JP2007320812A - 燃料処理装置 - Google Patents

燃料処理装置 Download PDF

Info

Publication number
JP2007320812A
JP2007320812A JP2006153263A JP2006153263A JP2007320812A JP 2007320812 A JP2007320812 A JP 2007320812A JP 2006153263 A JP2006153263 A JP 2006153263A JP 2006153263 A JP2006153263 A JP 2006153263A JP 2007320812 A JP2007320812 A JP 2007320812A
Authority
JP
Japan
Prior art keywords
combustion gas
wall
radiation
flow path
reforming reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006153263A
Other languages
English (en)
Other versions
JP4810316B2 (ja
Inventor
Toshio Shinoki
俊雄 篠木
Mitsuaki Nakada
光昭 中田
Hideki Koseki
秀規 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006153263A priority Critical patent/JP4810316B2/ja
Publication of JP2007320812A publication Critical patent/JP2007320812A/ja
Application granted granted Critical
Publication of JP4810316B2 publication Critical patent/JP4810316B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

【課題】原料に偏流があっても燃焼ガスの周方向の温度差を低減させて改質効率および耐久性を向上させ、熱効率も向上させることができる燃料処理装置を得る。
【解決手段】この発明に係る燃料処理装置は、燃焼ガス1を通す燃焼ガス流路2と燃焼ガス流路2の外側に内壁8を介して設けられ内壁8と中壁9とで形成された空間に流入した原料3から改質ガス4を生成する第1の改質反応流路5とを有する改質反応器と、内壁8の燃焼ガス流路2側に設けられ燃焼ガス1から伝達された熱を第1の改質反応流路5へ輻射する筒形状の輻射壁11と、輻射壁11の内部に設けられ燃焼ガス1の流入を遮断する第1の熱遮蔽部13とを備え、輻射壁11と第1の熱遮蔽部13とにより輻射空間12が形成され、輻射空間12に面した輻射壁11の内面は燃焼ガス1から伝達された熱を他の輻射壁11の内面に輻射する内側輻射部11aを有している。
【選択図】図1

Description

この発明は、炭化水素系の燃料ガス、石油系液体燃料およびアルコール系燃料等の原料を改質して水素を含んだ改質ガスを得る燃料処理装置に関する。
従来、燃焼ガスを通す燃焼ガス流路とこの燃焼ガス流路の外側に隣接して設けられ内部に流入した原料から改質ガスを生成する改質反応流路とを区画する内壁と、前記内壁の前記改質反応流路側に設けられ、前記内壁とともに前記改質反応流路を形成する中壁と、前記燃焼ガス流路の内側に設けられ、空気を密閉した断熱性の密閉室とを備えた円筒管構造の燃料処理装置が知られている(例えば、特許文献1参照)。
特開2001−151501号公報
しかしながら、従来の燃料処理装置では、原料に周方向の偏流があった場合に、改質反応が吸熱反応であるので、原料の多い領域の改質ガス近傍の燃焼ガスの温度が低くなり、逆に原料の少ない領域の改質ガス近傍の燃焼ガスの温度が高くなり、燃焼ガスの周方向に温度差が発生する。その結果、燃焼ガスの低温部近傍の改質反応流路では改質効率が低下し、一方、燃焼ガスの高温部近傍の改質反応流路を形成する内壁や中壁等では、構成材料の耐久性が低下し、熱効率も低下する等の問題点があった。
この発明は、上述のような問題点を解決することを課題とするものであって、その目的は、原料に周方向の偏流があった場合に、燃焼ガスの周方向の温度差を低減させることで、改質効率および耐久性を向上させ、また、熱効率も向上させることができる等の燃料処理装置を提供するものである。
この発明に係る燃料処理装置は、燃焼ガスを通す燃焼ガス流路とこの燃焼ガス流路の外側に内壁を介して設けられ前記内壁と中壁とで形成される空間に流入した原料から改質ガスを生成する改質反応流路とを有する改質反応器と、前記内壁の前記燃焼ガス流路側に設けられ、前記燃焼ガスから伝達された熱を前記改質反応流路へ向かって輻射により伝達する筒形状の輻射壁と、前記輻射壁の内側の一部に設けられ、前記燃焼ガスの流入を遮断する熱遮蔽部とを備え、前記輻射壁と前記熱遮蔽部とにより輻射空間が形成され、この輻射空間に面した前記輻射壁の内面には、前記燃焼ガスから伝達された熱を他の輻射壁の内面に向かって輻射する内側輻射部を有している。
この発明に係る燃料処理装置によると、原料に偏流があった場合に、燃焼ガスからの移動熱量を均等化することで、改質効率および耐久性を向上させ、また、熱効率も向上させることができる等の効果がある。
以下、この発明の各実施の形態を図に基づいて説明するが、各図において、同一または相当の部材、部位については、同一符号を付してある。
実施の形態1.
図1は実施の形態1に係る燃料処理装置の断面図である。
実施の形態1に係る燃料処理装置の改質反応器は、円筒形状であり、燃焼ガス1を通す燃焼ガス流路2と、この燃焼ガス流路2の外側に隣接して設けられ、内部に流入した原料3から改質ガス4を生成する第1の改質反応流路5と、この第1の改質反応流路5の外側に隣接して設けられ、内部に流入した改質ガス4の熱を第1の改質反応流路5へ伝達する熱回収流路6と、第1の改質反応流路5と熱回収流路6とを連通した連通路7とを有している。
燃焼ガス流路2と第1の改質反応流路5との間には、両流路を区画する円筒状の内壁8が設けられている。
第1の改質反応流路5と熱回収流路6との間には、両流路を区画する円筒状の中壁9が設けられている。
熱回収流路6の外側には、中壁9とともに熱回収流路6を形成する円筒状の外壁10が設けられている。
内壁8、中壁9および外壁10は、同心に配置されている。
燃焼ガス流路2の内部には、有底円筒形状の輻射壁11が、開口部を下向きにして設けられている。
また、輻射壁11と内壁8との間は、燃焼ガス1が通過できるように、所定の距離が離されている。
燃焼ガス1の上流に面した位置の輻射壁11の内側には、輻射空間12が設けられている。また、この輻射空間12を構成する輻射壁11の内面には、円筒形状の内側輻射部11aが設けられている。
さらに、輻射壁11の内部には、輻射空間12を挟んで、燃焼ガス1の下流側には断熱性の第1の熱遮蔽部13が設けられ、上流側には燃焼ガス1の流入を遮断する断熱性の第2の熱遮蔽部14が設けられている。
第1の熱遮蔽部13および第2の熱遮蔽部14は、それぞれが円筒形状であり輻射壁11の内壁面と面接触している。
輻射壁11の下方には、輻射壁11の開口部に向けて高温の燃焼ガス1を放つバーナー15が設けられている。
第1の熱遮蔽部13は、例えば、燃焼ガス1の下流側が、厚さ約50mm程度の多結晶質アルミナ短繊維から構成され、残りがケイ酸カルシウム材から構成されている。
第2の熱遮蔽部14は、例えば、厚さ約50mm程度の多結晶質アルミナ短繊維から構成されている。
輻射壁11は、厚みが1mm程度のステンレス素材から構成されており、その内表面および外表面を、製作時または運転時に、酸化させて輻射率の高い材料にして使用する。
第1の改質反応流路5は、原料3の上流側に、内壁8と中壁9とに区画され流入した原料3を予熱する原料予熱流路16が連続的に設けられている。
第1の改質反応流路5の内部には、メタンガスと水を主成分とする原料3から水素等に改質する下式(1)、(2)に示す改質反応を起こさせる触媒17aが充填されている。
例えば、水蒸気とカーボンとのモル比率を3:1とした条件で、改質温度を650℃〜750℃程度まで加熱すると、乾燥ガス換算で水素ガスを70%以上含む改質ガス4が得られる。
触媒17aは、Ru系やNi系のものが用いられる。
(改質反応)
CH+HO→CO+3H −(1)
CO+HO→CO+H −(2)
熱回収流路6は、改質ガス4の下流側に、中壁9と外壁10とに区画され内部に流入した改質ガス4の中で、例えば上式(2)で示されるようにCOをCOに変成させる第2の反応流路18が連続的に設けられている。
この第2の反応流路18の内部には、第2の触媒17bが充填されている。
第2の反応流路18から流出する改質ガス4の出口付近の外壁10には、生成された改質ガス4を外へ取り出す改質ガス出口孔19が形成されている。
燃焼ガス流路2の下流には、燃焼ガス1を排気する排気孔20が形成されている。
原料予熱流路16の上流には、原料3を流入するための原料供給孔21が形成されている。
内壁8の燃焼ガス流路2側の面の燃焼ガス1の上流側には、断熱材32が、周方向に沿って設けられている。これにより、第1の改質反応流路5の出口付近および連通路7を形成する内壁8がバーナー15により過熱することを防いでいる。
次に、実施の形態1に係る燃料処理装置の動作について説明する。
原料供給孔21から供給された原料3は、原料予熱流路16で内壁8を介して燃焼ガス流路2を通過する燃焼ガス1により加熱される。また、中壁9を介して第2の反応流路18を通過する改質ガス4により加熱される。
約400℃に加熱された原料3は、触媒17aが充填されている第1の改質反応流路5に流入する。
第1の改質反応流路5内の原料3は、内壁8を介して燃焼ガス流路2を通過する燃焼ガス1により加熱される。また、中壁9を介して熱回収流路6を通過する改質ガス4により加熱される。
第1の改質反応流路5内の触媒17aの近傍にある原料3は、約700℃にまで加熱されるとともに、吸熱反応である改質反応によって原料3から改質ガス4に改質する。
第1の改質反応流路5から流出した改質ガス4は、連通路7で流れが反転し、熱回収流路6に流入する。
熱回収流路6内の改質ガス4は、中壁9を介して第1の改質反応流路5内の原料3へ熱を伝達し、吸熱反応である改質反応に供されて、熱回収流路6内の改質ガス4は約450℃まで温度が下がる。
この熱回収流路6内の改質ガス4から第1の改質反応流路5内の原料3へ熱を伝達する熱回収は、主に、第1の改質反応流路5における原料3の上流側で行われる。
その後、熱回収流路6を通過した改質ガス4は、第2の反応流路18に流入する。
この第2の反応流路18では、例えばCO変成のためのシフト反応やCO選択酸化反応(酸化ガス供給孔は図示せず)、さらにメタン化反応等が単独もしくは複数組合せによって行われる。これらの第2の反応流路18では、その用途に応じた触媒の適正な動作温度で行うため、例えば、改質ガス4はCO変成触媒では250℃程度、CO選択酸化触媒では約150℃程度まで熱回収した後、第2の反応流路18に供給する。
一方、燃焼ガス流路2では、バーナー15の加熱により約800℃〜約1200℃になった燃焼ガス1が吸熱反応である改質反応に必要な熱を第1の改質反応流路5および輻射壁11へ伝達し、燃焼ガス1の温度は約450℃まで温度が下がる。
さらに、燃焼ガス流路2の燃焼ガス1の下流では、燃焼ガス1が原料予熱流路16へ熱を伝達し、燃焼ガス1の温度は100℃以下程度にまで下がる。
燃焼ガス流路2から内壁8を介した第1の改質反応流路5および原料予熱流路16への熱の伝達は、燃焼ガス1の対流により行われ、また、輻射壁11からの輻射および燃焼ガス1からの輻射によっても行われる。特に第1の改質反応流路5の高温部では、輻射壁11からの輻射の比率が大きくなる。つまり、輻射壁11のバーナー15の近傍にある領域からの輻射は、第1の改質反応流路5に大量の熱を伝達する。
なお、バーナー15に供給される燃料は、原料3と同じ種類や異種燃料がある。例えば、燃料処理装置を燃料電池システムに組み込んだ場合、原料3から改質された改質ガス中の水素のうち約70%〜90%が燃料電池スタックで消費されるものの、残りの10%〜30%は電池のアノードからオフガスとして排出される。このオフガスをバーナー15の燃料とする場合、または、オフガスと、原料3と同一燃料とを組み合わせてバーナー15の燃料とする場合等がある。
ここで、第1の改質反応流路5を通過する原料3に周方向の偏流があった場合、改質反応は吸熱反応であるので、改質反応に必要となる熱量に周方向のばらつきが発生する。
この時、燃焼ガス1からの熱の伝達が周方向に一様である場合、第1の改質反応流路5を通過する原料3の流量が多い領域に隣接した内壁8および燃焼ガス流路2を通過する燃焼ガス1は、温度が著しく低下し、第1の改質反応流路5へ伝達する熱量が不足する。
一方、第1の改質反応流路5を通過する原料3の流量の少ない領域に隣接した内壁8および燃焼ガス流路2を通過する燃焼ガス1は、比較的高温で維持される。その結果、燃焼ガス1の周方向の温度差が発生する。
さらに、燃焼ガス1にも周方向の偏流があれば、燃焼ガス1の周方向の温度差はさらに拡大する。
燃焼ガス1の周方向の温度差により、燃焼ガス1と接触している輻射壁11にも周方向の温度差が発生する。
輻射壁11に周方向の温度差が発生すると、内側輻射部11aでは、輻射により高温部から低温部への熱移動が起こり、輻射壁11の周方向の温度差が低減するようになる。
輻射壁11の周方向の温度差が低減すると、内壁8および燃焼ガス1の周方向の温度差が低減し、その結果、改質ガス4の周方向の温度差も低減する。
実際、本願発明者は、第1の内側輻射部11aを設けない燃料処理装置と、第1の熱遮蔽部13の軸線方向の長さを第1の改質反応流路5の半分にして第1の内側輻射部11aを設けた燃料処理装置とを、原料3の流量に約±5%の分布をつけて、第1の改質反応流路5の出口付近における改質ガス4の周方向の温度差を測定した。
その結果、第1の内側輻射部11aを設けない場合の改質ガス4の周方向の温度差は約150℃であったのに対して、内側輻射部11aを設けた場合の温度差は約100℃であり、改質ガス4の周方向の温度差が低減することが確認された。
輻射壁11における燃焼ガス1の下流側は、内部に第1の熱遮蔽部13が設けられているので、輻射空間12内の熱が伝達されない。これにより、原料予熱流路16や第1の改質反応流路5における原料3の上流側に隣接した輻射壁11の領域は過熱しないようにしている。
その結果、原料予熱流路16や第1の改質反応流路5の入口付近で原料3の温度が必要以上に上昇するのを抑制し、改質反応が進行する前に、原料3が熱分解してカーボン析出することを防止している。また、排気孔20から排出される燃焼ガス1に対する伝熱を防止して、熱損失の低減を図っている。
輻射壁11の燃焼ガス1の上流側は、内部に第2の熱遮蔽部14が設けられているので、輻射空間12内に燃焼ガス1の熱が直接伝えられないようになっている。
その結果、輻射壁11が、燃焼ガス1により過熱して、耐久性が低下するのを防止している。
また、第1の改質反応流路5における改質ガス4の出口付近は、改質反応上、最も高温にし、かつ適切に温度設定しなければならない領域であり、内壁8を介して燃焼ガス1が最も高温である燃焼ガス流路2の入口と隣接している。
その結果、バーナー15の空気過剰率を適切に設定することで容易に第1の改質反応流路5における改質ガス4の出口付近の温度を制御することが可能となる。
この実施の形態1に係る燃料処理装置によると、第1の改質反応流路5を通過する原料3に周方向の偏流があった場合に、輻射壁11の内側輻射部11aが、輻射壁11の周方向の温度差を低減させるので、燃焼ガス1の周方向の温度差を低減させ、改質ガス4の周方向の温度ばらつきを改善させる。その結果、改質効率および耐久性を向上させ、また、熱効率も向上させることができる。
また、輻射壁11の内部には、燃焼ガス1の下流側に第1の熱遮蔽部13が設けられているので、輻射空間12から下流側の輻射壁11への熱の伝達を低減することができる。その結果、原料予熱流路16や第1の改質反応流路5における原料3の上流側に隣接した輻射壁11の領域の過熱を防止することができる。
また、輻射壁11の内部には、燃焼ガス1の上流側に第2の熱遮蔽部14が設けられているので、燃焼ガス1から輻射空間12への直接的な熱の伝達を低減させることができる。その結果、輻射壁11が、燃焼ガス1により過熱して、耐久性が低下するのを防止することができる。
図2は、実施の形態1の他の例の燃料処理装置の断面図である。
実施の形態1に係る燃料処理装置から、第2の熱遮蔽部14を除いたものである。
この燃料処理装置では、輻射空間12の一部をバーナー15の燃焼空間と共通化したものである。これにより、バーナー15により、直接的に第1の輻射空間12内の燃焼ガス1と輻射壁11とを加熱することができる。
そこで、本願発明者は、上記構成の燃料処理装置を用いて、予め燃焼ガス1の上流側にあたる輻射壁11の端部近傍に約200℃の温度分布(800℃〜1000℃)を有する燃焼ガス1を作り、輻射壁11の周方向の温度差を測定した。
その結果、輻射壁11周方向の温度差は、約40℃まで低下した。
また、引き続いてこの条件で、第1の改質反応流路5に±5%の分布をつけた原料3を流入させて改質反応を行ったところ、第1の改質反応流路5の出口付近での改質ガス4の周方向の温度差は約100℃であった。
この結果から、この構成の燃料処理装置によると、バーナー15からの燃焼ガス1自体に、大きな温度分布があっても、燃焼ガス流路2内での燃焼ガス1の周方向の温度差を低減させることが確認できた。
実施の形態2.
図3は実施の形態2に係る燃料処理装置の断面図、図4は図3の燃焼ガス流路2に羽根板22を設けたときの燃焼ガス1の流れを示す説明図である。
実施の形態2に係る燃料処理装置は、燃焼ガス流路2の第1の改質反応流路5に隣接した領域に、燃焼ガス曲流手段である羽根板22が設けられている。
その他の構成は、実施の形態1の他の例と同様である。
図4に示すように、羽根板22は、燃焼ガス流路2を通過する燃焼ガス1の流れを周方向に曲げる。
ところで、原料3に周方向の偏流があった場合、第1の改質反応流路5の周方向での給熱量が異なることから、改質ガス4に温度ばらつきが生じる。また、これによって燃焼ガス1の熱量が周方向で局部的に過不足状態になる。燃焼ガス1の流れを周方向に曲げることで、燃焼ガス流路2を通過する燃焼ガス1の流れと第1の改質反応流路5を流れる原料3の流れとが、内壁8を介して向かい合った位置ではなくなる。このことから、内壁8を介して第1の改質反応流路5への移動熱量が均等化され、燃焼ガス1の局部的な熱量過不足の発生を防止する。
その結果、改質ガス4の周方向の温度差を低減させることができる。
実施の形態2に係る燃料処理装置によると、燃焼ガス流路2の第1の改質反応流路5に隣接した領域に羽根板22が設けられているので、原料3に周方向の偏流があった場合に、燃焼ガス流路2を通過する燃焼ガス1の流れの方向を周方向に曲げて、燃焼ガス1から第1の改質反応流路5への移動伝熱量の過不足を均等化する。その結果、改質ガス4の周方向の温度差を低減させることができる。
なお、上記実施の形態2では、燃焼ガス曲流手段として羽根板22を例に説明したが、勿論このものに限らず、例えば、棒のようなもので燃焼ガス1の流れを屈曲させてもよい。また、羽根板22の形状および数は、図4に示すものに限定するものではない。
実施の形態3.
図5は実施の形態3に係る燃料処理装置の断面図である。
実施の形態3に係る燃料処理装置は、第1の改質反応流路5内に改質ガス曲流手段である羽根板23が設けられている。
その他の構成は、実施の形態1の他の例と同様である。
この羽根板23により、第1の改質反応流路5内の原料3の流れが周方向に曲げられるので、原料3に周方向の偏流があった場合に、燃焼ガス流路2から第1の改質反応流路5への移動伝熱量の過不足を均等化させる。
実施の形態3に係る燃料処理装置によると、第1の改質反応流路5内に羽根板23が設けられているので、第1の改質反応流路5内の原料3の流れが周方向に曲げられ、燃焼ガス流路2から第1の改質反応流路5への熱の伝達の周方向のばらつきを低減させることができる。その結果、改質ガス4の周方向の温度差を低減させることができる。
実施の形態4.
図6は実施の形態4に係る燃料処理装置の断面図、図7は図6のスリット波板24を示す斜視図である。
実施の形態4に係る燃料処理装置は、燃焼ガス流路2の第1の改質反応流路5に隣接した領域に燃焼ガス曲流手段である高熱伝導性のスリット波板24が設けられている。
図7に示すように、スリット波板24の山部には、スリットが形成されている。
スリット波板24の山部が内壁8に固定され、谷部が輻射壁11に固定されて、スリット波板24により燃焼ガス流路2の幅は維持されている。
スリット波板24の波長方向と直交する方向は、軸線方向から周方向に対して所定の角度に傾斜され、スリット波板24は燃焼ガス流路2内でらせん状に設けられている。
その他の構成は、実施の形態1の他の例と同様である。
スリット波板24は、予め平板時に山部となる領域にスリットを入れておき、その後、プレス成型等を用いて波板に曲げ加工することで製作することが可能である。その後、加工されたスリット波板24を、スリットが設けられている領域が外径となるようにして所望の径にロール曲げて、容易に部品として形成することができる。勿論、これらの順序を変更し、また、複数の行程を組み合わせて製作してもよい。
実施の形態4に係る燃料処理装置によると、燃焼ガス流路2の第1の改質反応流路5に隣接した領域に燃焼ガス曲流手段である高熱伝導性のスリット波板24が設けられているので、原料3に周方向の偏流があった場合に、燃焼ガス1から第1の改質反応流路5への移動伝熱量の過不足を均等化させるので、改質ガス4の周方向の温度差を低減させることができる。
また、スリット波板24は、内壁8と輻射壁11とに密着して固定されているので、高温による内壁8および輻射壁11の変形によって燃焼ガス流路2の幅が不均一に変形することを防止できる。
また、スリット波板24は、高熱伝導性であるので、燃焼ガス1から伝達されたスリット波板24の熱を第1の改質反応流路5へ伝えて、熱効率を向上させることができる。
なお、上記構成の実施の形態4では、スリット波板24を燃焼ガス曲流手段であるとして説明したが、勿論このものに限らず、スリット波板24を改質ガス曲流手段として第1の改質反応流路5内に設けてもよい。
これによると、原料3に周方向の偏流があった場合に、スリット波板24により、原料3の周方向のばらつきが低減され、改質ガス4の周方向の温度差が低減される。
また、スリット波板24は、内壁8と中壁9とに密着して固定されている場合、高温による内壁8および中壁9で挟まれた第1の改質反応流路の幅が不均一に変形するのを防止できる。
また、スリット波板24は、高熱伝導性であるので、内壁8および中壁9から伝えられたスリット波板24の熱を原料3へ伝達して、熱効率を向上させることができる。
図8は、実施の形態4の他の例の燃料処理装置のオフセットフィン25を示す斜視図である。
スリット波板24と同様にして、燃焼ガス流路2の第1の改質反応流路5に隣接した領域に燃焼ガス曲流手段である高熱伝導性のオフセットフィン25がらせん状に設けられている。図8の上面が熱回収流路6の外壁10と面接触し、下面が中壁9と面接触している。
このオフセットフィン25は、燃焼ガス1の流れ方向に垂直な壁はなく、上面、側面および下面からなっている。
オフセットフィン25内の燃焼ガス1の多くは、オフセットフィン25の側面に沿って、らせん状に旋回し、オフセットフィン25内の燃焼ガス1の残りは、軸線方向に進もうとして、開いている面から隣の燃焼ガス1の流れと合流する。したがって、原料3に周方向の偏流があった場合や燃焼ガス1に周方向の偏流があった場合に、オフセットフィン25が燃焼ガス1を周方向に旋回させるので、燃焼ガス1の周方向の伝熱量の過不足が抑制され、改質ガス4の周方向の温度差を低減させる。
この機能を確かめるために、本願発明者は、実際、燃焼ガス流路2内で、軸線方向から周方向へ60℃傾けた状態でオフセットフィン25を設け、溝が一周するようにロールさせた後、トレースガスを流してその濃度分布を測定したところ、約270度まで燃焼ガス1の流れ方向を変えることができることがわかった。
このオフセットフィン25を用いて、バーナー15での燃焼温度差を約200℃つけ、かつ原料3の流量に±5%の偏流をつけた改質反応試験を実施した結果、第1の改質反応流路5の出口付近の周方向の温度差は約70℃まで改善された。
また、燃焼ガス流路2の幅に相当する高さに設計および製作することで組立時の燃焼ガス流路2の幅の位置決めに利用することができる。
なお、上記構成の燃料処理装置では、オフセットフィン25を第1の改質反応流路5に隣接した燃焼ガス流路2内に設けているが、オフセットフィン25を原料予熱流路16に隣接した燃焼ガス流路2内に設けてもよい。
図9は実施の形態4のさらなる他の例の燃料処理装置の断面図である。
この燃料処理装置では、輻射壁11の内部で、第2の熱遮蔽部が燃焼ガス1の上流側の上流熱遮蔽部26と下流側の下流熱遮蔽部27とに分離されて設けられ、下流熱遮蔽部27は、輻射壁11の最上部に固定されている。
輻射壁11は、上流熱遮蔽部26の燃焼ガス1の上流側に、輻射空間12aが形成された上流内側輻射部28aを有し、上流熱遮蔽部26と下流熱遮蔽部27との間に、輻射空間12bが形成された下流内側輻射部29aを有している。
この燃料処理装置によると、上流内側輻射部28aと比べて下流内側輻射部29aの温度が低いので、効果が低減されるものの、下流内側輻射部29aにより燃焼ガス1の周方向の温度差が低減され、その結果、原料予熱流路16への熱の伝達の分散均一化を図ることができ、改質ガス4の周方向の温度差を低減させることができる。
また、下流熱遮蔽部27により、排気孔20から排出される燃焼ガス1への放熱を防止して、熱効率を向上させることができる。
実施の形態5.
図10は実施の形態5に係る燃料処理装置の断面図である。
実施の形態5に係る燃料処理装置は、燃焼ガス流路2の中で、輻射壁が燃焼ガス1の上流側の上流輻射壁28と下流側の下流輻射壁29とに分離されている。上流輻射壁28および下流輻射壁29は、実施の形態1の輻射壁11と同様のものから構成されている。
また、燃焼ガス流路2には、上流輻射壁28と下流輻射壁29との間に、上流側から流れた燃焼ガス1を合流させる燃焼ガス合流空間30が形成されている。
内壁8の燃焼ガス流路2側の面には、燃焼ガス1を燃焼ガス合流空間30へ案内する案内手段であるリング31が周方向に設けられている。
上流輻射壁28は、輻射空間12aが形成された上流内側輻射部28aを有し、上流輻射壁28内部の燃焼ガス1の下流側には、輻射空間12aからの伝熱を防ぐために上流熱遮蔽部26が設けられている。
下流輻射壁29は、輻射空間12bが形成された下流内側輻射部29aを有し、下流輻射壁29内部の燃焼ガス1の下流側には、輻射空間12bからの伝熱を防ぐために下流熱遮蔽部27が設けられている。
その他の構成は実施の形態1の他の例と同様である。
実施の形態5に係る燃料処理装置では、まず、バーナー15で加熱された燃焼ガス1が、内壁8と上流輻射壁28との間を通過し、内壁8および上流輻射壁28に熱を伝達する。
次に、燃焼ガス1はリング31に案内されて燃焼ガス合流空間30に流入し、燃焼ガス1が合流する。
その後、燃焼ガス1は内壁8と下流輻射壁29との間に流入し、内壁8および下流輻射壁29に熱を伝達する。
実施の形態5に係る燃料処理装置によると、内壁8と上流輻射壁28との間の燃焼ガス流路2を流通する燃焼ガス1に周方向の温度差が発生しても、燃焼ガス流路2の途中に設けられた燃焼ガス合流空間30において、燃焼ガス1が合流するので、内壁8と下流輻射壁29との間の燃焼ガス流路2を通過する燃焼ガス1の周方向の温度差を低減させ、その結果、改質ガス4の周方向の温度差を低減させることができる。
なお、上記各実施の形態では、輻射壁11、上流輻射壁28および下流輻射壁29に、ステンレス材料を用いて説明したが、勿論このものに限らず、輻射伝熱を促進するための輻射率の高い材料であればよく、例えば、表面が高輻射率のセラミック系材料であるもの等がある。また、低輻射率材料であっても、例えば、SiZrO4、ZrO2または、SiO2などを成分とするコーティング剤等で表面処理して輻射伝熱を促進するようにしたものであってもよい。
また、上記各実施の形態では、輻射空間を形成する内側輻射部では、熱遮蔽部は、断熱性のあるものとして示したが、例えば表面を輻射率の高い金属としたり、上記コーティングしたりするなどで、輻射面として利用してもよい。
また、上記各実施の形態では、原料3にメタンを用いた改質反応を例として説明したが、勿論このものに限らず、例えば、天然ガス(都市ガス等)やエタン、プロパンなどの炭化水素系燃料ガス、ナフサ、ガソリン、灯油、軽油等の液体炭化水素系燃料、メタノール、エタノール等のアルコール系燃料、エーテル系の燃料であってもよい。また、このとき用いられる触媒は、それぞれの改質に適したものになることは言うまでもない。
また、上記各実施の形態において、原料予熱流路16の内部の構造ついては、説明していないが、例えば、原料予熱流路16内に伝熱粒子である微小な粒子を充填して原料3への熱の伝導性を高めたもの、原料予熱流路16を形成する壁に伝熱フィンを設けたもの、内部に原料3を通過させ原料3への熱伝達性を高めるためにチューブを原料予熱流路16内に設けたもの、原料予熱流路16内に仕切り板を設け原料3が流れる距離を長くして原料3への熱伝達性を高めたもの等であってもよい。
また、上記各実施の形態では、燃料処理装置を円筒形状として説明したが、例えば、角柱形状等であってもよい。
実施の形態1に係る燃料処理装置の断面図である。 実施の形態1の他の例の燃料処理装置の断面図である。 実施の形態2に係る燃料処理装置の断面図である。 図3の燃焼ガス流路に羽根板を設けたときの燃焼ガスの流れを示す説明図である。 実施の形態3に係る燃料処理装置の断面図である。 実施の形態4に係る燃料処理装置の断面図である。 図6のスリット波板を示す斜視図である。 実施の形態4の他の例の燃料処理装置のオフセットフィンを示す斜視図である。 実施の形態4のさらなる他の例の燃料処理装置の断面図である。 実施の形態5に係る燃料処理装置の断面図である。
符号の説明
1 燃焼ガス、2 燃焼ガス流路、3 原料、4 改質ガス、5 第1の改質反応流路、6 熱回収流路、7 連通路、8 内壁、9 中壁、10 外壁、11 輻射壁、11a 内側輻射部、12 輻射空間、12a 輻射空間、12b 輻射空間、13 第1の熱遮蔽部、14 第2の熱遮蔽部、15 バーナー、16 原料予熱流路、17a 触媒、17b 第2の触媒、18 第2の反応流路、19 改質ガス出口孔、20 排気孔、21 原料供給孔、22 羽根板、23 羽根板、24 スリット波板、25 オフセットフィン、26 上流熱遮蔽部、27 下流熱遮蔽部、28 上流輻射壁、28a 上流内側輻射部、29 下流輻射壁、29a 下流内側輻射部、30 燃焼ガス合流空間、31 リング、32 断熱材。

Claims (9)

  1. 燃焼ガスを通す燃焼ガス流路とこの燃焼ガス流路の外側に内壁を介して設けられ前記内壁と中壁とで形成される空間に流入した原料から改質ガスを生成する改質反応流路とを有する改質反応器と、
    前記内壁の前記燃焼ガス流路側に設けられ、前記燃焼ガスから伝達された熱を前記改質反応流路へ向かって輻射により伝達する筒形状の輻射壁と、
    前記輻射壁の内側の一部に設けられ、前記燃焼ガスの流入を遮断する熱遮蔽部とを備え、
    前記輻射壁と前記熱遮蔽部とにより輻射空間が形成され、この輻射空間に面した前記輻射壁の内面は、前記燃焼ガスから伝達された熱を他の輻射壁の内面に向かって輻射する内側輻射部を有することを特徴とする燃料処理装置。
  2. 前記熱遮蔽部は、前記燃焼ガスの下流側および上流側の少なくとも下流側に面した輻射壁の内側に設けられていることを特徴とする請求項1に記載の燃料処理装置。
  3. 前記燃焼ガス流路は、前記燃焼ガスの流れを前記輻射壁の外周に沿って規制する燃焼ガス曲流手段を備えていることを特徴とする請求項1または請求項2に記載の燃料処理装置。
  4. 前記燃焼ガス曲流手段は、前記内壁および前記輻射壁に密着していることを特徴とする請求項3に記載の燃料処理装置。
  5. 前記燃焼ガス曲流手段は、前記燃焼ガスからの移動熱量を前記内壁へ熱伝導させることを特徴とする請求項4に記載の燃料処理装置。
  6. 前記改質反応流路は、前記改質反応流路に流入してきた前記原料の流れの方向を変化させる改質ガス曲流手段を備えていることを特徴とする請求項1ないし請求項5の何れか1項に記載の燃料処理装置。
  7. 前記改質ガス曲流手段は、前記中壁および前記内壁に密着していることを特徴とする請求項6に記載の燃料処理装置。
  8. 前記改質ガス曲流手段は、前記内壁および前記中壁からの移動熱量を熱伝導によって前記改質反応流路に伝えることを特徴とする請求項7に記載の燃料処理装置。
  9. 前記燃焼ガス流路は、上流側と下流側とに前記輻射壁を分離して、上流側から流れた前記燃焼ガスを合流させる燃焼ガス合流空間が形成され、
    前記内壁の前記燃焼ガス流路側の面には、前記燃焼ガスを前記燃焼ガス合流空間へ案内する燃焼ガス案内手段が設けられていることを特徴とする請求項1ないし請求項8の何れか1項に記載の燃料処理装置。
JP2006153263A 2006-06-01 2006-06-01 燃料処理装置 Expired - Fee Related JP4810316B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006153263A JP4810316B2 (ja) 2006-06-01 2006-06-01 燃料処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006153263A JP4810316B2 (ja) 2006-06-01 2006-06-01 燃料処理装置

Publications (2)

Publication Number Publication Date
JP2007320812A true JP2007320812A (ja) 2007-12-13
JP4810316B2 JP4810316B2 (ja) 2011-11-09

Family

ID=38853941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006153263A Expired - Fee Related JP4810316B2 (ja) 2006-06-01 2006-06-01 燃料処理装置

Country Status (1)

Country Link
JP (1) JP4810316B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102110833A (zh) * 2009-12-24 2011-06-29 三星Sdi株式会社 具有高耐久性的重整器
JP2011132114A (ja) * 2009-12-24 2011-07-07 Samsung Sdi Co Ltd 耐久性を強化させた改質器
WO2014156013A1 (ja) * 2013-03-25 2014-10-02 住友精密工業株式会社 燃料改質器及び燃料電池
JP2016037440A (ja) * 2014-08-05 2016-03-22 パナソニックIpマネジメント株式会社 水素生成装置およびそれを用いた燃料電池システム
JP2022108883A (ja) * 2021-01-14 2022-07-27 パナソニックIpマネジメント株式会社 水素生成装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945903A (ja) * 1982-09-03 1984-03-15 Toyo Eng Corp 内管加熱水蒸気改質法および装置
JPH04187502A (ja) * 1990-11-20 1992-07-06 Tech Res & Dev Inst Of Japan Def Agency 燃料電池電源装置用改質器
JPH04265147A (ja) * 1991-02-19 1992-09-21 Fuji Electric Co Ltd 燃料改質器
JPH082901A (ja) * 1994-06-15 1996-01-09 Daikin Ind Ltd 燃料電池用改質装置
JP2000026101A (ja) * 1998-07-09 2000-01-25 Fuji Electric Co Ltd 燃料改質器
JP2001151501A (ja) * 1999-11-22 2001-06-05 Matsushita Electric Works Ltd 改質装置
JP2003317779A (ja) * 2002-04-22 2003-11-07 Mitsubishi Electric Corp 燃料電池用改質器
JP2004059415A (ja) * 2002-06-03 2004-02-26 Mitsubishi Heavy Ind Ltd 燃料改質器及び燃料電池発電システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945903A (ja) * 1982-09-03 1984-03-15 Toyo Eng Corp 内管加熱水蒸気改質法および装置
JPH04187502A (ja) * 1990-11-20 1992-07-06 Tech Res & Dev Inst Of Japan Def Agency 燃料電池電源装置用改質器
JPH04265147A (ja) * 1991-02-19 1992-09-21 Fuji Electric Co Ltd 燃料改質器
JPH082901A (ja) * 1994-06-15 1996-01-09 Daikin Ind Ltd 燃料電池用改質装置
JP2000026101A (ja) * 1998-07-09 2000-01-25 Fuji Electric Co Ltd 燃料改質器
JP2001151501A (ja) * 1999-11-22 2001-06-05 Matsushita Electric Works Ltd 改質装置
JP2003317779A (ja) * 2002-04-22 2003-11-07 Mitsubishi Electric Corp 燃料電池用改質器
JP2004059415A (ja) * 2002-06-03 2004-02-26 Mitsubishi Heavy Ind Ltd 燃料改質器及び燃料電池発電システム

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102110833A (zh) * 2009-12-24 2011-06-29 三星Sdi株式会社 具有高耐久性的重整器
JP2011132114A (ja) * 2009-12-24 2011-07-07 Samsung Sdi Co Ltd 耐久性を強化させた改質器
US8591609B2 (en) 2009-12-24 2013-11-26 Samsung Sdi Co., Ltd. Reformer with high durability
WO2014156013A1 (ja) * 2013-03-25 2014-10-02 住友精密工業株式会社 燃料改質器及び燃料電池
CN105189345A (zh) * 2013-03-25 2015-12-23 住友精密工业株式会社 燃料改性器及燃料电池
JPWO2014156013A1 (ja) * 2013-03-25 2017-02-16 住友精密工業株式会社 燃料改質器及び燃料電池
US9738519B2 (en) 2013-03-25 2017-08-22 Sumitomo Precision Products Co., Ltd. Fuel reformer and fuel cell
JP2016037440A (ja) * 2014-08-05 2016-03-22 パナソニックIpマネジメント株式会社 水素生成装置およびそれを用いた燃料電池システム
JP2022108883A (ja) * 2021-01-14 2022-07-27 パナソニックIpマネジメント株式会社 水素生成装置
JP7454764B2 (ja) 2021-01-14 2024-03-25 パナソニックIpマネジメント株式会社 水素生成装置

Also Published As

Publication number Publication date
JP4810316B2 (ja) 2011-11-09

Similar Documents

Publication Publication Date Title
US8038960B2 (en) Reformer
KR101826064B1 (ko) 탄화수소를 개질하기 위한 방법 및 장치
US6998096B2 (en) Fuel reformer for use in fuel cell
US10256489B2 (en) Hydrogen generating apparatus and fuel cell system
JP4189212B2 (ja) 水素生成装置とそれを備える燃料電池システム
JP4810316B2 (ja) 燃料処理装置
JP7473532B2 (ja) 炭化水素の水蒸気改質又は乾式改質
JP3262354B2 (ja) 非断熱触媒反応を実施する改質器
JP2008535766A (ja) 熱交換器用の一体型かつ円筒状の水蒸気改質装置
JP2009096705A (ja) 燃料電池用改質装置
US20040105795A1 (en) Reactor for conducting endothermic reactions
JP2007320816A (ja) 燃料処理装置
KR100761945B1 (ko) 가스연료처리기
KR100707834B1 (ko) 내부 열교환 구조를 이용하여 열효율을 향상시킨연료개질장치
JP2006240916A (ja) 改質器
KR101785484B1 (ko) 반응 효율이 우수한 탄화수소 수증기 개질용 촉매반응기
TWI626784B (zh) 氣體燃料重組裝置及其發電整合系統
JP5244488B2 (ja) 燃料電池用改質器
JP2004123464A (ja) 水蒸気改質器
US9314762B2 (en) Anti-soot reformer with temperature control
JP2002255504A (ja) 改質器用バーナ装置
JP2009067645A (ja) 水素製造装置及びこれを用いた燃料電池システム
KR20010049386A (ko) 비단열공정을 실행하기 위한 반응기
JP6194480B2 (ja) 水素生成装置及び燃料電池システム
JP2005330131A (ja) 水素製造装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees