JP2007295419A - 周波数変換装置 - Google Patents

周波数変換装置 Download PDF

Info

Publication number
JP2007295419A
JP2007295419A JP2006122816A JP2006122816A JP2007295419A JP 2007295419 A JP2007295419 A JP 2007295419A JP 2006122816 A JP2006122816 A JP 2006122816A JP 2006122816 A JP2006122816 A JP 2006122816A JP 2007295419 A JP2007295419 A JP 2007295419A
Authority
JP
Japan
Prior art keywords
bias
signal
terminal
output
bias amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006122816A
Other languages
English (en)
Inventor
Kengo Tsushima
肩吾 對馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2006122816A priority Critical patent/JP2007295419A/ja
Publication of JP2007295419A publication Critical patent/JP2007295419A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transmitters (AREA)

Abstract

【課題】ローカルリーク信号の大きさの変動を低減した周波数変換装置を提供する。
【解決手段】入力端子から入力された信号にローカル信号を乗じて出力する周波数変換装置であって、周波数変換装置の動作状態を定めるバイアス量が入力されるバイアス調整端子と、バイアス調整端子に大きさが所定の振り幅で変化するバイアス量を出力するバイアス制御部とを備え、バイアス制御部は、出力されるローカル信号の大きさの変化を低減するよう、出力するバイアス量の平均値を制御する。
【選択図】図1

Description

本発明は、入力された信号にローカル信号を乗じて出力する周波数変換装置に関する。
入力信号にローカル信号を乗じて出力することにより、入力信号の周波数とローカル信号の周波数の和の周波数を示す所望信号、または入力信号の周波数とローカル信号の周波数との間の差の周波数を示す所望信号を出力する周波数変換回路が広く用いられる。図7(a)に周波数変換回路の構成を示す。周波数変換回路は、入力端子TIn、出力端子TO、およびローカル端子TLを備える。入力端子TInおよびローカル端子TLにはそれぞれ入力信号SIおよびローカル信号SLが入力され、出力端子TOからは所望信号SDが出力される。
一般に、周波数変換回路では、ローカル端子TLから入力されたローカル信号SLが出力端子TOに漏洩し、ローカルリーク信号LKとして出力される。したがって、周波数変換回路を送信機に適用した場合には、ローカルリーク信号LKに基づく不要輻射を低減するための回路が必要となり構成が複雑となる。
そこで、ローカルリーク信号LKを低減した周波数変換回路としてバランスミキサが考え出されている。バランスミキサは、トランジスタによって構成される差動対回路を含み、差動対回路の電気的特性の対称性によってローカルリーク信号LKを低減する。しかし、バランスミキサは、それを構成するトランジスタの特性にばらつきがある場合には、ローカルリーク信号LKを十分に低減することができない。そこで、入力端子TInを構成する2つの差動入力端子のうちの一方に印加するバイアス電圧を調整することにより、ローカルリーク信号LKを低減する方法が考え出されている。
特開2002−198745号公報
一般に、入力端子TInを構成する2つの差動入力端子のうちの一方に印加するバイアス電圧とローカルリーク信号の大きさとの間の関係は、バランスミキサの固有の特性によって定まり、例えば、図7(b)のように横軸にバイアス電圧VBをとり縦軸にローカルリーク信号の大きさLKをとると、その特性は曲線Cのように示される。
ローカルリーク信号の大きさが極小値となるようバイアス電圧を調整する方法として、電圧VB1から電圧VB2の範囲でバイアス電圧を変化させつつローカルリーク信号の大きさを検出し、検出されたローカルリーク信号の大きさが極小値となるようバイアス電圧を決定する方法が考えられる。
しかし、バイアス電圧が決定される前の初期状態ではローカルリーク信号の大きさを極小値にせしめるバイアス電圧の値が不明である。また、バランスミキサの特性が温度の変化に従って変化することによって、図7(b)のVB−LK平面上での曲線Cの位置はバランスミキサの温度の変化に従って移動する。そのため、電圧VB1と電圧VB2との間の差は、余裕を見込んで大きく設定しておく必要がある。電圧VB1と電圧VB2との間の差を大きく設定した場合、バイアス電圧が決定される過程においてバイアス電圧が大きく変動し、それに伴ってローカルリーク信号の大きさも大きく変動することとなる。
バランスミキサを送信機に適用した場合、一般に、バランスミキサの出力端子から出力され電力増幅器で増幅された信号の電力が一定になるよう、バランスミキサの入力信号の大きさが制御される。
バランスミキサの出力端子から出力される信号には、所望信号のみならずローカルリーク信号が含まれる。したがって、電力増幅器で増幅された信号の電力が一定となるよう入力信号の大きさが制御される場合、ローカルリーク信号の大きさが変動すると、それに伴って入力信号はその大きさが変動するよう制御され、送信機から送信される所望信号の大きさが変動するという問題が生じる。
本発明は、このような課題に対してなされたものであり、ローカルリーク信号の大きさの変動を低減した周波数変換装置を提供する。
本発明は、入力端子から入力された信号にローカル信号を乗じて出力する周波数変換装置であって、前記周波数変換装置の動作状態を定めるバイアス量が入力されるバイアス調整端子と、前記バイアス調整端子に大きさが所定の振り幅で変化するバイアス量を出力するバイアス制御部と、を備え、前記バイアス制御部は、前記出力されるローカル信号の大きさの変化を低減するよう、出力するバイアス量の平均値を制御することを特徴とする。
また、本発明は、第1の差動対端子と、前記第1の差動対端子とは異なる第2の差動対端子と、前記第1の差動対端子から入力された信号にローカル信号を乗じた信号と、前記第2の差動対端子から入力された信号に前記ローカル信号の位相を90°変化させて乗じた信号と、を加算して出力する加算部と、を備える周波数変換装置であって、前記周波数変換装置の動作状態を定める第1バイアス量を前記第1の差動対端子の片方の端子に供給する第1バイアス調整端子と、前記周波数変換装置の動作状態を定める第2バイアス量を前記第2の差動対端子の片方の端子に供給する第2バイアス調整端子と、大きさが所定の振り幅で変化する前記第1バイアス量を前記第1バイアス調整端子に出力し、大きさが所定の振り幅で変化する前記第2バイアス量を前記第2バイアス調整端子に出力するバイアス制御部と、を備え、前記バイアス制御部は、前記加算部から出力される前記ローカル信号の大きさの変化を低減するよう、前記第1バイアス量の平均値および前記第2バイアス量の平均値を制御することを特徴とする。
また、本発明に係る周波数変換装置においては、前記バイアス制御部は、前記第1バイアス量に含まれる時間の経過と共に大きさが変化する変動成分を正弦関数に従って変化させ、前記第2バイアス量に含まれる時間の経過と共に大きさが変化する変動成分を前記正弦関数と周期が等しく位相が90°異なる余弦関数に従って変化させる構成とすることが好適である。
また、本発明に係る周波数変換装置においては、前記加算部から出力される前記ローカル信号の大きさが極値をとるときの、前記第1バイアス量の変動成分の位相または前記第2バイアス量の変動成分の位相のいずれかに基づいて、前記第1バイアス量の平均値および前記第2バイアス量の平均値を制御する構成とすることが好適である。
また、本発明に係る周波数変換装置においては、前記加算部から出力される前記ローカル信号の大きさの時間変化率を求める時間変化率算出部を備え、前記時間変化率の極性が変化するときの、前記第1バイアス量の変動成分の位相または前記第2バイアス量の変動成分の位相のいずれかに基づいて、前記第1バイアス量の平均値および前記第2バイアス量の平均値を制御する構成とすることが好適である。
本発明によれば、ローカルリーク信号の大きさの変動が小さい周波数変換装置を実現することができる。
図1に本発明の第1の実施形態に係る送信装置100の構成を示す。送信装置100は、駆動増幅器10、直交周波数変換器12、電力増幅器14、方向性結合器16、アンテナ18、リーク信号検波部20、バイアス調整部22、および利得制御部24を備えて構成される。
駆動増幅器10には、送信の対象とする情報を含む、周波数fsの信号が入力される。駆動増幅器10は、利得制御部24が出力する利得情報Gによって規定される利得で信号を増幅して直交周波数変換器12に出力する。
直交周波数変換器12は、90°遅延器26Sおよび26L、ミキサ28Iおよび28Q、ローカル端子TL、バイアス端子TIおよびTQ、ならびに信号加算部30を備えて構成される。
駆動増幅器10から出力された信号は、ミキサ28Iおよび90°遅延器26Sに入力される。90°遅延器26Sは信号の位相を90°遅延させてミキサ28Qに出力する。
ローカル端子TLに入力された周波数fLのローカル信号SLは、ミキサ28Iおよび90°遅延器26Lに入力される。90°遅延器26Lは信号の位相を90°遅延させてミキサ28Qに出力する。
ミキサ28Iは、駆動増幅器10から出力された信号にローカル信号SLを乗じて信号加算部30に出力する。ミキサ28Qは、90°遅延器26Sが出力する信号に90°遅延器26Lが出力する信号を乗じて信号加算部30に出力する。
信号加算部30は、ミキサ28Iが出力する信号とミキサ28Qが出力する信号とを加算し電力増幅器14に出力する。
このような処理によって、直交周波数変換器12からは、駆動増幅器10から出力された周波数fsの信号が周波数fL−fsの信号に変換された所望信号SDが出力される。
直交周波数変換器12からは、送信装置100による不要輻射を低減するため所望信号SDのみが出力されることが好ましい。しかし、実際には、ミキサ28Iから漏洩して出力されるローカル信号SLがローカルリーク信号LKIとして信号加算部30に出力され、ミキサ28Qから漏洩して出力されるローカル信号SLがローカルリーク信号LKQとして信号加算部30に出力される。そして、信号加算部30からはローカルリーク信号LKIとローカルリーク信号LKQとが加算されたローカルリーク信号LKが電力増幅器14に出力される。
そこで、送信装置100では、対をなすトランジスタによって構成される差動対回路を含むバランスミキサをミキサ28Iおよび28Qとして適用する。一般に、バランスミキサは差動入力端子をなす2つの端子を含み、その2つの端子のうちの片方の端子は、差動対回路において対をなすトランジスタのうちの片方のトランジスタのベース端子に接続され、他方の端子は、当該対をなすトランジスタのうちの他の一方のトランジスタのベース端子に接続される。バランスミキサは、ローカルリーク信号を差動対回路の電気的特性の対称性によって低減する。バランスミキサのローカルリーク信号の大きさは、それぞれ差動対回路の2つのベース端子に印加する2つのベースバイアス電圧の大きさの差を変化させ、差動対回路の電気的特性の対称性を調整することによってさらに低減することができる。そこで、ミキサ28Iおよび28Qでは、対をなすトランジスタのうちの片方のトランジスタのベース端子に印加するバイアス電圧を固定し、他方のトランジスタのベース端子にバイアス電圧を調整して印加するための端子をバイアス端子TIおよびTQとしてそれぞれ設けている。
バイアス調整部22は、それぞれバイアス端子TIおよびTQに印加するバイアス電圧VBIおよびVBQを調整することで差動対回路の電気的特性の対称性を調整し、ローカルリーク信号LKIおよびLKQを低減し、信号加算部30から出力されるローカルリーク信号LKを低減する。
図2は、バイアス電圧VBIおよびVBQに対する、ローカルリーク信号LKの大きさALKの関係をVBI−VBQ−ALK直交座標空間に示したものである。一般に、バイアス電圧VBIおよびVBQに対する、ローカルリーク信号LKの大きさALKの関係は、下方向に突出した曲面SLKによって表される。曲面SLKは、最下点Pを離れるに従って高さが単調増加する形状をなす。ミキサ28Iおよび28Qとして理想的なバランスミキサを適用した場合、曲面SLKは、最下点Pを通りVBI−VBQ平面に垂直な直線を対称軸とした回転対称な形状となる。
それぞれバイアス電圧VBIおよびVBQがバイアス端子TIおよびTQに印加されているときのローカルリーク信号LKの大きさALKは、バイアス電圧VBIおよびVBQを座標値とするバイアス点VBを曲面SLKに投影したバイアス投影点PVBのALK座標成分の値となる。
したがって、例えば、ALK=THで表される平面によって曲面SLKを切断することで現れる閉曲線TLKを、VBI−VBQ平面上に投影した円TC内に、バイアス点VBが存在するようバイアス電圧VBIおよびVBQを調整することで、ローカルリーク信号LKの大きさALKを所定値TH以下に抑えることができる。
なお、ミキサ28Iおよび28Qからは、周波数f0+fsの和周波数信号も不要な信号として出力されるが、ミキサ28Iから出力される和周波数信号とミキサ28Qから出力される和周波数信号は互いに逆位相の関係にあるため、信号加算部30で互いに値を低減し合った上で出力される。
電力増幅器14は、信号を増幅して方向性結合器16に出力する。方向性結合器16は電力増幅器14が出力する信号をアンテナ18に出力すると共に、電力増幅器14が出力する信号の一部を取り出しリーク信号検波部20および利得制御部24に出力する。アンテナ18は、方向性結合器16から出力された信号を電磁波として送信する。
利得制御部24は、方向性結合器16が出力する信号に基づいて、電力増幅器14が出力する信号の電力を測定する。そして、電力増幅器14が出力する信号の電力が所定の値に満たないときは駆動増幅器10の利得を増加させる利得情報GIを生成し、電力増幅器14が出力する信号の電力が所定の値を超えたときは駆動増幅器10の利得を減少させる利得情報GIを生成する。利得制御部24は、利得情報GIを駆動増幅器10に出力する。
リーク信号検波部20は、方向性結合器16が出力する信号からローカルリーク信号LKを抽出し、その検波値を示すローカルリーク検波信号LDを生成してバイアス調整部22に出力する。
図3にリーク信号検波部20を具体的に構成したリーク信号検波部44の構成を示す。リーク信号検波部44は、検波ミキサ32Iおよび32Q、検波用ローカル端子TLD、90°遅延器34Sおよび34L、ローパスフィルタ36Iおよび36Q、A/D変換器38Iおよび38Q、自乗演算器40Iおよび40Q、ならびに検波信号加算部42を備えて構成される。
方向性結合器16から出力された信号は、検波ミキサ32Iおよび90°遅延器34Sに入力される。90°遅延器34Sは信号の位相を90°遅延させて検波ミキサ32Qに出力する。
検波用ローカル端子TLDには、ローカル信号SLが入力される。ローカル信号SLは、検波ミキサ32Iおよび90°遅延器34Lに入力される。90°遅延器34Lは信号の位相を90°遅延させて検波ミキサ32Qに出力する。
検波ミキサ32Iは、方向性結合器16から出力された信号にローカル信号SLを乗じてローパスフィルタ36Iに出力する。検波ミキサ32Qは、90°遅延器34Sが出力する信号に90°遅延器34Lが出力する信号を乗じてローパスフィルタ36Qに出力する。
ローパスフィルタ36Iおよび36Qは、信号の直流成分を抽出してそれぞれA/D変換器38Iおよび38Qに出力する。A/D変換器38Iおよび38Qは、信号をディジタル信号に変換してそれぞれ自乗演算器40Iおよび40Qに出力する。自乗演算器40Iおよび40Qは、信号を自乗して検波信号加算部42に出力する。検波信号加算部42は、自乗演算器40Iが出力する信号と自乗乗算器40Qが出力する信号とを加算してディジタル信号のローカルリーク検波信号LDとして出力する。
リーク信号検出部44が行う処理によれば、方向性結合器16が出力する信号に含まれるローカルリーク信号LKの成分のうちローカル信号SLと同位相の成分は、検波ミキサ32Iおよびローパスフィルタ36Iによって自乗検波される。また、方向性結合器16が出力する信号に含まれるローカルリーク信号LKの成分のうちローカル信号SLと位相が90°異なる成分は、検波ミキサ32Qおよびローパスフィルタ36Qによって自乗検波される。このように自乗検波された2つの成分は、A/D変換器38Iおよび38Qによってディジタル信号に変換された後、自乗演算器40Iおよび40Qならびに検波信号加算部42によって自乗加算され、ローカルリーク信号LKの検波値を示すローカルリーク検波信号LDとして出力される。
図4にバイアス調整部22の構成を示す。バイアス調整部22は、ローカルリーク検波信号LDが示す検波値に基づいて、検波値の変化が小さくなるようバイアス電圧VBIおよびVBQを調整し出力する。バイアス調整部22は、変動電圧出力部46、電圧加算部48Iおよび48Q、平均電圧調整部50、ならびに平均電圧出力部52を備えて構成される。バイアス調整部22の構成部のうち、平均電圧調整部50を除く構成部は、ディジタル回路またはアナログ回路のいずれによっても構成することができる。ディジタル回路によって構成した場合、ディジタル信号が示す値として生成されるバイアス電圧VBIおよびVBQをアナログ電圧に変換するD/A変換器を、バイアス調整部22と直交周波数変換器12との間に設ける。
変動電圧出力部46は、変動電圧VIvおよびVQvをそれぞれ電圧加算部48Iおよび48Qに出力する。変動電圧VIvおよびVQvの値は、所定の振幅r、所定の角周波数α、時間変数tによって、それぞれVIv=rsinαtおよびVQv=rcosαtのように時間tについての三角関数によって規定される。また、変動電圧出力部46は、位相角αtの値を平均電圧調整部50に出力する。図5(a)に位相角αtが時間の経過と共に変化する様子を示す。位相角αtは0から2πの範囲の値で定義され、0を最小値として時間の経過と共に単位時間あたりαの割合で増加し、最大値2πに至ると共に0となる。位相角αtの1周期は、変動電圧VIvおよびVQvの1周期と一致する。
平均電圧出力部52は、バイアス電圧VBIの平均電圧AI、およびバイアス電圧VBQの平均電圧AQを、それぞれ電圧加算部48Iおよび48Qに出力する。
電圧加算部48Iは、平均電圧AIと変動電圧VIvとを加算してバイアス電圧VBIとして直交周波数変換器12のバイアス端子TIに出力する。電圧加算部48Qは、平均電圧AQと変動電圧VQvとを加算してバイアス電圧VBQとして直交周波数変換器12のバイアス端子TQに出力する。
バイアス電圧VBIは、平均電圧AIを平均値として角周波数αの正弦関数に従い振幅rで変動する。また、バイアス電圧VBQは、平均電圧AQを平均値として角周波数αの余弦関数に従い振幅rで変動する。図5(b)は、横軸にバイアス電圧VBIをとり縦軸にバイアス電圧VBQをとった場合に、バイアス電圧VBIおよびVBQを座標値とするバイアス点VBが、時間の経過と共にVBI−VBQ平面上に描く軌跡を示したものである。バイアス点VBは、角速度αtで座標値が(AI,AQ)である平均値点Aを中心として半径rの円VCを描く。
バイアス点VBが円VCを描くようにバイアス電圧VBIおよびVBQが変化すると、ローカルリーク信号LKの大きさALKは、図2に示すように、円VCを曲面SLKに投影した閉曲線CLKをLK軸上にさらに投影した範囲RLKで変動する。したがって、バイアス点VBが円VCを一周する間、すなわちバイアス電圧VBIおよびVBQの1周期の間、ローカルリーク信号LKの大きさALKは範囲RLKの最小値RLK1と最大値RLK2との間で変動する。
平均電圧調整部50は、図2に示される直交周波数変換器12の特性を利用して、バイアス電圧VBIに対する調整量ΔI、およびバイアス電圧VBQに対する調整量ΔQを決定し平均電圧出力部52に出力する。平均電圧出力部52は、それぞれ調整量ΔIおよびΔQに基づいて平均電圧AIおよびAQを調整する。平均電圧調整部50および平均電圧出力部52が実行する具体的な処理について、図6のフローチャートを参照して説明する。
バイアス調整部22に入力されたローカルリーク検波信号LDは平均電圧調整部50に入力される。平均電圧調整部50は、位相角αtの1周期にわたって位相角αtとローカルリーク検波信号LDが示す検波値とを対応づけた情報を取得する(S1)。平均電圧調整部50は、位相角αtの1周期の間で検波値が最大となるときの位相角αtであるリーク最大角θmaxを求める(S2)。また、平均電圧調整部50は、位相角αtの1周期の間における検波値の最大値から最小値を減算した検波値変動Dを算出する(S3)。そして、記憶部54に記憶されている検波値変動Dと平均値調整量δとを対応付けた対応情報を参照することで平均値調整量δを取得する(S4)。対応情報においては、検波値変動Dが小さい程平均値調整量δの値が小さくなるよう、そして、検波値変動Dが所定の閾値以下である場合には平均値調整量δが0となるよう、検波値変動Dと平均値調整量δとが対応付けられているものとする。平均電圧調整部50は、調整量ΔIをδcos(θmax+π)とし、調整量ΔQをδsin(θmax+π)として平均電圧出力部52に出力する(S5)。
平均電圧出力部52は、平均電圧AIとして先に出力していた電圧に調整量ΔIを加えた電圧を新たな平均電圧AIとして出力し、平均電圧AQとして先に出力していた電圧に調整量ΔQを加えた電圧を新たな平均バイアス電圧AQとして出力し(S6)、ステップS1の処理に戻る。
このようなバイアス調整部22の処理によれば、VBI−VBQ平面における平均値点Aが、ベクトルΔ=(ΔI,ΔQ)=(δcos(θmax+π),δsin(θmax+π))で示される方向に移動するよう平均値電圧AIおよびAQが調整される。ベクトルΔはローカルリーク検波信号LDが示す検波値が最大になるときのバイアス点VBmaxから離れる方向を示すベクトルであり、その大きさδは検波値変動Dが小さい程小さくなるよう、そして、検波値変動Dが所定の閾値以下である場合には0となるよう定められる。したがって、検波値変動Dが所定の閾値以下となるよう平均値電圧AIおよびAQが調整され、ローカルリーク信号LKの大きさの変動は所定の値以下となるように調整される。
なお、ベクトルΔをΔ=(δcos(θmax+π),δsin(θmax+π))とする代わりに、Δ=(δcos(θmin),δsin(θmin))として、調整量ΔIおよびΔQを求めてもよい。ここで、θminは、位相角αtの1周期の間で検波値が最小となるときの位相角αtであるリーク最小角として定義される。
また、リーク最大角θmaxまたはリーク最小角θminは、図6のフローチャートにおけるステップS1およびS2に従う処理に代えて、ローカルリーク検波信号LDが示す検波値の時間変化率に基づいて求めることができる。この場合、平均電圧調整部50は検波値の時間微分を算出する。そして、時間微分の極性が正から負に変化したときの位相角をリーク最大角θmaxとし、時間微分の極性が負から正に変化したときの位相角をリーク最小角θminとする。
本実施形態に係る送信装置100では、バイアス電圧VBIおよびVBQが調整される過程におけるバイアス電圧VBIおよびVBQの変動は、変動電圧VIvおよびVQvの振幅rの2倍の大きさに抑えられている。そして、平均値点Aは、ローカルリーク検波信号LDが示す検波値が最大になるときのバイアス点VBmaxから離れる方向に移動するよう制御される。これによって、ローカルリーク信号LKの大きさの変動は所定の範囲内に抑えられる。また、図2の曲面SLKで示されるような特性を示す直交周波数変換器12に、VBI−VBQ平面上でバイアス点VBが円VCを描くように変化するバイアス電圧VBIおよびVBQを印加することにより、ローカルリーク信号LKの大きさの変動を小さく抑えることができる。さらに、変動電圧VIvおよびVQvの振幅rを小さく設定することで、ローカルリーク信号LKの大きさを小さくすることができる。
また、ローカルリーク信号LKの大きさの変動を小さく抑えることによって、方向性結合器16から利得制御部24に出力される信号の大きさの変動もまた小さく抑えられる。これによって、ローカルリーク信号LKの大きさの変動に従って駆動増幅器10の利得が変動することを回避し、アンテナ18から送信される所望信号SDの大きさが変動することを回避することができる。
なお、上述の説明では、バイアス調整部22がミキサ28Iおよび28Qのバイアス電圧を調整する構成についてとりあげた。このような構成に代えて、バイアス調整部22がミキサ28Iおよび28Qのバイアス電流を調整する構成とすることも可能である。この場合、バイアス調整部22は、ローカルリーク検波信号LDが示す検波値に基づいて、検波値の変化が小さくなるようバイアス端子TIに流れるバイアス電流およびバイアス端子TQに流れるバイアス電流を調整する。
変動電圧出力部46は、変動電圧VIvおよびVQvに代えて、それぞれ変動電圧VIvおよびVQvと同様に変動する変動電流IIvおよびIQvを出力する変動電流出力部に置き換えられる。電圧加算部48Iおよび48Qは、電流を加算する電流加算部に置き換えられる。平均電圧調整部50は、バイアス端子TIに流れるバイアス電流に対する調整量、およびバイアス端子TIに流れるバイアス電流に対する調整量を決定して出力する平均電流調整部に置き換えられる。平均電圧出力部52は、バイアス端子TIに流れるバイアス電流の平均値およびバイアス端子TQに流れるバイアス電流の平均値を出力する平均電流出力部に置き換えられる。ただし、変動電流出力部、電流加算部、平均電流調整部、および平均電流出力部については図示していない。変動電流出力部、電流加算部、平均電流調整部、および平均電流出力部は、それぞれ変動電圧出力部46、電圧加算部48Iまたは48Q、平均電圧調整部50、および平均電圧出力部52が電圧に対して行う処理と同様の処理を電流に対して行う。
また、上述の説明では、直交周波数変換器12として、周波数fsの信号を周波数fL−fsの差周波数信号に変換して所望信号SDとして出力すると共に、周波数fL+fsの和周波数信号の値を低減して出力するものについてとりあげた。このような構成の他、周波数fsの信号を周波数fL+fsの和周波数信号に変換して所望信号SDとして出力すると共に、周波数fL−fsの差周波数信号を低減して出力する構成も可能である。この場合、90°遅延器26Sをミキサ28Qに前置する代わりにミキサ28Iに前置する構成、または、90°遅延器26Lをミキサ28Qに前置する代わりにミキサ28Iに前置する構成のいずれかの構成とすればよい。
第1の実施形態に係る送信装置の構成を示す図である。 バイアス電圧VBIおよびVBQに対する、ローカルリーク信号LKの大きさALKの関係を示す図である。 リーク信号検波部20を具体的に構成したリーク信号検波部44の構成を示す図である。 バイアス調整部の構成を示す図である。 位相角αtが時間の経過と共に変化する様子、およびバイアス電圧VBIおよびVBQを座標値とするバイアス点VBが時間の経過と共にVBI−VBQ平面上に描く軌跡を示す図である。 平均電圧調整部50および平均電圧出力部52が実行する具体的な処理を示すフローチャートである。 バランスミキサの構成、および、バランスミキサにおける、入力端子TIを構成する2つの差動入力端子のうちの一方に印加するバイアス電圧とローカルリーク信号の大きさとの間の関係を示す図である。
符号の説明
10 駆動増幅器、12 直交周波数変換器、14 電力増幅器、16 方向性結合器、18 アンテナ、20,44 リーク信号検波部、22 バイアス調整部、24 利得制御部、26S,26L 90°遅延器、28I,28Q ミキサ、30 信号加算部、32I,32Q 検波ミキサ、34L,34S 90°遅延器、36I,36Q ローパスフィルタ、38I,38Q A/D変換器、40I,40Q 自乗演算器、42 検波信号加算部、46 変動電圧出力部、48I,48Q 電圧加算部、50 平均電圧調整部、52 平均電圧出力部、54 記憶部、100 送信装置、Ts,TIn 入力端子、TL ローカル端子、TI,TQ バイアス端子。

Claims (5)

  1. 入力端子から入力された信号にローカル信号を乗じて出力する周波数変換装置であって、
    前記周波数変換装置の動作状態を定めるバイアス量が入力されるバイアス調整端子と、
    前記バイアス調整端子に大きさが所定の振り幅で変化するバイアス量を出力するバイアス制御部と、
    を備え、
    前記バイアス制御部は、
    前記出力されるローカル信号の大きさの変化を低減するよう、出力するバイアス量の平均値を制御することを特徴とする周波数変換装置。
  2. 第1の差動対端子と、
    前記第1の差動対端子とは異なる第2の差動対端子と、
    前記第1の差動対端子から入力された信号にローカル信号を乗じた信号と、前記第2の差動対端子から入力された信号に前記ローカル信号の位相を90°変化させて乗じた信号と、を加算して出力する加算部と、
    を備える周波数変換装置であって、
    前記周波数変換装置の動作状態を定める第1バイアス量を前記第1の差動対端子の片方の端子に供給する第1バイアス調整端子と、
    前記周波数変換装置の動作状態を定める第2バイアス量を前記第2の差動対端子の片方の端子に供給する第2バイアス調整端子と、
    大きさが所定の振り幅で変化する前記第1バイアス量を前記第1バイアス調整端子に出力し、大きさが所定の振り幅で変化する前記第2バイアス量を前記第2バイアス調整端子に出力するバイアス制御部と、
    を備え、
    前記バイアス制御部は、
    前記加算部から出力される前記ローカル信号の大きさの変化を低減するよう、前記第1バイアス量の平均値および前記第2バイアス量の平均値を制御することを特徴とする周波数変換装置。
  3. 請求項2に記載の周波数変換装置であって、
    前記バイアス制御部は、
    前記第1バイアス量に含まれる時間の経過と共に大きさが変化する変動成分を正弦関数に従って変化させ、前記第2バイアス量に含まれる時間の経過と共に大きさが変化する変動成分を前記正弦関数と周期が等しく位相が90°異なる余弦関数に従って変化させることを特徴とする周波数変換装置。
  4. 請求項3に記載の周波数変換装置であって、
    前記加算部から出力される前記ローカル信号の大きさが極値をとるときの、前記第1バイアス量の変動成分の位相または前記第2バイアス量の変動成分の位相のいずれかに基づいて、前記第1バイアス量の平均値および前記第2バイアス量の平均値を制御することを特徴とする周波数変換装置。
  5. 請求項3または請求項4に記載の周波数変換装置であって、
    前記加算部から出力される前記ローカル信号の大きさの時間変化率を求める時間変化率算出部を備え、
    前記時間変化率の極性が変化するときの、前記第1バイアス量の変動成分の位相または前記第2バイアス量の変動成分の位相のいずれかに基づいて、前記第1バイアス量の平均値および前記第2バイアス量の平均値を制御することを特徴とする周波数変換装置。
JP2006122816A 2006-04-27 2006-04-27 周波数変換装置 Pending JP2007295419A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006122816A JP2007295419A (ja) 2006-04-27 2006-04-27 周波数変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006122816A JP2007295419A (ja) 2006-04-27 2006-04-27 周波数変換装置

Publications (1)

Publication Number Publication Date
JP2007295419A true JP2007295419A (ja) 2007-11-08

Family

ID=38765572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006122816A Pending JP2007295419A (ja) 2006-04-27 2006-04-27 周波数変換装置

Country Status (1)

Country Link
JP (1) JP2007295419A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003485A (ja) * 2012-06-19 2014-01-09 Nec Corp ハーモニックミキサ及びそのリーク電流抑制方法
WO2017094817A1 (ja) * 2015-12-04 2017-06-08 Necスペーステクノロジー株式会社 周波数混合器および中間周波数信号生成方法
JP6463565B1 (ja) * 2018-03-07 2019-02-06 三菱電機株式会社 イメージリジェクションミクサ及び通信回路

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003485A (ja) * 2012-06-19 2014-01-09 Nec Corp ハーモニックミキサ及びそのリーク電流抑制方法
WO2017094817A1 (ja) * 2015-12-04 2017-06-08 Necスペーステクノロジー株式会社 周波数混合器および中間周波数信号生成方法
JP6463565B1 (ja) * 2018-03-07 2019-02-06 三菱電機株式会社 イメージリジェクションミクサ及び通信回路
WO2019171506A1 (ja) * 2018-03-07 2019-09-12 三菱電機株式会社 イメージリジェクションミクサ及び通信回路
US11405001B2 (en) 2018-03-07 2022-08-02 Mitsubishi Electric Corporation Image rejection mixer and communication circuit

Similar Documents

Publication Publication Date Title
US8175465B2 (en) Bias control apparatus and method for optical modulator
WO2016065633A1 (zh) 一种曲线拟合电路、模拟预失真器和射频信号发射机
US20150009517A1 (en) Rotation-angle detection device and method, and image processing apparatus
TWI513250B (zh) 數位傳送器及其信號前置補償方法
CN110943661B (zh) 一种转子磁场定向偏差在线校正方法和装置
CN109120265B (zh) 一种信号的校正方法、装置、芯片和存储介质
US10775169B2 (en) Vibrating structure angular rate sensor
JPWO2015029427A1 (ja) 角度位置検出装置
JP2008061231A (ja) 送信回路及び通信機器
JP2007295419A (ja) 周波数変換装置
JP2008043058A (ja) 同期モータ制御装置とその制御方法
JP5146404B2 (ja) 歪補償装置
US9464897B2 (en) Apparatus for driving gyro sensor and control method thereof
RU2541147C1 (ru) Функциональный генератор
JP2008099126A (ja) 変調回路
CN104460817A (zh) 一种共模温度补偿检波的高稳定功率控制电路及方法
JP5354583B2 (ja) 高周波電源装置及び高周波電源装置の高周波電力検出装置
JP6774848B2 (ja) インピーダンス測定装置
US8115543B2 (en) Mixed-signal transmission circuit for switching power amplifiers
JP2011137777A (ja) 角速度センサ
JP2004032905A (ja) 同期電動機の制御装置
JPH11275900A (ja) 同期電動機の制御装置
JP2010054438A (ja) 角速度検出装置
JP5640452B2 (ja) 電力変換器の制御装置
JP6474700B2 (ja) 光変調器および光変調装置