JP2007294689A - 熱電変換素子 - Google Patents

熱電変換素子 Download PDF

Info

Publication number
JP2007294689A
JP2007294689A JP2006121024A JP2006121024A JP2007294689A JP 2007294689 A JP2007294689 A JP 2007294689A JP 2006121024 A JP2006121024 A JP 2006121024A JP 2006121024 A JP2006121024 A JP 2006121024A JP 2007294689 A JP2007294689 A JP 2007294689A
Authority
JP
Japan
Prior art keywords
electrode
thermoelectric conversion
inclined surface
thermoelectric material
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006121024A
Other languages
English (en)
Other versions
JP5026733B2 (ja
Inventor
Kazuo Ebisumori
一雄 戎森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2006121024A priority Critical patent/JP5026733B2/ja
Publication of JP2007294689A publication Critical patent/JP2007294689A/ja
Application granted granted Critical
Publication of JP5026733B2 publication Critical patent/JP5026733B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

【課題】電極および熱電変換材料(チップ)の高さバラツキを吸収、緩和して、接合界面の接合状態が均一で安定した熱電特性を有する熱電変換素子を提供する。
【解決手段】熱電材料チップ12と第1電極13とが接合する接合面が、第1電極13の厚み方向に直交する電極面と傾斜角θをなす傾斜面に構成されている。上記の用に構成することにより、電極13と熱電変換材料12間の滑りにより、高さバラツキが吸収することが出来るので、素子全体にわたって接合状態の均一な接合界面を形成することが出来る。
【選択図】図3

Description

本発明は、熱電変換素子に関し、詳しくは、熱電特性の安定した熱電変換素子に関する。
ゼーベック効果を利用した熱電変換素子は、熱エネルギーを電気エネルギーに変換することが可能である。この性質を利用し、産業・民生用プロセスや移動体から排出される排熱を有効な電力に変換することができるため、熱電変換素子は、環境問題に配慮した省エネルギー技術として注目されている。
熱電変換素子の性能は、性能指数ZT=ασT/κ〔α:ゼーベック係数、σ:電気伝導度、κ:熱伝導度、T:測定温度〕で表すことができるが、高い性能指数を示す熱電変換素子としては従来から、ビスマス・テルル系材料、シリコン・ゲルマニウム系材料、鉛・テルル系材料などを用いた熱電変換素子が知られており、近年では更に、熱電変換材料としてクラスレート化合物が注目されている(例えば、非特許文献1参照)。
一方、熱電変換素子は、素子を構成する熱電変換材料に温度差を与えたときに熱電変換し、熱から電流及び電圧を取り出せるように構成されている必要があるため、熱電変換材料には一般に、電極(Cu,Ni等)が接合されている。
ところが、例えば図22に示すように、P型の熱電材料チップとN型の熱電材料チップとを電極に接合して設ける場合に、チップ間の高さバラツキによって熱電変換材料と電極との間に接合強度等の接合バラツキを生じる。そのため、電極/熱電変換素子間の接合界面が容易に剥離して接合されていない部分ができたり、剥離しないまでも接合不良に伴なって、接合界面での熱的抵抗や電気的抵抗にバラツキを生ずる要因となることがある。特に、互いに接合する熱電変換材料及び電極を更にセラミックス基板と接合せず、電極と熱電変換材料とからなるスケルトン構造に構成される場合に顕著である。
上記に鑑み、熱電変換モジュールを組み立てる際の、チップの高さバラツキを吸収するために、耐熱性の弾性ゴムシートを介在させて加圧する技術が提案されている(例えば、特許文献1参照)。
特開2002−223012号公報 Proc. 21th Int.Conf. on Thermoelectrics,2002, pp.77-80.
しかしながら、上記の技術では、ある程度の高さバラツキを改善することができるものの、工程上片側を接合した後に弾性ゴムシートを取り除き、その後さらに逆側を接合する工程を経るようにするため、工程数が多い。したがって、実用的でないのが実情である。
また、拡散接合による場合は、理想的な拡散接合は接合部の溶融や部材の変形をほとんど伴なわないため、チップの高さにバラツキが生じると接合不足の部分が発生する。このような接合不足を解消するには、各部材の高さバラツキを一定以下(例えば±10μm)に抑える必要があるが、加工中に頻繁に寸法確認を行なうことは工数およびコストの点で望ましくない。
本発明は、上記に鑑みなされたものであり、熱電変換素子を構成する複数の電極および熱電変換材料(チップ)の高さバラツキを吸収、緩和し、接合界面の接合状態が均一で安定した熱電特性を有する熱電変換素子を提供することを目的とし、該目的を達成することを課題とする。
本発明は、熱電変換素子を構成する複数の電極および熱電変換材料(チップ)に高さバラツキがある場合に、その高さバラツキを吸収、緩和して接合界面の接合状態を均一にするには、電極とチップとが接合する接合面に傾斜をつけて構成することが有効であるとの知見を得、かかる知見に基づいて達成されたものである。
上記目的を達成するために、本発明の熱電変換素子は、電極間に熱電変換半導体材料を設けて構成されており、前記熱電変換半導体材料として、P型の熱電変換半導体材料とN型の熱電変換半導体材料との単数対又は複数対を含み、熱電変換半導体材料と電極とが接合する接合面の少なくとも一部(すなわち接合面の全部もしくは一部)が、電極の厚み方向に直交する電極面と傾斜角θをなす傾斜面となるように構成したものである。
本発明の熱電変換素子においては、対をなすP型およびN型の各熱電変換半導体材料(以下、熱電材料チップともいう。)と電極とが接合する接合面に電極の厚み方向に直交する電極面と傾斜角θをなす傾斜面を形成し、傾斜面を滑ってスライド可能なように構成することで、熱電変換素子を構成する電極、熱電変換半導体材料(チップ)間に高さバラツキがあっても、電極および熱電変換半導体材料(チップ)間の滑りにより高さバラツキを吸収することができるので、素子全体にわたって接合状態の均一な接合界面を形成でき、熱的抵抗や電気的抵抗のバラツキを解消することができる。これにより、熱電特性の安定した熱電変換素子を作製することができる。
本発明の熱電変換素子は、P型の熱電変換半導体材料と第1の電極とが接合する接合面の少なくとも一部(すなわち接合面の全部もしくは一部)が傾斜面であると共に、N型の熱電変換半導体材料と第2の電極とが接合する接合面の少なくとも一部(すなわち接合面の全部もしくは一部)が傾斜面である、P型の熱電変換半導体材料とN型の熱電変換半導体材料との単数対を設けて好適に構成することができる。
P型、N型毎に、電極および熱電変換半導体材料の形状を各々1種作製すればよく、工数を低減することができ、しかも電極、熱電変換半導体材料(チップ)間の高さバラツキを吸収して均一な接合界面を形成することができる。
熱電変換素子を構成する熱電変換半導体材料は、電極と接合された両端の各接合面の少なくとも一部(すなわち接合面の全部もしくは一部)に電極の厚み方向と直交する電極面に対して傾斜する傾斜面が設けられていることが好ましい。
熱電変換半導体材料の電極間に挟まれて接合された両方の端面において滑りによるスライドが可能であり、高さバラツキを効果的に吸収することができるので、接合状態の均一な接合界面の形成に有効である。
電極と接合された熱電変換半導体材料の両端の接合面にそれぞれ傾斜面を設けた構成にする場合は、両端に設けられた傾斜面の一方の傾斜方向と他方の傾斜方向とが同一平面上で90°をなすように傾斜面を設けることが好ましい。
両端に設けられた接合面それぞれにおける滑り方向が異なるので、高さバラツキを吸収しながら接合時の位置決めを容易に行なうことができる。
また、本発明の熱電変換素子では、電極が、該電極の厚み方向に直交する電極面と傾斜角θをなす傾斜面を有する凹状の溝部を備え、熱電変換半導体材料が前記溝部に嵌着して前記傾斜面で接合されるように構成することができる。
熱電変換半導体材料を嵌入して接合するための凹状の溝部を設けることで、溝部により熱電変換半導体材料が規制され、接合時の横ズレを起こしにくくなるので、傾斜面での滑りによる電極および熱電変換半導体材料の高さバラツキの解消が可能であると共に、接合時の位置決めを容易に行なうことができる。
本発明によれば、接合界面の接合状態が均一で安定した熱電特性を有する熱電変換素子を提供することができる。
以下、図面を参照して、本発明の熱電変換素子の製造方法の実施形態を説明する。但し、本発明においてはこれら実施形態に制限されるものではない。
(第1実施形態)
本発明の熱電変換素子の第1実施形態を図1〜図6を参照して説明する。本実施形態の熱電変換素子は、チップ形状が4mm×4mm×4mmの立方体であるP型熱電材料チップおよびN型熱電材料チップの各一面並びに、電極のチップ接合領域に高さバラツキを吸収するための傾斜を形成して、P型熱電材料チップおよびN型熱電材料チップの対を17対並べて30mm×30mmの熱電変換素子としたものである。
本実施形態の熱電変換素子は、図1〜図2に示すように、P型熱電材料チップ11とN型熱電材料チップ12とを交互に並べ、第1電極13と第2電極14とで直列に接合して構成されている。
本実施形態では、電極にTiCu合金(Ti3Cu4)電極を用い、N型熱電変換材料としてクラスレート化合物であるBa8Ga15Ge31を、P型熱電変換材料としてクラスレート化合物であるBa8Ga18Ge28を用いた場合を中心に説明する。
P型熱電材料チップ11は、長さ(l)4mm×幅(w)4mm×厚み(t)4mmの立方体のP型の熱電変換半導体材料(Ba8Ga18Ge28)の一面を、図3に示すように、第1電極13の厚み方向と直交する電極面となす傾斜角θが5°の傾斜面としたものである。すなわち、傾斜面と交差する4つの片のうち2つの長い片の長さは4mmである。また、N型熱電材料チップ12も同様に、長さ(l)4mm×幅(w)4mm×厚み(t)4mmの立方体のN型の熱電変換半導体材料(Ba8Ga15Ge31)を加工して、P型熱電材料チップ11と同様の傾斜面が形成されている。
第1電極13および第2電極14は、長さ(L)9.4mm×幅(W)4.5mm×厚み(T)1mmのTiCu合金(Ti3Cu4)からなる電極であり、TiCuの組成が含まれるように、チタン(Ti)粉と銅(Cu)粉とを混合した混合粉末を用いて成形し、成形された成形体を更に焼成することにより形成された電極である。
第1電極13は、図3に示すように、第1電極の長手方向の一端から長さD4.5mmの領域に、電極の厚み方向に対する傾斜角(90−θ)が85°の傾斜面が形成されている。また、第2電極14も同様に、長さ(L)9.4mm×幅(W)4.5mm×厚み(T)1mmのTiCu合金(Ti3Cu4)からなる電極であり、第1電極13と同様の傾斜面が形成されている。
電極は、前記組成以外に、TiCu1−x(x=0.2〜0.43)を満足する組成で構成することができる。組成を前記範囲で構成することにより、電極をクラスレート化合物に近い線膨張係数に構成することができ、クラスレート化合物(ここでは、N型熱電変換材料およびP型熱電変換材料)との熱膨張差を低減することができる。これにより、クラスレート化合物の割れを解消し得ると共に、電極とクラスレート化合物との間の接合界面の剥離防止に有効である。
TiCu1−x(0.2≦x≦0.43)の組成のうち、0.25≦x≦0.43が好ましく、0.40≦x≦0.43がより好ましい。好ましい具体的な例は、TiCu(x=0.40)である。なお、TiCu1−x(x=0.2〜0.43)の組成で構成された電極の線膨張係数は12×10−6〜15×10−6[/K]の範囲であり、クラスレート化合物の線膨張係数に近く、熱膨張によるクラスレート化合物の割れや接合界面の剥離を効果的に回避することができる点で好ましい。
なお、線膨張係数は、TMA8140(理学電気(株)製)を用いて測定されるものである。
第1電極13および第2電極14は、TiCuの組成となるようにTi粉(線膨張係数8×10-6〜11×10-6[/K])とCu粉(線膨張係数17×10-6〜21×10-6[/K])とを混合して混合粉末とし、この混合粉末を成形し、成形された成形体を更に焼成して形成されたものであり、その具体的な方法としては下記方法が挙げられる。また、成形と焼結とは別々に行なう以外に、成形すると共に焼結するようにすることもできる。
成形すると共に焼結する場合、加圧成形しながら焼結することで好適に作製できる。加圧成形しながら焼結(加圧焼結)する方法としては、ホットプレス焼結法、熱間等方圧加圧焼結法、放電プラズマ焼結法等のいずれの方法も用いることができる。中でも特に放電プラズマ焼結法が好ましい。
放電プラズマ焼結法においては、焼結温度は600〜900℃が好ましく、650〜850℃がより好ましく、焼結時間は10〜90分が好ましく、20〜60分がより好ましく、加圧時の圧力は20〜50MPaが好ましく、25〜45MPaがより好ましい。
Ti粉及びCu粉を用いる場合、各々の平均粒径としては、0.1〜100μmの範囲内であるのが好ましく、1〜50μmの範囲内であるのがより好ましい。平均粒径が前記範囲内であると、混合時の組成の均一化の点で有利である。
電極は、Ti粉とCu粉とを混合した混合粉末を用いる以外に、あらかじめ所望の組成でTiとCuとを合金化したTi−Cu合金の粉末(Ti−Cu合金粉末)を用い、このTi−Cu合金粉末を成形、焼成して形成するようにすることもできる。Ti粉及びCu粉の混合によるよりも、Ti−Cu合金粉末を用いた場合が、より層中の組成を均一化でき、所望の特性の電極を安定的に形成できると共に、(特に高温域で)高い耐久性が得られる点で好ましい。
Ti−Cu合金粉末を用いる場合、その平均粒径としては、0.1〜100μmの範囲内であるのが好ましく、1〜50μmの範囲内であるのがより好ましい。平均粒径が前記範囲内であると、焼成時の組成の均一化の点で有利である。ここでの平均粒径は、前記同様にして測定されるものである。
また、Ti粉及びCu粉あるいはTi−Cu合金粉末を用いる以外に、TiCu1−x(x=0.2〜0.43)の組成を含むTi−Cu合金で構成された合金板や合金シート等の板状材料を用い、これを熱電変換素子(好ましくはクラスレート化合物)の表面に接合して電極とするようにしてもよい。
電極の厚みは、0.1〜2mmが好ましく、0.5〜1mmがより好ましい。
熱電材料チップと電極との接合について、第1電極13とN型熱電材料チップ12との接合関係を例に説明する。第1電極13に形成された傾斜面には、図3に示すように、第1電極13の一端からの距離ΔDを残してN型熱電材料チップ12がその傾斜面で接合されている。このとき、後述するように、傾斜面を互いに滑らせることによりΔT分の高さバラツキを吸収できるようになっている。N型熱電材料チップ12の傾斜面と逆側の端面は、図2に示すように、第2電極14と接合される。
また同様に、第2電極14に形成された傾斜面では、第2電極14の一端からの距離ΔDを残してP型熱電材料チップ11がその傾斜面で接合される。このときにも、後述するように、傾斜面が互いに滑ることでΔT分の高さバラツキを吸収できるようになっている。P型熱電材料チップ11の傾斜面と逆側の端面には、図2に示すように、第1電極13が接合される。
このように、例えば、予め、N型熱電材料チップ12を非傾斜面で第2電極14に接合しておくと共に、P型熱電材料チップ11を傾斜面と逆側の非傾斜面で第1電極13と接合しておき、さらに、第2電極14上のN型熱電材料チップ12の傾斜面を第1電極13の傾斜面と、第1電極13上のP型熱電材料チップ11の傾斜面を第2電極14の傾斜面と接触させて重ねた後、重ねた状態のまま加重をかけ、加重をかけつつ接触する傾斜面を滑らせながら高さバラツキが緩和、吸収されるように接合位置を調節する。この操作を繰り返して行なうことにより、図1に示す構成の熱電変換素子を作製することができる。
ここで、高さバラツキとは、対をなす電極間に挟んで設けられる熱電変換半導体材料において、一方の電極と接合する熱電変換半導体材料の一面と前記一方の電極と対をなす他方の電極と接合する他の面との距離が、素子を構成する複数の熱電変換半導体材料(熱電材料チップ)間でばらついて不均一となっている状態をさす(図22参照)。この不均一は、電極の高さバラツキおよび熱電変換半導体材料の高さバラツキの双方により生じうる。
図3に示すように、電極の寸法を長さL、幅W、厚みT、電極に形成された傾斜面が厚みTの方向に直交する電極面となす傾斜角をθ、電極端部からの傾斜面の長さをDとし、熱電材料チップ(熱電変換半導体材料)の寸法を長さl、幅w、厚みtとし、電極端部から熱電材料チップまでの最短距離をΔDとした場合、傾斜面の傾斜角θの大きさにより、電極および熱電変換半導体材料の高さバラツキの吸収量ΔTは下記式で表すことができる。
ΔT = ΔDtanθ (ΔD=D−w)
例えば、T=1mm、D=4.5mm、w=4mmのとき、吸収量ΔTは図4に斜線で示す領域となる。すなわち、傾斜角θ=4.5°〜12.5°の範囲で40〜110μm(=ΔT)の範囲で高さバラツキを吸収することができる。
次に、熱電変換素子、電極の作製方法について具体的に説明する。
まず、大サイズのP型の熱電変換半導体材料とN型の熱電変換半導体材料とを用意し、各熱電変換半導体材料を、図5−(a)に示すように、角度5°(θ)の傾斜を持つ試料台に載置して固定し、切断刃で切断することにより所定サイズ(幅w:4mm、厚みt:4mm)の材料片を形成する(ダイシング)。熱電変換半導体材料の切断は、公知の精密切断機、ワイヤーカッターなどを用いて行なうことができる。例えば、精密切断機による場合には、回転数3,500r.p.m.、送り速度0.05mm/minの条件にて行なえる。また、切断角度を精密に制御して切断する場合には、切断角度を制御するための専用治具を用いることができる。
そして、形成された材料片を、図5−(b)に示すように、角度5°(θ)を持つ別の試料台に固定し、試料台と接しない側を研磨盤を用いて最も長い片(長さl)が4mm長になるように研磨する。そして、試料台から取り外し、図5−(c)に示すように、角度θの傾斜面を有するP型熱電材料チップ11とN型熱電材料チップ12とを作製する。
本実施形態では、P型熱電材料チップとN型熱電材料チップとの対を17対とするので、それぞれ17個用意する。
電極の作製は、短冊状に加工した電極材料を、図6に示すように、所望の角度5°(θ)の傾斜を持つ試料台に載置して固定し、所望の高さまで研磨することにより行なえる。研磨後、試料台から取り外し、一部に傾斜面が形成された電極が得られる。
なお、熱電材料チップおよび電極の形状、サイズは、目的や所望とする素子に合わせて適宜選択すればよく、形状については任意に選択することができる。熱電材料チップの材料については後述する。
前記傾斜角θは、複数の熱電材料チップ間の数〜数十μm程度(例えば10〜50μm)の高さバラツキを吸収することができる程度の角度を任意に選択することができ、高さバラツキを緩和、吸収するためには、上記のように4.5°〜12.5°の範囲が好適である。
上記のように、熱電材料チップ、電極の作製後には、作製した熱電材料チップを電極と接合する。例えば、N型熱電材料チップ12を傾斜面と反対側の非傾斜面で第2電極14に接合し、さらにP型熱電材料チップ11を傾斜面と反対側の非傾斜面で第1電極13と接合する。その後、第2電極14上のN型熱電材料チップ12の傾斜面を第1電極13の傾斜面と、第1電極13上のP型熱電材料チップ11の傾斜面を第2電極14の傾斜面とそれぞれ接触させて重ね、重ねた状態のまま加重をかけ、加重をかけつつ接触する傾斜面を滑らせながら高さバラツキが緩和、吸収されるように接合位置を調節し、接合することができる。
接合は、具体的には、N型熱電材料チップ12および第2電極14、P型熱電材料チップ11および第1電極13を750℃で1時間かけて拡散接合し、第2電極14上のN型熱電材料チップ12および第1電極13、第1電極13上のP型熱電材料チップ11および第2電極14を750℃で1時間かけて拡散接合する。
拡散接合は、前記条件以外に、700〜800℃の範囲内で0.5〜2時間加熱することで各チップを構成するクラスレート化合物と電極材料との界面で互いに成分拡散を起こさせて合金化することにより好適に行なうことができる。熱電変換材料が例えば、微粒子状に粉砕されたクラスレート化合物を用いて成形、焼結されてなるものである場合により好適である。
接合は、上記のように拡散接合に依らず、熱電材料チップおよび電極間に、また、後述のようにバリア層を有する場合には、熱電材料チップおよびバリア層間、バリア層および電極間に、Agろう等のろう材などの接合材を用いて通電可能なように行なうこともできる。ろう材は高温耐性が比較的高く一般に用いられる。
以上のようにして、図2に示すように、P型熱電材料チップ11およびN型熱電材料チップ12を電極で挟んで構成され、P型熱電材料チップおよびN型熱電材料チップの対を17対並べて形成された30mm×30mmの熱電変換素子を作製することができる。
また、熱電材料チップと第1電極および第2電極との間には、層状のバリア材(バリア層)を設け、バリア層を介して接合するようにしてもよい。バリア層は、鉄粉や鉄粉と他の金属粉との混合粉などを例えば熱電材料チップ上に載せ加圧焼結して層形成したり、鉄等の金属板を貼り付ける等して必要に応じて設けることができる。
上記のように、P型熱電材料チップ11及びN型熱電材料チップ12は各々、例えば加熱側の第1電極13、冷却側の第2電極14と接合されており、各熱電材料チップと各電極とは相互に通電可能である。
P型熱電材料チップ11及びN型熱電材料チップ12は、上記のBa8Ga18Ge28及びBa8Ga15Ge31で構成する以外に、他のクラスレート化合物を用いて構成することができる。他のクラスレート化合物としては、例えば、一般式II8(III,IV)46:〔II=Ba,Sr,アルカリ金属,アルカリ土類金属;III=Ga,Si,Sn,Al,遷移金属;IV=Ge,Si,Sn,遷移金属〕で表される立方晶系のクラスレート化合物が挙げられる。これらから、N型用、P型用に適宜選択して用いることができる。
上記の中でも、Ba8GaxGe46-xで表される立方晶系のクラスレート化合物が好適であり、前記xは14≦x≦22を満たす範囲が好ましい。具体的な化合物例として、Ba8Ga16Ge30、Ba8Ga15Si31、Ba8Ga16Si30、Ba8Ga18Si28、Ba8Ga14Sn32、Ba8Ga15Sn31、Ba8Ga16Sn30、Ba8Al16Si30、Ba8Al16Ge30、Sr8Al16Si30、Sr8Ga16Si30、Sr8Ga16Ge30等が挙げられる。
N型及びP型の各熱電変換材料の作製は、例えば、微粒子状に粉砕されたクラスレート化合物を(場合により別のクラスレート化合物を併用する場合は、微粒子状に粉砕された別のクラスレート化合物と共に有機溶剤中で超音波攪拌器等により攪拌、分散して分散液とした後の乾燥後)成形し、成形されたクラスレート化合物を焼結することによって行なうことができる。なお、成形と焼結とは別々に行なう以外に、成形すると共に焼結するようにすることもできる。
成形すると共に焼結する場合、加圧成形しながら焼結することで好適に作製できる。加圧成形しながら焼結(加圧焼結)する方法としては、ホットプレス焼結法、熱間等方圧加圧焼結法、放電プラズマ焼結法等のいずれの方法も用いることができる。中でも特に放電プラズマ焼結法が好ましい。放電プラズマ焼結法においては、焼結温度は600〜900℃が好ましく、650〜850℃がより好ましく、焼結時間は30〜120分が好ましく、40〜60分がより好ましく、加圧時の圧力は20〜100MPaが好ましく、40〜80MPaがより好ましい。
また、複数のクラスレート化合物により熱電変換材料を構成する場合には、クラスレート化合物の一つを粒子状に粉砕、焼結して多孔体とし、この多孔体の空隙に他のクラスレート化合物を含浸させて作製することができる。含浸は、例えば溶融状態のクラスレート化合物中に多孔体を浸す方法などで行なえる。
上記のようにして作製された熱電変換素子は、第1電極13の非接合面側から加熱(heat)すると共に、第2電極14の非接合面側を冷却して第1電極13側との間に温度差ができるように所定の温度域に保つことで、例えば第2電極間を電気的に繋いで形成された回路に電圧を発生させることができる。
本実施形態では、第1電極13、第2電極14にそれぞれP型、N型の熱電材料チップを接続して、NI型とPI型、PI型とNII型、NII型とPIII型のように順次交互に17対接続して図1のように30mm×30mmサイズに構成された熱電変換素子を中心に説明したが、接続対の数を変えた場合も同様であり、P型/N型の熱電変換素子が複数組接続して構成された熱電変換素子の場合についても同様である。
(第2実施形態)
本発明の熱電変換素子の第2実施形態を図7〜図12を参照して説明する。本実施形態は、電極および熱電材料チップのそれぞれに2面の傾斜面を設け、熱電材料チップを電極対で挟んだときに電極対の各々の側において高さバラツキの調整が可能なようにしたものである。
なお、電極および熱電材料チップは、第1実施形態で使用した材料を用いることができ、基本的には第1実施形態と同様の方法により、所望形状の電極および熱電材料チップの成形(切断等)、接合が可能であり、また、第1実施形態と同様の構成要素には同一の参照符号を付してその詳細な説明を省略する。
本実施形態では、図7に示すように、第1電極23、第2電極24a、第2電極24b、及び第2電極24cの形状の異なる4種の電極と、1種の形状のP型熱電材料チップ21およびN型熱電材料チップ22とを用い、電極と熱電材料チップとが(場合により他の層を介して)接合する接合面の傾斜が図8〜図10に示す組み合わせになるようにし、各熱電材料チップの第1電極23との接合面(上面)と他の第2電極との接合面(下面)とで電極および熱電材料チップの高さバラツキが吸収できるようになっている。
なお、図9は、第1電極23の傾斜面の傾斜方向を示す概念図であり、図10は、第2電極の傾斜面の傾斜方向を示す概念図である。
第1電極23は、図11−(d)に示すように、長さ(L)9.4mm×幅(W)4.5mm×厚み(T)1mmのTiCu合金(Ti3Cu4)電極の一部を加工して傾斜を設けたものであり、Ti3Cu4板の長手方向の一端および他端の両端からそれぞれ長さD4.5mmの領域に、電極の厚み方向に対する傾斜角(90−θ)が85°の傾斜面d,dが両端部から電極中央に向かって厚くなるようにして形成されている。傾斜面d,dの傾斜方向のなす角度は180°である。傾斜面d,dの間には、厚み(T)1mmの未加工の平坦面が残されている。加工は、第1実施形態と同様に図6に示すように行なえる。
第2電極24aは、図11−(a)に示すように、長さ(L)9.4mm×幅(W)4.5mm×厚み(T)1mmのTiCu合金(Ti3Cu4)電極の一部を加工して傾斜を設けたものであり、Ti3Cu4板の長手方向の一端および他端の両端からそれぞれ長さD4.5mmの領域に、電極の厚み方向に対する傾斜角(90−θ)が85°の傾斜面a,aが形成されている。傾斜面aは、長手方向の一端から電極中央に向かって厚くなるように形成されており、傾斜面aは、傾斜面aの傾斜方向と直交する方向において、電極端から短手方向に厚くなる、具体的には傾斜面aの厚みが増す方向(電極中央に向かう方向)の左側端部から右側端部に向かって厚くなるように形成されている。したがって、傾斜面a,aの傾斜方向のなす角度は90°である。傾斜面a,aの間には、厚み(T)1mmの未加工の平坦面が残されている。加工は、第1実施形態と同様に図6に示すように行なえる。
第2電極24bは、図11−(b)に示すように、長さ(L)9.4mm×幅(W)4.5mm×厚み(T)1mmのTiCu合金(Ti3Cu4)電極の一部を加工して傾斜を設けたものであり、Ti3Cu4板の長手方向の一端および他端の両端からそれぞれ長さD4.5mmの領域に、電極の厚み方向に対する傾斜角(90−θ)が85°の傾斜面b,bが形成されている。傾斜面bは、長手方向の一端(第2電極24aの長手方向の一端とは逆の他端)から電極中央に向かって厚くなるように形成されており、傾斜面bは、傾斜面bの傾斜方向と直交する方向において、電極端から短手方向に厚くなる、具体的には傾斜面bの厚みが増す方向(電極中央に向かう方向)の右側端部から左側端部に向かって厚くなるように形成されている。したがって、傾斜面b,bの傾斜方向のなす角度は90°である。傾斜面b,bの間には、厚み(T)1mmの未加工の平坦面が残されている。加工は、第1実施形態と同様に図6に示すように行なえる。
第2電極24cは、図11−(c)に示すように、長さ(L)9.4mm×幅(W)4.5mm×厚み(T)1mmのTiCu合金(Ti3Cu4)電極の一部を加工して傾斜を設けたものであり、Ti3Cu4板の長手方向の一端(第2電極24aの長手方向の一端とは逆の他端)から長さD4.5mmの領域に、電極の厚み方向に対する傾斜角(90−θ)が85°の傾斜面cが形成されている。傾斜面cは、長手方向の一端(第2電極24aの長手方向の一端とは逆の他端)から電極中央に向かって厚くなるように形成されている。傾斜面cの形成されていない領域は、厚み(T)1mmの未加工の平坦面となっている。加工は、第1実施形態と同様に図6に示すように行なえる。
本実施形態の熱電変換素子を構成するP型熱電材料チップ21およびN型熱電材料チップ22は、単一の同一形状に構成されている。すなわち、長さ(l)4mm×幅(w)4mm×厚み(t)4mmの立方体の熱電変換半導体材料の互いに対向する二面を、図12に示すように、第1電極23または第2電極24の各厚み方向と直交する各々の電極面となす傾斜角θが5°の傾斜面(α、α)となるようにしたものである。
P型熱電材料チップ21およびN型熱電材料チップ22は、第1実施形態と同様に、図5−(a)に示すように、角度5°(θ)の傾斜を持つ試料台に載置して固定し、切断刃で切断することにより所定サイズ(幅w:4mm、厚みt:4mm)の材料片に成形して得られる(ダイシング)。
本実施形態の熱電材料チップと電極との接合関係について説明する。
例えば、N型熱電材料チップ22は、N型熱電材料チップ22の一方の傾斜面において、図3に示す場合と同様にして、第1電極23に形成された傾斜面d(図7および図11−(d)参照)と第1電極23の一端からの距離ΔDを残して接合すると共に、N型熱電材料チップ22の他方の傾斜面において、第2電極24aに形成された傾斜面a(図7および図11−(a)参照)と第1電極23の一端からの距離ΔDを残して接合されており、傾斜面を互いに滑らせることによりΔT分の高さバラツキを吸収できるようになっている。
このとき、第1実施形態と同様に、電極の寸法を長さL、幅W、厚みT、電極に形成された傾斜面が厚みTの方向と直交する電極面となす傾斜角をθ、電極端部からの傾斜面の長さをD(本実施形態ではW=D)とし、熱電材料チップ(熱電変換半導体材料)の寸法を長さl、幅w、厚みtとし、電極端部から熱電材料チップまでの最短距離をΔDとした場合、傾斜面の傾斜角θの大きさにより、電極および熱電変換半導体材料の高さバラツキの吸収量ΔTは下記式で表すことができる。
ΔT = 2ΔDtanθ (ΔD=D−w)
上記のように、第1実施形態との比較では、電極および熱電材料チップの高さバラツキの吸収能力を2倍に高めることができる。
(第3実施形態)
本発明の熱電変換素子の第3実施形態を図13〜図17を参照して説明する。本実施形態は、電極および熱電材料チップの1面もしくは2面の傾斜面を設け、熱電材料チップを電極対で挟んだときに電極対の各々の側において高さバラツキの調整が可能なようにしたものである。
なお、電極および熱電材料チップは、第1実施形態で使用した材料を用いることができ、基本的には第1実施形態と同様の方法により、所望形状の電極および熱電材料チップの成形(切断等)、接合が可能であり、また、第1実施形態と同様の構成要素には同一の参照符号を付してその詳細な説明を省略する。
本実施形態では、図13に示すように、第1電極33および第2電極34a,34bの形状の異なる2種の電極と、P型熱電材料チップ31P、31P、および31Pの形状の異なる3種のP型熱電材料チップ並びにN型熱電材料チップ32N、32N、および32Nの形状の異なる3種のN型熱電材料チップとを用い、電極と熱電材料チップとが(場合により他の層を介して)接合する接合面の傾斜が図14〜図16に示す組み合わせになるようにし、各熱電材料チップの第1電極33との接合面(上面)と他の第2電極(34aまたは34b)との接合面(下面)とで電極および熱電材料チップの高さバラツキが吸収できるようになっている。
なお、図15は、第1電極33の傾斜面の傾斜方向を示す概念図であり、図16は、第2電極34a、34bの傾斜面の傾斜方向を示す概念図である。
第1電極33および第2電極34aは、図11−(d)に示すように、第2実施形態の第1電極23と同様の形状に構成されたものである。また、第2電極34bは、図11−(c)に示すように、第2実施形態の第1電極24cと同様の形状に構成されたものである。
P型熱電材料チップ31PおよびN型熱電材料チップ32Nは、第2実施形態のP型熱電材料チップ21およびN型熱電材料チップ22と同様に単一の同一形状に構成されており、長さ(l)4mm×幅(w)4mm×厚み(t)4mmの立方体の熱電変換半導体材料の互いに対向する二面を、図12に示すように、第1電極33または第2電極34の各厚み方向と直交する各々の電極面となす傾斜角θが5°の傾斜面(α、α)としたものである。
P型熱電材料チップ31PおよびN型熱電材料チップ32Nは、図17−(a)に示すように、長さ(l)4mm×幅(w)4mm×厚み(t)4mmの立方体の熱電変換半導体材料の一面を、接合される電極の厚み方向と直交する電極面となす傾斜角θが5°の傾斜面βとし、傾斜面βと反対側の一面を、傾斜面βの傾斜方向と直交する方向において、傾斜面βの厚みが増す方向の右側端部から左側端部に向かって傾斜角θにて厚くなる傾斜面βとしたものである。傾斜面βの傾斜方向とβの傾斜方向とが交差する交差角は90°である。
P型熱電材料チップ31PおよびN型熱電材料チップ32Nは、図17−(b)に示すように、長さ(l)4mm×幅(w)4mm×厚み(t)4mmの立方体の熱電変換半導体材料の一面を、接合される電極の厚み方向と直交する電極面となす傾斜角θが5°の傾斜面γ(P型熱電材料チップ31PおよびN型熱電材料チップ32Pの傾斜面βの傾斜方向が逆向きの傾斜面)とし、傾斜面γと反対側の一面を、傾斜面γの傾斜方向と直交する方向において、傾斜面γの厚みが増す方向の左側端部から右側端部に向かって傾斜角θにて厚くなる傾斜面γとしたものである。傾斜面βの傾斜方向とβの傾斜方向とが交差する交差角は90°である。
本実施形態の熱電材料チップと電極との接合関係について説明する。
例えば、P型熱電材料チップ31Pは、P型熱電材料チップ31Pの傾斜面α(上面)において、図3に示す場合と同様にして、第1電極33に形成された傾斜面(例えばd;図11−(d)参照)と第1電極33の一端からの距離ΔDを残して接合すると共に、P型熱電材料チップ31Pの傾斜面αと反対側の傾斜面α(下面)において、第2電極34aに形成された傾斜面(例えばd;図11−(d)参照)と第1電極34aの一端からの距離ΔDを残して接合されており、傾斜面を互いに滑らせることによりΔT分の高さバラツキを吸収できるようになっている。
接合は、拡散接合により好適に行なえ、拡散接合については既述の通りである。
また、例えば、N型熱電材料チップ32Nは、傾斜面β、βが図17−(a)に示すように形成された熱電材料チップであり、N型熱電材料チップ32Nの傾斜面β(上面)において、図3に示す場合と同様にして、第1電極33に形成された傾斜面(例えばd;図13および図11−(d)参照)と第1電極33の一端からの距離ΔDを残して接合すると共に、N型熱電材料チップ32Nの傾斜面βと反対側の傾斜面β(下面)において、第2電極34aに形成された傾斜面(例えばd;図13および図11−(d)参照)と第1電極34aの一端からの距離ΔDを残して接合されており、傾斜面を互いに滑らせることによりΔT分の高さバラツキを吸収できるようになっている。
また、例えば、P型熱電材料チップ31Pは、傾斜面γ、γが図17−(b)に示すように形成された熱電材料チップであり、P型熱電材料チップ31Pの傾斜面γ(上面)において、図3に示す場合と同様にして、第1電極33に形成された傾斜面(例えばd;図13および図11−(d)参照)と第1電極33の一端からの距離ΔDを残して接合すると共に、P型熱電材料チップ31Pの傾斜面γと反対側の傾斜面γ(下面)において、第2電極34aに形成された傾斜面(例えばd;図13および図11−(d)参照)と第1電極34aの一端からの距離ΔDを残して接合されており、傾斜面を互いに滑らせることによりΔT分の高さバラツキを吸収できるようになっている。
本実施形態においても、第1実施形態と同様に、電極の寸法を長さL、幅W、厚みT、電極に形成された傾斜面が厚みTの方向と直交する電極面となす傾斜角をθ、電極端部からの傾斜面の長さをD(本実施形態ではW=D)とし、熱電材料チップ(熱電変換半導体材料)の寸法を長さl、幅w、厚みtとし、電極端部から熱電材料チップまでの最短距離をΔDとした場合、傾斜面の傾斜角θの大きさにより、電極および熱電変換半導体材料の高さバラツキの吸収量ΔTは、ΔT=2ΔDtanθ(ΔD=D−w)で表すことができる。すなわち、第1実施形態との比較では、電極および熱電材料チップの高さバラツキの吸収能力を2倍に高めることができる。
(第4実施形態)
本発明の熱電変換素子の第4実施形態を図18〜図21を参照して説明する。本実施形態は、電極面に傾斜面を有する凹状の溝部を設けると共に、熱電材料チップ側には傾斜面を有する凸状の突部を設けて嵌込型の構造にし、高さバラツキの調整と接合時の横ズレ防止とが行なえるようにしたものである。
なお、電極および熱電材料チップは、第1実施形態で使用した材料を用いることができ、基本的には第1実施形態と同様の方法により、所望形状の電極および熱電材料チップの成形(切断等)、接合が可能であり、また、第1実施形態と同様の構成要素には同一の参照符号を付してその詳細な説明を省略する。
本実施形態では、図18に示すように、P型熱電材料チップ41とN型熱電材料チップ42とを交互に並べ、第1電極43と第2電極44とで直列に(図1参照)接合して構成されている。P型熱電材料チップ41およびN型熱電材料チップ42は、図19に示すように、長さ(l)4mm×幅(w)4mm×厚み(t)4mmの立方体の熱電変換半導体材料の、電極対の間に挟んだときに接合される2つの面の一方に加工を施したものである。
P型熱電材料チップ41およびN型熱電材料チップ42は、チップ側面から見たときの断面形状が図20−(a)に示すように、チップの両端から中心線に向かって傾斜が設けられた凸形状になっており、チップ正面から見たときには図20−(b)に示すように、接合される電極の厚み方向と直交する電極面となす傾斜角θが5°の傾斜面が形成されている。ここで、傾斜面と交差する4つの片のうち2つの長い片の長さは4mmである。
第1電極43と第2電極44は、長さ(L)9.4mm×幅(W)4.5mm×厚み(T)1mmのTiCu合金(Ti3Cu4)電極であり、電極の長手方向の一端から長さD4.5mmの領域に、2つの傾斜面が交差して山型の凹状の溝部が形成されている。具体的には、図21−(a)に示すように、幅(w)方向両端部から中心に向かって山型になる凸形状を有すると共に、図21−(b)に示すように、電極の厚み方向に対する傾斜角(90−θ)が85°の傾斜面が形成されている。
熱電材料チップと電極との接合について、図3,図18を参照して説明する。第1電極43の長手方向の一端から長さDの領域に形成された2つの傾斜面には、図3に示すように、第1実施形態と同様に第1電極43の一端からの距離ΔDを残してN型熱電材料チップ42が凸形状をつくる2つの傾斜面で接合されている。このとき、傾斜面を互いに滑らせることによりΔT分の高さバラツキを吸収できると共に、溝部に熱電材料チップの突部を嵌め込んで熱電材料チップが溝部で規制されるようにするので、組付け時に横ズレを起こしにくく、位置決めを容易に行なうことができる。したがって、第1実施形態で組付け時に一般に必要とされる電極および熱電材料チップの位置決めのためのガイド治具が不要であり、組付け時の工数を低減することができる。
本発明の第1実施形態に係る熱電変換素子の概略構成を示す平面図である。 本発明の第1実施形態に係る熱電変換素子の一部を拡大して示す断面図である。 電極と熱電材料チップとを傾斜面で接合するところを説明するための図である。 傾斜角θと吸収・緩和できる高さバラツキΔTとの関係を示す関係図である。 (a)は熱電変換半導体材料を傾斜角θの傾斜面が形成されるように切断する工程を示す工程図であり、(b)切断後の一端を所定の高さに研磨する工程を示す工程図であり、(c)は切断、研磨して得られた熱電材料チップの断面形状を示す断面図である。 電極材料を研磨して傾斜角θの傾斜面を形成するところを示す断面図である。 本発明の第2実施形態に係る熱電変換素子の概略構成を示す図である。 本発明の第2実施形態に係る熱電変換素子の接合面の傾斜方向を示す平面図である。 第1電極23に形成された傾斜面の傾斜方向を示す概念図である。 第2電極(24a〜24c)の傾斜面の傾斜方向を示す概念図である。 (a)は第2電極24aの形状を示す図であり、(b)は第2電極24bの形状を示す図であり、(c)は第2電極24cの形状を示す図であり、(d)は第1電極23の形状を示す図である。 第2実施形態の熱電材料チップの形状を示す図である。 本発明の第3実施形態に係る熱電変換素子の概略構成を示す図である。 本発明の第3実施形態に係る熱電変換素子の接合面の傾斜方向を示す平面図である。 第1電極33に形成された傾斜面の傾斜方向を示す概念図である。 第2電極(34a〜34b)の傾斜面の傾斜方向を示す概念図である。 (a)はP型熱電材料チップ31PおよびN型熱電材料チップ32Nの形状を示す図であり、(b)はP型熱電材料チップ31PおよびN型熱電材料チップ32Nの形状を示す図である。 本発明の第3実施形態に係る熱電変換素子の構成の一部を拡大して示す概略断面図である。 本発明の第3実施形態に係る熱電変換素子を構成する熱電材料チップの形状を示す斜視図である。 (a)は図19の熱電材料チップの側面形状を示す断面図であり、(b)は図19の熱電材料チップの正面形状を示す断面図である。 (a)は本発明の第3実施形態に係る熱電変換素子を構成する電極の幅方向の形状を示す断面図であり、(b)は(a)の電極の長手方向の形状を示す断面図である。 従来の熱電変換素子の接合界面に剥離等の接合不良が存在することを説明するための説明図である。
符号の説明
11,21,31P,31P,31P,41…P型熱電材料チップ
12,22,32N,32N,32N,42…N型熱電材料チップ
13,23,33,43…第1電極
14,24a,24b,24c,34a,34b,44…第2電極
θ…傾斜角

Claims (5)

  1. 電極間に熱電変換半導体材料を有する熱電変換素子において、
    P型の熱電変換半導体材料とN型の熱電変換半導体材料との単数対又は複数対を含み、前記熱電変換半導体材料と前記電極とが接合する接合面の少なくとも一部が、前記電極の厚み方向に直交する電極面と傾斜角θをなす傾斜面である熱電変換素子。
  2. 前記P型の熱電変換半導体材料と第1の電極との接合面の少なくとも一部および前記N型の熱電変換半導体材料と第2の電極との接合面の少なくとも一部が傾斜面である、P型の熱電変換半導体材料とN型の熱電変換半導体材料との単数対を含むことを特徴とする請求項1に記載の熱電変換素子。
  3. 前記電極と接合された両端の各接合面の少なくとも一部が前記電極面に対して傾斜する傾斜面である熱電変換半導体材料を含むことを特徴とする請求項1又は2に記載の熱電変換素子。
  4. 熱電変換半導体材料の前記電極と接合された両端の前記傾斜面の一方の傾斜方向と他方の傾斜方向とが同一平面上でなす角度が90°であることを特徴とする請求項3に記載の熱電変換素子。
  5. 前記電極が、該電極の厚み方向に直交する電極面と傾斜角θをなす傾斜面を有する凹状の溝部を備え、前記熱電変換半導体材料が前記溝部に嵌着して前記傾斜面で接合されていることを特徴とする請求項1〜4のいずれか1項に記載の熱電変換素子。
JP2006121024A 2006-04-25 2006-04-25 熱電変換素子 Expired - Fee Related JP5026733B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006121024A JP5026733B2 (ja) 2006-04-25 2006-04-25 熱電変換素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006121024A JP5026733B2 (ja) 2006-04-25 2006-04-25 熱電変換素子

Publications (2)

Publication Number Publication Date
JP2007294689A true JP2007294689A (ja) 2007-11-08
JP5026733B2 JP5026733B2 (ja) 2012-09-19

Family

ID=38765007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006121024A Expired - Fee Related JP5026733B2 (ja) 2006-04-25 2006-04-25 熱電変換素子

Country Status (1)

Country Link
JP (1) JP5026733B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010103977A1 (ja) * 2009-03-09 2010-09-16 住友化学株式会社 熱電変換モジュール
WO2011065457A1 (ja) * 2009-11-27 2011-06-03 昭和電工株式会社 積層材およびその製造方法
AT508277B1 (de) * 2009-06-09 2011-09-15 Avl List Gmbh Thermoelektrisches modul mit paarweise angeordneten p- und n- dotierten schenkeln
JP2015138878A (ja) * 2014-01-22 2015-07-30 株式会社アツミテック 熱電変換モジュール
CN112941356A (zh) * 2019-12-10 2021-06-11 中国科学院金属研究所 一种Cu-MoNbTaVW难熔高熵合金双连续结构材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112955U (ja) * 1990-03-05 1991-11-19
JPH09293909A (ja) * 1996-02-26 1997-11-11 Matsushita Electric Works Ltd 熱電モジュール及びその製造方法
JPH09321349A (ja) * 1996-05-27 1997-12-12 Matsushita Electric Works Ltd 熱電気変換装置
JPH1117234A (ja) * 1997-06-25 1999-01-22 Matsushita Electric Works Ltd 熱電気変換装置
JP2005064457A (ja) * 2003-07-25 2005-03-10 Toshiba Corp 熱電変換装置
JP2006332443A (ja) * 2005-05-27 2006-12-07 Kyocera Corp 熱電変換モジュール及び、これを用いた発電装置及び冷却装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112955U (ja) * 1990-03-05 1991-11-19
JPH09293909A (ja) * 1996-02-26 1997-11-11 Matsushita Electric Works Ltd 熱電モジュール及びその製造方法
JPH09321349A (ja) * 1996-05-27 1997-12-12 Matsushita Electric Works Ltd 熱電気変換装置
JPH1117234A (ja) * 1997-06-25 1999-01-22 Matsushita Electric Works Ltd 熱電気変換装置
JP2005064457A (ja) * 2003-07-25 2005-03-10 Toshiba Corp 熱電変換装置
JP2006332443A (ja) * 2005-05-27 2006-12-07 Kyocera Corp 熱電変換モジュール及び、これを用いた発電装置及び冷却装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010103977A1 (ja) * 2009-03-09 2010-09-16 住友化学株式会社 熱電変換モジュール
JP2010212339A (ja) * 2009-03-09 2010-09-24 Sumitomo Chemical Co Ltd 熱電変換モジュール
US8390113B2 (en) 2009-03-09 2013-03-05 Sumitomo Chemical Company, Limited Thermoelectric conversion module
AT508277B1 (de) * 2009-06-09 2011-09-15 Avl List Gmbh Thermoelektrisches modul mit paarweise angeordneten p- und n- dotierten schenkeln
WO2011065457A1 (ja) * 2009-11-27 2011-06-03 昭和電工株式会社 積層材およびその製造方法
US9096471B2 (en) 2009-11-27 2015-08-04 Showa Denko K.K. Method for producing a layered material
WO2015111629A1 (ja) * 2014-01-22 2015-07-30 株式会社アツミテック 熱電変換モジュール
JP2015138878A (ja) * 2014-01-22 2015-07-30 株式会社アツミテック 熱電変換モジュール
CN106165135A (zh) * 2014-01-22 2016-11-23 株式会社渥美精机 热电转换模块
US9887340B2 (en) 2014-01-22 2018-02-06 Atsumitec Co., Ltd. Thermoelectric conversion module
CN106165135B (zh) * 2014-01-22 2018-09-25 株式会社渥美精机 热电转换模块
CN112941356A (zh) * 2019-12-10 2021-06-11 中国科学院金属研究所 一种Cu-MoNbTaVW难熔高熵合金双连续结构材料及其制备方法
CN112941356B (zh) * 2019-12-10 2022-07-05 中国科学院金属研究所 一种Cu-MoNbTaVW难熔高熵合金双连续结构材料及其制备方法

Also Published As

Publication number Publication date
JP5026733B2 (ja) 2012-09-19

Similar Documents

Publication Publication Date Title
EP3352233B1 (en) Thermoelectric conversion module and thermoelectric conversion device
US10510940B2 (en) Thermoelectric generator
JP5241928B2 (ja) 熱電素子モジュール及び熱電素子の製造方法
JP2006319210A (ja) 熱電変換素子の製造方法
US20120000500A1 (en) Thermoelectric conversion element and thermoelectric conversion module
JP6182889B2 (ja) 熱電変換モジュールおよび熱電変換モジュールの製造方法
JP7163631B2 (ja) 熱電変換モジュール、及び、熱電変換モジュールの製造方法
JP5026733B2 (ja) 熱電変換素子
JP2007109942A (ja) 熱電モジュール及び熱電モジュールの製造方法
US10224472B2 (en) Thermoelectric power module
US11538974B2 (en) Magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, thermoelectric conversion device, and method for manufacturing magnesium-based thermoelectric conversion material
JP4584035B2 (ja) 熱電モジュール
EP3432371B1 (en) Magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, thermoelectric conversion device, and method for manufacturing magnesium-based thermoelectric conversion material
JP2012064913A (ja) 非対称熱電モジュールおよびその製造方法
US20220069190A1 (en) Thermoelectric device
JP4584034B2 (ja) 熱電モジュール
JP4284589B2 (ja) 熱電半導体の製造方法、熱電変換素子の製造方法及び熱電変換装置の製造方法
JP2011198778A (ja) 熱発電デバイスの製造方法
JP7047244B2 (ja) 熱電変換モジュールの製造方法
TWI752242B (zh) 熱電變換模組及熱電變換模組之製造方法
JP4643371B2 (ja) 熱電モジュール
JP2010016132A (ja) 熱電変換モジュールおよびその製造方法
JPH10209509A (ja) 熱電変換装置およびその製造方法
JP2005191431A (ja) 熱電変換器
JP2000286466A (ja) Si−Ge半導体素子およびその製造方法ならびに熱電変換モジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5026733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees