JP2007321995A - Refrigerating cycle device - Google Patents

Refrigerating cycle device Download PDF

Info

Publication number
JP2007321995A
JP2007321995A JP2006149180A JP2006149180A JP2007321995A JP 2007321995 A JP2007321995 A JP 2007321995A JP 2006149180 A JP2006149180 A JP 2006149180A JP 2006149180 A JP2006149180 A JP 2006149180A JP 2007321995 A JP2007321995 A JP 2007321995A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
compressor
indoor
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006149180A
Other languages
Japanese (ja)
Inventor
Yuichi Kusumaru
雄一 藥丸
Masaya Honma
雅也 本間
Tomoichiro Tamura
朋一郎 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006149180A priority Critical patent/JP2007321995A/en
Publication of JP2007321995A publication Critical patent/JP2007321995A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem with a conventional multi-functional refrigerating cycle device, in which it is subjected to spatial restriction in installing an outdoor air heat exchanger, through high efficiency can be achieved. <P>SOLUTION: This refrigerating cycle device is constituted by connecting a compressor 101, a first heat exchanger 102, a throttle device 104, an indoor heat exchanger 105 and a second heat exchanger 106. As simultaneous hot water supplying and cooling/heating operations can be performed without disposing the outdoor air heat exchanger by applying this constitution, a space can be saved while keeping high efficiency. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、給湯や空調など複数の用途に適応する冷凍サイクル装置に関し、室外空気熱交換器を設けることなく、冷暖房、給湯を行うことを特徴とするものである。   The present invention relates to a refrigeration cycle apparatus adapted to a plurality of uses such as hot water supply and air conditioning, and is characterized in that air conditioning and hot water supply are performed without providing an outdoor air heat exchanger.

従来、給湯と空調を組み合わせたような多機能型冷凍サイクル装置の場合、高効率化を目的として、冷房時においては室外空気熱交換器と並列に水熱交換器を設け、この水熱交換器によって水を加熱することで温水を作り、暖房時は残湯を水熱交換器に流すことによって、室外空気熱交換器で吸熱する熱量を低減させるという手段が用いられている。図4は、このような課題を解決するための冷凍サイクル装置構成である。(例えば、特許文献1参照)。
実開昭57−16766号公報(第2図)
Conventionally, in the case of a multi-functional refrigeration cycle apparatus that combines hot water supply and air conditioning, a water heat exchanger is provided in parallel with an outdoor air heat exchanger during cooling for the purpose of improving efficiency, and this water heat exchanger A means for reducing the amount of heat absorbed by the outdoor air heat exchanger by making hot water by heating water and flowing the remaining hot water to the water heat exchanger during heating is used. FIG. 4 shows a refrigeration cycle apparatus configuration for solving such a problem. (For example, refer to Patent Document 1).
Japanese Utility Model Publication No. 57-16766 (Fig. 2)

しかしながら、このようなシステムは高効率化を図ることはできるものの、室外空気熱交換器を設けるために、スペース的な制約を受けるという課題があった。また、暖房時においては、室外空気熱交換器は蒸発器となるため低温の冷水を作ることになり、従来の構成では有効利用できないという課題があった。   However, although such a system can achieve high efficiency, there is a problem that space restriction is imposed in order to provide an outdoor air heat exchanger. In addition, during heating, the outdoor air heat exchanger becomes an evaporator, so that low-temperature cold water is produced, and there is a problem that the conventional configuration cannot be used effectively.

そこで、本発明は、室外空気熱交換器を設けることなく、給湯と冷暖房の同時運転を行うことを目的としてなされたものである。   Then, this invention is made | formed for the purpose of performing simultaneous operation | movement of hot-water supply and air-conditioning, without providing an outdoor air heat exchanger.

前記従来の課題を解決するために、本発明の冷凍サイクル装置は、第1の冷媒を圧縮する圧縮機と、前記圧縮機で圧縮された第1の冷媒を放熱させ、第2の冷媒を加熱する第1の熱交換器と、前記第1の熱交換器で放熱した第1の冷媒を減圧する絞り装置と、室内熱交換器と、前記絞り装置で減圧された第1の冷媒を加熱し、第3の冷媒を冷却する第2の熱交換器を有し、冷房時には、前記圧縮機、前記第1の熱交換器、前記絞り装置、前記室内熱交換器、前記第2の熱交換器の順に前記第1の冷媒が循環するように接続され、前記室内熱交換器において、前記絞り装置で減圧された前記第1の冷媒を加熱すると共に室内空気を冷却し、暖房時には、前記圧縮機、前記第1の熱交換器、前記室内熱交換器、前記絞り装置、前記第2の熱交換器の順に接続し、前記室内熱交換器において、前記第1の熱交換器で冷却された前記第1の冷媒をさらに冷却すると共に室内空気を加熱する装置である。   In order to solve the conventional problem, a refrigeration cycle apparatus according to the present invention radiates heat from a compressor that compresses a first refrigerant, the first refrigerant compressed by the compressor, and heats the second refrigerant. A first heat exchanger that performs heating, a throttling device that depressurizes the first refrigerant radiated by the first heat exchanger, an indoor heat exchanger, and a first refrigerant that is depressurized by the throttling device. And a second heat exchanger that cools the third refrigerant, and at the time of cooling, the compressor, the first heat exchanger, the expansion device, the indoor heat exchanger, and the second heat exchanger The first refrigerant is connected so as to circulate in this order, and in the indoor heat exchanger, the first refrigerant decompressed by the expansion device is heated and indoor air is cooled. , The first heat exchanger, the indoor heat exchanger, the expansion device, and the second heat exchanger Connected in this order, in the indoor heat exchanger, a device for heating the indoor air as well as further cooling the cooled first refrigerant in the first heat exchanger.

ここで、第1の冷媒の例としては、フロンまたは二酸化炭素である。第2の冷媒または第3の冷媒の例としては、水またはブラインである。   Here, examples of the first refrigerant include chlorofluorocarbon or carbon dioxide. Examples of the second refrigerant or the third refrigerant are water or brine.

本構成によって、室外空気熱交換器を設けることなく、給湯と冷暖房の同時運転を行うことができる。   With this configuration, it is possible to simultaneously operate hot water supply and air conditioning without providing an outdoor air heat exchanger.

また、より望ましくは、本発明の冷凍サイクル装置は、前記第2の冷媒と前記第3の冷媒は同一の冷媒であり、前記第1の熱交換器の前記第2の冷媒の出口側に設けられた3方弁と、前記3方弁と前記第2の熱交換器の前記第3の冷媒の入口側とを、流量制御弁を介して接続するバイパス回路とをさらに有するものである。   More preferably, in the refrigeration cycle apparatus of the present invention, the second refrigerant and the third refrigerant are the same refrigerant, and are provided on the outlet side of the second refrigerant of the first heat exchanger. And a bypass circuit that connects the three-way valve and the inlet side of the third refrigerant of the second heat exchanger via a flow control valve.

本構成によって、前記第2の熱交換器の出口側の第3の冷媒温度を最適に制御することができる。   With this configuration, it is possible to optimally control the third refrigerant temperature on the outlet side of the second heat exchanger.

本発明の冷凍サイクル装置によれば、室外空気熱交換器を設けることなく、給湯と冷暖房の同時運転を行うことができるので、高効率化を維持しつつ、省スペース化を図ることができる。   According to the refrigeration cycle apparatus of the present invention, since simultaneous operation of hot water supply and air conditioning can be performed without providing an outdoor air heat exchanger, it is possible to save space while maintaining high efficiency.

以下、本発明の冷凍サイクル装置の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the refrigeration cycle apparatus of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は、本発明による実施の形態1の冷凍サイクル装置を示す構成図である。
(Embodiment 1)
FIG. 1 is a configuration diagram showing a refrigeration cycle apparatus according to Embodiment 1 of the present invention.

本実施の形態1の冷凍サイクル装置では、例えばフロンまたは二酸化炭素等の冷媒を作動流体とし、冷媒を昇圧する圧縮機101と、この圧縮機101で昇圧された高温高圧の冷媒を冷却する第1の熱交換器102と、冷暖房を切り替える手段である4方弁103と、冷却された冷媒を減圧膨張する絞り装置104と、室内熱交換器105と、減圧された冷媒を加熱する第2の熱交換器106が配管接続された冷凍サイクル回路が構成されている。   In the refrigeration cycle apparatus of the first embodiment, for example, a refrigerant such as chlorofluorocarbon or carbon dioxide is used as a working fluid, and a compressor 101 that pressurizes the refrigerant, and a first high-temperature and high-pressure refrigerant that is pressurized by the compressor 101 are cooled. Heat exchanger 102, four-way valve 103 as means for switching between air conditioning and heating, expansion device 104 for decompressing and expanding the cooled refrigerant, indoor heat exchanger 105, and second heat for heating the decompressed refrigerant A refrigeration cycle circuit in which the exchanger 106 is connected by piping is configured.

まず、冷房時について、その動作を説明する。   First, the operation during cooling will be described.

圧縮機101で昇圧された高温高圧の冷媒は、第1の熱交換器102で水またはブラインを加熱する。加熱された水またはブラインは、給湯等の用途として用いられる。その後、4方弁103に流入した冷媒は実線の方向に流れ、絞り装置104にて減圧膨張される。そして、室内熱交換器105にて室内空気を冷却することによって冷媒は加熱され、再び4方弁103を通過した後、第2の熱交換器106で水またはブラインを冷却する。この冷却水または冷却ブラインは、例えば冷蔵庫などの冷凍・冷蔵用途に利用される。   The high-temperature and high-pressure refrigerant boosted by the compressor 101 heats water or brine in the first heat exchanger 102. The heated water or brine is used for hot water supply or the like. Thereafter, the refrigerant flowing into the four-way valve 103 flows in the direction of the solid line and is decompressed and expanded by the expansion device 104. The refrigerant is heated by cooling the indoor air in the indoor heat exchanger 105, passes through the four-way valve 103 again, and then the water or brine is cooled in the second heat exchanger 106. This cooling water or cooling brine is used for freezing and refrigeration applications such as a refrigerator.

次に、暖房時について、その動作を説明する。   Next, the operation during heating will be described.

圧縮機101で昇圧された高温高圧の冷媒は、第1の熱交換器102で水またはブラインを加熱する。加熱された水またはブラインは、給湯等の用途として用いられる。その後、4方弁103に流入した冷媒は、破線の方向に流れ、室内熱交換器105で室内空気を加熱することによって放熱し、絞り装置104にて減圧膨張する。そして、再び4方弁103を通過した後、第2の熱交換器106で冷媒は更に加熱され水またはブラインを冷却する。この冷却水または冷却ブラインは、例えば冷蔵庫などの冷凍・冷蔵用途に利用される。   The high-temperature and high-pressure refrigerant boosted by the compressor 101 heats water or brine in the first heat exchanger 102. The heated water or brine is used for hot water supply or the like. Thereafter, the refrigerant flowing into the four-way valve 103 flows in the direction of the broken line, dissipates heat by heating the indoor air in the indoor heat exchanger 105, and decompresses and expands in the expansion device 104. Then, after passing through the four-way valve 103 again, the refrigerant is further heated by the second heat exchanger 106 to cool water or brine. This cooling water or cooling brine is used for freezing and refrigeration applications such as a refrigerator.

以上のように、室外空気熱交換器を設けることなく、空調を行いながら、温水及び冷水を供給することができる。   As described above, hot water and cold water can be supplied while performing air conditioning without providing an outdoor air heat exchanger.

(実施の形態2)
図2は、本発明による実施の形態2の冷凍サイクル装置を示す構成図である。本実施の形態2と実施の形態1との異なる点は、前記第1の熱交換器102の出口側水回路108に3方弁113と、前記第2の熱交換器106の出口側水回路110に水温度検出手段114を設け、前記3方弁113と前記第2の熱交換器106の入口側水回路109を流量
制御弁112を介して接続するバイパス回路111を設け、前記第2の熱交換器106によって冷却された出口側の水またはブラインを、前記第2の熱交換器106の入口側水回路109にバイパスさせることである。
(Embodiment 2)
FIG. 2 is a block diagram showing a refrigeration cycle apparatus according to Embodiment 2 of the present invention. The difference between the second embodiment and the first embodiment is that the outlet side water circuit 108 of the first heat exchanger 102 has a three-way valve 113 and the outlet side water circuit of the second heat exchanger 106. 110, a water temperature detecting means 114 is provided, a bypass circuit 111 is provided for connecting the three-way valve 113 and the inlet side water circuit 109 of the second heat exchanger 106 via a flow control valve 112, and the second The outlet side water or brine cooled by the heat exchanger 106 is bypassed to the inlet side water circuit 109 of the second heat exchanger 106.

夏季など、冷房が必要となる時期は、実施の形態1の構成で特に大きな問題は生じないが、冬季など、暖房または給湯負荷が冷凍負荷よりも非常に高くなる場合、第2の熱交換器106の出口側水温度が非常に低下してしまうという課題がある。   When cooling is necessary, such as in the summer, there is no particular problem with the configuration of the first embodiment. However, when the heating or hot water supply load is much higher than the refrigeration load, such as in the winter, the second heat exchanger There is a problem that the outlet-side water temperature of 106 is extremely lowered.

本実施の形態2は、第2の熱交換器106の出口側水温度を、バイパス回路111内の冷媒流量を制御することによって最適に制御するものである。   In the second embodiment, the outlet water temperature of the second heat exchanger 106 is optimally controlled by controlling the refrigerant flow rate in the bypass circuit 111.

本実施の形態2の動作を、図3のフローチャートを用いて説明する。   The operation of the second embodiment will be described using the flowchart of FIG.

リモコンのスイッチがONされるなどして冷凍サイクル装置の運転が開始されると、ステップ201に進み、運転モードが冷房か暖房かを判定する。冷房モードの場合は、ステップ202に進み、冷媒の流れ方向が図1で示す実線方向になるように、4方弁103を切替えてステップ204に進む。暖房モードの場合は、ステップ203に進み、冷媒の流れ方向が図1で示す破線方向になるように、4方弁103を切替えてステップ204に進む。   When the operation of the refrigeration cycle apparatus is started by turning on the switch of the remote controller or the like, the process proceeds to step 201 to determine whether the operation mode is cooling or heating. In the case of the cooling mode, the process proceeds to step 202, and the four-way valve 103 is switched so that the flow direction of the refrigerant becomes the solid line direction shown in FIG. In the case of the heating mode, the process proceeds to step 203, and the four-way valve 103 is switched to proceed to step 204 so that the flow direction of the refrigerant is in the direction of the broken line shown in FIG.

ステップ204では、第2の熱交換器106の出口側水回路110に設けられた水温度検出手段114によって水温度Twが検出され、水温度Twと設定水温度Thとが比較される。そして、水温度Twが設定水温度Thよりも大きい場合は、冷凍サイクルの加熱負荷が過大ではないことを示している。この場合は、ステップ206に移る。また、水温度Twが設定水温度Thよりも小さい場合は、冷凍サイクルの加熱負荷が過大であることを示しており、ステップ205に移る。   In step 204, the water temperature Tw is detected by the water temperature detection means 114 provided in the outlet side water circuit 110 of the second heat exchanger 106, and the water temperature Tw and the set water temperature Th are compared. And when water temperature Tw is larger than preset water temperature Th, it has shown that the heating load of a refrigerating cycle is not excessive. In this case, the process proceeds to step 206. Further, when the water temperature Tw is lower than the set water temperature Th, it indicates that the heating load of the refrigeration cycle is excessive, and the routine proceeds to step 205.

ステップ205では、流量制御弁112を開いた後、ステップ207に移る。ステップ207では、冷媒の流れが図2のB方向になるように3方弁113を切替えて、第1の熱交換器102の出口側水回路108を流れる高温の水を、バイパス回路111を通して第2の熱交換器106の入口側水回路109に流すように制御する。このことによって、第2の熱交換器106の出口側水回路110内の水温度を上昇させることができるので、有効な冷却ができるとともに、第2の熱交換器106の冷媒温度も上昇させることができるので、圧縮機101の所要動力が低下して冷凍サイクル装置の高効率化を図ることができる。   In step 205, after opening the flow control valve 112, the routine proceeds to step 207. In step 207, the three-way valve 113 is switched so that the refrigerant flow is in the direction B in FIG. 2, and the hot water flowing through the outlet side water circuit 108 of the first heat exchanger 102 is passed through the bypass circuit 111. It controls so that it may flow into the inlet side water circuit 109 of the 2nd heat exchanger 106. FIG. As a result, the water temperature in the outlet side water circuit 110 of the second heat exchanger 106 can be increased, so that effective cooling can be achieved and the refrigerant temperature of the second heat exchanger 106 can also be increased. Therefore, the required power of the compressor 101 is reduced, and the efficiency of the refrigeration cycle apparatus can be increased.

ステップ206では、流量制御弁112を全閉とした後、ステップ208に移る。ステップ208では、冷媒の流れが図2のA方向になるように3方弁113を切替えて、第2の熱交換器106の入口側水回路109に冷媒は流さないように制御する。   In step 206, the flow control valve 112 is fully closed, and then the process proceeds to step 208. In step 208, the three-way valve 113 is switched so that the refrigerant flow is in the direction A in FIG. 2, and control is performed so that the refrigerant does not flow into the inlet side water circuit 109 of the second heat exchanger 106.

以上のように、前記第1の熱交換器102の出口側高温水を、バイパス回路111を介して前記第2の熱交換器106の入口側水回路109に流すことによって、第2の熱交換器106の出口側水温度を制御することができるので、高効率化を図りつつ、確実に冷却用途に対応することができる。   As described above, the second heat exchange is performed by flowing the outlet-side high-temperature water of the first heat exchanger 102 to the inlet-side water circuit 109 of the second heat exchanger 106 via the bypass circuit 111. Since the outlet side water temperature of the vessel 106 can be controlled, it is possible to reliably cope with the cooling application while achieving high efficiency.

なお、前記流量制御弁112は、冷媒流量を細かく制御する弁ではなく、ON/OFFを制御する開閉弁で代用しても構わない。さらには、流量制御弁112を用いずに、3方弁113だけで流路方向を切り替えてもよい。   The flow rate control valve 112 may be replaced with an on / off valve that controls ON / OFF, instead of a valve that finely controls the refrigerant flow rate. Furthermore, the flow path direction may be switched using only the three-way valve 113 without using the flow control valve 112.

また、前記絞り装置104は、膨張機などの動力回収機構を備えたもので代用しても構
わない。
Further, the expansion device 104 may be replaced with a device provided with a power recovery mechanism such as an expander.

本発明にかかる冷凍サイクル装置は、空調機、給湯器、床暖房機、浴室乾燥機、冷蔵装置、冷凍装置などに利用することができる。   The refrigeration cycle apparatus according to the present invention can be used for air conditioners, water heaters, floor heaters, bathroom dryers, refrigeration apparatuses, refrigeration apparatuses, and the like.

本発明の実施の形態1における冷凍サイクル装置を示す構成図The block diagram which shows the refrigerating-cycle apparatus in Embodiment 1 of this invention. 本発明の実施の形態2における冷凍サイクル装置を示す構成図The block diagram which shows the refrigerating-cycle apparatus in Embodiment 2 of this invention. 本発明の実施の形態2における冷凍サイクル装置の制御フローチャートControl flowchart of refrigeration cycle apparatus in Embodiment 2 of the present invention 従来技術の冷凍サイクル装置を示す構成図Configuration diagram showing a prior art refrigeration cycle apparatus

符号の説明Explanation of symbols

1 圧縮機
2 三方弁
3 室外側熱交換器
4 暖房用減圧器
5 冷房用減圧器
6 室内側熱交換器
7、8、10 電磁弁
9 水槽内熱交換器
11 水槽
12 バイパス管
15、16 ジョイント
101 圧縮機
102 第1の熱交換器
103 4方弁
104 絞り装置
105 室内熱交換器
106 第2の熱交換器
107 第1の熱交換器の入口側水回路
108 第1の熱交換器の出口側水回路
109 第2の熱交換器の入口側水回路
110 第2の熱交換器の出口側水回路
111 バイパス回路
112 流量制御弁
113 3方弁
114 水温度検出手段
DESCRIPTION OF SYMBOLS 1 Compressor 2 Three-way valve 3 Outdoor heat exchanger 4 Heating decompressor 5 Cooling decompressor 6 Indoor heat exchanger 7, 8, 10 Solenoid valve 9 Heat exchanger in water tank 11 Water tank 12 Bypass pipe 15, 16 Joint DESCRIPTION OF SYMBOLS 101 Compressor 102 1st heat exchanger 103 Four-way valve 104 Expansion apparatus 105 Indoor heat exchanger 106 2nd heat exchanger 107 Inlet side water circuit of 1st heat exchanger 108 Outlet of 1st heat exchanger Side water circuit 109 Inlet side water circuit of the second heat exchanger 110 Outlet side water circuit of the second heat exchanger 111 Bypass circuit 112 Flow control valve 113 Three-way valve 114 Water temperature detecting means

Claims (3)

第1の冷媒を圧縮する圧縮機と、
前記圧縮機で圧縮された第1の冷媒を放熱させ、第2の冷媒を加熱する第1の熱交換器と、
前記第1の熱交換器で放熱した第1の冷媒を減圧する絞り装置と、
室内熱交換器と、
前記絞り装置で減圧された第1の冷媒を加熱し、第3の冷媒を冷却する第2の熱交換器を有し、
冷房時には、前記圧縮機、前記第1の熱交換器、前記絞り装置、前記室内熱交換器、前記第2の熱交換器の順に前記第1の冷媒が循環するように接続され、前記室内熱交換器において、前記絞り装置で減圧された前記第1の冷媒を加熱すると共に室内空気を冷却し、
暖房時には、前記圧縮機、前記第1の熱交換器、前記室内熱交換器、前記絞り装置、前記第2の熱交換器の順に前記第1の冷媒が循環するように接続され、前記室内熱交換器において、前記第1の熱交換器で冷却された前記第1の冷媒をさらに冷却すると共に室内空気を加熱する冷凍サイクル装置。
A compressor for compressing the first refrigerant;
A first heat exchanger that radiates heat of the first refrigerant compressed by the compressor and heats the second refrigerant;
A throttle device for depressurizing the first refrigerant radiated by the first heat exchanger;
An indoor heat exchanger,
A second heat exchanger that heats the first refrigerant decompressed by the expansion device and cools the third refrigerant;
During cooling, the compressor, the first heat exchanger, the expansion device, the indoor heat exchanger, and the second heat exchanger are connected so that the first refrigerant circulates in this order, and the indoor heat In the exchanger, the first refrigerant decompressed by the expansion device is heated and the indoor air is cooled,
During heating, the compressor, the first heat exchanger, the indoor heat exchanger, the expansion device, and the second heat exchanger are connected so that the first refrigerant circulates in this order, and the indoor heat In the exchanger, the refrigeration cycle apparatus further cools the first refrigerant cooled in the first heat exchanger and heats indoor air.
前記第2の冷媒と前記第3の冷媒は同一の冷媒であり、
前記第1の熱交換器の前記第2の冷媒の出口側に設けられた3方弁と、
前記3方弁と前記第2の熱交換器の前記第3の冷媒の入口側とを、流量制御弁を介して接続するバイパス回路とをさらに有する、
請求項1に記載の冷凍サイクル装置。
The second refrigerant and the third refrigerant are the same refrigerant,
A three-way valve provided on the outlet side of the second refrigerant of the first heat exchanger;
A bypass circuit that connects the three-way valve and the inlet side of the third refrigerant of the second heat exchanger via a flow control valve;
The refrigeration cycle apparatus according to claim 1.
前記第2の熱交換器の前記第3の冷媒の出口側に設けられた温度検出手段をさらに有し、
前記温度検出手段で測定された測定値に基づいて、前記流量制御弁を制御する、
請求項2に記載の冷凍サイクル装置。
Further comprising temperature detection means provided on the outlet side of the third refrigerant of the second heat exchanger,
Controlling the flow rate control valve based on the measured value measured by the temperature detecting means;
The refrigeration cycle apparatus according to claim 2.
JP2006149180A 2006-05-30 2006-05-30 Refrigerating cycle device Pending JP2007321995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006149180A JP2007321995A (en) 2006-05-30 2006-05-30 Refrigerating cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006149180A JP2007321995A (en) 2006-05-30 2006-05-30 Refrigerating cycle device

Publications (1)

Publication Number Publication Date
JP2007321995A true JP2007321995A (en) 2007-12-13

Family

ID=38854979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006149180A Pending JP2007321995A (en) 2006-05-30 2006-05-30 Refrigerating cycle device

Country Status (1)

Country Link
JP (1) JP2007321995A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099065A1 (en) * 2010-02-10 2011-08-18 三菱電機株式会社 Air conditioner
CN103742983A (en) * 2014-01-03 2014-04-23 东南大学 Dual-temperature refrigeration system based on non-azeotropic refrigerant, and control method for same
KR101436637B1 (en) 2008-01-21 2014-09-01 엘지전자 주식회사 cooling and heating system and controling method of the same
CN104879950A (en) * 2015-05-26 2015-09-02 珠海格力电器股份有限公司 Air conditioner all-in-one machine system and control method thereof
CN106871485A (en) * 2017-04-13 2017-06-20 青岛海信日立空调系统有限公司 A kind of heat pump and its control method
CN105276706B (en) * 2015-10-16 2018-12-11 珠海格力电器股份有限公司 A kind of air-conditioning hot water integrated machine and its control method
US11079122B2 (en) 2013-03-04 2021-08-03 Johnson Controls Technology Company Modular liquid based heating and cooling system
CN114992812A (en) * 2022-06-17 2022-09-02 珠海格力电器股份有限公司 Air conditioning system and control method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101436637B1 (en) 2008-01-21 2014-09-01 엘지전자 주식회사 cooling and heating system and controling method of the same
WO2011099065A1 (en) * 2010-02-10 2011-08-18 三菱電機株式会社 Air conditioner
CN102770715A (en) * 2010-02-10 2012-11-07 三菱电机株式会社 Air conditioner
US8844301B2 (en) 2010-02-10 2014-09-30 Mitsubishi Electric Corporation Air-conditioning apparatus
US11079122B2 (en) 2013-03-04 2021-08-03 Johnson Controls Technology Company Modular liquid based heating and cooling system
CN103742983A (en) * 2014-01-03 2014-04-23 东南大学 Dual-temperature refrigeration system based on non-azeotropic refrigerant, and control method for same
CN104879950A (en) * 2015-05-26 2015-09-02 珠海格力电器股份有限公司 Air conditioner all-in-one machine system and control method thereof
CN105276706B (en) * 2015-10-16 2018-12-11 珠海格力电器股份有限公司 A kind of air-conditioning hot water integrated machine and its control method
CN106871485A (en) * 2017-04-13 2017-06-20 青岛海信日立空调系统有限公司 A kind of heat pump and its control method
CN106871485B (en) * 2017-04-13 2019-08-27 青岛海信日立空调系统有限公司 A kind of heat pump system and its control method
CN114992812A (en) * 2022-06-17 2022-09-02 珠海格力电器股份有限公司 Air conditioning system and control method

Similar Documents

Publication Publication Date Title
JP4771721B2 (en) Air conditioner
US9593872B2 (en) Heat pump
US7805961B2 (en) Supercooling apparatus of simultaneous cooling and heating type multiple air conditioner
JP2007321995A (en) Refrigerating cycle device
JP5929450B2 (en) Refrigeration cycle equipment
WO2010070828A1 (en) Heat pump hot-water supply device and operation method therefor
JP5411643B2 (en) Refrigeration cycle apparatus and hot water heater
WO2011048695A1 (en) Air conditioning device
JP2008101819A (en) Air conditioner
JP2004218944A (en) Heat pump air conditioning and water heater
JP2007163071A (en) Heat pump type cooling/heating system
JP3966889B2 (en) Heat pump water heater
KR101510978B1 (en) Binary refrigeration cycle device
JP2007183045A (en) Heat pump type air-conditioning equipment
JP4751851B2 (en) Refrigeration cycle
JP2015215117A (en) Heat pump type air cooling device
JP2008209012A (en) Refrigeration cycle device
JP4918450B2 (en) Air conditioning / hot water heat pump system
KR101636326B1 (en) Refrigerating Cycle Apparatus, Heat Pump Type Hot Water Supply Air conditioner and Outdoor Unit thereof
JP2009264682A (en) Water heat source air conditioner
JP5150300B2 (en) Heat pump type water heater
JP2017067318A (en) Air conditioner
KR101169438B1 (en) A heating and cooling system using a cascade heat exchanger
JP2009092321A (en) Cooling/heating hot water supply system and its operating method
KR100849613B1 (en) High effectiveness heat pump system that available water heating and floor heating