JP2009092321A - Cooling/heating hot water supply system and its operating method - Google Patents

Cooling/heating hot water supply system and its operating method Download PDF

Info

Publication number
JP2009092321A
JP2009092321A JP2007264277A JP2007264277A JP2009092321A JP 2009092321 A JP2009092321 A JP 2009092321A JP 2007264277 A JP2007264277 A JP 2007264277A JP 2007264277 A JP2007264277 A JP 2007264277A JP 2009092321 A JP2009092321 A JP 2009092321A
Authority
JP
Japan
Prior art keywords
heat exchanger
hot water
refrigerant
water supply
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007264277A
Other languages
Japanese (ja)
Inventor
Masaya Honma
雅也 本間
Yuichi Kusumaru
雄一 藥丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007264277A priority Critical patent/JP2009092321A/en
Publication of JP2009092321A publication Critical patent/JP2009092321A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress a cost increase and an enlargement of the device by performing simultaneous operation of cooling and hot water supply without newly installing an indoor heat exchanger for cooling. <P>SOLUTION: This refrigerating cycle device is provided with a main refrigerant circuit formed by connecting a compressor 2, a parallel circuit in which a hot water supply heat exchanger 30 and the indoor heat exchanger 1 are juxtaposed via a refrigerant conduit 6, a first expansion valve 4, and an outdoor heat exchanger 3 sequentially connected in an annular shape, and connection piping 7 for connecting a first electromagnetic valve SV1 disposed in refrigerant piping connected to discharge piping of the compressor 2 out of refrigerant piping connected to the indoor heat exchanger 1 in the parallel circuit, a second expansion valve 23 disposed in refrigerant piping connected to outlet piping of the hot water supply heat exchanger 30 out of the refrigerant piping connected to the indoor heat exchanger 1 in the parallel circuit, and intake piping of the compressor 2 via a second electromagnetic valve SV2 branched from between the first electromagnetic valve SV1 and the indoor heat exchanger 1. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、給湯機や空調機などの冷凍サイクル装置およびその運転方法に関する   The present invention relates to a refrigeration cycle apparatus such as a water heater and an air conditioner, and an operation method thereof.

従来のヒートポンプ式給湯冷房装置には、特許文献1に記載されているものがある。このヒートポンプ式給湯冷房装置は図9に示すように、室内熱交換器1を備えた室内ユニットAと、圧縮機2、室外熱交換器3、第1膨張弁4、液閉鎖弁5を備えそれぞれ冷媒配管6で連結された室外ユニットBと、浴槽13に供給する湯を貯留する貯湯槽14、貯湯槽14に貯湯された湯を加熱する貯湯槽熱交換器15、これらを連結する水配管16からなる貯湯槽水循環回路に介設され貯湯槽熱交換器15の作動とともに作動する貯湯槽14の湯の強制循環用水ポンプ17を備えた貯湯槽ユニットCと、浴槽13内の湯を追い焚きする浴槽熱交換器26、浴槽熱交換器26の作動と共に作動する浴槽13の湯の強制循環用水ポンプ27とを備えた浴槽追い焚きユニットDから構成される。   A conventional heat pump hot water supply / cooling device is disclosed in Patent Document 1. As shown in FIG. 9, this heat pump hot water supply / cooling apparatus includes an indoor unit A including an indoor heat exchanger 1, a compressor 2, an outdoor heat exchanger 3, a first expansion valve 4, and a liquid closing valve 5. The outdoor unit B connected by the refrigerant pipe 6, the hot water tank 14 for storing hot water to be supplied to the bathtub 13, the hot water tank heat exchanger 15 for heating the hot water stored in the hot water tank 14, and the water pipe 16 for connecting them. A hot water storage tank unit C provided with a water pump 17 for forced circulation of hot water in the hot water storage tank 14 that is provided with the operation of the hot water storage tank heat exchanger 15 that is interposed in the hot water tank water circulation circuit comprising the hot water in the bathtub 13. It is comprised from the bathtub reheating unit D provided with the bathtub heat exchanger 26 and the water pump 27 for forced circulation of the hot water of the bathtub 13 which act | operates with the action | operation of the bathtub heat exchanger 26.

以上のように構成されたヒートポンプ式給湯冷房装置について、以下その動作を説明する。室外ユニットBの室外熱交換器3下流側と第2膨張弁23上流とは冷媒配管25でバイパス連結され、冷媒配管25の途中には常開の第3電磁弁SV3が介設されており、第3電磁弁SV3および貯湯槽電磁弁SVAを開作動せしめて圧縮機2からの冷媒を貯湯槽熱交換器15から室外熱交換器3をバイパスして室内熱交換器1に圧送循環することにより、室内を冷房しながら貯湯槽14内の湯を加熱するようにしていた。
特開昭62-32381号公報
The operation of the heat pump hot water supply / cooling apparatus configured as described above will be described below. The downstream side of the outdoor heat exchanger 3 of the outdoor unit B and the upstream side of the second expansion valve 23 are bypass-connected by a refrigerant pipe 25, and a normally open third electromagnetic valve SV3 is interposed in the refrigerant pipe 25, By opening the third solenoid valve SV3 and the hot water tank electromagnetic valve SVA, the refrigerant from the compressor 2 is circulated from the hot water tank heat exchanger 15 to the indoor heat exchanger 1 by bypassing the outdoor heat exchanger 3. The hot water in the hot water storage tank 14 was heated while the room was cooled.
Japanese Unexamined Patent Publication No. Sho 62-32381

しかしながら、前記従来の構成では冷房と給湯の同時運転を行うためには、冷房用の室外熱交換器を新たに追加する必要があり、コストの増加、装置の大型化を招くという課題を有していた。   However, in the conventional configuration, in order to perform simultaneous operation of cooling and hot water supply, it is necessary to newly add an outdoor heat exchanger for cooling, and there is a problem in that the cost increases and the size of the apparatus increases. It was.

前記課題を解決するために、本発明においては、圧縮機と、給湯用熱交換器と室内交換器とが冷媒管路を介して並列に配置された並列回路と、第1の膨張弁と、室外熱交換器を順次環状に接続してなる主冷媒回路と、並列回路内で室内熱交換器に接続された冷媒配管のうち圧縮機の吐出配管に接続された方に配置された第1電磁弁と、並列回路内で室内熱交換器に接続された冷媒配管のうち給湯用熱交換器の出口配管に接続された方に配置された第2の絞り装置と、第1電磁弁と室内熱交換器の間から分岐させ第2電磁弁を介して圧縮機の吸入配管とを接続する連絡配管を設けた構成にする。   In order to solve the above problems, in the present invention, a compressor, a parallel circuit in which a hot water supply heat exchanger and an indoor exchanger are arranged in parallel via a refrigerant pipe, a first expansion valve, A main refrigerant circuit in which the outdoor heat exchangers are sequentially connected in an annular manner, and a first electromagnetic that is disposed on the side connected to the discharge pipe of the compressor among the refrigerant pipes connected to the indoor heat exchanger in the parallel circuit. A valve, a second expansion device arranged on the refrigerant pipe connected to the indoor heat exchanger in the parallel circuit and connected to the outlet pipe of the hot water supply heat exchanger, the first electromagnetic valve, and the indoor heat A connecting pipe that branches from between the exchangers and connects to the suction pipe of the compressor via the second solenoid valve is provided.

本発明の冷凍サイクル装置によれば、新たに冷房用の室内熱交換器を設置することなく冷房と給湯の同時運転が行なえるため、コストの増加、装置の大型化を抑制することができる。   According to the refrigeration cycle apparatus of the present invention, since the cooling and hot water supply can be operated simultaneously without newly installing an indoor heat exchanger for cooling, an increase in cost and an increase in size of the apparatus can be suppressed.

(実施の形態1)
以下、本発明の実施の形態1について、図面を参照しながら詳細に説明する。なお、背景技術と同一構成については同一符号を付す。
(Embodiment 1)
Hereinafter, Embodiment 1 of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected about the same structure as background art.

図1において、本発明の実施の形態1の冷凍サイクル装置32は、圧縮機2と、給湯用熱交換器30と室内交換器1とが冷媒配管6を介して並列に配置され、第1の膨張弁4と、室外熱交換器3を順次環状に接続してなる主冷媒回路と、並列回路内で室内熱交換器1に接続された冷媒配管のうち圧縮機2の吐出配管に接続された方に配置された第1電磁弁SV1と、並列回路内で室内熱交換器1に接続された冷媒配管のうち給湯用熱交換器30の出口配管に接続された方に配置された第2の絞り装置23、第1電磁弁SV1と室内熱交換器1の間から分岐させ第2電磁弁SV2を介して圧縮機2の吸入配管とを接続する連絡配管7が設けられた構成となっている。   In FIG. 1, the refrigeration cycle apparatus 32 according to Embodiment 1 of the present invention includes a compressor 2, a hot water supply heat exchanger 30 and an indoor exchanger 1 arranged in parallel via a refrigerant pipe 6. It was connected to the discharge pipe of the compressor 2 among the main refrigerant circuit formed by sequentially connecting the expansion valve 4 and the outdoor heat exchanger 3 in an annular manner and the refrigerant pipe connected to the indoor heat exchanger 1 in the parallel circuit. Of the first solenoid valve SV1 arranged in the direction and the refrigerant pipe connected to the indoor heat exchanger 1 in the parallel circuit, the second solenoid valve SV1 arranged in the direction connected to the outlet pipe of the hot water supply heat exchanger 30 The expansion device 23 is provided with a communication pipe 7 that branches from between the first electromagnetic valve SV1 and the indoor heat exchanger 1 and connects the suction pipe of the compressor 2 via the second electromagnetic valve SV2. .

本発明の実施の形態1の冷凍サイクル装置32における冬場の給湯単独運転、暖房単独運転、給湯暖房運転および夏場の給湯単独運転、給湯冷房運転時の制御手法について図1と表1を用いて説明する。   1 and Table 1 will be used to describe control methods in hot water single operation, heating single operation, hot water heating operation, summer hot water single operation, and hot water cooling operation in the refrigeration cycle apparatus 32 according to Embodiment 1 of the present invention. To do.

Figure 2009092321
Figure 2009092321

<冬場の給湯単独運転>
冷媒の流れる経路を実線の矢印で示す。まず、冷媒は圧縮機2で圧縮されて高温高圧冷媒になり、給湯用熱交換器30へと流入して給湯を行う。ここで第1電磁弁SV1は表1に示すように閉じた状態になっている。また、SV2は表1に示すように閉じた状態になっているため連絡配管7には冷媒は流れない。また、SV3は開いた状態になっている。給湯用熱交換器30から流出した冷媒は、第1の膨張弁4に流入する。ここで、第2の膨張弁23は表1に示すように閉じた状態になっている。第1の膨張弁4に流入した冷媒は膨張して低温低圧になり室外熱交換器3で蒸発してある程度の過熱度を持った気体の状態で圧縮機2へと流入するサイクルを繰り返す。
<冬場の暖房単独運転>
冷媒の流れる経路を実線の矢印で示す。まず、冷媒は圧縮機2で圧縮されて高温高圧冷媒になり、室内熱交換器1へと流入して暖房を行う。ここで第1電磁弁SV1は表1に示すように開いた状態になっている。また、SV2は表1に示すように閉じた状態になっているため連絡配管7には冷媒は流れない。また、SV3は閉じた状態になっている。室内
熱交換器1から流出した冷媒は、第1の膨張弁4に流入する。ここで、第2の膨張弁23は表1に示すように開いた状態になっている。第1の膨張弁4に流入した冷媒は膨張して低温低圧になり室外熱交換器3で蒸発してある程度の過熱度を持った気体の状態で圧縮機2へと流入するサイクルを繰り返す。
<冬場の給湯暖房運転>
冷媒の流れる経路を実線の矢印で示す。まず、冷媒は圧縮機2で圧縮されて高温高圧冷媒になり、給湯用熱交換器30と室内熱交換器1へと流入して給湯および暖房を行う。ここで第1電磁弁SV1および第3電磁弁SV3は表1に示すように開いた状態になっている。また、SV2は表1に示すように閉じた状態になっているため連絡配管7には冷媒は流れない。給湯用熱交換器30と室内熱交換器1から流出した冷媒は、合流して第1の膨張弁4に流入する。ここで、第2の膨張弁23は表1に示すように開いた状態になっている。第1の膨張弁4に流入した冷媒は膨張して低温低圧になり室外熱交換器3で蒸発してある程度の過熱度を持った気体の状態で圧縮機2へと流入するサイクルを繰り返す。
<夏場の給湯単独運転>
冷媒の流れる経路を実線の矢印で示す。まず、冷媒は圧縮機2で圧縮されて高温高圧冷媒になり、給湯用熱交換器30へと流入して給湯を行う。ここで第1電磁弁SV1は表1に示すように閉じた状態になっている。また、SV2は表1に示すように閉じた状態になっているため連絡配管7には冷媒は流れない。また、SV3は開いた状態になっている。給湯用熱交換器30から流出した冷媒は、第1の膨張弁4に流入する。ここで、第2の膨張弁23は表1に示すように閉じた状態になっている。第1の膨張弁4に流入した冷媒は膨張して低温低圧になり室外熱交換器3で蒸発してある程度の過熱度を持った気体の状態で圧縮機2へと流入するサイクルを繰り返す。
<夏場の給湯冷房運転>
冷媒の流れる経路を破線の矢印で示す。まず、冷媒は圧縮機2で圧縮されて高温高圧冷媒になり、給湯用熱交換器30にのみ流入して給湯を行う。ここでは表1に示すように、第1電磁弁SV1は閉じた状態に、第3電磁弁SV3は開の状態になっている。給湯用熱交換器30から流出した冷媒は、第2の膨張弁23に流入し膨張して低温低圧になる。ここで、第1の膨張弁4は表1に示すように閉じた状態になっている。第1の膨張弁4を通過した冷媒は室内熱交換器1で蒸発して冷房を行い、連絡配管7を通って圧縮機2へと流入するサイクルを繰り返す。ここで、SV2は表1に示すように開いた状態になっている。
<Independent operation of hot water supply in winter>
The path through which the refrigerant flows is indicated by solid arrows. First, the refrigerant is compressed by the compressor 2 to become a high-temperature and high-pressure refrigerant, and flows into the hot water supply heat exchanger 30 to supply hot water. Here, as shown in Table 1, the first electromagnetic valve SV1 is in a closed state. Moreover, since SV2 is in a closed state as shown in Table 1, the refrigerant does not flow through the connecting pipe 7. SV3 is in an open state. The refrigerant that has flowed out of the hot water supply heat exchanger 30 flows into the first expansion valve 4. Here, the second expansion valve 23 is closed as shown in Table 1. The refrigerant flowing into the first expansion valve 4 expands to become a low temperature and low pressure, evaporates in the outdoor heat exchanger 3, and repeats a cycle of flowing into the compressor 2 in a gas state having a certain degree of superheat.
<Winter heating alone operation>
The path through which the refrigerant flows is indicated by solid arrows. First, the refrigerant is compressed by the compressor 2 to become a high-temperature and high-pressure refrigerant and flows into the indoor heat exchanger 1 for heating. Here, the first solenoid valve SV1 is open as shown in Table 1. Moreover, since SV2 is in a closed state as shown in Table 1, the refrigerant does not flow through the connecting pipe 7. SV3 is in a closed state. The refrigerant that has flowed out of the indoor heat exchanger 1 flows into the first expansion valve 4. Here, the second expansion valve 23 is open as shown in Table 1. The refrigerant flowing into the first expansion valve 4 expands to become a low temperature and low pressure, evaporates in the outdoor heat exchanger 3, and repeats a cycle of flowing into the compressor 2 in a gas state having a certain degree of superheat.
<Winter hot water heating and heating operation>
The path through which the refrigerant flows is indicated by solid arrows. First, the refrigerant is compressed by the compressor 2 to become a high-temperature and high-pressure refrigerant and flows into the hot water supply heat exchanger 30 and the indoor heat exchanger 1 to perform hot water supply and heating. Here, as shown in Table 1, the first solenoid valve SV1 and the third solenoid valve SV3 are open. Moreover, since SV2 is in a closed state as shown in Table 1, the refrigerant does not flow through the connecting pipe 7. The refrigerant flowing out of the hot water supply heat exchanger 30 and the indoor heat exchanger 1 joins and flows into the first expansion valve 4. Here, the second expansion valve 23 is open as shown in Table 1. The refrigerant flowing into the first expansion valve 4 expands to become a low temperature and low pressure, evaporates in the outdoor heat exchanger 3, and repeats a cycle of flowing into the compressor 2 in a gas state having a certain degree of superheat.
<Independent operation of hot water supply in summer>
The path through which the refrigerant flows is indicated by solid arrows. First, the refrigerant is compressed by the compressor 2 to become a high-temperature and high-pressure refrigerant, and flows into the hot water supply heat exchanger 30 to supply hot water. Here, as shown in Table 1, the first electromagnetic valve SV1 is in a closed state. Moreover, since SV2 is in a closed state as shown in Table 1, the refrigerant does not flow through the connecting pipe 7. SV3 is in an open state. The refrigerant that has flowed out of the hot water supply heat exchanger 30 flows into the first expansion valve 4. Here, the second expansion valve 23 is closed as shown in Table 1. The refrigerant flowing into the first expansion valve 4 expands to become a low temperature and low pressure, evaporates in the outdoor heat exchanger 3, and repeats a cycle of flowing into the compressor 2 in a gas state having a certain degree of superheat.
<Summer water supply and cooling operation>
A path through which the refrigerant flows is indicated by a dashed arrow. First, the refrigerant is compressed by the compressor 2 to become a high-temperature and high-pressure refrigerant, and flows into only the hot water supply heat exchanger 30 to supply hot water. Here, as shown in Table 1, the first solenoid valve SV1 is closed and the third solenoid valve SV3 is open. The refrigerant that has flowed out of the hot water supply heat exchanger 30 flows into the second expansion valve 23, expands, and becomes low temperature and low pressure. Here, the first expansion valve 4 is in a closed state as shown in Table 1. The refrigerant that has passed through the first expansion valve 4 evaporates and cools in the indoor heat exchanger 1 and repeats a cycle of flowing into the compressor 2 through the communication pipe 7. Here, SV2 is open as shown in Table 1.

以上のように、室内熱交換器を1つ設置するだけで四方弁を設けることなく冬場の給湯単独運転、暖房単独運転、給湯暖房運転および夏場の給湯単独運転、給湯冷房運転を行うことができる。   As described above, it is possible to carry out winter hot water supply single operation, heating single operation, hot water supply heating operation, summer hot water supply single operation, and hot water supply cooling operation without providing a four-way valve by installing only one indoor heat exchanger. .

特に冷媒に二酸化炭素を用いる場合、圧力や圧力差が非常に大きくなり四方弁の信頼性を損ねてしまうため、四方弁を使用しないほうが有効である。   In particular, when carbon dioxide is used as the refrigerant, it is more effective not to use the four-way valve because the pressure and pressure difference become very large and the reliability of the four-way valve is impaired.

上記では、夏場の冷房単独運転については説明していないが、図1の構成では冷房単独運転はできない。つまり、本発明の構成においては放熱器が給湯用熱交換器30のみであるため、冷房のみを行いたい場合は放熱器として給湯用熱交換器30を使用しなければいけないため無駄な温水が生成されてそれを排出する構成にしなければならない。この構成について図2を用いて説明する。
<夏場の冷房単独運転>
図2は、図1の構成に第4電磁弁と、第5電磁弁と、排水経路36を設置した構成となっている。夏場の冷房単独運転の場合も基本的には上記の夏場の給湯冷房運転と同様の運転を行う。異なる点は、夏場の給湯冷房運転の場合は生成した温水が必要であるため、生成された温水は全て貯湯タンク35へ流れ込むかもしくは直接使用端末へ流れ込んで使用される。しかし、夏場の冷房単独運転は生成した温水が必要ないため、貯湯タンク35もしくは使用端末へ流れ込まないように第4電磁弁SV4を閉じ、SV5を開いて排出経路
36へ流れ込むように制御する。
In the above description, the single cooling operation in summer is not described, but the single cooling operation cannot be performed in the configuration of FIG. That is, in the configuration of the present invention, since the heat radiator is only the hot water supply heat exchanger 30, when only cooling is performed, the hot water supply heat exchanger 30 must be used as the heat radiator, so that useless hot water is generated. Must be configured to discharge it. This configuration will be described with reference to FIG.
<Summer cooling only operation>
FIG. 2 shows a configuration in which a fourth solenoid valve, a fifth solenoid valve, and a drainage path 36 are installed in the configuration of FIG. In the case of summer cooling only operation, basically the same operation as the above-described summer hot water supply cooling operation is performed. The difference is that in the case of the hot water supply and cooling operation in summer, the generated hot water is necessary, so that all the generated hot water flows into the hot water storage tank 35 or directly into the use terminal. However, since the generated hot water is not required for the cooling only operation in summer, the fourth solenoid valve SV4 is closed and the SV5 is opened to flow into the discharge path 36 so as not to flow into the hot water storage tank 35 or the use terminal.

以上のような構成にすることにより夏場の冷房単独運転も可能となる。しかし、給湯用熱交換器30での熱を無駄に捨ててしまうことになる上、水も無駄に捨ててしまうことになる。   By adopting the configuration as described above, a single cooling operation in summer can be performed. However, the heat in the hot water supply heat exchanger 30 is wasted and water is also wasted.

そこで、図3のように図1の構成に第4電磁弁SV4と、圧縮機2の吐出部と室外熱交換器3とを接続する経路と、その経路上に第5電磁弁SV5を設置することにより夏場の冷房単独運転も可能となり放熱器での熱は無駄に捨てるものの、水を無駄に捨てることは回避できる。   Therefore, as shown in FIG. 3, the fourth solenoid valve SV4, the path connecting the discharge part of the compressor 2 and the outdoor heat exchanger 3 and the fifth solenoid valve SV5 are installed on the path in the configuration of FIG. Thus, it is possible to operate the cooling unit alone in summer, and the heat in the radiator is wasted, but it is possible to avoid wasting water.

冷媒の流れる経路を一点鎖線の矢印で示す。まず、冷媒は圧縮機2で圧縮されて高温高圧冷媒になり、室外熱交換器3へと流入して放熱を行う。ここで第1電磁弁SV1と第3電磁弁SV3、第4電磁弁SV4は閉じた状態になっている。また、第2電磁弁SV2および第5電磁弁SV5は開いた状態になっている。室外熱交換器3から流出した冷媒は、第1の膨張弁4に流入する。第1の膨張弁4に流入した冷媒は膨張して低温低圧になり室内熱交換器1で蒸発して冷房を行い、ある程度の過熱度を持った気体の状態で圧縮機2へと流入するサイクルを繰り返す。ここで、膨張弁としては第1の膨張弁もしくは第2の膨張弁のどちらであっても良い。   A path through which the refrigerant flows is indicated by a one-dot chain line arrow. First, the refrigerant is compressed by the compressor 2 to become a high-temperature and high-pressure refrigerant, and flows into the outdoor heat exchanger 3 to radiate heat. Here, the first electromagnetic valve SV1, the third electromagnetic valve SV3, and the fourth electromagnetic valve SV4 are closed. Further, the second solenoid valve SV2 and the fifth solenoid valve SV5 are in an open state. The refrigerant that has flowed out of the outdoor heat exchanger 3 flows into the first expansion valve 4. The refrigerant flowing into the first expansion valve 4 expands to a low temperature and low pressure, evaporates in the indoor heat exchanger 1 and cools, and flows into the compressor 2 in a gas state having a certain degree of superheat. repeat. Here, the expansion valve may be either the first expansion valve or the second expansion valve.

また、この構成における冬場の給湯単独運転、暖房単独運転、給湯暖房運転および夏場の給湯単独運転、給湯冷房運転の第4電磁弁と第5電磁弁の制御に関して表2に示す。第1の膨張弁、第2の膨張弁、第1電磁弁、第2電磁弁、第3電磁弁の制御に関しては表1の場合と同様である。   Further, Table 2 shows the control of the fourth solenoid valve and the fifth solenoid valve in the hot water single operation, the heating single operation, the hot water heating operation, the hot water single operation, and the hot water cooling operation in the summer in this configuration. The control of the first expansion valve, the second expansion valve, the first electromagnetic valve, the second electromagnetic valve, and the third electromagnetic valve is the same as in Table 1.

Figure 2009092321
Figure 2009092321

以上のような構成にすることにより、夏場の冷房単独運転も可能となり、水を無駄にすることもなくなる。   By adopting the configuration as described above, it is possible to perform a single cooling operation in summer, and water is not wasted.

(実施の形態2)
以下、本発明の実施の形態2について、図面を参照しながら詳細に説明する。なお、背景技術と同一構成については同一符号を付す。
(Embodiment 2)
Hereinafter, Embodiment 2 of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected about the same structure as background art.

ここでは給湯冷房同時運転時の給湯と冷房の負荷を考慮した運転パターンについて説明する。   Here, an operation pattern in consideration of hot water supply and cooling loads during simultaneous operation of hot water supply and cooling will be described.

実施の形態1の運転方法は給湯負荷と冷房負荷ともに大きい場合であるが、冷房負荷が小さい場合には実施の形態1の運転方法では必要とする給湯負荷を賄えなくなる。つまり、冷房負荷が小さい場合は空気から吸熱する熱量が小さくなっていることであるから、十分な給湯ができなくなる。   The operation method of the first embodiment is a case where both the hot water supply load and the cooling load are large. However, when the cooling load is small, the hot water supply load required by the operation method of the first embodiment cannot be provided. That is, when the cooling load is small, the amount of heat absorbed from the air is small, so that sufficient hot water cannot be supplied.

そこで、給湯負荷が大きく、冷房負荷が小さい場合には以下の制御を行う。図4に示すように、冷媒は圧縮機2で圧縮されて高温高圧冷媒になり、給湯用熱交換器30にのみ流入して給湯を行う。ここで第1電磁弁SV1は表1に示すように閉じた状態になっている。給湯用熱交換器30から流出した冷媒は、第2の膨張弁23と第1の膨張弁4の2方向へ分岐させる。第2の膨張弁23を通過した冷媒は室内熱交換器1で蒸発して冷房を行い、連絡配管7を通って圧縮機2へと流入するサイクルを繰り返す。ここで、SV2は表1に示すように開いた状態になっている。一方、第1の膨張弁4を通過した冷媒は室外熱交換器3で室内熱交換器1で不足した吸熱量分を吸い上げて圧縮機2へ流入する。   Therefore, when the hot water supply load is large and the cooling load is small, the following control is performed. As shown in FIG. 4, the refrigerant is compressed by the compressor 2 to become a high-temperature and high-pressure refrigerant, and flows into only the hot water supply heat exchanger 30 to supply hot water. Here, as shown in Table 1, the first electromagnetic valve SV1 is in a closed state. The refrigerant that has flowed out of the hot water supply heat exchanger 30 is branched in two directions, the second expansion valve 23 and the first expansion valve 4. The refrigerant that has passed through the second expansion valve 23 evaporates and cools in the indoor heat exchanger 1, and repeats the cycle of flowing into the compressor 2 through the communication pipe 7. Here, SV2 is open as shown in Table 1. On the other hand, the refrigerant that has passed through the first expansion valve 4 sucks up the amount of heat absorbed by the indoor heat exchanger 1 in the outdoor heat exchanger 3 and flows into the compressor 2.

以上により、冷房負荷が小さくなって室内熱交換器1からの吸熱量が小さくなっても、必要な給湯負荷を賄うことができる。   As described above, even if the cooling load is reduced and the heat absorption amount from the indoor heat exchanger 1 is reduced, the necessary hot water supply load can be covered.

次に給湯負荷が大きく、冷房負荷が小さい場合の第1の膨張弁4と第2の膨張弁23の流量制御による室内熱交換器1と室外熱交換器3への冷媒分配制御方法について説明する。   Next, a refrigerant distribution control method to the indoor heat exchanger 1 and the outdoor heat exchanger 3 by flow control of the first expansion valve 4 and the second expansion valve 23 when the hot water supply load is large and the cooling load is small will be described. .

まず、冷房負荷が小さくなると冷凍サイクル挙動は図5の点線で示すようになる。つまり、蒸発器で十分に吸熱できないため蒸発器入口と出口の冷媒エンタルピ差が小さくなることや圧縮機吸入過熱度が小さくなり、圧縮機吸入密度も小さくなることなどが起因して給湯能力が出にくくなる。   First, when the cooling load is reduced, the refrigeration cycle behavior is as shown by the dotted line in FIG. In other words, because the evaporator cannot absorb enough heat, the difference in refrigerant enthalpy between the evaporator inlet and outlet becomes smaller, the compressor superheating degree becomes smaller, and the compressor suction density becomes smaller. It becomes difficult.

この場合の制御方法を図6のフローチャートをもとに説明する。   A control method in this case will be described with reference to the flowchart of FIG.

まず、S1において第1の冷媒温度検出手段33により圧縮機2の吸入冷媒温度を検出し、S2において第2の冷媒温度検出手段34により室外熱交換器3の冷媒温度を検出して、過熱度を演算する。次に過熱度SHと予め定められた所定値aの大小を比較する。ここで、所定値aは、5〜10degが好ましい。SH≧aであれば運転を継続し、SH≦aであればS3において第1の膨張弁4を開く。その後、S1へ戻ってSH≧aになるまで同様のフローチャートを繰り返す。   First, in S1, the refrigerant temperature in the outdoor heat exchanger 3 is detected in S2 by detecting the refrigerant temperature in the outdoor heat exchanger 3 in S2 by detecting the intake refrigerant temperature of the compressor 2 by the first refrigerant temperature detection means 33. Is calculated. Next, the degree of superheat SH is compared with a predetermined value a. Here, the predetermined value a is preferably 5 to 10 deg. If SH ≧ a, the operation is continued, and if SH ≦ a, the first expansion valve 4 is opened in S3. Thereafter, the process returns to S1 and the same flowchart is repeated until SH ≧ a.

また、第1の膨張弁4を完全に開ききってもSH≧aを満足できなければ第2の膨張弁23を閉じる側に開度調整して(絞って)SH≧aを満足するように調整する。   Further, if SH ≧ a is not satisfied even when the first expansion valve 4 is completely opened, the opening degree is adjusted (throttle) to close the second expansion valve 23 so that SH ≧ a is satisfied. adjust.

なお、圧縮機吸入過熱度SHが所定値aになっていれば運転を継続するように制御を行うが、その後も冷房負荷の変化を読み取って図6のフローチャートを行う必要があるため
、例えば、ある一定時間間隔毎(例えば10分毎)にS1からのフローチャートを行う。
In addition, if the compressor suction superheat degree SH is the predetermined value a, control is performed so that the operation is continued. However, since it is necessary to read the change in the cooling load and perform the flowchart of FIG. The flowchart from S1 is performed every certain time interval (for example, every 10 minutes).

また、第2の膨張弁23の接続位置は図7に示すようにしても良い。この場合においても、第2の膨張弁23の制御方法については冬場の給湯単独運転、暖房単独運転、給湯暖房運転および夏場の給湯単独運転、冷房単独運転、給湯冷房運転時において、表1と表2に示す第2の膨張弁の制御方法と同様である。   Further, the connection position of the second expansion valve 23 may be as shown in FIG. Also in this case, the control method of the second expansion valve 23 is shown in Tables 1 and 2 in the hot water single operation, the heating single operation, the hot water heating operation and the hot water single operation in the summer, the cooling single operation, and the hot water cooling operation. This is the same as the control method of the second expansion valve shown in FIG.

また、図1に示す第1電磁弁SV1と第2電磁弁SV2をまとめて図8に示すように三方弁31にしても構わない。   Further, the first electromagnetic valve SV1 and the second electromagnetic valve SV2 shown in FIG. 1 may be combined into a three-way valve 31 as shown in FIG.

三方弁の制御方法については表3に示すように冬場の給湯単独運転、暖房単独運転、給湯暖房運転時にはaの方向へ接続し、夏場の給湯単独運転、冷房単独運転、給湯冷房運転時にはbの方向へ接続する。   As shown in Table 3, the control method of the three-way valve is connected to direction a during winter hot water single operation, heating single operation, hot water supply heating operation, and b during summer hot water single operation, cooling single operation, and hot water cooling operation. Connect in the direction.

Figure 2009092321
Figure 2009092321

三方弁を設置することにより、電磁弁の部品点数が少なくなり装置の小型化ができるとともにコスト低減も可能になる。   By installing the three-way valve, the number of parts of the electromagnetic valve is reduced, the device can be downsized and the cost can be reduced.

以上のような制御を行うことで、給湯負荷と冷房負荷のバランスが崩れた場合において
も円滑に運転を行うことが出来る。
By performing the control as described above, smooth operation can be performed even when the balance between the hot water supply load and the cooling load is lost.

本発明にかかる冷凍サイクル装置は、給湯機、冷凍・空調機器や乾燥装置などのヒートポンプ装置として利用することができる。   The refrigeration cycle apparatus according to the present invention can be used as a heat pump apparatus such as a water heater, a refrigeration / air-conditioning apparatus, and a drying apparatus.

本発明の実施の形態1における、冷凍サイクル装置の構成図Configuration diagram of a refrigeration cycle apparatus in Embodiment 1 of the present invention 本発明の実施の形態1における、冷凍サイクル装置の構成図Configuration diagram of a refrigeration cycle apparatus in Embodiment 1 of the present invention 本発明の実施の形態1における、冷凍サイクル装置の構成図Configuration diagram of a refrigeration cycle apparatus in Embodiment 1 of the present invention 本発明の実施の形態2における、冷凍サイクル装置の構成図Configuration diagram of a refrigeration cycle apparatus in Embodiment 2 of the present invention 本発明の実施の形態2における、圧力-エンタルピ線図Pressure-enthalpy diagram in the second embodiment of the present invention 本発明の実施の形態2における、制御方法を示すフローチャートThe flowchart which shows the control method in Embodiment 2 of this invention. 本発明の実施の形態2における、制御方法を示すフローチャートThe flowchart which shows the control method in Embodiment 2 of this invention. 本発明の実施の形態2における、冷凍サイクル装置の構成図Configuration diagram of a refrigeration cycle apparatus in Embodiment 2 of the present invention 従来の冷凍サイクル装置図Conventional refrigeration cycle diagram

符号の説明Explanation of symbols

1 室内熱交換器
2 圧縮機
3 室外熱交換器
4 第1の膨張弁
5 液閉鎖弁
6、22、24,25、29 冷媒配管
7、21、28 連絡配管
8 室内ファン
9 室内ファンモータ
10 室外ファン
11 室外ファンモータ
12 アキュムレータ
13 浴槽
14 貯湯槽
15 貯湯槽熱交換器
16 水配管
17、27 水ポンプ
18 給湯用配管
19、20 給湯カラン
23 第2の膨張弁
26 浴槽熱交換器
30 給湯用熱交換器
31 三方弁
32 冷凍サイクル装置
33 第1の冷媒温度検出手段
34 第2の冷媒温度検出手段
35 貯湯タンク
36 排水経路
SVA 貯湯槽電磁弁
SVB 浴槽電磁弁
SV1 第1電磁弁
SV2 第2電磁弁
SV3 第3電磁弁
SV4 第4電磁弁
SV5 第5電磁弁
A 室内ユニット
B 室外ユニット
C 貯湯槽ユニット
D 浴槽追い焚きユニット
DESCRIPTION OF SYMBOLS 1 Indoor heat exchanger 2 Compressor 3 Outdoor heat exchanger 4 1st expansion valve 5 Liquid closing valve 6, 22, 24, 25, 29 Refrigerant piping 7, 21, 28 Communication piping 8 Indoor fan 9 Indoor fan motor 10 Outdoor Fan 11 Outdoor fan motor 12 Accumulator 13 Bathtub 14 Hot water storage tank 15 Hot water storage tank heat exchanger 16 Water piping 17, 27 Water pump 18 Hot water supply piping 19, 20 Hot water supply curan 23 Second expansion valve 26 Bath heat exchanger 30 Hot water supply heat Exchanger 31 Three-way valve 32 Refrigeration cycle device 33 First refrigerant temperature detection means 34 Second refrigerant temperature detection means 35 Hot water storage tank 36 Drainage path SVA Hot water storage tank solenoid valve SVB Bathtub solenoid valve SV1 First solenoid valve SV2 Second solenoid valve SV3 3rd solenoid valve SV4 4th solenoid valve SV5 5th solenoid valve A Indoor unit B Outdoor unit C Hot water tank unit D Bath reheating unit

Claims (4)

圧縮機と、給湯用熱交換器と室内交換器とが冷媒管路を介して並列に配置された並列回路と、第1の膨張弁と、室外熱交換器を順次環状に接続してなる主冷媒回路と、前記並列回路内で前記室内熱交換器に接続された冷媒配管のうち前記圧縮機の吐出配管に接続された方に配置された第1電磁弁と、前記並列回路内で前記室内熱交換器に接続された冷媒配管のうち前記給湯用熱交換器の出口配管に接続された方に配置された第2の絞り装置と、前記第1電磁弁と前記室内熱交換器の間から分岐させ第2電磁弁を介して前記圧縮機の吸入配管とを接続する連絡配管を設けたことを特徴とする冷凍サイクル装置。 A main circuit formed by sequentially connecting a compressor, a hot water supply heat exchanger, and an indoor exchanger in parallel with each other in parallel through a refrigerant pipe, a first expansion valve, and an outdoor heat exchanger. A refrigerant circuit; a first solenoid valve disposed on a side connected to a discharge pipe of the compressor among refrigerant pipes connected to the indoor heat exchanger in the parallel circuit; and the room in the parallel circuit From among the refrigerant pipes connected to the heat exchanger, the second expansion device arranged on the side connected to the outlet pipe of the hot water supply heat exchanger, and between the first electromagnetic valve and the indoor heat exchanger A refrigeration cycle apparatus comprising a connecting pipe that branches and connects the suction pipe of the compressor via a second electromagnetic valve. 給湯と冷房を同時運転させる場合において、前記第1の膨張弁を閉じ、前記第1電磁弁を閉じ、前記第2電磁弁を開くことを特徴とする請求項1に記載の冷凍サイクル装置の運転方法。 2. The operation of the refrigeration cycle apparatus according to claim 1, wherein when the hot water supply and the cooling are simultaneously operated, the first expansion valve is closed, the first electromagnetic valve is closed, and the second electromagnetic valve is opened. Method. 給湯と冷房を同時運転させる場合において、前記圧縮機の吸入冷媒温度を検知する第1の冷媒温度検出手段と、前記室外熱交換器の冷媒温度を検知する第2の冷媒温度検出手段を備え、前記第1の冷媒温度検出手段の検出値と前記第2の冷媒温度検出手段の検出値から過熱度を算出し、前記過熱度が所定値より小さい場合に前記第1の膨張弁を開くことを特徴とする請求項1に記載の冷凍サイクル装置の運転方法。 In the case of simultaneously operating hot water supply and cooling, it comprises first refrigerant temperature detection means for detecting the refrigerant temperature sucked by the compressor, and second refrigerant temperature detection means for detecting the refrigerant temperature of the outdoor heat exchanger, The degree of superheat is calculated from the detection value of the first refrigerant temperature detection means and the detection value of the second refrigerant temperature detection means, and the first expansion valve is opened when the degree of superheat is smaller than a predetermined value. The operating method of the refrigeration cycle apparatus according to claim 1. 給湯と冷房を同時運転させる場合において、前記圧縮機の吸入冷媒温度を検知する第1の冷媒温度検出手段と、前記室外熱交換器の冷媒温度を検知する第2の冷媒温度検出手段を備え、前記第1の冷媒温度検出手段の検出値と前記第2の冷媒温度検出手段の検出値から過熱度を算出し、前記過熱度が所定値より小さい場合に前記第2の膨張弁を閉じることを特徴とする請求項1に記載の冷凍サイクル装置の運転方法。 In the case of simultaneously operating hot water supply and cooling, it comprises first refrigerant temperature detection means for detecting the refrigerant temperature sucked by the compressor, and second refrigerant temperature detection means for detecting the refrigerant temperature of the outdoor heat exchanger, Calculating the degree of superheat from the detection value of the first refrigerant temperature detection means and the detection value of the second refrigerant temperature detection means, and closing the second expansion valve when the degree of superheat is smaller than a predetermined value. The operating method of the refrigeration cycle apparatus according to claim 1.
JP2007264277A 2007-10-10 2007-10-10 Cooling/heating hot water supply system and its operating method Pending JP2009092321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007264277A JP2009092321A (en) 2007-10-10 2007-10-10 Cooling/heating hot water supply system and its operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007264277A JP2009092321A (en) 2007-10-10 2007-10-10 Cooling/heating hot water supply system and its operating method

Publications (1)

Publication Number Publication Date
JP2009092321A true JP2009092321A (en) 2009-04-30

Family

ID=40664474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007264277A Pending JP2009092321A (en) 2007-10-10 2007-10-10 Cooling/heating hot water supply system and its operating method

Country Status (1)

Country Link
JP (1) JP2009092321A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163572A (en) * 2010-02-04 2011-08-25 Fujishima Kensetsu:Kk Heat pump type heating/hot water supply device
CN102466368A (en) * 2010-11-03 2012-05-23 海尔集团公司 Air-conditioning water heater and control method thereof
JP2017003236A (en) * 2015-06-15 2017-01-05 サンポット株式会社 Heat pump device
CN106705480A (en) * 2016-12-28 2017-05-24 冯新华 Integrated heat pump unit capable of dehumidifying, providing hot water and conditioning air

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163572A (en) * 2010-02-04 2011-08-25 Fujishima Kensetsu:Kk Heat pump type heating/hot water supply device
CN102466368A (en) * 2010-11-03 2012-05-23 海尔集团公司 Air-conditioning water heater and control method thereof
JP2017003236A (en) * 2015-06-15 2017-01-05 サンポット株式会社 Heat pump device
CN106705480A (en) * 2016-12-28 2017-05-24 冯新华 Integrated heat pump unit capable of dehumidifying, providing hot water and conditioning air

Similar Documents

Publication Publication Date Title
US7805961B2 (en) Supercooling apparatus of simultaneous cooling and heating type multiple air conditioner
JP5383816B2 (en) Air conditioner
US9593872B2 (en) Heat pump
JP3886977B2 (en) Combined air conditioning system
US20110138839A1 (en) Water circulation apparatus associated with refrigerant system
JPWO2006057141A1 (en) Air conditioner
EP2541169A1 (en) Air conditioner and air-conditioning hot-water-supplying system
JP2008025940A (en) Air conditioning system
JP7444544B2 (en) Air conditioning equipment
JPWO2009133643A1 (en) Air conditioner
US10436463B2 (en) Air-conditioning apparatus
US11274851B2 (en) Air conditioning apparatus
JP3126239U (en) Air conditioner
JP2009092321A (en) Cooling/heating hot water supply system and its operating method
JP2007183045A (en) Heat pump type air-conditioning equipment
JP2015215117A (en) Heat pump type air cooling device
JP5404471B2 (en) HEAT PUMP DEVICE AND HEAT PUMP DEVICE OPERATION CONTROL METHOD
JP2006010137A (en) Heat pump system
JP2017026159A (en) Heat pump device
JP5447968B2 (en) Heat pump equipment
JP2002340390A (en) Air conditioner for multiple rooms
JP2009264716A (en) Heat pump hot water system
JP6968769B2 (en) Combined heat source heat pump device
JP5747838B2 (en) Heating hot water system
JP5413594B2 (en) Heat pump type water heater