and the second heat exchange unit 230.

真空引きステップが実行されると、図5に示すように、まず制御部は、第1冷媒開閉弁250に閉栓指令を出し、第1冷媒開閉弁250を閉じる。   When the evacuation step is executed, as shown in FIG. 5, the control unit first issues a closing command to the first refrigerant on / off valve 250 and closes the first refrigerant on / off valve 250.

この状態で、制御部は、第2圧縮機220を駆動する。これにより、第1冷媒開閉弁250から先の冷媒は、第2圧縮機220によって第2圧縮機220の吐出側に排出される。これにより、外管131内がほぼ真空状態まで減圧される。   In this state, the control unit drives the second compressor 220. Thereby, the refrigerant ahead of the first refrigerant on-off valve 250 is discharged by the second compressor 220 to the discharge side of the second compressor 220. Thereby, the inside of the outer tube 131 is depressurized to a substantially vacuum state.

しかるのち、制御部は、第2冷媒開閉弁260に閉栓指令を出し、第2冷媒開閉弁260を閉じるとともに、第2圧縮機220を停止する。これによれば、第1熱交換部130を含む、第1冷媒開閉弁250と第2冷媒開閉弁260との間の配管がほぼ真空状態となり、外管131が断熱層として形成される。   Thereafter, the control unit issues a closing command to the second refrigerant on / off valve 260, closes the second refrigerant on / off valve 260, and stops the second compressor 220. According to this, piping between the 1st refrigerant | coolant on-off valve 250 and the 2nd refrigerant | coolant on-off valve 260 including the 1st heat exchange part 130 will be in a vacuum state, and the outer tube | pipe 131 is formed as a heat insulation layer.

なお、第2冷媒開閉弁260の閉栓指令のタイミングとしては、第1熱交換部130の出口側付近に圧力センサを設置して、ほぼ真空状態まで減圧されたのを制御部で検知して、第2冷媒開閉弁260を閉じることが好ましい。   As for the timing of closing the second refrigerant on / off valve 260, a pressure sensor is installed in the vicinity of the outlet side of the first heat exchange unit 130, and the controller detects that the pressure is reduced to a substantially vacuum state. It is preferable to close the second refrigerant on-off valve 260.

また別の方法として、第1冷媒開閉弁250を閉じて、第2圧縮機220の駆動開始から一定時間を経過した後に第2冷媒開閉弁260を閉じるようにしてもよい。   As another method, the first refrigerant on-off valve 250 may be closed and the second refrigerant on-off valve 260 may be closed after a predetermined time has elapsed since the start of driving of the second compressor 220.

真空引きステップを終えた後、制御部は、第1冷凍回路100を運転する。第1冷凍回路100において、冷媒は、第1圧縮機120にて所定の圧力まで圧縮された後、第1熱交換部130で給湯水と熱交換することで凝縮され、第1膨張弁140に送られる。冷媒は、第1膨張弁140で蒸発圧力まで膨張されたのち、空気−冷媒熱交換器150に送られ、大気と熱交換される。   After finishing the evacuation step, the control unit operates the first refrigeration circuit 100. In the first refrigeration circuit 100, the refrigerant is compressed to a predetermined pressure by the first compressor 120, and then condensed by exchanging heat with hot water in the first heat exchanging unit 130. Sent. The refrigerant is expanded to the evaporation pressure by the first expansion valve 140 and then sent to the air-refrigerant heat exchanger 150 to exchange heat with the atmosphere.

このとき、第1熱交換部130は、大気に触れる最外層の外管131内部が、ほぼ真空状態になっていることにより断熱層として機能するため、外気への熱リークが抑えられ第2内管132を流れる高圧冷媒と、第1内管133内を流れる給湯水との間の熱交換が効率的に行われる。   At this time, the first heat exchanging unit 130 functions as a heat insulation layer because the inside of the outermost outer tube 131 that is in contact with the atmosphere is in a substantially vacuum state, so that heat leakage to the outside air is suppressed and the second inner tube 131 is suppressed. Heat exchange between the high-pressure refrigerant flowing through the pipe 132 and hot water flowing through the first inner pipe 133 is efficiently performed.

本発明のヒートポンプ式給湯装置1によって生成される温水は、風呂などの給湯用としてだけではなく、暖房用など各種熱源媒体として用いることが可能であり、その用途は特に限定されない。   The hot water generated by the heat pump hot water supply apparatus 1 of the present invention can be used not only for hot water supply such as a bath but also for various heat source media such as heating, and its use is not particularly limited.

1 ヒートポンプ式給湯装置
100 第1冷凍回路
110 第1冷媒配管
120 第1圧縮機
130 第1熱交換部
131 外管
132 第2内管
133 第1内管
140 第1膨張弁
150 空気−冷媒熱交換器
200 第2冷凍回路
210 第2冷媒配管
220 第2圧縮機
230 第2熱交換部
240 第2膨張弁
250 第1冷媒開閉弁
260 第2冷媒開閉弁
300 給湯水生成回路
310 第1給湯水配管
320 第2給湯水配管
330 第1給湯水開閉弁
340 第2給湯水開閉弁
350 第3給湯水開閉弁
360 第4給湯水開閉弁
DESCRIPTION OF SYMBOLS 1 Heat pump type hot water supply apparatus 100 1st freezing circuit 110 1st refrigerant | coolant piping 120 1st compressor 130 1st heat exchange part 131 Outer pipe 132 2nd inner pipe 133 1st inner pipe 140 1st expansion valve 150 1st refrigerant | coolant heat exchange Unit 200 Second refrigeration circuit 210 Second refrigerant piping 220 Second compressor 230 Second heat exchange unit 240 Second expansion valve 250 First refrigerant on-off valve 260 Second refrigerant on-off valve 300 Hot water generation circuit 310 First hot water piping 320 Second hot water supply pipe 330 First hot water on / off valve 340 Second hot water on / off valve 350 Third hot water on / off valve 360 Fourth hot water on / off valve

Claims (7)

第1圧縮機,第1凝縮器,第1膨張弁および第1蒸発器を含む第1冷凍回路と、第2圧縮機,第2凝縮器,第2膨張弁および第2蒸発器を含む第2冷凍回路と、上記第1凝縮器および/または上記第2凝縮器により加熱されて所定温度の給湯水を生成する給湯水生成回路とを備え、外気温度に応じて上記第1冷凍回路および/または上記第2冷凍回路が運転されるヒートポンプ式給湯装置において、
上記給湯水生成回路の主配管に対して並列に接続された第1被加熱部および第2被加熱部と、上記第1凝縮器,上記第2蒸発器および上記第1被加熱部が熱交換可能に配置されている第1熱交換部と、上記第2被加熱部が上記第2凝縮器と熱交換可能に配置されている第2熱交換部と、上記第1被加熱部の水流路を開閉する第1弁手段および上記第2被加熱部の水流路を開閉する第2弁手段と、上記第2蒸発器の冷媒流入側と冷媒流出側に設けられた第3弁手段および第4弁手段と、上記各圧縮機および上記各弁手段を制御する制御手段とを備え、
上記第1熱交換部は、上記第1被加熱部として水が流される第1内管と、上記第1凝縮器として上記第1圧縮機から吐出される冷媒ガスが流される第2内管と、内部に上記第1,第2の各内管を含み上記第2蒸発器として上記第2膨張弁からの冷媒を上記第2内管内の冷媒と熱交換する外管とを有する多重管熱交換器からなり、
上記制御手段は、外気温度が所定温度未満の低外気温度時には、上記第2弁手段,上記第3弁手段および上記第4弁手段を開、上記第1弁手段を閉とし、上記第1,第2の各冷凍回路を運転して上記第2熱交換部により温水を生成し、外気温度が所定温度以上の高外気温度時には、上記第1弁手段を開、上記第2弁手段,上記第3弁手段および上記第4弁手段を閉として、上記第1冷凍回路のみを運転して上記第1熱交換部により温水を生成することを特徴とするヒートポンプ式給湯装置。
A first refrigeration circuit including a first compressor, a first condenser, a first expansion valve and a first evaporator; and a second refrigeration circuit including a second compressor, a second condenser, a second expansion valve and a second evaporator. A refrigeration circuit, and a hot water generation circuit that generates hot water at a predetermined temperature by being heated by the first condenser and / or the second condenser, and the first refrigeration circuit and / or according to the outside air temperature. In the heat pump hot water supply apparatus in which the second refrigeration circuit is operated,
The first heated part and the second heated part connected in parallel to the main pipe of the hot water generation circuit, and the first condenser, the second evaporator, and the first heated part exchange heat. A first heat exchanging portion arranged in a possible manner, a second heat exchanging portion in which the second heated portion is arranged to exchange heat with the second condenser, and a water flow path of the first heated portion. The first valve means for opening and closing the second valve means, the second valve means for opening and closing the water flow path of the second heated portion, the third valve means provided on the refrigerant inflow side and the refrigerant outflow side of the second evaporator, and the fourth Valve means; and control means for controlling each compressor and each valve means,
The first heat exchange section includes a first inner pipe through which water flows as the first heated section, and a second inner pipe through which refrigerant gas discharged from the first compressor flows as the first condenser. A multi-tube heat exchange system including the first and second inner pipes and an outer pipe for exchanging the refrigerant from the second expansion valve with the refrigerant in the second inner pipe as the second evaporator. Consisting of a vessel
The control means opens the second valve means, the third valve means and the fourth valve means, closes the first valve means, and closes the first and first valve means when the outside air temperature is a low outside air temperature lower than a predetermined temperature. Each of the second refrigeration circuits is operated to generate hot water by the second heat exchanging unit, and when the outside air temperature is a high outside air temperature equal to or higher than a predetermined temperature, the first valve means is opened, the second valve means, A heat pump type hot water supply apparatus, wherein the three valve means and the fourth valve means are closed, and only the first refrigeration circuit is operated to generate hot water by the first heat exchange unit.
上記制御手段は、上記高外気温度時、上記第3弁手段を閉、上記第4弁手段を開として上記第2圧縮機を運転して上記外管内をほぼ真空状態とすることを特徴とする請求項1に記載のヒートポンプ式給湯装置。   The control means closes the third valve means and opens the fourth valve means at the time of the high outside air temperature to operate the second compressor to bring the inside of the outer pipe into a substantially vacuum state. The heat pump type hot water supply apparatus according to claim 1. 上記制御手段は、上記外管内をほぼ真空状態とするにあたって、上記第2圧縮機を所定時間運転したのち、上記第4弁手段を閉とすることを特徴とする請求項2に記載のヒートポンプ式給湯装置。   3. The heat pump system according to claim 2, wherein the control means closes the fourth valve means after operating the second compressor for a predetermined time when the inside of the outer pipe is brought to a substantially vacuum state. Hot water supply device. 上記外管の内圧を検知する圧力センサーを有し、上記制御手段は、上記外管内をほぼ真空状態とするにあたって、上記圧力センサーの検知信号に基づいて、上記第4弁手段を閉とすることを特徴とする請求項2に記載のヒートポンプ式給湯装置。   A pressure sensor for detecting an inner pressure of the outer pipe, and the control means closes the fourth valve means based on a detection signal of the pressure sensor when the inside of the outer pipe is brought into a substantially vacuum state. The heat pump type hot-water supply apparatus according to claim 2. 上記3重管熱交換器において、内径寸法が上記第1内管<上記第2内管<上記外管であり、上記第1内管,上記第2内管および上記外管がそれぞれほぼ同軸的に配管されていることを特徴とする請求項1ないし4のいずれか1項に記載のヒートポンプ式給湯装置。   In the triple pipe heat exchanger, the inner diameter dimension is the first inner pipe <the second inner pipe <the outer pipe, and the first inner pipe, the second inner pipe, and the outer pipe are substantially coaxial. The heat pump type hot water supply apparatus according to any one of claims 1 to 4, wherein the heat pump type hot water supply apparatus is provided with a pipe. 上記3重管熱交換器において、内径寸法が上記第2内管<上記第1内管<上記外管であり、上記第1内管の周りに上記外管がほぼ同軸的に配管され、上記第1内管内にその管壁に沿って複数本の上記第2内管が配管されていることを特徴とする請求項1ないし4のいずれか1項に記載のヒートポンプ式給湯装置。   In the triple pipe heat exchanger, the inner diameter dimension is the second inner pipe <the first inner pipe <the outer pipe, and the outer pipe is piped substantially coaxially around the first inner pipe, The heat pump type hot water supply apparatus according to any one of claims 1 to 4, wherein a plurality of the second inner pipes are piped along the pipe wall in the first inner pipe. 上記3重管熱交換器において、上記外管の内部に上記第2内管を同心状に配置し、上記第2内管の内周面に上記第2内管を外接円とする多角形状の上記第1内管を配置することを特徴とする請求項1ないし4のいずれか1項に記載のヒートポンプ式給湯装置。   In the triple pipe heat exchanger, a polygonal shape in which the second inner pipe is concentrically disposed inside the outer pipe and the second inner pipe is circumscribed on the inner peripheral surface of the second inner pipe. The heat pump type hot water supply apparatus according to any one of claims 1 to 4, wherein the first inner pipe is disposed.
JP2009294221A 2009-12-25 2009-12-25 Heat pump type water heater Active JP5413594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009294221A JP5413594B2 (en) 2009-12-25 2009-12-25 Heat pump type water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009294221A JP5413594B2 (en) 2009-12-25 2009-12-25 Heat pump type water heater

Publications (2)

Publication Number Publication Date
JP2011133186A JP2011133186A (en) 2011-07-07
JP5413594B2 true JP5413594B2 (en) 2014-02-12

Family

ID=44346119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009294221A Active JP5413594B2 (en) 2009-12-25 2009-12-25 Heat pump type water heater

Country Status (1)

Country Link
JP (1) JP5413594B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101369806B1 (en) 2013-07-04 2014-03-25 이영국 Multi-complex heat exchanging type hybrid-heatpump using waste heat of septic tank
JP6300519B2 (en) * 2013-12-26 2018-03-28 株式会社前川製作所 Cooling system using CO2 refrigerant

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62233623A (en) * 1986-03-31 1987-10-14 Sharp Corp Heat pump type hot water supplier
JPH01212862A (en) * 1988-02-19 1989-08-25 Fujitsu General Ltd Hot-water supplying device
JP3084918B2 (en) * 1992-05-11 2000-09-04 松下電器産業株式会社 Heat pump water heater
JPH09119725A (en) * 1995-10-25 1997-05-06 Daikin Ind Ltd Binary refrigerator

Also Published As

Publication number Publication date
JP2011133186A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
JP5137494B2 (en) Equipment and air conditioner using refrigeration cycle
EP3098540B1 (en) Heat pump apparatus
WO2013027757A1 (en) Combined binary refrigeration cycle apparatus
US20110138839A1 (en) Water circulation apparatus associated with refrigerant system
JP5261066B2 (en) Refrigerator and refrigerator
EP2770278B1 (en) Water heater
JP2010014351A (en) Refrigerating air conditioner
JP2009092258A (en) Refrigerating cycle device
US9581359B2 (en) Regenerative air-conditioning apparatus
JP2007183045A (en) Heat pump type air-conditioning equipment
JP5413594B2 (en) Heat pump type water heater
JP2016065701A (en) Heat pump type heater and method of operating the same
JP4033788B2 (en) Heat pump equipment
JP2019060545A (en) Air conditioner
JP2009162403A (en) Air conditioner
JP2015172452A (en) hot water generator
KR100849613B1 (en) High effectiveness heat pump system that available water heating and floor heating
JP5447968B2 (en) Heat pump equipment
JP2009092321A (en) Cooling/heating hot water supply system and its operating method
JP2006194537A (en) Heat pump device
JP2017161164A (en) Air-conditioning hot water supply system
JP2007155203A (en) Air conditioner
JP2009281629A (en) Heat pump water heater
KR20090043991A (en) Hot-line apparatus of refrigerator
JP2016114319A (en) Heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131029

R151 Written notification of patent or utility model registration

Ref document number: 5413594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350