JP2007304041A - 感熱式流量センサの流量検出素子 - Google Patents

感熱式流量センサの流量検出素子 Download PDF

Info

Publication number
JP2007304041A
JP2007304041A JP2006135021A JP2006135021A JP2007304041A JP 2007304041 A JP2007304041 A JP 2007304041A JP 2006135021 A JP2006135021 A JP 2006135021A JP 2006135021 A JP2006135021 A JP 2006135021A JP 2007304041 A JP2007304041 A JP 2007304041A
Authority
JP
Japan
Prior art keywords
fluid
flow rate
temperature
heat
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006135021A
Other languages
English (en)
Other versions
JP4205116B2 (ja
Inventor
Masahiro Kawai
正浩 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006135021A priority Critical patent/JP4205116B2/ja
Priority to US11/605,454 priority patent/US7426857B2/en
Priority to KR1020060123500A priority patent/KR100849011B1/ko
Priority to DE102006060343A priority patent/DE102006060343B4/de
Publication of JP2007304041A publication Critical patent/JP2007304041A/ja
Application granted granted Critical
Publication of JP4205116B2 publication Critical patent/JP4205116B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

【課題】流体の温度が変動したり、あるいは流体の温度と感熱式流量センサの周りの温度との間に差が生じた場合でも流量の検出精度を高くするようにする。
【解決手段】平板状基材2の表面に絶縁性の支持膜3を形成し、この支持膜3上に感熱抵抗膜よりなる発熱抵抗4と流体温度測定抵抗5が形成されており、この感熱抵抗膜上に絶縁性の保護膜7を形成し、それぞれの感熱抵抗着膜の下部には平板状基材2を部分的に除去することにより、キャビティ9a、9bを形成し、発熱抵抗4によって加熱された部分から流体への熱伝達現象に基づいて流体の流速を計測するものであって、流体温度測定抵抗5の下部に設けられたキャビティ9bの上面部が流体温度測定抵抗5が配置されている部分の内側に位置するように形成する。
【選択図】図2

Description

この発明は、例えば内燃機関の吸入空気量を計測するための感熱式流量センサに関するものであり、特に発熱体または発熱体によって加熱された部分から流体への熱伝達現象に基づいて流体の流速ないしは流量を計測する感熱式流量センサの流量検出素子に関するものである。
従来の感熱式流量センサとしては、基板上に発熱抵抗と流体温度測定抵抗が配置され、基板を部分的に除去することによって形成されたキャビティが発熱抵抗の下部に位置しているものがあった(特許文献1参照)。
また別の従来の感熱式流量センサにおいては、基板上に発熱抵抗と流体温度測定抵抗が配置され、これら発熱抵抗と流体温度測定抵抗のそれぞれの下部にキャビティが形成されているものがあった(特許文献2参照)。
特許第3455473号 特開平6−249693号公報
上記に示されたような感熱式流量センサを自動車に装着してエンジンの制御を行う場合、一定の温度の下でアイドル運転状態を継続させ、エンジンルーム内の温度が充分上昇した状態からスロットルを全開させて急発進するようなことがある。
この場合、アイドル運転において、エンジンルーム内は高温となり、エンジンルーム内に装着されている感熱式流量センサにおいては、感熱式流量センサ部を流れる気流の温度、および感熱式流量センサのエレメント支持部の温度も高温状態になっている。このようなときに急発進急加速が行なわれると、エンジンルーム内は高温のままであるが、感熱式流量センサを流れる気流、およびエレメント支持部は冷却されることとなる。
ここで上記特許文献1においては、基板上に発熱抵抗と流体温度測定抵抗が形成され、発熱抵抗の下部にのみキャビティが設置されているので、流体温度測定抵抗部においては熱容量が大きくなり、従って流体温度測定抵抗においては気流の温度変化に対して熱応答遅れが発生し、流体温度検出誤差が発生することとなり、流量の検出値に誤差が生じることとなる。
また、上記特許文献2においては、流体温度測定抵抗の下部にも発熱抵抗の下部と同様にキャビティが配置されているので、流体の温度が変動しても流体温度測定抵抗における検出誤差を低減することができるが、流体温度測定抵抗における熱応答が早くなりすぎてしまうという問題点があった。
即ちエレメント支持部における熱容量は大きいので、エレメント支持部において熱応答遅れが発生してしまい、流体温度測定抵抗とエレメント支持部の間における熱応答のバランスが崩れてしまう。その結果流量の検出値に誤差が生じてしまうという問題点があった。
この発明は上記のような課題を解決するためになされたものであり、流体温度測定抵抗が位置している範囲よりも内側の範囲にキャビティを形成することにより、流体の温度が変動したり、あるいは流体の温度と感熱式流量センサの周りの温度との間に差が生じた場合でも流量の検出精度を高くすることができるともに、さらにキャビティ部における強度を高くして、信頼性の高い感熱式流量センサを提供することを目的とする。
この発明に係る感熱式流量センサにおける流量検出素子は、基材の表面に支持膜を形成するとともに、この支持膜上に感熱抵抗膜よりなる発熱抵抗と流体温度測定抵抗が形成されており、発熱抵抗と流体温度測定抵抗の下部には、基材を部分的に除去することにより形成されたキャビティが設けられたものであって、流体温度測定抵抗の下部に設けられたキャビティの上面部が流体温度測定抵抗が配置されている部分の内側に形成されているものである。
この発明に係る感熱式流量センサにおける流量検出素子によれば、基材の表面に支持膜を形成するとともに、この支持膜上に感熱抵抗膜よりなる発熱抵抗と流体温度測定抵抗が形成されており、発熱抵抗と流体温度測定抵抗の下部には、基材を部分的に除去することにより形成されたキャビティが設けられたものであって、流体温度測定抵抗の下部に設けられたキャビティの上面部が流体温度測定抵抗が配置されている部分の内側に形成されているので、流体の温度が変動したり、あるいは流体の温度と感熱式流量センサの周りの温度との間に差が生じた場合でも流量の検出精度を高くすることができるともに、さらにキャビティ部における強度を高くすることができる。
実施の形態1.
以下、この発明の一実施形態を図について説明する。図1はこの発明の形態1による感熱式流量センサに使用される流量検出素子を示す平面図、図2は図1におけるA−A線断面図であり、図1においては、保護膜を除去した状態を示している。なお、図1および図2では、構成を判り易く説明するために、実際の寸法比で描かれていない。このことは以下に示す各図においても同様である。
図1および図2において、流量検出素子1における基材2はシリコンより形成されており、窒化シリコンよりなる絶縁性の支持膜3が基材2の上面全面に形成されている。また感熱抵抗膜からなる発熱抵抗4、流体温度測定抵抗5およびリードパターン6a〜6dが支持膜3上に形成され、さらに窒化シリコンよりなる絶縁性の保護膜7が発熱抵抗4、流体温度測定抵抗5およびリードパターン6a〜6dを覆うように支持膜3上に形成されている。ここで感熱抵抗膜とは、抵抗値が温度依存性を有する材料からなる抵抗膜のことであり、例えば白金がある。
更に各リードパターン6a〜6dにおける端部の上に位置する保護膜7を除去し、リードパターンを露出させることにより、電極8a〜8dを形成する。そして、電極8a〜8dはワイヤボンドなどの周知の方法より外部と電気的に接続され、これにより発熱抵抗4と流体温度測定抵抗5は、リードパターン6a〜6dおよび電極8a〜8dを介して外部と電気的に接続される。
また発熱抵抗4及び流体温度測定抵抗5の下部に位置する基材2の一部が支持膜3に至るまで台形状に除去されており、空間部となるキャビティ9a及びキャビティ9bが形成されている。このようにして発熱抵抗4が支持膜3および保護膜7により挟み込まれることによって低熱容量部として機能するダイヤフラム10aが形成されることとなり、このダイヤフラム10aの周囲は基材2によって保持されることとなる。
また、流体温度測定抵抗5も同様に、支持膜3および保護膜7により挟み込まれることによって低熱容量部として機能するダイヤフラム10bが形成されることとなり、このダイヤフラム10bの周囲は基材2によって保持されている。
次にこのように構成される流量検出素子1の製造方法について説明する。まず厚さ0.4μmの基材2の上面全面にスパッタ、CVD(化学蒸着法)等の方法を用いて厚さ1μmの窒化シリコン膜を形成することにより、基材2上に支持膜3を形成する。
ついで、支持膜3が形成された基材2の表面全面に蒸着、スパッタ等の方法を用いて厚さ0.2μmの白金の膜を形成した後、写真製版、ウェットエッチングあるいはドライエッチング等の方法を用いて白金膜をパターニングすることにより、発熱抵抗4、流体温度測定抵抗5およびリードパターン6a〜6dを形成する。
さらに、基材2の表面全面にスパッタ、CVD等の方法を用いて厚さ1μmの窒化シリコン膜を形成することにより保護膜7を形成する。その後、写真製版、ウェットエッチングあるいはドライエッチング等の方法を用いてリードパターン6a〜6dの端部の上に位置する保護膜7を除去することにより、電極8a〜8dが形成される。
ついで、基材2の裏面全面に裏面保護膜11としてレジストを塗布し、写真製版等を用いてエッチングホールを形成する。その後、例えばアルカリエッチングを施して、基材2の一部を裏面側から支持膜3に至るまで除去して、ダイヤフラム10a,10bを形成する。
ここで使われるエッチ液(エッチャント)としては、KOH、TMAH(Tetra Methyl Ammonium Hydroxide)、NaOH等がある。なお、ダイヤフラム10aの大きさは、縦1.5mm、横2mmであり、ダイヤフラム10bの大きさは縦0.5mm、横0.7mmに形成されている。一方発熱抵抗4と流体温度測定抵抗5は、ダイヤフラム10a、10bと中央を同じくして縦0.8mm、横1mmの大きさに形成されている。
即ち本発明においては、ダイヤフラム10bはダイヤフラム10aよりも小さく構成されており、更にダイヤフラム10bは流体温度測定抵抗5の内側に位置するように、流体温度測定抵抗5よりも小さくなるように形成されている。このようにしてキャビティ9bの上面部は流体温度測定抵抗5が配置されている部分の内側に位置するように構成される。
次に以上のように構成された流量検出素子1を用いた感熱式流量センサ12の構成を図3および図4に基づいて説明する。図3はこの発明の形態1による感熱式流量センサ12を示す正面図、図4は図3におけるB−B線断面側面図である。
図において、感熱式流量センサ12は、検出管路13と、計測される流体の通路となる主通路14とを有し、検出管路13と主通路14とは同軸的に設置されている。更に感熱式流量センサ12は制御回路基板15が収容されたケース16と、感熱式流量センサ12に電力を供給するとともに、出力を取り出すためのコネクタ17と、検出管路13内に配設された流量検出素子1とから構成されている。
そして、流量検出素子1の電極8a〜8dと制御回路基板15とがリード線18により電気的に接続されている。流量検出素子1は、その平板状基材2の表面が流体の流れ方向Cと平行となるように、かつ平板状基材2の表面が流体にさらされるように、検出管路13内に配設されている。
図5は感熱式流量センサ12の制御回路を示す回路図であり、制御回路19は流体温度測定抵抗5及び発熱抵抗4を含むブリッジ回路20を構成している。そして制御回路19は固定抵抗R1、R2、R3、演算増幅器OP1、トランジスタTR1及び電源21から構成されている。流体温度測定抵抗5と発熱抵抗4以外の制御回路は、制御回路基板15上に装着されている。
そして制御回路19は発熱抵抗4の温度を流体温度測定抵抗5によって検出される周囲温度よりも高い一定の温度に保つように構成されており、ここでは発熱抵抗4の温度が流体温度測定抵抗5で検出された周囲の温度より200℃高い温度に維持されるように制御される。
そして流体温度測定抵抗5で検出される温度はほぼ周囲温度(流体温度測定抵抗5上を流れる流体の温度)と等しくなっており、流体温度測定抵抗5は測定信号に対する流体の温度の影響を抑制するために使用される。即ち演算増幅器OP1によって制御回路19におけるP1点とP2点の電位は略等しくなるように制御され、流体の温度が変化しても流体温度測定抵抗5により修正されるので、発熱抵抗4においては流速のみにより影響されることとなる。
そして制御回路19においては発熱抵抗4の加熱電流IHが制御され、流体の流速が早くなると、発熱抵抗4から流体への熱伝達が多くなるため、発熱抵抗4の平均温度を所定の値に保つために加熱電流IHは増加する。この加熱電流IHを抵抗R2の両端で電圧Voutとして検出することにより、流速あるいは所定の通路断面積を有する通路内を流れる流量が検出できる。
発熱抵抗4の抵抗値をRH、発熱抵抗4の平均温度をTH、計測流体温度をTA、所定の通路断面積を有する通路内を流れる流量をQとすると、式(1)が成り立つ。
IH×RH=(a+b×Q)×(TH−Ta) ・・・(1)
ここでa、b、nは流量検出素子1の形態によって決まる定数である。
定数aは流量に依存しない熱量に相当する係数であり、その大部分は発熱抵抗4から平板状基材2へ伝わる熱伝導損失である。定数bは強制対流熱伝達に相当する係数である。定数nは発熱抵抗4近傍の流れの状態によって決まる値であり、その値は0.5程度となる。
式(1)より明らかなように、定数aに相当する熱量は流量とは関係がないものである。
上記説明においては発熱抵抗4と流体温度測定抵抗5がブリッジ回路20を構成している直接加熱制御方式について説明したが、発熱抵抗4の近傍に測温抵抗を設け、測温抵抗と流体温度測定抵抗がブリッジ回路を構成している傍熱制御方式についても上記原理は共通するものである。
上記のような感熱式流量センサを自動車に装着してエンジン制御を行う場合において、アイドル運転状態を放置させ、エンジンルーム内の温度が十分上昇した状態からスロットルを全開させて急発進する場合について説明する。
エンジンルーム内に装着される感熱式流量センサ12においては、アイドル運転状態においてエンジンルーム内は高温となり、感熱式流量センサ12を流れる流体および感熱式流量センサ12のエレメント支持部の温度は高温状態になっている。このような状態で急発進急加速を行うと、エンジンルーム内は高温のままであるが、感熱式流量センサ12を流れる流体およびエレメント支持部は冷却されることとなる。
図6は上記のような場合における流量の経時変化を示す図である。さらに図7は基板に発熱抵抗と流体温度測定抵抗を形成するとともに、発熱抵抗と流体温度測定抵抗のそれぞれの下部に同じ大きさのキャビティを設けた感熱式流量センサにおける吸気温度、流体温度測定抵抗の温度及びエレメント支持部温度の経時変化を示す図である。
即ちこの場合においては、流体温度測定抵抗の下部に設けられたダイヤフラムは流体温度測定抵抗よりも大きく設定されたものである。図7に示すように、流体温度測定抵抗の温度は吸気温度に追従しているのに対し、エレメント支持部の温度は吸気温度の変化に対して遅れが生じている。
これは流体温度測定抵抗5が低熱容量部として機能するダイヤフラム10b上に形成されているため、熱容量が小さく、流体温度測定抵抗が冷却されて吸気温度に追従することとなるが、エレメント支持部は基材2ならびに基材2を組付ける部材から構成されるため、熱容量が大きくなり、吸気温度の変化に追従できないからである。
感熱式流量センサ12の出力電圧Voutは発熱抵抗4から流体への熱伝達量と、発熱抵抗4からエレメント支持部への熱伝導量によって決まり、発熱抵抗4から流体への熱伝達量は、発熱抵抗4と流体の温度差に比例し、発熱抵抗4からエレメント支持部への熱伝導量は発熱抵抗4とエレメント支持部の温度差に比例する。
そして流体温度測定抵抗5の温度変化とセンサエレメント支持部の温度変化との間でずれが生じると、流量検出誤差が生じることになる。即ちこのことを具体的に説明すると、センサエレメント支持部の温度変動は流体温度の変動に対して遅れが発生するため、発熱抵抗4とセンサエレメント支持部の温度差が小さくなり、上式(1)における定数aの値が変動し、発熱抵抗4からエレメント支持部への熱伝導量が低下し、出力Voutが低くなり流量検出誤差が発生してしまうのである。
このような場合、図8に示す流量検出素子のように、流体温度測定抵抗5の下部に設けられたダイヤフラム10bを流体温度測定抵抗5よりも大きく設定することにより、流体温度測定抵抗5部の熱容量を小さく構成するとともに、熱容量の大きい基材2に形成されているリードパターン6a,6dの幅を小さくし、リードパターン6a,6dの抵抗値を大きくすることも考えられる。
これによりリードパターン6a,6dにおいて発熱量が多くなるので、流体温度測定抵抗5とリードパターン6a,6d部における熱応答を図7の場合に比べて遅くすることができ、流体温度測定抵抗5とエレメント支持部の間における熱応答のずれを無くすことができるようになる。
しかしこのように構成した場合、図1に示した構造に比べてリードパターン6a,6dの抵抗は明らかに大きいので、図5のブリッジ回路に占めるリードパターン6a,6dの抵抗値の割合は図1に比べると大きくなり、外部からリードパターン6a,6dに熱が伝わると、抵抗値の変動が大きくなり流量検出誤差が発生してしまうこととなる。
即ち感熱式流量サンサ12を流れる流体と感熱式流量センサ12の周りの温度に差が生じた場合、コネクタ17側からの熱が伝わって電極8a,8dに近い部分にあるリードパターン6a,6dは流量センサ12の周りの熱影響を受けて昇温または降温するため、リードパターン6a,6dにおける抵抗値が図1に示した構造に比べると大きく変動してしまい、流体と流量センサ12の周りの温度差によって流量検出誤差が発生してしまう。
そこで本発明による流量検出素子1においては、図1に示すように、流体温度測定抵抗5より内側に位置するようにキャビティ10bを形成することにより、流体温度測定抵抗5における熱容量を大きくしたものである。図9はこのように構成された感熱式流量センサ12における吸気温度、流体温度測定抵抗5の温度及びエレメント支持部の温度の経時変化を示す図である。
図9に示すように、流体温度測定抵抗5よりキャビティ10bを小さく構成することにより、流体温度測定抵抗5の温度変化は吸気温度の変化よりも遅くなっており、さらにエレメント支持部の温度変化とほぼ一致している。
このように流体温度測定抵抗5とエレメント支持部の温度変化が一致した場合、流体温度測定抵抗5とエレメント支持部の温度変動は吸気温度の変化に対して遅れが生じることとなるが、発熱抵抗4の温度は流体温度測定抵抗5の温度よりも常に所定値だけ高くなるように制御されているので、図7の場合に比べると、図9の場合には発熱抵抗4の温度は高いので、流体の温度が同じであると、発熱抵抗4から流体への熱伝達量は増加し、この発熱抵抗4から流体への熱伝達量の増加が、エレメント支持部の熱応答遅れによる発熱抵抗4からエレメント支持部への熱伝導量の減少を相殺し、流量検出誤差が低減することなる。
以上のように構成することにより、流体温度測定抵抗5とエレメント支持部の熱応答のずれを無くすことができ、流体温度が変動しても、流量検出精度を維持することができるようになる。
さらに、感熱式流量センサ12の周りの熱影響を受け易い電極8a,8dの近くに形成されるリードパターン6a,6dの抵抗値を大きくすることがないため、感熱式流量センサ12を流れる流体と感熱式流量センサ12の周りの間で温度差が生じても、感熱式流量センサ12の周りの熱の影響を受け難く、上記温度差が生じても、流量検出精度を維持することができる。
さらにまた、流体温度測定抵抗5の下部に形成されたキャビティ10bの体積を小さくすることにより、流体に含まれる砂や塵埃などの固体粒子がキャビティ10bに衝突することを防ぐことができるとともに、バックファイヤーによる圧力波に対しても十分耐えることができ、信頼性の高い感熱式流量センサ12を提供することができる。
以上のようにこの発明によれば、流体温度測定抵抗5の抵抗値をコントロールしながら、基材2に設置された電極側の配線の影響を受けることなく、流体温度測定抵抗5の温度変化とエレメント支持部の温度変化のずれを無くすことができ、流体の温度が変化しても、流量検出精度を損なうことなく、又流体と感熱式流量センサ12の周りとの間に温度差が生じても、流量検出精度を維持することのできる流量検出素子1を提供することができる。
また、キャビティ部を小さくすることができるので、キャビティ部の強度を高くし、信頼性の高い流量検出素子1を提供することができる。
この発明の実施の形態1による感熱式流量センサに使用される流量検出素子を示す平面図である。 図1におけるA−A線断面図である。 この発明の実施の形態1による感熱式流量センサを示す正面図である。 図3におけるB−B線断面図である。 この発明の実施の形態1による感熱式流量センサの制御回路を示す回路図である。 この発明の実施の形態1による感熱式流量センサの流量変化を示す図である。 従来の感熱式流量センサにおける吸気温度、流体温度測定抵抗の温度及びエレメント支持部温度の経時変化を示す図である。 感熱式流量センサに使用される流量検出素子を示す平面図である。 この発明の実施の形態1による感熱式流量センサにおける吸気温度、流体温度測定抵抗の温度及びエレメント支持部の温度の経時変化を示す図である。
符号の説明
1 流量センサ、2 基材、3 支持膜、4 発熱抵抗、5 流体温度測定抵抗、
9a,9b キャビティ。

Claims (1)

  1. 基材の表面に支持膜を形成するとともに、この支持膜上に感熱抵抗膜よりなる発熱抵抗と流体温度測定抵抗が形成されており、上記発熱抵抗と上記流体温度測定抵抗の下部には、上記基材を部分的に除去することにより形成されたキャビティが設けられた流量検出素子において、上記流体温度測定抵抗の下部に設けられた上記キャビティの上面部が上記流体温度測定抵抗が配置されている部分の内側に形成されていることを特徴とする感熱式流量センサの流量検出素子。
JP2006135021A 2006-05-05 2006-05-15 感熱式流量センサの流量検出素子 Expired - Fee Related JP4205116B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006135021A JP4205116B2 (ja) 2006-05-15 2006-05-15 感熱式流量センサの流量検出素子
US11/605,454 US7426857B2 (en) 2006-05-15 2006-11-29 Flow detector element of thermosensible flow sensor
KR1020060123500A KR100849011B1 (ko) 2006-05-15 2006-12-07 감열식 유량 센서의 유량 검출 소자
DE102006060343A DE102006060343B4 (de) 2006-05-05 2006-12-20 Durchflussdetektorelement eines thermosensiblen Durchflusssensors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006135021A JP4205116B2 (ja) 2006-05-15 2006-05-15 感熱式流量センサの流量検出素子

Publications (2)

Publication Number Publication Date
JP2007304041A true JP2007304041A (ja) 2007-11-22
JP4205116B2 JP4205116B2 (ja) 2009-01-07

Family

ID=38565011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006135021A Expired - Fee Related JP4205116B2 (ja) 2006-05-05 2006-05-15 感熱式流量センサの流量検出素子

Country Status (4)

Country Link
US (1) US7426857B2 (ja)
JP (1) JP4205116B2 (ja)
KR (1) KR100849011B1 (ja)
DE (1) DE102006060343B4 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101250052B1 (ko) * 2011-07-13 2013-04-02 국민대학교산학협력단 유량 센서 및 이를 이용한 유량계
US10786826B2 (en) 2014-12-19 2020-09-29 Deere & Company Equalization of nozzle performance for sprayers
US10444048B2 (en) * 2014-12-19 2019-10-15 Deere & Company Fluid flow monitoring system
CN105548606B (zh) * 2015-12-10 2018-09-21 上海交通大学 基于mems的柔性流速传感器的流速测量方法
US11051505B2 (en) * 2018-10-12 2021-07-06 Deere & Company Multi-fluid spray system and method for agricultural product application
US10842143B2 (en) * 2018-10-12 2020-11-24 Deere & Company Multi-fluid spray system and method for agricultural product application
JP7112001B2 (ja) * 2020-10-15 2022-08-03 ダイキン工業株式会社 熱式流速・流量センサ、及び空気調和機

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126839A (ja) * 1991-11-06 1993-05-21 Fuji Electric Co Ltd フローセンサの製造方法
JPH07117428B2 (ja) 1991-12-17 1995-12-18 三菱重工業株式会社 薄膜センサ
JP2742641B2 (ja) * 1992-03-17 1998-04-22 光照 木村 フローセンサ
JPH06249693A (ja) 1993-02-25 1994-09-09 Robert Bosch Gmbh 質量流量センサおよびその製造方法
JPH0829226A (ja) 1994-07-20 1996-02-02 Tokyo Gas Co Ltd 熱式半導体フローセンサ及びその製造方法
JP3193872B2 (ja) 1996-06-25 2001-07-30 株式会社日立製作所 熱式空気流量計
JP3364115B2 (ja) 1997-07-03 2003-01-08 三菱電機株式会社 感熱式流量検出素子
JP3513048B2 (ja) * 1999-04-13 2004-03-31 三菱電機株式会社 感熱式流量センサおよびその製造方法
JP3455473B2 (ja) 1999-07-14 2003-10-14 三菱電機株式会社 感熱式流量センサ
JP2001272260A (ja) * 2000-03-27 2001-10-05 Ngk Spark Plug Co Ltd 質量流量センサ及びそれを用いた質量流量計
JP3706358B2 (ja) * 2002-07-04 2005-10-12 三菱電機株式会社 気体流量・温度測定素子
DE10330253A1 (de) * 2003-07-04 2005-01-20 Robert Bosch Gmbh Sensorelement

Also Published As

Publication number Publication date
US7426857B2 (en) 2008-09-23
DE102006060343A1 (de) 2007-11-08
DE102006060343B4 (de) 2011-06-16
US20070295083A1 (en) 2007-12-27
JP4205116B2 (ja) 2009-01-07
KR100849011B1 (ko) 2008-07-30
KR20070110763A (ko) 2007-11-20

Similar Documents

Publication Publication Date Title
JP4205116B2 (ja) 感熱式流量センサの流量検出素子
JP5279667B2 (ja) 熱式空気流量センサ
JP3335860B2 (ja) 熱式空気流量計用測定素子及び熱式空気流量計
US6393907B1 (en) Thermo-sensitive flow rate sensor
JP3455473B2 (ja) 感熱式流量センサ
JPH06105178B2 (ja) 質量空気流センサーのための制御および検出回路
JP4797771B2 (ja) メンブレンを有するセンサ装置およびその製造方法
JPH10197309A (ja) 熱式空気流量計用の測定素子及び熱式空気流量計
JP3513048B2 (ja) 感熱式流量センサおよびその製造方法
JP5542505B2 (ja) 熱式流量センサ
JP3920247B2 (ja) 感熱式流量検出素子およびその製造方法
JP2002188947A (ja) 流量測定装置
JP3655838B2 (ja) 感熱式流量センサ
KR100323315B1 (ko) 감열식 유량센서
JP3706358B2 (ja) 気体流量・温度測定素子
JP2003294508A (ja) 感熱式流量検出素子およびその製造方法
JP2002139360A (ja) 感熱式流量センサ
JPH11344369A (ja) 流量検出素子及び流量センサ
JP2000227353A (ja) 熱式流量センサ及びその製造方法
JP3593479B2 (ja) 熱式空気流量センサ
JP2005274515A (ja) センサ及びその測定方法
JPH09243427A (ja) 吸入空気流量測定装置用センサ

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4205116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees