JP2005083585A - Heat pump-type hot water supply system - Google Patents

Heat pump-type hot water supply system Download PDF

Info

Publication number
JP2005083585A
JP2005083585A JP2003312562A JP2003312562A JP2005083585A JP 2005083585 A JP2005083585 A JP 2005083585A JP 2003312562 A JP2003312562 A JP 2003312562A JP 2003312562 A JP2003312562 A JP 2003312562A JP 2005083585 A JP2005083585 A JP 2005083585A
Authority
JP
Japan
Prior art keywords
hot water
heat pump
water supply
refrigerant
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003312562A
Other languages
Japanese (ja)
Inventor
Kohei Hasegawa
耕平 長谷川
Shoji Sumi
庄司 角
Original Assignee
Mitsubishi Electric Corp
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, 三菱電機株式会社 filed Critical Mitsubishi Electric Corp
Priority to JP2003312562A priority Critical patent/JP2005083585A/en
Publication of JP2005083585A publication Critical patent/JP2005083585A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plant or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plant or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B9/00Compression machines, plant, or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plant, or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plant, or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump-type hot water supply system capable of covering all of hot water supply loads only by a heat pump cycle without using an auxiliary heat source, thus enabling high temperature boiling and highly efficient hot-water supply throughout the year. <P>SOLUTION: This heat pump-type hot water supply system is provided with both of a heat pump cycle 1 applying CO2 as a refrigerant and a heat pump cycle 2 applying R22 and R410A as the refrigerant, and pumps up the heat from the outside air by selectively using two heat pump cycles 1, 2 to produce the hot water. Whereby the heat can be collected by using the heat pump cycle 1 applying the CO2 of high boiling-up temperature as the refrigerant, when the hot water of high temperature is needed, the heat can be collected by using the heat pump cycle 2 applying R22 and R410A as the refrigerant, when the hot water of comparatively low temperature is needed, and the hot-water supply can be performed with high energy consuming efficiency without using the auxiliary heat source. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、二つのヒートポンプサイクルを持ったヒートポンプ式給湯システムに関するものである。   The present invention relates to a heat pump hot water supply system having two heat pump cycles.
従来のヒートポンプ給湯機は、特許文献1に示されているように圧縮機、蒸発器としての水または空気対冷媒熱交換器、凝縮器としての水対冷媒熱交換器、膨張弁から構成されたヒートポンプサイクルを備えている。沸き上げ温度が不足するような場合には、電気ヒータによる補助熱源が使われる。   As shown in Patent Document 1, a conventional heat pump water heater is composed of a compressor, water or air-to-refrigerant heat exchanger as an evaporator, a water-to-refrigerant heat exchanger as a condenser, and an expansion valve. It has a heat pump cycle. When the boiling temperature is insufficient, an auxiliary heat source using an electric heater is used.
特開平5―256520号公報JP-A-5-256520
従来のヒートポンプ給湯機は、ヒートポンプサイクルで沸き上げた温水を貯湯槽に蓄え、給湯端末から出水要求がある場合に貯湯槽の温水を供給するものである。ヒートポンプサイクルの冷媒としては、R22(クロロジフロロメタン)やR410A(ジフロロメタン+ペンタフロロメタン)が使われることが多いが、冷媒の特性上、65℃以上の温水の沸き上げは困難である。従って、65℃以上の高温の温水を給湯するためには、電気ヒータ等の補助熱源を使用して温水温度を上げる必要がある。   Conventional heat pump water heaters store hot water boiled in a heat pump cycle in a hot water storage tank, and supply hot water in the hot water storage tank when there is a water discharge request from a hot water supply terminal. R22 (chlorodifluoromethane) and R410A (difluoromethane + pentafluoromethane) are often used as the refrigerant in the heat pump cycle, but boiling of hot water at 65 ° C. or higher is difficult due to the characteristics of the refrigerant. Therefore, in order to supply hot water having a high temperature of 65 ° C. or higher, it is necessary to increase the temperature of the hot water using an auxiliary heat source such as an electric heater.
冬季など給湯負荷が大きいときにおいて貯湯槽の容量にも限界があり、貯湯温度を高く設定する必要があるが、ヒートポンプサイクル単独でまかなうことができない給湯負荷については補助熱源による加熱が必要で、結果的にエネルギ消費効率(COP)が低くなってしまうという問題点がある。   When the hot water supply load is large, such as in winter, the capacity of the hot water storage tank is limited, and it is necessary to set the hot water storage temperature high. In particular, there is a problem that the energy consumption efficiency (COP) is lowered.
本発明は、上記した問題点を解決するためになされたものであり、その課題とするところは、補助熱源を使わずにヒートポンプサイクル単独で全ての給湯負荷をまかなうことができるヒートポンプ式給湯システムを開発することであり、高温沸き上げと周年にわたって高効率な給湯を行うことができるヒートポンプ式給湯システムを得ることである。   The present invention has been made to solve the above-described problems, and the problem is that a heat pump hot water supply system that can cover all hot water supply loads by using a heat pump cycle alone without using an auxiliary heat source. The goal is to develop a heat pump hot water supply system that can perform high-temperature boiling and high-efficiency hot water supply for the entire year.
上記課題を解決するために本発明は、COを冷媒とするヒートポンプサイクルと、R22やR410Aを冷媒とするヒートポンプサイクルを併せ持ち、この二つのヒートポンプサイクルを使い分けて外気から熱を汲み上げ、温水を生成する手段を採用する。 In order to solve the above problems, the present invention has both a heat pump cycle using CO 2 as a refrigerant and a heat pump cycle using R22 and R410A as a refrigerant. Adopt a means to do.
上記手段を採用することにより、高温の温水が必要なときには沸き上げ温度の高いCOを冷媒とするヒートポンプサイクルを使って採熱することができ、比較的低温の温水が必要なときには、R22やR410Aを冷媒とするヒートポンプサイクルを使って採熱することができ、補助熱源を使わずにエネルギ消費効率の高い給湯を行うことができる。 By adopting the above means, heat can be collected using a heat pump cycle using CO 2 having a high boiling temperature as a refrigerant when high-temperature hot water is required, and when relatively low-temperature hot water is required, R22 or Heat can be collected using a heat pump cycle using R410A as a refrigerant, and hot water can be supplied with high energy consumption efficiency without using an auxiliary heat source.
COを冷媒とするヒートポンプサイクルと、R22やR410Aを冷媒とするヒートポンプサイクルを併せ持ち、この二つのヒートポンプサイクルを選択的に使い分けて外気の持つ熱を採熱し、熱交換器を通じて温水を生成し、貯湯タンクに蓄えて給湯するようにする。 It has both a heat pump cycle using CO 2 as a refrigerant and a heat pump cycle using R22 and R410A as a refrigerant, selectively using these two heat pump cycles to collect the heat of the outside air, and generate hot water through a heat exchanger, Store in a hot water storage tank to supply hot water.
COを冷媒とするヒートポンプサイクルでは90℃の温水を沸き上げることができ、R22やR410Aを冷媒とするヒートポンプサイクルでは65℃程度の温水を沸き上げることができる。沸き上げ温度によってCOを冷媒とするヒートポンプサイクルかR22やR410Aを冷媒とするヒートポンプサイクルかのいずれかによって外気の熱を採熱することにより、電気ヒータ等の補助熱源を使うことなく周年にわたって効率の良い給湯が可能になる。 In a heat pump cycle using CO 2 as a refrigerant, hot water at 90 ° C. can be boiled, and in a heat pump cycle using R 22 or R 410 A as a refrigerant, hot water at about 65 ° C. can be boiled. Efficiency heat pump cycle or R22 and R410A that the CO 2 refrigerant by boiling temperature by Tonetsu the outside air heat by either heat pump cycle for a refrigerant, for years without using an auxiliary heat source such as an electric heater A good hot water supply becomes possible.
実施の形態1.
図1は本実施の形態のヒートポンプ式給湯システムの構成図である。このヒートポンプ式給湯システムは、COを冷媒とするヒートポンプサイクル1と、R22やR410Aを冷媒とするヒートポンプサイクル2を併せ持っている。ヒートポンプサイクル1は、圧縮機3、空気対冷媒での熱交換を行う熱交換器4、電磁弁、冷媒対水での熱交換を行う熱交換器5、膨張弁6とからなる閉回路で構成されている。ヒートポンプサイクル2も、圧縮機3、空気対冷媒での熱交換を行う熱交換器4、電磁弁、冷媒対水での熱交換を行う熱交換器5、膨張弁6とからなる閉回路で構成されている。いずれのヒートポンプサイクル1,2も熱交換器5において貯湯タンク7の水を循環させる循環ポンプ8を有する水循環回路9と熱的に接続されている。貯湯タンク7は、給水管10と給湯管11が設けられ、給水管10は水道等の給水源に、給湯管11は給湯端末に接続される。貯湯タンク7内は、上部が高温層、下部が低温層となっていて、高温層から給湯管11を通って給湯端末へ給湯がなされたときには、給水源から給水管10により下部層に給水が行われる。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a heat pump hot water supply system according to the present embodiment. This heat pump hot water supply system has both a heat pump cycle 1 using CO 2 as a refrigerant and a heat pump cycle 2 using R22 and R410A as a refrigerant. The heat pump cycle 1 is configured by a closed circuit including a compressor 3, a heat exchanger 4 for performing heat exchange between air and refrigerant, an electromagnetic valve, a heat exchanger 5 for performing heat exchange between refrigerant and water, and an expansion valve 6. Has been. The heat pump cycle 2 is also configured by a closed circuit including a compressor 3, a heat exchanger 4 that performs heat exchange with air to refrigerant, an electromagnetic valve, a heat exchanger 5 that performs heat exchange with refrigerant against water, and an expansion valve 6. Has been. Both heat pump cycles 1 and 2 are thermally connected to a water circulation circuit 9 having a circulation pump 8 for circulating water in the hot water storage tank 7 in the heat exchanger 5. The hot water storage tank 7 is provided with a water supply pipe 10 and a hot water supply pipe 11. The water supply pipe 10 is connected to a water supply source such as a water supply and the hot water supply pipe 11 is connected to a hot water supply terminal. In the hot water storage tank 7, the upper part is a high temperature layer, and the lower part is a low temperature layer. Done.
ヒートポンプサイクル1は、熱交換器4により外気の熱を採熱した冷媒を圧縮機3で圧縮して高温高圧にして熱交換器5で貯湯タンク7の水と熱交換を行う。水との熱交換で熱を奪われた冷媒は膨張弁6で圧力を下げられ液化し、再び熱交換器4で外気の熱を汲み上げる。循環ポンプ8によって貯湯タンク7の下部層から汲み上げられた低温の水は熱交換器5で冷媒から熱を受取り、高温水となって貯湯タンク7の上部層に戻される。熱交換器5では、冷媒と水の流れは逆になっていて、効率良く熱交換が行われる。   In the heat pump cycle 1, the refrigerant obtained by collecting heat of the outside air by the heat exchanger 4 is compressed by the compressor 3 to be high temperature and high pressure, and the heat exchanger 5 exchanges heat with the water in the hot water storage tank 7. The refrigerant deprived of heat by heat exchange with water is liquefied by reducing the pressure by the expansion valve 6, and pumps up the heat of the outside air again by the heat exchanger 4. The low-temperature water pumped from the lower layer of the hot water storage tank 7 by the circulation pump 8 receives heat from the refrigerant in the heat exchanger 5 and is returned to the upper layer of the hot water storage tank 7 as high-temperature water. In the heat exchanger 5, the refrigerant and water flow are reversed, and heat exchange is performed efficiently.
ヒートポンプサイクル2も同様で、熱交換器4により外気の熱を採熱した冷媒を圧縮機3で圧縮して高温高圧にして熱交換器5で貯湯タンク7の水と熱交換を行う。水との熱交換で熱を奪われた冷媒は膨張弁6で圧力を下げられ液化し、再び熱交換器4で外気の熱を汲み上げる。循環ポンプ8によって貯湯タンク7の下部層から汲み上げられた低温の水は熱交換器5で冷媒から熱を受取り、高温水となって貯湯タンク7の上部層に戻される。熱交換器5では、冷媒と水の流れは逆になっていて、効率良く熱交換が行われる。   The same applies to the heat pump cycle 2. The refrigerant obtained by collecting the heat of the outside air by the heat exchanger 4 is compressed by the compressor 3 to be a high temperature and high pressure, and the heat exchanger 5 exchanges heat with the water in the hot water storage tank 7. The refrigerant deprived of heat by heat exchange with water is liquefied by reducing the pressure by the expansion valve 6, and pumps up the heat of the outside air again by the heat exchanger 4. The low-temperature water pumped from the lower layer of the hot water storage tank 7 by the circulation pump 8 receives heat from the refrigerant in the heat exchanger 5 and is returned to the upper layer of the hot water storage tank 7 as high-temperature water. In the heat exchanger 5, the refrigerant and water flow are reversed, and heat exchange is performed efficiently.
ヒートポンプサイクル1,2の外気との熱交換器4には、温度センサー12が配備され、外気温度を検知することができる。また、毎日の負荷実績と外気温度、時刻別の給湯量のパターンを記憶する記憶手段13も備えられている。制御手段14により沸き上げ温度を決定する。またヒートポンプサイクル1,2の圧縮機3は、圧縮率が可変であり、冷媒の圧縮度を調節することにより、設定された沸き上げ温度での温水の沸き上げを行うことができる。   A temperature sensor 12 is provided in the heat exchanger 4 with the outside air of the heat pump cycles 1 and 2 to detect the outside air temperature. Moreover, the memory | storage means 13 which memorize | stores the pattern of the daily load performance, the outside temperature, and the hot water supply amount according to time is also provided. The boiling temperature is determined by the control means 14. Moreover, the compressor 3 of the heat pump cycles 1 and 2 has a variable compression rate, and can adjust the degree of compression of the refrigerant to boil hot water at a set boiling temperature.
ヒートポンプサイクル1とヒートポンプサイクル2とは、沸き上げ温度とエネルギ消費効率に図2に示すような関係がある。ヒートポンプサイクル2のエネルギ消費効率は、ヒートポンプサイクル1のそれに比べて高いが、沸き上げ温度は、65℃程度が上限となる。一方、ヒートポンプサイクル1のエネルギ消費効率は、ヒートポンプサイクル2のそれに比べてやや低いが、90℃程度の高温沸き上げが可能である。COの冷媒は、臨界温度が低く、図4に示すように水との熱交換で凝縮域が無いため熱交換効率が非常に高くなり、90℃程度と高温の温水を沸き上げることができる。R22やR410Aの冷媒では、図3に示すように水との熱交換で凝縮域が有り熱交換効率は劣り、沸き上げ温度は65℃が上限となる。給湯負荷が小さいときにはヒートポンプサイクル2を使って温水を沸き上げ、給湯負荷が大きいときや、高温の温水が必要なときにはヒートポンプサイクル1を使って沸き上げる。即ち、沸き上げ温度によってヒートポンプサイクル1,2を使い分けることにより、高効率な運転が可能となる。 The heat pump cycle 1 and the heat pump cycle 2 have a relationship as shown in FIG. 2 in the boiling temperature and the energy consumption efficiency. The energy consumption efficiency of the heat pump cycle 2 is higher than that of the heat pump cycle 1, but the boiling temperature has an upper limit of about 65 ° C. On the other hand, the energy consumption efficiency of the heat pump cycle 1 is slightly lower than that of the heat pump cycle 2, but can be heated to a high temperature of about 90 ° C. The CO 2 refrigerant has a low critical temperature and, as shown in FIG. 4, there is no condensation zone due to heat exchange with water, so the heat exchange efficiency is very high, and hot water as hot as about 90 ° C. can be boiled. . In the refrigerant of R22 and R410A, as shown in FIG. 3, there is a condensing region due to heat exchange with water, the heat exchange efficiency is inferior, and the boiling temperature has an upper limit of 65 ° C. When the hot water supply load is small, the hot water is boiled using the heat pump cycle 2, and when the hot water supply load is large or when high temperature hot water is required, the hot water is boiled using the heat pump cycle 1. That is, by using the heat pump cycles 1 and 2 depending on the boiling temperature, a highly efficient operation can be performed.
ヒートポンプサイクル1、2とは、外気温度とエネルギ消費効率に図5に示すような関係がある。図2とあわせて考えると、エネルギ消費効率は沸き上げ温度と外気温度によって変化するため、この二つを変数とする関数である。制御手段14にて沸き上げ温度を決定される。また制御手段14には、予めこのヒートポンプ給湯システムでの二つの冷媒のエネルギ消費効率と温水の沸き上げ温度、外気温度の関係式が入力されている。温度センサー12で検知した外気温度と決定した沸き上げ温度を関係式に入力しCO冷媒とR22やR410A冷媒のどちらのエネルギ消費効率が高いか判断し、エネルギ消費効率が高い方のヒートポンプサイクルを使用して温水を沸き上げる。 The heat pump cycles 1 and 2 have a relationship as shown in FIG. 5 between the outside air temperature and the energy consumption efficiency. Considering together with FIG. 2, the energy consumption efficiency varies depending on the boiling temperature and the outside air temperature. The boiling temperature is determined by the control means 14. In addition, a relational expression between the energy consumption efficiency of the two refrigerants in the heat pump hot water supply system, the boiling temperature of the hot water, and the outside air temperature is input to the control unit 14 in advance. The outside air temperature detected by the temperature sensor 12 and the determined boiling temperature are input to the relational expression to determine which of the CO 2 refrigerant and R22 or R410A refrigerant has the higher energy consumption efficiency, and the heat pump cycle with the higher energy consumption efficiency is selected. Use to boil hot water.
図6に1日の外気温度と一般的な住宅の給湯負荷のイメージを時系列変化で示す。外気は日中が最も高く、夜明け前に最低となる。給湯負荷は一般的に食事の用意や入浴の用意、追い炊きを行う時間帯にピークを迎える。そして給湯負荷は外気温度が高くなるほど低く、外気温度が低いほど高くなる。図6のような生活のパターンがある程度固定された家庭では、過去のデータを蓄積することによって、外気温度から時刻毎の給湯量が予測される。時刻毎の給湯量がわかれば、貯湯タンクに何度の温水を蓄えればよいかがわかるため、沸き上げ温度が決まる。このように沸き上げ温度は制御手段14にて過去の実績と当日の外気温度から決定される。例えば、夕方から夜にかけての時間帯のように高い給湯負荷が予測される場合には90℃と沸き上げ温度を決定し、予め90℃以上の高温水を貯蔵しておき、12時ごろの給湯負荷が比較的低く予測される場合には沸き上げ温度を65℃と決定し、R410Aサイクルで65℃程度の温水を作るといったように制御手段14で沸き上げ温度を設定し、使用する冷媒を決定する。冷媒のエネルギ消費効率の差と、沸き上げ温度の差、放熱ロスの差による省エネルギが可能となる。   FIG. 6 shows an image of the daily outside air temperature and a general hot water supply load of a house in time series. Outside air is highest during the day and lowest before dawn. The hot water supply load generally peaks during meal preparation, bathing preparation, and additional cooking time. The hot water supply load becomes lower as the outside air temperature becomes higher, and becomes higher as the outside air temperature becomes lower. In a home where the life pattern as shown in FIG. 6 is fixed to some extent, the amount of hot water supply at each time is predicted from the outside air temperature by accumulating past data. If the amount of hot water supply at each time is known, it is possible to know how many times hot water should be stored in the hot water storage tank, so the boiling temperature is determined. In this way, the boiling temperature is determined by the control means 14 from the past results and the outside air temperature of the day. For example, if a hot water supply load is predicted, such as during the evening to night, determine the boiling temperature as 90 ° C, store hot water of 90 ° C or higher in advance, and supply hot water around 12:00. When the load is expected to be relatively low, the boiling temperature is determined to be 65 ° C., and the boiling temperature is set by the control means 14 so that hot water of about 65 ° C. is produced in the R410A cycle, and the refrigerant to be used is determined. To do. Energy saving is possible due to the difference in energy consumption efficiency of the refrigerant, the difference in boiling temperature, and the difference in heat dissipation loss.
図5に示すようにヒートポンプサイクル1,2のエネルギ消費効率は外気温度によっても影響を受ける。給湯を行う場合には外気温度が低いほどエネルギ消費効率は低下するが、それぞれの冷媒により異なった特性を持っている。このため本実施の形態では、要求される給湯温度とそのときの外気温度を考慮して最も効率的な運転が可能となる冷媒を使用して温水を沸き上げるような制御方法を採っている。ヒートポンプサイクル1,2のどちらを使用したとも、温水の沸き上げ温度を調節することができるため60〜90℃程度の範囲の温水の沸き上げが可能である。給湯負荷が高いときに高温による沸き上げを行うなど、給湯負荷に応じて貯湯温度を変化させることで、貯湯タンク7の小型化や貯湯時の放熱ロスの削減が可能になる。前述したように時刻毎に給湯負荷を予測して沸き上げ温度を決定するシステムであるが、例えば朝の給湯のピークと日中の給湯のピークでの沸き上げ温度を65℃程度と予測した場合でも、それぞれの時刻の外気温度は大きく異なる場合もある。どちらの冷媒を使用したときにも65℃温水の沸き上げは可能であるが、図5のように外気温度がA,Bで冷媒のエネルギ消費効率が逆転するときにはエネルギ消費効率が高い冷媒サイクルを用いて温水を沸き上げることで、高効率な運転が可能となる。   As shown in FIG. 5, the energy consumption efficiency of the heat pump cycles 1 and 2 is also affected by the outside air temperature. When hot water is supplied, the lower the outside air temperature, the lower the energy consumption efficiency. However, each refrigerant has different characteristics. For this reason, in the present embodiment, a control method is employed in which hot water is boiled using a refrigerant that allows the most efficient operation in consideration of the required hot water supply temperature and the outside air temperature at that time. Regardless of which heat pump cycle 1 or 2 is used, it is possible to boil hot water in the range of about 60 to 90 ° C. because the boiling temperature of hot water can be adjusted. By changing the hot water storage temperature in accordance with the hot water supply load, such as boiling at a high temperature when the hot water supply load is high, the hot water storage tank 7 can be downsized and the heat dissipation loss during hot water storage can be reduced. As mentioned above, it is a system that determines the boiling temperature by predicting the hot water supply load at each time, but for example, when the boiling temperature at the peak of morning hot water and the peak of hot water during the day is predicted to be about 65 ° C However, the outside air temperature at each time may vary greatly. Either refrigerant can be used to boil 65 ° C hot water. However, when the outside air temperature is A and B and the energy consumption efficiency of the refrigerant is reversed as shown in FIG. By using it to boil hot water, high-efficiency operation becomes possible.
実施の形態2.
図7によって示す本実施の形態のヒートポンプ式給湯システムは、実施の形態1で示したヒートポンプ式給湯システムに、給湯とは独立した温水暖房用の閉回路を付加したものであり、ヒートポンプ式給湯システム自体の構成については実施の形態1のものと同じである。従って、実施の形態1と同じ部分については、実施の形態1のものと同じ符号を用いそれらについての説明は省略する。
Embodiment 2. FIG.
The heat pump hot water supply system of the present embodiment shown in FIG. 7 is obtained by adding a closed circuit for hot water heating independent of hot water supply to the heat pump hot water supply system shown in the first embodiment. The configuration of itself is the same as that of the first embodiment. Therefore, the same parts as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and the description thereof is omitted.
本実施の形態のヒートポンプ式給湯システムは、温水暖房用の閉回路15をヒートポンプサイクル2に付加したものである。温水暖房用の閉回路15は、低温輻射暖房を行う床暖房パネル等の室内放熱器16と循環ポンプ17と冷媒対水での熱交換を行う熱交換器18で構成され、ヒートポンプサイクル2によって輻射暖房を行うに適した60℃ほどの温水を得て、室内放熱器16での放熱によって暖房がなされる。ヒートポンプサイクル2の熱交換器5と温水暖房用の閉回路15の熱交換器18とは同時に稼動することはない構成となっている。ただし、貯湯タンク7に蓄えられた温水と暖房用の閉回路15で熱交換が可能なように熱交換器18を設ければ、ヒートポンプサイクル2の熱交換器5と温水暖房用の閉回路15の熱交換器18とは同時に稼動させても構わない。この構成を採用することにより、暖房も可能なヒートポンプ式給湯システムとなる。これ以外の機能は実施の形態1のものと同じである。   The heat pump hot water supply system of the present embodiment is obtained by adding a closed circuit 15 for hot water heating to the heat pump cycle 2. The closed circuit 15 for hot water heating is composed of an indoor radiator 16 such as a floor heating panel for performing low-temperature radiant heating, a circulation pump 17, and a heat exchanger 18 for heat exchange between refrigerant and water. Hot water of about 60 ° C. suitable for heating is obtained, and heating is performed by heat radiation from the indoor radiator 16. The heat exchanger 5 of the heat pump cycle 2 and the heat exchanger 18 of the closed circuit 15 for hot water heating are configured not to operate simultaneously. However, if the heat exchanger 18 is provided so that heat can be exchanged between the hot water stored in the hot water storage tank 7 and the closed circuit 15 for heating, the heat exchanger 5 of the heat pump cycle 2 and the closed circuit 15 for hot water heating are provided. The heat exchanger 18 may be operated at the same time. By adopting this configuration, a heat pump hot water supply system capable of heating can be obtained. Other functions are the same as those of the first embodiment.
ヒートポンプ式給湯システムの構成図である。(実施の形態1)It is a block diagram of a heat pump type hot water supply system. (Embodiment 1) 温水の沸き上げ温度と冷媒のエネルギ消費効率の相関関係を示す説明図である。(実施の形態1)It is explanatory drawing which shows the correlation of the boiling temperature of warm water, and the energy consumption efficiency of a refrigerant | coolant. (Embodiment 1) ヒートポンプサイクル2での水との熱交換の関係を示す説明図である。(実施の形態1)It is explanatory drawing which shows the relationship of heat exchange with the water in the heat pump cycle. (Embodiment 1) ヒートポンプサイクル1での水との熱交換の関係を示す説明図である。(実施の形態1)It is explanatory drawing which shows the relationship of heat exchange with the water in the heat pump cycle. (Embodiment 1) 外気温度と各冷媒のエネルギ消費効率の相関関係を示す図である。実施の形態1)It is a figure which shows the correlation of outside temperature and the energy consumption efficiency of each refrigerant | coolant. Embodiment 1) 外気温度と一般的な住宅の給湯負荷の時系列のイメージ図である。実施の形態1)It is an image figure of time series of outside temperature and general hot water supply load of a house. Embodiment 1) ヒートポンプ式給湯システムの構成図である。(実施の形態2)It is a block diagram of a heat pump type hot water supply system. (Embodiment 2)
符号の説明Explanation of symbols
1 ヒートポンプサイクル、 2 ヒートポンプサイクル、 9 水循環回路、 14 制御手段、 15 閉回路。   1 heat pump cycle, 2 heat pump cycle, 9 water circulation circuit, 14 control means, 15 closed circuit.

Claims (6)

  1. COを冷媒とするヒートポンプサイクルと、R22やR410Aを冷媒とするヒートポンプサイクルを併せ持ち、この二つのヒートポンプサイクルを使い分けるようにしたヒートポンプ式給湯システム。 A heat pump hot water supply system that has both a heat pump cycle that uses CO 2 as a refrigerant and a heat pump cycle that uses R22 and R410A as a refrigerant, and selectively uses these two heat pump cycles.
  2. 請求項1に記載のヒートポンプ式給湯システムであって、高温の温水が必要な時にはCOを冷媒とするヒートポンプサイクルを使い、比較的低い温度の温水が必要なときには、R22やR410Aを冷媒とするヒートポンプサイクルを使うようにしたヒートポンプ式給湯システム。 A heat pump type hot water supply system according to claim 1, when the required high temperature hot water using the heat pump cycle to the CO 2 refrigerant, when needed a relatively low temperature hot water is the R22 or R410A refrigerant A heat pump hot water supply system that uses a heat pump cycle.
  3. 請求項1に記載のヒートポンプ式給湯システムであって、予め入力しておいた各冷媒の、沸き上げ温度とエネルギ消費効率の関係、外気温度とエネルギ消費効率の関係から、その時点の給湯負荷と外気温度から効率の高い冷媒によるヒートポンプサイクルを使うようにしたヒートポンプ式給湯システム。   It is a heat pump type hot water supply system according to claim 1, wherein the relationship between the boiling temperature and energy consumption efficiency, the relationship between outside temperature and energy consumption efficiency of each refrigerant inputted in advance, A heat pump hot water supply system that uses a heat pump cycle that uses highly efficient refrigerant from the outside temperature.
  4. 請求項1に記載のヒートポンプ式給湯システムであって、二つのヒートポンプサイクルのどちらを使用したときも、各ヒートポンプサイクルの圧縮機での冷媒の圧縮率を調節することにより、沸き上げ温度を調節できるようにしたヒートポンプ式給湯システム。   The heat pump hot water supply system according to claim 1, wherein the boiling temperature can be adjusted by adjusting the compressibility of the refrigerant in the compressor of each heat pump cycle when any of the two heat pump cycles is used. Heat pump type hot water supply system.
  5. 請求項1〜請求項4までのいずれかに記載のヒートポンプ式給湯システムであって、給湯とは独立した温水暖房用の閉回路を付加したヒートポンプ式給湯システム。   The heat pump type hot water supply system according to any one of claims 1 to 4, wherein a closed circuit for hot water heating independent of the hot water supply is added.
  6. 請求項5に記載のヒートポンプ式給湯システムであって、温水暖房用の閉回路をR22やR410Aを冷媒とするヒートポンプサイクルに付加したヒートポンプ式給湯システム。   The heat pump hot water supply system according to claim 5, wherein a closed circuit for hot water heating is added to a heat pump cycle using R22 or R410A as a refrigerant.
JP2003312562A 2003-09-04 2003-09-04 Heat pump-type hot water supply system Pending JP2005083585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003312562A JP2005083585A (en) 2003-09-04 2003-09-04 Heat pump-type hot water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003312562A JP2005083585A (en) 2003-09-04 2003-09-04 Heat pump-type hot water supply system

Publications (1)

Publication Number Publication Date
JP2005083585A true JP2005083585A (en) 2005-03-31

Family

ID=34413782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003312562A Pending JP2005083585A (en) 2003-09-04 2003-09-04 Heat pump-type hot water supply system

Country Status (1)

Country Link
JP (1) JP2005083585A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007077687A1 (en) * 2005-12-28 2007-07-12 Sharp Kabushiki Kaisha Heat pump hot water supply device
JP2007263523A (en) * 2006-03-29 2007-10-11 Nishihara Engineering Co Ltd Hot water supply system
JP2007303754A (en) * 2006-05-12 2007-11-22 Sharp Corp Heat pump type water heater
JP2007303755A (en) * 2006-05-12 2007-11-22 Sharp Corp Heat pump type water heater
JP2007333227A (en) * 2006-06-12 2007-12-27 Sharp Corp Heat pump type water heater
EP1960719A1 (en) * 2005-12-07 2008-08-27 Carrier Corporation Multi-circuit refrigerant system using distinct refrigerants
JP2014119173A (en) * 2012-12-17 2014-06-30 Mitsubishi Electric Corp Composite hot water supply device, and method of controlling composite hot water supply device
CN104165422A (en) * 2013-05-17 2014-11-26 广东美的暖通设备有限公司 Water side heat exchange system, water source heat pump air conditioner and control method thereof
JP2015010773A (en) * 2013-06-28 2015-01-19 株式会社ノーリツ Heat pump type hot water supply system
CN105042940A (en) * 2015-07-22 2015-11-11 珠海格力电器股份有限公司 Multi-source marsh gas heat pump system
WO2016185689A1 (en) * 2015-05-20 2016-11-24 パナソニックIpマネジメント株式会社 Air conditioning and hot water supplying system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1960719A1 (en) * 2005-12-07 2008-08-27 Carrier Corporation Multi-circuit refrigerant system using distinct refrigerants
EP1960719A4 (en) * 2005-12-07 2008-11-26 Carrier Corp Multi-circuit refrigerant system using distinct refrigerants
EP1972862A4 (en) * 2005-12-28 2013-09-11 Sharp Kk Heat pump hot water supply device
EP1972862A1 (en) * 2005-12-28 2008-09-24 Sharp Kabushiki Kaisha Heat pump hot water supply device
WO2007077687A1 (en) * 2005-12-28 2007-07-12 Sharp Kabushiki Kaisha Heat pump hot water supply device
JP2007263523A (en) * 2006-03-29 2007-10-11 Nishihara Engineering Co Ltd Hot water supply system
JP2007303755A (en) * 2006-05-12 2007-11-22 Sharp Corp Heat pump type water heater
JP2007303754A (en) * 2006-05-12 2007-11-22 Sharp Corp Heat pump type water heater
JP2007333227A (en) * 2006-06-12 2007-12-27 Sharp Corp Heat pump type water heater
JP2014119173A (en) * 2012-12-17 2014-06-30 Mitsubishi Electric Corp Composite hot water supply device, and method of controlling composite hot water supply device
CN104165422A (en) * 2013-05-17 2014-11-26 广东美的暖通设备有限公司 Water side heat exchange system, water source heat pump air conditioner and control method thereof
JP2015010773A (en) * 2013-06-28 2015-01-19 株式会社ノーリツ Heat pump type hot water supply system
WO2016185689A1 (en) * 2015-05-20 2016-11-24 パナソニックIpマネジメント株式会社 Air conditioning and hot water supplying system
CN105042940A (en) * 2015-07-22 2015-11-11 珠海格力电器股份有限公司 Multi-source marsh gas heat pump system

Similar Documents

Publication Publication Date Title
JP2005083585A (en) Heat pump-type hot water supply system
Byrne et al. Design and simulation of a heat pump for simultaneous heating and cooling using HFC or CO2 as a working fluid
Byrne et al. Experimental study of an air-source heat pump for simultaneous heating and cooling–Part 1: Basic concepts and performance verification
JP5615381B2 (en) Hot water supply and air conditioning complex equipment
JP2014035109A (en) Heat pump apparatus
JP2005308344A (en) Heat pump water heater
JP2001304701A (en) Heat pump type water heater
US4382368A (en) Geothermal hot water system
JP2005069608A (en) Hot water utilizing system
CN102645022B (en) Energy-saving multiple temperature section water boiler
KR100794271B1 (en) Heat pump system that use duality compression type
JP3855695B2 (en) Heat pump water heater
JP5126198B2 (en) Hot water storage water heater, control method for hot water storage water heater
JP4419475B2 (en) Heating system and housing
JP2005083659A (en) Water heater
JP5751247B2 (en) Hot water control system
KR101713543B1 (en) Heat recovery heat-pump cooling/heating device having hot water supplinh function
JP2007278655A (en) Heat storage type hot water supplier
Jiang et al. Research on refrigerant flow characteristics and performance of a multi-functional heat pump system
JP2006308261A (en) Heat pump type hot water supplier
JP4882478B2 (en) Regenerative water heater
JP2006010232A (en) Heat pump device
JP3841051B2 (en) Heat pump water heater
JP6143682B2 (en) Combined heat source heat pump device
KR200362824Y1 (en) boiler useing for condenser and vaporizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070724