JP2007271204A - ガス化溶融システムの運転制御方法及び該システム - Google Patents

ガス化溶融システムの運転制御方法及び該システム Download PDF

Info

Publication number
JP2007271204A
JP2007271204A JP2006099148A JP2006099148A JP2007271204A JP 2007271204 A JP2007271204 A JP 2007271204A JP 2006099148 A JP2006099148 A JP 2006099148A JP 2006099148 A JP2006099148 A JP 2006099148A JP 2007271204 A JP2007271204 A JP 2007271204A
Authority
JP
Japan
Prior art keywords
furnace
control
upper limit
melting
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006099148A
Other languages
English (en)
Other versions
JP4126316B2 (ja
Inventor
Toshimasa Shirai
利昌 白井
Yoshihisa Saito
芳久 齊藤
Shigeaki Nakamura
成章 中村
Jun Sato
佐藤  淳
Takehiro Kitsuta
岳洋 橘田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2006099148A priority Critical patent/JP4126316B2/ja
Publication of JP2007271204A publication Critical patent/JP2007271204A/ja
Application granted granted Critical
Publication of JP4126316B2 publication Critical patent/JP4126316B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

【課題】廃棄物の投入量や発熱量の変動に対応して各状況に応じた適切な制御を行うことができ、安定した燃焼状態を維持して排ガス中のCO濃度の低減を可能としたガス化溶融システムの運転制御方法及び該システムを提案する。
【解決手段】流動床ガス化炉にて廃棄物を熱分解して熱分解ガスを発生させ、該熱分解ガスが導入された溶融炉にて該熱分解ガスの燃焼熱により灰分を溶融した後、前記溶融炉に連結した二次燃焼室にて燃焼を行うガス化溶融システムの運転制御方法において、前記流動床ガス化炉における炉内圧の上限値を予め複数段階設定するとともに、流動床ガス化炉、溶融炉、二次燃焼室の少なくとも何れか一に供給する燃焼空気供給量の変更値と制御保持時間の組み合わせからなる複数の制御操作を有し、該制御操作が前記上限値に夫々関連付けされており、前記炉内圧の検出値に基づいて前記上限値に対応した制御操作を選択する。
【選択図】図2

Description

本発明は、廃棄物を熱分解して熱分解ガスを発生させ、該熱分解ガスの燃焼熱で灰分を溶融するガス化溶融システムに関し、特に、廃棄物の投入量や発熱量に変動がある場合であっても排ガス中のCO濃度を増大させることなく安定した燃焼を行うことができるガス化溶融システムの運転制御方法及び該システムに関する。
従来より、都市ごみを始めとして不燃ごみ、焼却残渣、汚泥、埋立ごみ等の廃棄物まで幅広く処理できる技術としてガス化溶融システムが知られている。
ガス化溶融システムの概略を図5に示す。ガス化溶融システムは、熱分解してガス化するガス化炉3と、該ガス化炉3にて生成された熱分解ガスを高温燃焼し、ガス中の灰分を溶融スラグ化する旋回溶融炉6と、該旋回溶融炉6の排ガスが導入され、排ガス中の未燃分を燃焼させる二次燃焼室12と、減温塔14、除塵装置15、蒸気式加熱器16、触媒反応装置17等からなる排ガス処理設備とを備えている。廃棄物の資源化、減容化及び無害化を図るために、旋回溶融炉6からスラグを取り出して路盤材等の土木資材として再利用したり、二次燃焼室13の高温排ガスからボイラ部13にて廃熱を回収して発電を行うなどしている。
ガス化炉には流動床ガス化炉3が多く用いられる。流動床ガス化炉3は、炉底から燃焼空気を供給して流動媒体を流動化させた流動層20が形成され、該流動層内に投入した廃棄物を部分燃焼させ、該燃焼熱により高温に維持される流動層20内で廃棄物を熱分解する。廃棄物中に混入した不燃物は、燃焼空気にて浮遊させ、炉底に設けられた不燃物排出口より排出するようになっている。
流動床ガス化炉3で発生したCO、H等の可燃ガス、チャー(炭化物)、灰分を含む熱分解ガスは、熱分解ガスダクト25を介して旋回溶融炉6に供給される。旋回溶融炉6では、可燃ガスを燃焼させた燃焼熱により灰分を溶融する。そこで旋回溶融炉6には、燃焼を促進するための燃焼空気が供給されるとともに、炉内温度を維持するための種火バーナ26、補助燃料バーナ27が設置される。
旋回溶融炉6の上方には二次燃焼室12が連結されており、溶融炉にて発生した排ガス中の未燃分を燃焼する。二次燃焼室12にも同様に燃焼空気が供給されるとともに、補助燃料バーナ32が設置されている。
一般的に溶融炉における燃焼制御方法として、特許文献1(特開平11−351538号公報)等に記載されるように、溶融炉内に設置した温度センサにより炉内温度を検出し、該検出した温度に基づいて溶融炉に供給する燃焼空気量を制御する方法が用いられている。
しかし、このようなガス化溶融システムにおいて廃棄物を処理対象とした場合、廃棄物の投入量や発熱量の変動により燃焼が不安定となり、二次燃焼室から排出される排ガスのCO濃度が高くなり、これを原因とする環境への悪影響が問題となっていた。
そこで、特許文献2(特開2003−269712号公報)では、熱分解炉に圧力検出装置を設け、炉内圧の検出結果に基づいて熱分解炉二次燃焼空気量、灰溶融炉燃焼空気量及び二次燃焼室燃焼空気量の少なくとも1つを制御する構成が開示されている。このように、各部で必要な燃焼空気量を制御して供給することにより、燃焼空気不足から起こる有害ガスの大量発生を防ぐようにしている。
同様に、特許文献3(特開2001−201023号公報)では、熱分解ガス化炉の炉内圧を計測することにより廃棄物の負荷変動を検出し、負荷急増が検出された際に溶融炉に供給する燃焼用空気の供給量を増加させることにより、溶融炉内での不完全燃焼を防止する構成を開示している。
特開平11−351538号公報 特開2003−269712号公報 特開2001−201023号公報
上記したように、ガス化溶融システムにおいては廃棄物の投入量や発熱量の変動により燃焼が不安定となり、二次燃焼室から排出される排ガスのCO濃度が高くなるという問題があった。しかし、特許文献1に記載されるように、溶融炉の炉内温度に基づき該溶融炉への燃焼空気量を制御するのみではCO濃度を低減することは困難であった。これは、ガス化炉にて熱分解ガスが大量に発生した場合、溶融炉や二次燃焼室への燃焼空気供給量の制御だけではこれを完全燃焼することは不可能であり、また溶融炉へ大量の燃焼空気を供給すると炉内温度が低下して灰分の溶融に支障をきたすためである。
一方、特許文献2及び3はガス化炉の炉内圧に基づいて燃焼空気量を制御する構成であり、この方法によれば熱分解ガスの発生量を適確に検出することができCO濃度低減に効果的な方法であるが、炉内圧の変動に対して一律的な制御のみでは燃焼状態を安定的に維持することが困難であるという問題があった。
従って、本発明は上記従来技術の問題点に鑑み、廃棄物の投入量や発熱量の変動に対応して各状況に応じた適切な制御を行うことができ、安定した燃焼状態を維持して排ガス中のCO濃度の低減を可能としたガス化溶融システムの運転制御方法及び該システムを提案することを目的とする。
そこで、本発明はかかる課題を解決するために、流動床ガス化炉にて廃棄物を熱分解して熱分解ガスを発生させ、該熱分解ガスが導入された溶融炉にて該熱分解ガスの燃焼熱により灰分を溶融した後、前記溶融炉に連結された二次燃焼室にて燃焼を行うガス化溶融システムの運転制御方法において、
前記流動床ガス化炉における炉内圧の上限値を予め複数段階設定するとともに、流動床ガス化炉、溶融炉、二次燃焼室の少なくとも何れかに供給する燃焼空気供給量の変更値と制御保持時間の組み合わせからなる複数の制御操作を有し、該制御操作が前記上限値に夫々関連付けされており、
前記炉内圧の検出値に基づいて前記上限値に対応した制御操作を選択することを特徴とする。
本発明によれば、炉内圧の正常範囲を超える上限値を複数段階設定し、各上限値に対応した制御操作を選択するようにしたため、廃棄物の投入量や発熱量の変動があった場合でも炉内状況に対応した適切な制御を行うことができる。
制御操作は、流動床ガス化炉、溶融炉、二次燃焼室の少なくとも何れか一に供給する燃焼空気供給量の変更値と制御保持時間の組み合わせからなり、これらを制御することにより、流動床ガス化炉における熱分解ガスの発生量や溶融炉、二次燃焼室における燃焼をバランス良く適正化することができ、各装置における燃焼状態に支障を及ぼすことなく溶融炉後段側の排ガス中CO濃度を低減することができる。
また、前記上限値が、炉内圧の正常範囲を示す設定値に近い順に第1上限値、第2上限値、・・・と設定されており、
前記検出値が前記第1上限値に達した場合に、前記溶融炉と前記二次燃焼室の燃焼空気供給量を所定時間増加する第1の制御操作を行い、
前記検出値が前記第2上限値に達した場合に、前記流動床ガス化炉への燃焼空気供給量を所定時間減少する第2の制御操作を行うことを特徴とする。
このように第1の制御操作では、流動床ガス化炉で増加した熱分解ガスを燃焼させるために、旋回溶融炉及び二次燃焼室への燃焼空気供給量を増大させ、熱分解ガスの完全燃焼を促進させる。しかし、燃焼空気を大量に供給すると溶融炉温度が低下してしまうことが考えられる。従って、第2の制御操作では、流動床ガス化炉における熱分解を抑制し、熱分解ガスの発生量を抑えて排ガス中のCO濃度を低減するようにした。
さらに、前記検出値が第3上限値に達した場合に、前記溶融炉と前記二次燃焼室への燃焼空気供給割合を所定時間変更する第3の制御操作を行うことを特徴とする。
これは、溶融炉温度が燃焼空気の供給量増加により低下することを防ぎ、二次燃焼室にて可燃分を積極的に燃焼させるようにしたものであり、これにより排ガス中のCO濃度を効果的に低減できる。
また、前記検出値が第4上限値に達した場合に、前記第3の制御操作を行うとともに、前記第3の制御操作よりも制御保持時間を長くする第4の制御操作を行うことを特徴とする。
この第4の制御操作では、第3の制御操作の時間を長くすることにより二次燃焼室にて可燃分を積極的に燃焼させる時間を延長し、排ガス中のCO濃度の低減を図っている。
さらに、前記検出値が突発的に急激な増加を示した場合に、前記第1の制御操作と前記第3の制御操作を行うとともに、これらの制御操作より制御保持時間を長くする第5の制御操作を行うことを特徴とする。
さらにまた、前記検出値が前記設定値よりも大である状態が所定時間以上継続した場合に、前記第1の制御操作を行うとともに、その制御保持時間を前記上限値1の場合よりも長い時間維持する第6の制御操作を行うことを特徴とする。
これらの発明のごとく、炉内圧に特異な状態が発生した場合に、上記した制御操作を組み合わせて行うことにより炉内圧を正常値に戻し、安定運転を回復することが可能である。
また、廃棄物を熱分解して熱分解ガスを発生させる流動床ガス化炉と、該熱分解ガスの燃焼熱により灰分を溶融する溶融炉と、該溶融炉で発生した燃焼排ガス中の未燃分を燃焼させる二次燃焼室とからなるガス化溶融システムにおいて、
前記流動床ガス化炉の炉内圧を検出する炉内圧検出センサと、
前記流動床ガス化炉、溶融炉、二次燃焼室の何れかの燃焼空気供給量を調整する複数の供給量調整手段と、
前記炉内圧の上限値が複数段階設定されるとともに、流動床ガス化炉、溶融炉、二次燃焼室の少なくとも何れかに供給する燃焼空気供給量の変更値と制御保持時間の組み合わせからなる複数の制御操作が設定され、該制御操作が前記上限値に夫々関連付けされた制御テーブルと、
前記炉内圧検出センサにて得られる検出値に基づいて前記上限値に対応した制御操作を選択する制御装置とを備えることを特徴とする。
以上記載のごとく本発明によれば、廃棄物の投入量や発熱量の変動があった場合でも炉内状況に対応した適切な制御を行うことができ、延いては流動床ガス化炉における熱分解ガスの発生量や溶融炉、二次燃焼室における燃焼をバランス良く適正化することができ、各装置における燃焼状態に支障を及ぼすことなく溶融炉後段側の排ガス中CO濃度を低減することが可能となる。
以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
図1は本発明の実施例に係るガス化溶融システムの全体構成図、図2は図1のガス化溶融システムにおける制御テーブルを示す図、図3は図1に示した流動床ガス化炉の炉内圧変化を示す図、図2は図1のガス化溶融システムにおける運転制御フローを示す図である。
図1を参照して、本実施例に係るガス化溶融システムの全体構成を説明する。
廃棄物投入ホッパ1から投入された廃棄物40は、必要に応じて破砕、乾燥された後に給じん機2を介して流動床式ガス化炉3へ定量供給される。流動床ガス化炉3では、温度約120〜230℃、空気比0.2〜0.7程度の燃焼空気41が炉下部から風箱4を介して炉内に吹き込まれ、流動層温度が500〜600℃程度に維持されている。
廃棄物40は流動床ガス化炉3で熱分解ガス化され、ガス、タール、チャー(炭化物)に分解される。タールは、常温では液体となる成分であるが、ガス化炉内ではガス状で存在する。ガス化炉3の不燃物は不燃物排出口5より逐次排出される。
チャーは流動層内で徐々に微粉化され、ガス及びタールに同伴して旋回溶融炉6へ導入される。以下、溶融炉6へ導入されるこれらの成分を総称して熱分解ガスと呼ぶ。
前記流動床ガス化炉3の炉頂部より排出された熱分解ガスは、熱分解ガスダクト25を経て旋回溶融炉6の熱分解ガスバーナへ導入される。該熱分解ガスバーナで、熱分解ガスは燃焼空気42と混合されて炉内に導入され、旋回流を形成する。このとき、燃焼空気は空気比0.9〜1.1、好ましくは1.0程度であると良い。
前記旋回溶融炉6では、熱分解ガスと燃焼空気42の混合ガスが燃焼するとともに、必要に応じて種火バーナ26、補助燃料バーナ27により炉内温度が1300〜1500℃に維持され、熱分解ガス中の灰分が溶融、スラグ化される。溶融したスラグは、旋回溶融炉6の内壁面に付着、流下し、炉底部のスラグ出滓口7からスラグ抜出シュート8を経て排出される。旋回溶融炉6から排出されたスラグは、水砕槽9で急冷され、スラグコンベア10により搬出されて水砕スラグとして回収される。回収された水砕スラグは、路盤材等に有効利用することが可能である。
一方、旋回溶融炉6から排出された燃焼排ガスは連結部11を介して二次燃焼室12へ導入される。二次燃焼室12では、燃焼空気43が空気比1.2〜1.5となるように供給されるとともに、必要に応じて補助燃料バーナ32で所定温度まで昇温され、前記燃焼排ガス中の未燃分はここで完全燃焼される。
燃焼排ガスは、ボイラ部13で熱回収されて、200〜250℃程度まで冷却される。ボイラ部13から排出された燃焼排ガスは、減温塔14へ導入され、直接水噴霧により150℃程度まで冷却される。減温塔14から排出された燃焼排ガスは、必要に応じて煙道で消石灰、活性炭が噴霧され、反応集塵装置15に導入される。反応集塵装置15では、燃焼排ガス中の煤塵、酸性ガス、DXN類等が除去される。反応集塵装置15から排出された集塵灰は薬剤処理して埋立処分され、燃焼排ガスは蒸気式加熱器16で再加熱され、触媒反応装置17でNOが除去された後、誘引ファン18を介して煙突19より大気放出される。
前記流動床ガス化炉3は、炉底部に流動砂が充填された流動層20が形成され、その上方に補助燃料バーナ21が設けられている。炉底部には複数の風箱4が並設されており、該風箱4を介して炉内に燃焼空気41が導入される。通常運転時の流動層20は、550〜650℃程度の温度に維持される。
燃焼空気41は送風機23により供給され、該供給ライン上にはFDFダンパ24が配置されている。FDFダンパ24は、開度制御することにより風箱4に供給する燃焼空気供給量を調整する。FDFダンパ24の開度制御は、制御装置35により行われる。
また、流動床ガス化炉3の上方には、旋回溶融炉6に接続される熱分解ガスダクト25が配設される。該流動床ガス化炉3上方の熱分解ガス出口側には、炉内圧を検出する炉内圧センサ22が設けられており、連続的に検出を行って連続的に検出値を制御装置35に送信する。該制御装置35では、この炉内圧の検出値に基づいて、前記FDFダンパ24の開度制御、及び後述する2次FDFダンパ30、OFAダンパ31の開度制御を行い、各装置内への燃焼空気供給量を調整する。
前記旋回溶融炉は6は断面円形状の炉本体を有しており、側壁には、熱分解ガスダクト25から延設され熱分解ガスを炉内に吹き込む一又は複数の熱分解ガスバーナが配設される。熱分解ガスバーナの近傍には、種火バーナ26、補助燃料バーナ27が配設される。さらに、炉上部は絞り構造の連結部11を介して二次燃焼室12に連通しており、旋回溶融炉6で発生した燃焼排ガスは二次燃焼室12に送られる。炉底部にはスラグ出滓口7が設けおり、該スラグ出滓口7から下方に延設されたスラグ抜出シュート8を通って溶融スラグが排出されるようになっている。スラグ抜出シュート8にはスラグ出滓口7へ向けて溶融固化物溶融バーナ28が取り付けられており、スラグ出滓口7から排出される溶融スラグが固化して閉塞しないように加温するようになっている。
熱分解ガスダクト25には燃焼空気42が供給される。燃焼空気42は送風機29により供給され、該供給ライン上には2次FDFダンパ30が配置されている。2次FDFダンパ30は、開度制御することにより旋回溶融炉6に供給する燃焼空気供給量を調整する。2次FDFダンパ30の開度制御は、制御装置35により行われる。
二次燃焼室12の側壁には一又は複数の補助燃料バーナ32が設けられており、必要に応じて二次燃焼室内の温度を維持するようになっている。
さらに、二次燃焼室12には燃焼空気43が供給される。燃焼空気43は、旋回溶融炉6に供給される燃焼空気42と同一の送風機29により供給される。送風機29から供給される燃焼空気は2次FDFダンパ30を経由した後に分岐され、一方はOFAダンパ31を介して二次燃焼室12へ供給され、他方は熱分解ガスダクト25に供給されて溶融炉内に導入される。OFAダンパ31は、開度制御により二次燃焼室12に供給する燃焼空気供給量を調整する。OFAダンパ31の制御は、制御装置35により行われる。
上記したような流動床ガス化炉3では、その炉内圧は運転に伴い変動する。変動の要因としては、炉内に投入される廃棄物の発熱量、投入量の変動等が考えられる。廃棄物の発熱量や投入量の変動等おいて熱分解ガスが多量に発生することがあり、これに応じて炉内圧も変動する。運転時における炉内圧センサ22により検出した炉内圧変化を図3に示す。
流動床ガス化炉3にて熱分解ガスが多量に発生すると、後流側の溶融炉にて熱分解ガスが完全燃焼せずにCOを大量に含む排ガスが生じてしまう。従って、本実施例では流動床ガス化炉3における流動床ガス化炉3、及び旋回溶融炉6、二次燃焼室12における燃焼を適正化し、排ガス中のCO濃度を低減する構成を提案する。
そこで本実施例は、流動床ガス化炉3の炉内圧に基づいて流動床ガス化炉3、旋回溶融炉6、二次燃焼室12の何れかの燃焼空気供給量の制御を行う構成としている。
流動床ガス化炉3の炉内圧は原則的に負圧に維持されるが、熱分解ガスの発生が過剰になると負圧が小さくなる。そこで、予め炉内圧の上限値を複数段階設定しておき、炉内圧センサ22により検出した炉内圧検出値と、予め設定した上限値(閾値)とを比較して制御操作を選択する。
図2は、炉内圧の上限値と、各上限値に対応した制御操作を示す制御テーブルである。
正常範囲内の炉内圧を設定値SPとした場合、設定値SPを超える上限値H1〜H5を段階的に設定する。該設定値SPに最も近い上限値をH1とし、これに続いて、順次上限値H2、H3、H4、H5とする。また、炉内圧センサ22により検出された炉内圧検出値をPVとする。
まず、本実施例の基本制御となる第1の制御操作から第4の制御操作を示す。
第1の制御操作は、検出値PVが上限値H1に達した場合に行う。該第1の制御操作では、2次FDFダンパ30の開度(OP)を開側に制御し、二次燃焼室12及び旋回溶融炉6への燃焼空気供給量を増加する。例えば、H1=−0.3kPaとした場合、2次FDFダンパ30を10%開く制御操作を行う。この制御操作の継続条件としてはT1秒間とする。T1=30秒とすると、30秒間経過したら2次FDFダンパ30を元に戻す。
第2の制御操作は、検出値PVが上限値H2に達した場合に行う。該第2の制御操作では、FDFダンパ24の開度を閉側に制御し、流動床ガス化炉3への燃焼空気供給量を低減する。例えば、H2=−0.19kPaとした場合、FDFダンパ24を10%閉じる制御操作を行う。ただし、FDFダンパ24を閉じ過ぎると流動化するための空気量が不足し、流動不良となることから、FDFダンパ24の開度は10%を下限とし、これ以上閉じる操作は行わない。この場合には給じん機2の回転数をさげる操作を行い、流動床ガス化炉3に供給される廃棄物量を減らす操作を行う。これらの制御操作は、炉内圧が設定値SPまで復帰したら元に戻す。
第3の制御操作は、検出値PVが上限値H3に達した場合に行う。該第3の制御操作では、OFAダンパ31の開度を開側に制御し、二次燃焼室12への燃焼空気供給割合を増加する。このとき溶融炉6への燃焼空気供給量は低減する。例えば、H3=−0.1kPaとした場合、OFAダンパ31を20%開く制御操作を行う。この制御操作の継続条件は第1の制御操作と同様である。
第4の制御操作は、検出値PVが上限値H4に達した場合に行う。該第4の制御操作では、前記第3の制御操作を行うとともに、この継続時間をより長く維持する。継続条件はT2秒間とする(T2>T1)。例えば、H4=−0.1kPaとした場合、OFAダンパ31を20%開く制御操作を60秒間継続して行った後、元に戻す。
前記第1の制御操作は、流動床ガス化炉3で増加した熱分解ガスを燃焼させるために、旋回溶融炉6及び二次燃焼室12への燃焼空気供給量を増大させ、熱分解ガスの完全燃焼を促進させるものである。しかし、燃焼空気供給量は大量に供給すると溶融炉温度が低下してしまうことが考えられる。従って、前記第2の制御操作では、流動床ガス化炉3における熱分解を抑制させ、熱分解ガスの発生量を抑えることを目的とする。
さらに、前記第3の制御操作では、二次燃焼室12側のダンパ開度を大きくし、旋回溶融炉6への燃焼空気供給量を低減して二次燃焼室12への燃焼空気供給量を増大させる。これは、溶融炉温度が燃焼空気の供給量増加により低下するのを防ぎ、二次燃焼室12にて積極的に燃焼させるようにしたものである。
また、前記第4の制御操作では、前記第3の制御操作の時間を長くすることにより、二次燃焼室にて可燃分を積極的に燃焼させる時間を延長することを目的とする。
さらにまた、本実施例では、上記した基本制御に加えて特異な状況に応じた制御操作を備えることが好ましい。
図3に示すように、突発的に極端に高い値を示す状態(位置A)と、炉内圧が継続的に高い値を示す状態(位置B)に対応した制御操作を備える。
短時間で急激な炉内圧の上昇が検出される場合は、流動床ガス化炉3にて突発的に激しい燃焼が起こっていることが考えられる。従って、第5の制御操作として、検出値PVが上限値H5に達した場合に、前記第1の制御操作と前記第3の制御操作を行うとともに、これらの制御操作より制御保持時間を長くする。第5の制御操作では2次FDFダンパ30とOFAダンパ31の開度を開側に制御し、旋回溶融炉6と二次燃焼室12への燃焼空気量を増大する。例えば、PV>H5が20秒間継続して現れたとき、2次FDFダンパ30の開度を10%開くとともに、OFAダンパ31の開度を20%開く制御操作を60秒間行って元に戻す。
炉内圧が継続的に高い値を示す場合は、流動床ガス化炉3にて活発な燃焼が継続的に発生していることが考えられる。従って、第6の制御操作として、PV>SPが所定時間以上継続した場合に、2次FDFダンパ30の開度を開側に制御し、旋回溶融炉6及び二次燃焼室12への燃焼空気供給量を増加する。例えば、PV>SPが30秒間継続して現れたとき、2次FDFダンパ30を10%開く制御操作を行う60秒間行う。60秒を超えたら2次FDFダンパ30を元に戻す。同様に、PV>SPが、より長い間継続して現れるときには、2次FDFダンパ30を10%開く制御操作を120秒間行う。
図4に本実施例に係るガス化溶融システムにおける運転制御フローを示す。
同図に示されるように、まず流動床ガス化炉3の炉内圧の検出値PVと、複数設定した上限値とを比較する。
炉内圧の検出値PVが上限値H1より小さい場合には、該検出値を設定値SPと比較する。該検出値PVが設定値SPより大きく、且つTS秒間継続する場合には、タイマをスタートさせて時間計測を行い、タイムアップ値TL=保持タイマ設定値T2に設定する。そして、2次FDFダンパ操作値OPを開側にOP1だけ制御する。
一方、検出値PVが上限値H1より大きい場合には、タイムアップ値TL=保持タイマ設定値T1に設定し、2次FDFダンパ操作値OPを開側にOP1だけ制御する。
そして、夫々の操作時間Tがタイムアップ値TL以上になったらタイマをリセットし、2次FDFダンパ操作値OPを元に戻す。
炉内圧の検出値PVが上限値H2より大きい場合には、タイムアップ値TL=保持タイマ設定値T1に設定し、FDFダンパ操作値OPを閉側にOP2だけ制御する。そして、操作時間Tがタイムアップ値TL以上になったらタイマをリセットし、FDFダンパ操作値OP2を元に戻す。
炉内圧の検出値PVが上限値H3より大きい場合には、タイムアップ値TL=保持タイマ設定値T1に設定し、OFAダンパ操作値OPを開側にOP3だけ制御する。そして、保持タイマ設定値T1がタイムアップ値TLを超えたらタイマをリセットする。
炉内圧の検出値PVが上限値H4より大きい場合には、タイムアップ値TL=保持タイマ設定値T2に設定し、操作C(OFAダンパ操作値OPを開側にOP3だけ制御)を行った後、保持タイマ設定値T1がタイムアップ値TLを超えたらタイマをリセットする。
尚、炉内圧の上限値は、H1<H2<H3<H4とする。
本構成によれば、廃棄物40の投入量や発熱量の変動があった場合でも炉内状況に対応した適切な制御を行うことができ、延いては流動床ガス化炉3における熱分解ガスの発生量や溶融炉6、二次燃焼室12における燃焼をバランス良く適正化することができ、各装置における燃焼状態に支障を及ぼすことなく溶融炉後段側の排ガス中CO濃度を低減することが可能となる。
本発明の実施例に係るガス化溶融システムの全体構成図である。 図1のガス化溶融システムにおける制御テーブルを示す図である。 図1に示した流動床ガス化炉の炉内圧変化を示す図である。 図1のガス化溶融システムにおける運転制御フローを示す図である。 従来のガス化溶融システムの全体構成図である。
符号の説明
3 流動床ガス化炉
6 旋回溶融炉
12 二次燃焼室
22 炉内圧センサ
23、29 送風機
24 FDFダンパ
25 熱分解ガスダクト
30 2次FDFダンパ
31 OFAダンパ
35 制御装置
41、42、43 燃焼空気

Claims (7)

  1. 流動床ガス化炉にて廃棄物を熱分解して熱分解ガスを発生させ、該熱分解ガスが導入された溶融炉にて該熱分解ガスの燃焼熱により灰分を溶融した後、前記溶融炉に連結された二次燃焼室にて燃焼を行うガス化溶融システムの運転制御方法において、
    前記流動床ガス化炉における炉内圧の上限値を予め複数段階設定するとともに、流動床ガス化炉、溶融炉、二次燃焼室の少なくとも何れかに供給する燃焼空気供給量の変更値と制御保持時間の組み合わせからなる複数の制御操作を有し、該制御操作が前記上限値に夫々関連付けされており、
    前記炉内圧の検出値に基づいて前記上限値に対応した制御操作を選択することを特徴とするガス化溶融システムの運転制御方法。
  2. 前記上限値が、炉内圧の正常範囲を示す設定値に近い順に第1上限値、第2上限値、・・・と設定されており、
    前記検出値が前記第1上限値に達した場合に、前記溶融炉と前記二次燃焼室の燃焼空気供給量を所定時間増加する第1の制御操作を行い、
    前記検出値が前記第2上限値に達した場合に、前記流動床ガス化炉への燃焼空気供給量を所定時間減少する第2の制御操作を行うことを特徴とする請求項1記載のガス化溶融システムの運転制御方法。
  3. 前記検出値が第3上限値に達した場合に、前記溶融炉と前記二次燃焼室への燃焼空気供給割合を所定時間変更する第3の制御操作を行うことを特徴とする請求項2記載のガス化溶融システムの運転制御方法。
  4. 前記検出値が第4上限値に達した場合に、前記第3の制御操作を行うとともに、前記第3の制御操作よりも制御保持時間を長くする第4の制御操作を行うことを特徴とする請求項2若しくは3記載のガス化溶融システムの運転制御方法。
  5. 前記検出値が突発的に急激な増加を示した場合に、前記第1の制御操作と前記第3の制御操作を行うとともに、これらの制御操作より制御保持時間を長くする第5の制御操作を行うことを特徴とする請求項2若しくは3記載のガス化溶融システムの運転制御方法。
  6. 前記検出値が前記設定値よりも大である状態が所定時間以上継続した場合に、前記第1の制御操作を行うとともに、その制御保持時間を前記上限値1の場合よりも長い時間維持する第6の制御操作を行うことを特徴とする請求項2記載のガス化溶融システムの運転制御方法。
  7. 廃棄物を熱分解して熱分解ガスを発生させる流動床ガス化炉と、該熱分解ガスの燃焼熱により灰分を溶融する溶融炉と、該溶融炉で発生した燃焼排ガス中の未燃分を燃焼させる二次燃焼室とからなるガス化溶融システムにおいて、
    前記流動床ガス化炉の炉内圧を検出する炉内圧検出センサと、
    前記流動床ガス化炉、溶融炉、二次燃焼室の何れかの燃焼空気供給量を調整する複数の供給量調整手段と、
    前記炉内圧の上限値が複数段階設定されるとともに、流動床ガス化炉、溶融炉、二次燃焼室の少なくとも何れかに供給する燃焼空気供給量の変更値と制御保持時間の組み合わせからなる複数の制御操作が設定され、該制御操作が前記上限値に夫々関連付けされた制御テーブルと、
    前記炉内圧検出センサにて得られる検出値に基づいて前記上限値に対応した制御操作を選択する制御装置とを備えることを特徴とするガス化溶融システム。
JP2006099148A 2006-03-31 2006-03-31 ガス化溶融システムの運転制御方法及び該システム Active JP4126316B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006099148A JP4126316B2 (ja) 2006-03-31 2006-03-31 ガス化溶融システムの運転制御方法及び該システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006099148A JP4126316B2 (ja) 2006-03-31 2006-03-31 ガス化溶融システムの運転制御方法及び該システム

Publications (2)

Publication Number Publication Date
JP2007271204A true JP2007271204A (ja) 2007-10-18
JP4126316B2 JP4126316B2 (ja) 2008-07-30

Family

ID=38674192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006099148A Active JP4126316B2 (ja) 2006-03-31 2006-03-31 ガス化溶融システムの運転制御方法及び該システム

Country Status (1)

Country Link
JP (1) JP4126316B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016052A (ja) * 2009-07-07 2011-01-27 Fuji Denki Thermosystems Kk 廃アスベスト無害化装置
JP2011016053A (ja) * 2009-07-07 2011-01-27 Fuji Denki Thermosystems Kk 廃アスベスト無害化装置
JP2011016051A (ja) * 2009-07-07 2011-01-27 Fuji Denki Thermosystems Kk 廃アスベスト無害化装置
JP2011016054A (ja) * 2009-07-07 2011-01-27 Fuji Denki Thermosystems Kk 廃アスベスト無害化装置
JP2013540051A (ja) * 2010-10-21 2013-10-31 川崎重工業株式会社 汚泥を含む廃棄物の処理設備
CN104874580A (zh) * 2015-04-23 2015-09-02 四川和鼎环保工程有限责任公司 城市固态生活垃圾处理系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104456575B (zh) * 2014-11-10 2016-11-16 厚德九天(湖北)环保科技集团有限公司 一种生活垃圾热解燃烧炉及其运行工艺
CN110440268A (zh) * 2019-08-09 2019-11-12 陈景鹤 生活垃圾低温热解隔氧碳化和二次燃烧一体装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016052A (ja) * 2009-07-07 2011-01-27 Fuji Denki Thermosystems Kk 廃アスベスト無害化装置
JP2011016053A (ja) * 2009-07-07 2011-01-27 Fuji Denki Thermosystems Kk 廃アスベスト無害化装置
JP2011016051A (ja) * 2009-07-07 2011-01-27 Fuji Denki Thermosystems Kk 廃アスベスト無害化装置
JP2011016054A (ja) * 2009-07-07 2011-01-27 Fuji Denki Thermosystems Kk 廃アスベスト無害化装置
JP2013540051A (ja) * 2010-10-21 2013-10-31 川崎重工業株式会社 汚泥を含む廃棄物の処理設備
CN104874580A (zh) * 2015-04-23 2015-09-02 四川和鼎环保工程有限责任公司 城市固态生活垃圾处理系统

Also Published As

Publication number Publication date
JP4126316B2 (ja) 2008-07-30

Similar Documents

Publication Publication Date Title
JP4126316B2 (ja) ガス化溶融システムの運転制御方法及び該システム
JP4548785B2 (ja) 廃棄物ガス化溶融装置の溶融炉、並びに該溶融炉における制御方法及び装置
JP2002081624A (ja) 廃棄物ガス化溶融炉と同溶融炉の操業方法
JP4295291B2 (ja) 流動床ガス化炉及びその流動層監視・制御方法
JP5154094B2 (ja) ガス化溶融システムの燃焼制御方法及び該システム
JP5611418B2 (ja) ガス化溶融システムの燃焼制御方法及び該システム
EP1489354A1 (en) Slagging combustion furnace
JP4126317B2 (ja) ガス化溶融システムの運転制御方法及び該システム
JP2007255844A (ja) ガス化溶融システムの溶融設備及び溶融方法
JP4243764B2 (ja) 熱分解ガス化溶融システムとその昇温方法
JP6016196B2 (ja) 廃棄物ガス化溶融装置及び廃棄物ガス化溶融方法
JP2007078197A (ja) 焼却炉及び廃棄物の焼却方法
JP4285760B2 (ja) ガス化溶融システムの運転制御方法及び該システム
JPH08121728A (ja) 廃棄物の溶融炉からの発生ガスの燃焼方法および廃棄物溶融炉の2次燃焼炉
JP2006194516A (ja) 廃棄物ガス化溶融炉の二次燃焼制御装置
JP2019190730A (ja) 廃棄物ガス化溶融装置及び廃棄物ガス化溶融方法
JP5044317B2 (ja) 廃棄物ガス化溶融設備の燃焼室及び燃焼方法
JP5021543B2 (ja) 燃焼制御方法、及び廃棄物処理装置
JP5981696B2 (ja) ガス化溶融設備の溶融炉
JP3840322B2 (ja) ガス化灰溶融方法と装置
JP3309586B2 (ja) 廃棄物のガス化溶融方法
JP4233212B2 (ja) 高温旋回燃焼方法及び廃棄物処理装置
JP2010236733A (ja) 廃棄物のガス化溶融方法およびガス化溶融設備
JP2004263969A (ja) 熱分解ガス化溶融システム
JP2005201620A (ja) ごみガス化溶融方法と装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080425

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080512

R151 Written notification of patent or utility model registration

Ref document number: 4126316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20080926

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250