JP2007267560A - Invertor equipped with through-current controller - Google Patents

Invertor equipped with through-current controller Download PDF

Info

Publication number
JP2007267560A
JP2007267560A JP2006092744A JP2006092744A JP2007267560A JP 2007267560 A JP2007267560 A JP 2007267560A JP 2006092744 A JP2006092744 A JP 2006092744A JP 2006092744 A JP2006092744 A JP 2006092744A JP 2007267560 A JP2007267560 A JP 2007267560A
Authority
JP
Japan
Prior art keywords
voltage
power semiconductor
semiconductor element
current
controlled power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006092744A
Other languages
Japanese (ja)
Other versions
JP4816198B2 (en
Inventor
Hideki Miyazaki
英樹 宮崎
Katsunori Suzuki
勝徳 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006092744A priority Critical patent/JP4816198B2/en
Publication of JP2007267560A publication Critical patent/JP2007267560A/en
Application granted granted Critical
Publication of JP4816198B2 publication Critical patent/JP4816198B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an invertor, wherein serge voltage and high-frequency vibration of voltage are controlled at reverse recovery time of a diode, through-current is reduced when a voltage control-type power semiconductor element is conducted at voltage change dV/dt, and loss is also reduced. <P>SOLUTION: In the invertor, the voltage controlled-type power semiconductor elements and the diodes parallel to the elements are arranged in upper/lower arms. A drive circuit, having a switch means, controls on/off of the voltage controlled-type power semiconductor elements. A plurality of second diodes whose total forward voltage is almost equal to setting voltage, are connected in series to the switch means which turns off the voltage controlled-type power semiconductor element by the drive circuit, by making a value lower than control threshold voltage required for output of main current by the voltage control-type power semiconductor element, as the setting voltage. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、インバータに係わり、特に上下アームの導通を切り替える際にダイオードを流れて上下アームを貫通する逆回復電流に起因した電圧の過大な振動を抑制する貫通電流制御装置に関する。   The present invention relates to an inverter, and more particularly to a through current control device that suppresses excessive voltage oscillation caused by a reverse recovery current that flows through a diode when switching conduction between upper and lower arms.

インバータ装置は電圧制御型パワー半導体素子を上下アームに備え、出力電流の導通と遮断を制御する構成が一般的であり、上下の電圧制御型パワー半導体素子には環流時の逆方向電流を通電させるダイオードが並列に接続されている。ここで、電圧制御型パワー半導体素子や環流用ダイオードは電流を導通から遮断状態へ移行させる際に過渡的なサージ電圧が発生する。電圧制御型パワー半導体素子でこうしたサージ電圧を抑制する方法としては、駆動回路に備えた抵抗値を適正に選び、電流遮断時に制御電圧の変化を抑制的にする方法が用いられている。一方、ダイオードが電流を導通する状態から遮断状態へ移行する際には、ダオードを逆方向に流れる電流(逆回復電流と呼ぶ)が生じ、この電流は上下アームを貫通して流れる。逆回復電流の時間変化が過大な場合には電流を流すバスバー、ハーネス等のインダクタンスと電流変化di/dtの掛け算でサージ電圧が発生し、かつ数μsの時間に渡って高周波な電圧振動(リンギング)が発生する。しかしながらダイオードが制御可能なデバイスで無いため、電圧制御型パワー半導体素子のように駆動回路によって逆回復電流自体を低減することは困難であった。   Inverter devices are generally equipped with voltage-controlled power semiconductor elements in the upper and lower arms, and are configured to control conduction and interruption of output current. The upper and lower voltage-controlled power semiconductor elements are supplied with a reverse current during reflux. Diodes are connected in parallel. Here, in the voltage controlled power semiconductor element and the circulating diode, a transient surge voltage is generated when the current is shifted from the conduction state to the cutoff state. As a method of suppressing such a surge voltage in a voltage-controlled power semiconductor element, a method of appropriately selecting a resistance value provided in a drive circuit and suppressing a change in the control voltage when current is interrupted is used. On the other hand, when the diode shifts from a state in which current is conducted to a cutoff state, a current flowing in the diode in the reverse direction (referred to as reverse recovery current) is generated, and this current flows through the upper and lower arms. When the reverse recovery current changes excessively, a surge voltage is generated by multiplying the current change di / dt by the inductance of the bus bar, harness, etc. through which the current flows, and high-frequency voltage oscillation (ringing) over a period of several μs. ) Occurs. However, since the diode is not a controllable device, it is difficult to reduce the reverse recovery current itself by a drive circuit like a voltage-controlled power semiconductor element.

こうしたダイオードの逆回復電流に起因する過大なサージ電圧を抑制する方法の例が特許文献1、特許文献2、及び特許文献3等に記載されている。これらの従来技術では、インバータの上下アーム用パワー半導体素子にはパワーMOSやIGBTなどの電圧制御型パワー半導体素子が用いられ、パワーMOSの場合にはデバイスに内蔵された寄生のダイオード、IGBTの場合には並列に接続したダイオードを還流電流の為に用いている。   Examples of a method for suppressing an excessive surge voltage caused by the reverse recovery current of such a diode are described in Patent Document 1, Patent Document 2, Patent Document 3, and the like. In these prior arts, a power control element such as a power MOS or IGBT is used as the power semiconductor element for the upper and lower arms of the inverter. In the case of the power MOS, a parasitic diode built in the device, an IGBT is used. Uses a diode connected in parallel for the return current.

特許文献1に記載された駆動方法は、ダイオードが逆回復する際に生じる電圧の変化(dV/dt)と電圧制御型パワー半導体素子の帰還容量によって発生する変位電流をダイオードに並列な電圧制御型パワー半導体素子の制御端子に流入させて制御電圧を増加させ、この値を電圧制御型パワー半導体素子のしきい値電圧よりわずかに高くさせてパワー半導体素子を導通させる。この結果、パワー半導体素子が通常のオフ状態より低インピーダンスになり、サージ電圧や高周波な電圧振動を抑制する。特許文献2、及び特許文献3等に記載された駆動装置も同じ原理を用いるもので、ダイオードが逆回復する以前に電圧駆動型パワー半導体素子の制御電圧をしきい値か或いはそれより小さい電圧に維持させ、dV/dtとパワー半導体素子の帰還容量によって発生する変位電流によってパワー半導体素子をオンさせ易い状態を作る。   The driving method described in Patent Document 1 is a voltage control type in which a change in voltage (dV / dt) generated when a diode reversely recovers and a displacement current generated by a feedback capacitance of a voltage control type power semiconductor element are parallel to the diode. The control voltage is increased by flowing into the control terminal of the power semiconductor element, and this value is made slightly higher than the threshold voltage of the voltage-controlled power semiconductor element to make the power semiconductor element conductive. As a result, the power semiconductor element has a lower impedance than the normal off state, and suppresses surge voltage and high-frequency voltage oscillation. The driving devices described in Patent Document 2 and Patent Document 3 also use the same principle, and the control voltage of the voltage-driven power semiconductor element is set to a threshold voltage or a voltage smaller than that before the diode reversely recovers. The power semiconductor element is easily turned on by the displacement current generated by dV / dt and the feedback capacitance of the power semiconductor element.

特開2001−217697号公報(図1、図2、(0011)段落、(0018)段落、(0019)段落の記載。)JP-A-2001-217697 (Description of FIG. 1, FIG. 2, paragraph (0011), paragraph (0018), paragraph (0019)) 特開2005−328688号公報(図1、(0044)段落、(0045)段落の記載。)JP-A-2005-328688 (description of FIG. 1, paragraph (0044), paragraph (0045)) 特開2005−33873号公報(図1、図2、(0010)段落から(0024)段落の記載。)Japanese Patent Laying-Open No. 2005-33873 (Description of paragraphs (FIG. 1, FIG. 2, paragraphs (0010) to (0024))

パワーMOSやIGBTでは近年、微細化による低オン抵抗化の傾向が著しく、制御電圧がしきい値電圧を超えるとわずかな電圧変化に対して大きな電流が流れる。前述の従来技術では、ダイオードの逆回復時に発生する電圧変化dV/dtで該ダイオードに並列な電圧制御型パワー半導体素子を導通させることでサージ電圧を抑制するが、dV/dtでパワー半導体素子が導通した際の貫通電流で損失が増加する問題が新たに生じる。従来例では、サージ電圧の抑制と貫通電流による損失の低減を両立させる為の対策は開示されていない。この貫通電流はインバータのPWM(パルス幅変調)制御の周波数で繰り返され、かつ三相でそれぞれ発生する為、貫通電流が過大であると全体損失の数十%以上になる恐れがある。   In recent years, power MOS and IGBTs have a tendency to reduce on-resistance due to miniaturization, and when the control voltage exceeds a threshold voltage, a large current flows for a slight voltage change. In the above-described prior art, the surge voltage is suppressed by conducting a voltage-controlled power semiconductor element parallel to the diode with a voltage change dV / dt generated at the time of reverse recovery of the diode, but the power semiconductor element is detected at dV / dt. There arises a new problem that the loss increases due to the through current when conducting. The conventional example does not disclose measures for achieving both suppression of surge voltage and reduction of loss due to through current. This through current is repeated at the frequency of PWM (pulse width modulation) control of the inverter and is generated in each of three phases. Therefore, if the through current is excessive, there is a possibility that it becomes several tens% or more of the total loss.

上記従来技術の構成を実験で評価すると、逆回復時の電圧変化dV/dtは数十nsと非常に短い現象であるのに対して、dV/dtで電圧制御型パワー半導体素子を導通させると電圧変化が緩和し、その結果として貫通電流が流れる期間が十倍ほど拡大することが分かった。貫通電流の時間増加は損失を大幅に増加させる為、その抑制が課題である。   When the configuration of the above prior art is evaluated by experiment, the voltage change dV / dt at the time of reverse recovery is a very short phenomenon of several tens ns, whereas when the voltage controlled power semiconductor element is made conductive at dV / dt. It was found that the voltage change was relaxed, and as a result, the period during which the through current flowed was expanded about ten times. Increasing the through-current time greatly increases the loss, and its suppression is a problem.

また、特許文献2、及び特許文献3等に記載された駆動装置は、ダイオードが逆回復する以前に電圧駆動型パワー半導体素子の制御電圧をしきい値かそれより小さい電圧に維持させるが、この維持される制御電圧を第一の電圧と呼称すると、第一の電圧と制御電圧のしきい値はそれぞれ温度依存性を持つ。例えば、パワーMOSやIGBTのしきい値は温度に対して負の温度係数を持ち、100℃を越える温度では室温(25℃)に比べて数Vしきい値が減少する。温度上昇に対して第一の電圧としきい値の差が拡大すると仮定すれば、この電圧差に応じて先の貫通電流は更に増加する。   In addition, the driving devices described in Patent Document 2 and Patent Document 3 maintain the control voltage of the voltage-driven power semiconductor element at a threshold voltage or lower before the diode reversely recovers. When the control voltage to be maintained is referred to as a first voltage, the first voltage and the threshold value of the control voltage have temperature dependence. For example, the threshold value of the power MOS or IGBT has a negative temperature coefficient with respect to temperature, and the threshold value of several V decreases at a temperature exceeding 100 ° C. compared to room temperature (25 ° C.). Assuming that the difference between the first voltage and the threshold value increases with increasing temperature, the previous through current further increases according to this voltage difference.

本発明の目的は、ダイオードの逆回復時にサージ電圧や電圧の高周波振動を抑制すると共に、電圧変化dV/dtで電圧制御型パワー半導体素子を導通させる際の貫通電流を低減し、低損失化も両立することである。   The object of the present invention is to suppress surge voltage and high-frequency oscillation of the voltage during reverse recovery of the diode, reduce the through current when conducting the voltage-controlled power semiconductor element with the voltage change dV / dt, and reduce the loss. It is to be compatible.

上記目的を達成するために、本発明では、インバータの上下アームに電圧制御型パワー半導体素子とこれに並列なダイオードを各々備え、スイッチ手段を具備した駆動回路で該電圧制御型パワー半導体素子のオン、オフを制御するインバータが、前記電圧制御型パワー半導体素子が数A以上の電流を出力する為に必要な制御しきい値電圧より少なくとも1V以上低い値を設定電圧として、順電圧の総和が前記設定電圧とほぼ等しい複数の第二のダイオードを、前記駆動回路で該電圧制御型パワー半導体素子をオフさせる前記スイッチ手段に直列に備える。   In order to achieve the above object, according to the present invention, a voltage control type power semiconductor element and a diode parallel to the voltage control type power semiconductor element are respectively provided on the upper and lower arms of an inverter, and the voltage control type power semiconductor element is turned on by a drive circuit having a switch means. The inverter that controls the off is set to a value that is at least 1 V lower than the control threshold voltage required for the voltage-controlled power semiconductor element to output a current of several A or more, and the total forward voltage is A plurality of second diodes substantially equal to the set voltage are provided in series with the switch means for turning off the voltage-controlled power semiconductor element in the drive circuit.

この構成によって、電圧制御型パワー半導体素子の制御電圧を第二のダイオードの順電圧総和に等しい設定電圧の値で残留させて該パワー半導体素子をオンし易い状態にさせ、ダイオードが逆回復する際の電圧変化dV/dtで電圧制御型パワー半導体素子を導通させると共に、この導通で電圧変化dV/dtが緩和し貫通電流の通電期間が拡大すると、制御電圧と設定電圧の電圧差に応じて前記第二のダイオードがインピーダンスを減少させて制御電圧の増加を抑制する効果が働き、制御電圧を速く減少させて貫通電流を抑制する。また、温度上昇で電圧制御型パワー半導体素子のしきい値が減少する場合には、第二のダイオードの順電圧総和も温度に応じて減少することで、温度に応じた貫通電流の増加を低減できる。   With this configuration, when the control voltage of the voltage-controlled power semiconductor element remains at a set voltage value equal to the total forward voltage of the second diode, the power semiconductor element is easily turned on, and the diode is reversely recovered. When the voltage control type power semiconductor element is made to conduct by the voltage change dV / dt of the current, and the voltage change dV / dt is relaxed by this conduction and the energization period of the through current is expanded, the voltage change between the control voltage and the set voltage The second diode reduces the impedance and suppresses the increase of the control voltage, and reduces the control voltage quickly and suppresses the through current. In addition, when the threshold value of the voltage-controlled power semiconductor element decreases due to a temperature rise, the forward voltage sum of the second diode also decreases according to the temperature, thereby reducing an increase in through current according to the temperature. it can.

また、本発明のインバータの貫通電流制御装置は、前記複数の第二のダイオードに並列な第二のスイッチ手段を具備し、前記電圧制御型パワー半導体素子の入力と出力端子間の電圧を検出する電圧検出手段を備え、該電圧検出手段の出力に応じて前記第二のスイッチ手段を導通させる構成を備える。   According to another aspect of the present invention, there is provided a through current control device for an inverter, comprising a second switch means in parallel with the plurality of second diodes, for detecting a voltage between the input and output terminals of the voltage controlled power semiconductor element. A voltage detection unit is provided, and the second switch unit is turned on according to the output of the voltage detection unit.

この構成によれば、主電流がダイオードに並列な電圧制御型パワー半導体素子を流れる期間(上アームなら出力電流が正の場合、下アームなら出力電流が負の場合)に、電圧制御型パワー半導体素子の入出力端子間電圧を検出し、前記複数の第二ダイオードに並列な第二のスイッチ手段を導通させる為、複数の第二ダイオードの電圧総和はほぼゼロになり、電圧制御型パワー半導体素子が電圧変化dV/dtで導通することはない。すなわち、本構成ではdV/dtによる電圧制御型パワー半導体素子の導通を選択的に実施することが可能になる。   According to this configuration, the voltage-controlled power semiconductor is in a period during which the main current flows through the voltage-controlled power semiconductor element parallel to the diode (when the output current is positive for the upper arm and negative for the lower arm). Since the voltage between the input and output terminals of the element is detected and the second switch means parallel to the plurality of second diodes is made conductive, the voltage sum of the plurality of second diodes becomes almost zero, and the voltage controlled power semiconductor element Does not conduct at a voltage change dV / dt. That is, in this configuration, conduction of the voltage-controlled power semiconductor element by dV / dt can be selectively performed.

本発明のインバータの貫通電流制御装置は、インバータの上下アームに電圧制御型パワー半導体素子とこれに並列なダイオードを各々備え、抵抗とスイッチ手段を具備した駆動回路で該電圧制御型パワー半導体素子のオン、オフを制御し、前記電圧制御型パワー半導体素子が数A以上の主電流を出力する為に必要な制御しきい値電圧より少なくとも1V以上低い第一の電圧を検知する第一の電圧検出手段と、前記電圧制御型パワー半導体素子の入力と出力端子間の電圧が予め設定した第二の電圧より高いことを検出する第二の電圧検出手段を備え、前記電圧制御型パワー半導体素子のオフ時に、前記第一の電圧検出手段と前記第二の電圧検出手段の検出結果に応じて、前記駆動回路のスイッチ手段を導通、遮断、導通再開の順に駆動させる。   A through current control device for an inverter according to the present invention includes a voltage control type power semiconductor element and a diode parallel to the voltage control type power semiconductor element in the upper and lower arms of the inverter, respectively, and a drive circuit including a resistor and a switch means. A first voltage detection that controls on and off, and detects a first voltage that is at least 1 V lower than a control threshold voltage required for the voltage-controlled power semiconductor element to output a main current of several A or more. And a second voltage detecting means for detecting that the voltage between the input and output terminals of the voltage controlled power semiconductor element is higher than a preset second voltage, and the voltage controlled power semiconductor element is turned off. Sometimes, the switch means of the drive circuit is driven in the order of conduction, interruption, and conduction resumption in accordance with the detection results of the first voltage detection means and the second voltage detection means.

この構成によって、電圧制御型パワー半導体素子の制御電圧が第一の電圧値以下になると前記駆動回路のスイッチ手段を遮断し、制御電圧が第一の電圧値にほぼ等しくなるようにする。次に、ダイオードが逆回復する際の電圧変化dV/dtで電圧制御型パワー半導体素子が導通すると、電圧制御型パワー半導体素子の入力と出力端子間の電圧から電圧変化dV/dtを検出し、前記駆動回路のスイッチ手段を導通再開させる。スイッチ手段の導通で制御電圧は速く減少し、貫通電流が抑制される。   With this configuration, when the control voltage of the voltage-controlled power semiconductor element becomes equal to or lower than the first voltage value, the switch means of the drive circuit is cut off so that the control voltage becomes substantially equal to the first voltage value. Next, when the voltage controlled power semiconductor element conducts with the voltage change dV / dt when the diode reversely recovers, the voltage change dV / dt is detected from the voltage between the input and output terminals of the voltage controlled power semiconductor element, The conduction of the switch means of the drive circuit is resumed. The control voltage decreases rapidly by the conduction of the switch means, and the through current is suppressed.

本発明のインバータの貫通電流制御装置は、インバータの上下アームに電圧制御型パワー半導体素子とこれに並列なダイオードを各々備え、抵抗とスイッチ手段を具備した駆動回路で該電圧制御型パワー半導体素子のオン、オフを制御し、前記電圧制御型パワー半導体素子が数A以上の主電流を出力する為に必要な制御しきい値電圧より少なくとも1V以上低い第一の電圧を検知する第一の電圧検出手段と、前記電圧制御型パワー半導体素子の出力電流に比例した第二の電流が予め設定した基準電流値より低いことを検出する電流検出手段を備え、前記電圧制御型パワー半導体素子のオフ時に、前記第一の電圧検出手段と前記電流検出手段の検出結果に応じて、前記駆動回路のスイッチ手段を導通、遮断、導通再開の順に駆動させる。   A through current control device for an inverter according to the present invention includes a voltage control type power semiconductor element and a diode parallel to the voltage control type power semiconductor element in the upper and lower arms of the inverter, respectively, and a drive circuit including a resistor and a switch means. A first voltage detection that controls on and off, and detects a first voltage that is at least 1 V lower than a control threshold voltage required for the voltage-controlled power semiconductor element to output a main current of several A or more. And a current detection means for detecting that a second current proportional to the output current of the voltage controlled power semiconductor element is lower than a preset reference current value, and when the voltage controlled power semiconductor element is off, According to the detection results of the first voltage detection means and the current detection means, the switch means of the drive circuit is driven in the order of conduction, interruption, and conduction resumption.

この構成によって、電圧制御型パワー半導体素子の制御電圧が第一の電圧値以下になると前記駆動回路のスイッチ手段を遮断し、制御電圧が第一の電圧値にほぼ等しくなるようにする。次に、ダイオードが逆回復する際の電圧変化dV/dtで電圧制御型パワー半導体素子が導通すると、電流検出手段で貫通電流を検出し、前記駆動回路のスイッチ手段を導通再開させる。スイッチ手段の導通で制御電圧は速く減少し、貫通電流が抑制される。   With this configuration, when the control voltage of the voltage-controlled power semiconductor element becomes equal to or lower than the first voltage value, the switch means of the drive circuit is cut off so that the control voltage becomes substantially equal to the first voltage value. Next, when the voltage-controlled power semiconductor element is turned on by the voltage change dV / dt when the diode reversely recovers, the through current is detected by the current detecting means, and the switch means of the drive circuit is resumed. The control voltage decreases rapidly by the conduction of the switch means, and the through current is suppressed.

本発明によれば、ダイオードが逆回復する際にダイオードに並列なIGBTを電圧変化dV/dtでオンさせてサージ電圧や高周波な電圧振動を回避し、同時にIGBTを流れる貫通電流を低減して損失の増加を抑制できる。   According to the present invention, when the diode reversely recovers, the IGBT parallel to the diode is turned on with the voltage change dV / dt to avoid surge voltage and high-frequency voltage oscillation, and at the same time, the through current flowing through the IGBT is reduced and lost. Can be suppressed.

以下、本発明の詳細を図面を用いて説明する。   Hereinafter, details of the present invention will be described with reference to the drawings.

図1を用いて本実施例によるインバータの貫通電流制御装置について説明する。図1は、本実施例によるインバータの全体構成を示す回路図である。図1は本発明の貫通電流制御装置を備えたパワー半導体素子を含む電力変換装置の構成を表している。主回路は電源VBの正極と負極間にIGBT(例えばQ1)と還流用ダイオード(例えばD1)からなるパワー半導体素子6ケを3相ブリッジに接続し、3相インバータの構成となっている。各相の出力端子はU、V、Wであり負荷のモータMに接続している。IGBT Q1〜Q6にはそれぞれ駆動装置1を備えている。駆動装置1の内部構成として、制御電源Vccの正極とQ1のゲート端子間にPチャンネルMOSFET S3及び抵抗R3を直列に接続したゲート充電手段を備える。   The inverter through current control apparatus according to this embodiment will be described with reference to FIG. FIG. 1 is a circuit diagram showing the overall configuration of an inverter according to this embodiment. FIG. 1 shows a configuration of a power conversion device including a power semiconductor element provided with a through current control device of the present invention. The main circuit is configured as a three-phase inverter by connecting six power semiconductor elements composed of an IGBT (for example, Q1) and a reflux diode (for example, D1) between a positive electrode and a negative electrode of a power supply VB to a three-phase bridge. The output terminals of each phase are U, V, and W, and are connected to the load motor M. The IGBTs Q1 to Q6 are each provided with a driving device 1. As an internal configuration of the driving device 1, a gate charging unit is provided in which a P-channel MOSFET S3 and a resistor R3 are connected in series between the positive terminal of the control power supply Vcc and the gate terminal of Q1.

本実施例の貫通電流制御装置は駆動装置1のゲート放電手段に設けている。即ち、Vccの負極とQ1のゲート端子間にNチャンネルMOSFET S1、抵抗R1と直列に接続したダイオードDGを設けており、ダイオードDGは後述するように所望のバイアス電圧を作る為に必要な個数を接続する。また、Vccの負極とQ1のゲート端子間にはNチャンネルMOSFET S2、抵抗R2を備える。S1とS3は駆動信号Sgに応じて一方がオン、他方がオフする相補型のスイッチである。S2はAND回路3によって駆動し、AND回路3の入力は駆動信号Sgと遅延手段2を介して伝えられる電圧検出手段の出力であり、これらの信号に応じて駆動する。   The through current control device of this embodiment is provided in the gate discharge means of the driving device 1. That is, a diode DG connected in series with an N-channel MOSFET S1 and a resistor R1 is provided between the negative terminal of Vcc and the gate terminal of Q1, and the number of diodes DG required to produce a desired bias voltage as described later. Connecting. An N-channel MOSFET S2 and a resistor R2 are provided between the negative electrode of Vcc and the gate terminal of Q1. S1 and S3 are complementary switches in which one is turned on and the other is turned off according to the drive signal Sg. S2 is driven by the AND circuit 3, and the input of the AND circuit 3 is the drive signal Sg and the output of the voltage detection means transmitted via the delay means 2, and is driven according to these signals.

ここで、電圧検出手段は制御電源Vccの正極とQ1のコレクタ端子間に抵抗R4とダイオードDGを直列に接続し、抵抗R4とダイオードDGの接続箇所から出力を取り出す。Q1が導通(オン)状態にあって主電流がQ1を流れると、オン電圧は数Vになり、Vccの負極を基準とする電圧検出手段の出力は、Q1のオン電圧にダイオードDGの順電圧を加えた値になる。この電圧はAND回路3の論理しきい値(Vccの約1/2)に対して低く、論理レベルとしてはLowになる。一方、Q1が遮断(オフ)状態にあるとダイオードDGのカソード電圧はVccの電圧より高くなり、ダイオードDGには逆バイアスが印加される。この結果、電圧検出手段の出力はほぼVccに等しくAND回路3の論理レベルとしてはHighになる。Q1に逆並列に接続したダイオードD1が導通する場合は、ダイオードDGのカソード電圧がVccの負極に対して約−1〜2Vと負値になり、この場合も電圧検出手段の出力はLowになる。このように電圧検出手段の機能はIGBT Q1或いはダイオードD1の導通を判定することであり、図1の実施例の構成に限定したものではなく、コンパレータやその他の構成でも良い。   Here, the voltage detecting means connects the resistor R4 and the diode DG in series between the positive terminal of the control power supply Vcc and the collector terminal of Q1, and takes out the output from the connection point of the resistor R4 and the diode DG. When Q1 is in the conductive (on) state and the main current flows through Q1, the on-voltage becomes several volts, and the output of the voltage detection means with reference to the negative terminal of Vcc is the forward voltage of the diode DG. It becomes the value which added. This voltage is lower than the logic threshold value (about 1/2 of Vcc) of the AND circuit 3, and the logic level is Low. On the other hand, when Q1 is in the cutoff (off) state, the cathode voltage of the diode DG becomes higher than the voltage of Vcc, and a reverse bias is applied to the diode DG. As a result, the output of the voltage detecting means is substantially equal to Vcc, and the logical level of the AND circuit 3 becomes High. When the diode D1 connected in antiparallel with Q1 is turned on, the cathode voltage of the diode DG becomes a negative value of about −1 to 2 V with respect to the negative electrode of Vcc. In this case, the output of the voltage detection means is Low. . Thus, the function of the voltage detection means is to determine the conduction of the IGBT Q1 or the diode D1, and is not limited to the configuration of the embodiment of FIG. 1, but may be a comparator or other configuration.

次に図1の実施例の動作を説明する。本実施例では還流ダイオードが逆回復する際のサージ電圧或いは電圧振動を抑制するので、ダイオードD1が導通している状態を例に説明する。また、一般的にモータ駆動用のPWM(パルス幅変調)制御では還流ダイオードが導通している状態では、そのダイオードに並列なスイッチング素子(図1ではQ1)に制御信号を印加していることから、初期状態ではダイオードD1が導通し、Q1の制御電圧もほぼVccの値に等しい条件を考える。ここで、駆動信号SgによってQ1の制御電圧を除去する動作が開始すると、ダイオードD1は導通を維持している為に電圧検出信号の出力はLowでありAND回路3の出力もLowでS2はオフしたままである。一方、S1はSgによってオンし、制御電圧(以後、ゲート電圧と称す。)を除去してゆく。Q1のゲート電圧がダイオードDGの順電圧総和と等しくなると、DGはもはや電流を流すことができなくなり、ゲート電圧の減少が停止する。この時、ゲート電圧にはダイオードDGの順電圧総和にほぼ等しい電圧が残留し、この残留電圧をVbiasと称する。   Next, the operation of the embodiment of FIG. 1 will be described. In the present embodiment, since the surge voltage or voltage oscillation when the freewheeling diode reversely recovers is suppressed, the state where the diode D1 is conducting will be described as an example. In general, in PWM (pulse width modulation) control for driving a motor, a control signal is applied to a switching element (Q1 in FIG. 1) in parallel with the diode when the freewheeling diode is conductive. Consider a condition where the diode D1 is conductive in the initial state and the control voltage of Q1 is substantially equal to the value of Vcc. Here, when the operation of removing the control voltage of Q1 is started by the drive signal Sg, the output of the voltage detection signal is Low because the diode D1 is kept conductive, the output of the AND circuit 3 is also Low, and S2 is OFF. It remains. On the other hand, S1 is turned on by Sg, and the control voltage (hereinafter referred to as gate voltage) is removed. When the gate voltage of Q1 becomes equal to the total forward voltage of the diode DG, the DG can no longer pass current, and the decrease of the gate voltage stops. At this time, a voltage substantially equal to the total forward voltage of the diode DG remains in the gate voltage, and this residual voltage is referred to as Vbias.

次にPWM制御によって上アームのIGBT Q2に導通の駆動信号が与えられQ2がオンになり主電流が流れると、U相出力電流はダイオードD1からQ2へと経路を変える為、ダイオードD1の電流は減少しほぼゼロになるとD1が遮断状態に変わる。D1が導通状態から遮断状態に切り替わる時が逆回復の状態であり、ダイオードD1のインピーダンスが急激に増加すると共に、Q1のコレクタ端子を正とする極性で高電圧が印加される。この時の電圧変化(dV/dt)によってIGBT Q1のコレクタとゲート端子間寄生容量に変位電流が発生し、Q1のゲート電圧は残留電圧Vbiasに変位電流による充電分が加算され、合計値がしきい値電圧を超えるとQ1が導通する。尚、このタイミングで電圧検出手段の出力はLowからHighに変化するが、遅延手段2の効果でAND回路3の出力はLowに維持されS2は遮断状態を保っている。   Next, when a conduction drive signal is given to the upper arm IGBT Q2 by PWM control and Q2 is turned on and the main current flows, the U-phase output current changes the path from the diode D1 to the Q2, so the current of the diode D1 is When it decreases and becomes almost zero, D1 changes to a cut-off state. The time when D1 switches from the conductive state to the cut-off state is the reverse recovery state, and the impedance of the diode D1 increases rapidly, and a high voltage is applied with a polarity that makes the collector terminal of Q1 positive. Due to the voltage change (dV / dt) at this time, a displacement current is generated in the parasitic capacitance between the collector of the IGBT Q1 and the gate terminal, and the gate voltage of Q1 is added to the residual voltage Vbias by the charge due to the displacement current, resulting in a total value. When the threshold voltage is exceeded, Q1 becomes conductive. At this timing, the output of the voltage detection means changes from Low to High, but the output of the AND circuit 3 is maintained Low and S2 is kept in the cut-off state due to the effect of the delay means 2.

IGBT Q1のコレクタとゲート端子間寄生容量に変位電流が発生し、Q1が導通する場合の回路動作を式で表現すると(1)式のようになる。   When a displacement current is generated in the parasitic capacitance between the collector and the gate terminal of the IGBT Q1, and the circuit operation when the Q1 becomes conductive is expressed by an equation (1).

Figure 2007267560
Figure 2007267560

Figure 2007267560
Figure 2007267560

Figure 2007267560
Figure 2007267560

(1)式で電流igは変位電流であり、この変位電流は(2)式及び(3)式で表すことができる。これらの数式でCgはQ1のゲートとエミッタ間容量であり、Crはコレクタとゲート間寄生容量、RgはQ1のゲートとエミッタ間に設けられた抵抗の合成値であり、図1の実施例でS2が導通していない状態ではRgは抵抗R1とダイオードDGの内部抵抗の和になる。また、インダクタンスLsはQ1のゲートとエミッタ間に存在する配線等のインダクタンス値を表している。(2)式のdV/dtはダイオードD1が逆回復する際の電圧変化である。Vgで表すゲート電圧がQ1のしきい値を超えるとQ1がオンして電流が流れるが、その電流は(4)式のようになる。(4)式でgmはIGBTのゲート増幅率(dIce/dVg)である。(1)式と(4)式を連立して解くと、その解は(5)式のようになる。ここで、Vgoはゲート電圧の初期値であり、残留電圧Vbiasに等しい。   In the equation (1), the current ig is a displacement current, and this displacement current can be expressed by the equations (2) and (3). In these equations, Cg is the capacitance between the gate and emitter of Q1, Cr is the parasitic capacitance between the collector and gate, and Rg is the combined value of the resistors provided between the gate and emitter of Q1, and in the embodiment of FIG. In a state where S2 is not conducting, Rg is the sum of the resistance R1 and the internal resistance of the diode DG. Further, the inductance Ls represents an inductance value of a wiring or the like existing between the gate and the emitter of Q1. In the equation (2), dV / dt is a voltage change when the diode D1 is reversely recovered. When the gate voltage represented by Vg exceeds the threshold value of Q1, Q1 is turned on and a current flows. The current is expressed by the following equation (4). In equation (4), gm is an IGBT gate amplification factor (dIce / dVg). When the equations (1) and (4) are solved simultaneously, the solution is as shown in the equation (5). Here, Vgo is an initial value of the gate voltage and is equal to the residual voltage Vbias.

Figure 2007267560
Figure 2007267560

Figure 2007267560
Figure 2007267560

(5)式の表現から次のことが分かる。
1)第一項でVgo(=Vbias)は指数関数で減衰し、抵抗Rgが小さいほど減衰は速い。
2)第二項は括弧内の指数関数は時間と共に増加するが、電圧変化(dV/dt)が無くなると第二項はゼロになる。また、抵抗Rgが小さいほど第二項は小さくなる。
3)(5)式のゲート電圧が、Q1のしきい値よりわずかに高くなるよう初期値Vbiasを設定する。Vbiasの適正値は、(5)式の第二項が大きい程小さい値になる。Vbiasが適正値以上になると、ゲート電圧の増加によって(4)式の貫通電流が過大になる。
4)制御電圧Vgがしきい値を超えて貫通電流が流れると、抵抗Rgを小さくしてゲート電圧の増加を抑制し、貫通電流を低減することが望ましい。
The following can be understood from the expression (5).
1) In the first term, Vgo (= Vbias) attenuates with an exponential function, and the smaller the resistance Rg, the faster the attenuation.
2) In the second term, the exponential function in parentheses increases with time, but when the voltage change (dV / dt) disappears, the second term becomes zero. Further, the second term becomes smaller as the resistance Rg is smaller.
3) The initial value Vbias is set so that the gate voltage in the equation (5) is slightly higher than the threshold value of Q1. The appropriate value of Vbias becomes smaller as the second term of equation (5) is larger. When Vbias is equal to or higher than an appropriate value, the through current of the equation (4) becomes excessive due to an increase in the gate voltage.
4) When the control voltage Vg exceeds the threshold value and a through current flows, it is desirable to reduce the resistance Rg to suppress an increase in the gate voltage and reduce the through current.

図1の構成は、上記3)と4)を基本的な考え方とした実施例である。残留電圧Vbiasは(5)式から適正値を予め求め、ダイオードDGの順電圧総和がVbias適正値にほぼ等しくなるようDGの個数を設定する。ここで、ダイオードのビルトイン電圧(電流を通電する為に最低必要な接合電圧)が持つ温度依存性は、Q1のしきい値に関する温度依存性と傾向が似ており、温度が変化した場合でも両者の誤差は抑制することができる。   The configuration of FIG. 1 is an embodiment based on the above-mentioned 3) and 4). For the residual voltage Vbias, an appropriate value is obtained in advance from Equation (5), and the number of DGs is set so that the forward voltage sum of the diode DG is substantially equal to the Vbias appropriate value. Here, the temperature dependency of the diode built-in voltage (minimum junction voltage required to pass current) is similar to the temperature dependency regarding the threshold value of Q1, and both of them even when the temperature changes. This error can be suppressed.

貫通電流が流れた直後に抵抗Rgを減少させる方法は、DGとS1を含む第一の回路と、電圧検出手段に応じて導通するS2を含む第二の回路で実現させる。まず、ゲート電圧がDGの順電圧総和に等しいVbiasを越えると、その差分に応じて第一の回路に電流が流れ、(5)式の第二項で表したdV/dtによるゲート電圧の増加を抑制する。次に、電圧検出手段の出力が時間遅延を経てS2を導通させると、第一の回路より低インピーダンスな状態でQ1の制御電圧を減少させ貫通電流の増加を抑制する。   The method of reducing the resistance Rg immediately after the through current flows is realized by a first circuit including DG and S1 and a second circuit including S2 that is turned on in accordance with the voltage detection means. First, when the gate voltage exceeds Vbias equal to the total forward voltage of DG, a current flows in the first circuit according to the difference, and the gate voltage increases by dV / dt expressed by the second term of the equation (5). Suppress. Next, when the output of the voltage detection means turns on S2 after a time delay, the control voltage of Q1 is decreased and the increase of the through current is suppressed in a state of lower impedance than the first circuit.

図2に本実施例の動作波形を示す。図2(a)は通常のダイオード逆回復時の波形であり、図2(b)は本実施例による逆回復時のサージ電圧抑制を示す動作波形である。図2(a)ではIGBT Q1の電圧Vceが逆回復時に高周波で振動しているが、図2(b)ではこうした電圧振動は無く、逆回復時に電圧が一旦、急激に増加するが、その後IGBT Q1の導通によって緩和していることが分かる。図2(b)でQ1のゲート電圧Vgeは逆回復以前にVbiasの値で維持されており、逆回復時のdV/dtで増加する。逆回復以後は、前述のように抵抗によってゲート電圧Vgeを減少させる機能が働いているが、それでもdV/dtの影響で制御電圧Vgeが増加している。抵抗によるゲート電圧の抑制が働かなければVgeは図2(b)の値よりもっと高くなり、電流も増大する。   FIG. 2 shows operation waveforms of this embodiment. FIG. 2A is a waveform at the time of normal diode reverse recovery, and FIG. 2B is an operation waveform showing surge voltage suppression at the time of reverse recovery according to this embodiment. In FIG. 2 (a), the voltage Vce of the IGBT Q1 oscillates at a high frequency during reverse recovery. However, in FIG. 2 (b), there is no such voltage oscillation, and the voltage increases rapidly once during reverse recovery. It can be seen that the relaxation is caused by the conduction of Q1. In FIG. 2B, the gate voltage Vge of Q1 is maintained at the value of Vbias before reverse recovery, and increases at dV / dt at the time of reverse recovery. After the reverse recovery, the function of reducing the gate voltage Vge by the resistance is working as described above, but the control voltage Vge is still increasing due to the influence of dV / dt. If suppression of the gate voltage by the resistor does not work, Vge becomes higher than the value in FIG. 2B, and the current also increases.

図3は本発明の貫通電流制御装置を備えたパワー半導体素子を含む電力変換装置の実施例である。3相インバータの構成は図1の実施例と同じであり、説明は省略する。また、貫通電流制御を備えた駆動装置4はIGBT Q1〜Q6にそれぞれ備えられる。   FIG. 3 shows an embodiment of a power conversion device including a power semiconductor element provided with the through current control device of the present invention. The configuration of the three-phase inverter is the same as that of the embodiment of FIG. Moreover, the drive device 4 provided with through current control is provided in each of the IGBTs Q1 to Q6.

駆動装置4の内部構成として、PチャンネルMOSFET S3及び抵抗R3を備えたゲート充電手段は図1と同じであり、S3は駆動信号Sgに応じてオン、オフが制御されるスイッチである。ゲート放電手段はVccの負極とQ1のゲート端子間にNチャンネルMOSFET S1、抵抗R1を備える。コンパレータ7はIGBT Q1のゲート電圧と基準電圧8の電圧値を比較し、ゲート電圧が高い場合にHighの信号を出力する。また、ダイオードDCと抵抗R4からなる電圧検出手段は図1と同じ構成である。コンパレータ7の出力と電圧検出手段の出力をOR回路5に入力し、いずれかの入力がHighであればOR回路5はHighの信号を出力する。OR回路5の出力は遅延手段2を経てNAND回路6に伝え、NAND回路6はこの遅延手段2の出力と駆動信号SgからNチャンネルMOSFET S1を導通或いは遮断させる。ここで、IGBT Q1をオフにさせる場合で、駆動信号SgがHigh、コンパレータ7でゲート電圧が基準電圧8以上であればOR回路5とNAND回路6の結果としてS1がオン状態となる。同様に、駆動信号SgがHigh、電圧検出回路の出力がHighであればS1がオン状態となる。次に図3の実施例の動作を、図4の各部動作波形を用いて詳細に説明する。   As the internal configuration of the driving device 4, the gate charging means including the P-channel MOSFET S3 and the resistor R3 is the same as that in FIG. 1, and S3 is a switch that is controlled to be turned on and off in accordance with the driving signal Sg. The gate discharge means includes an N-channel MOSFET S1 and a resistor R1 between the negative terminal of Vcc and the gate terminal of Q1. The comparator 7 compares the gate voltage of the IGBT Q1 with the voltage value of the reference voltage 8, and outputs a High signal when the gate voltage is high. Further, the voltage detecting means comprising the diode DC and the resistor R4 has the same configuration as that shown in FIG. The output of the comparator 7 and the output of the voltage detection means are input to the OR circuit 5, and if either input is High, the OR circuit 5 outputs a High signal. The output of the OR circuit 5 is transmitted to the NAND circuit 6 through the delay means 2, and the NAND circuit 6 turns on or off the N-channel MOSFET S1 from the output of the delay means 2 and the drive signal Sg. Here, when the IGBT Q1 is turned off, if the drive signal Sg is High and the gate voltage of the comparator 7 is equal to or higher than the reference voltage 8, S1 is turned on as a result of the OR circuit 5 and the NAND circuit 6. Similarly, when the drive signal Sg is High and the output of the voltage detection circuit is High, S1 is turned on. Next, the operation of the embodiment of FIG. 3 will be described in detail using the operation waveforms of the respective parts of FIG.

図4の動作波形は上からIGBT Q1のゲート電圧Vge(Q1)とコレクタ電圧Vce(Q1)、NチャンネルMOSFET S1のオン、オフ状態、IGBT Q1の電流I(Q1)とダイオードD1の電流I(D1)、上アームIGBT Q2の電流I(Q2)、上アームIGBT Q2のゲート電圧Vge(Q2)とコレクタ電圧Vce(Q2)である。   The operation waveforms of FIG. 4 are as follows. From the top, the gate voltage Vge (Q1) and collector voltage Vce (Q1) of the IGBT Q1, the ON / OFF state of the N-channel MOSFET S1, the current I (Q1) of the IGBT Q1 and the current I (Q1) of the diode D1. D1), current I (Q2) of upper arm IGBT Q2, gate voltage Vge (Q2) and collector voltage Vce (Q2) of upper arm IGBT Q2.

図4で、時刻T0においてダイオードD1が順方向に負荷電流を還流させている状態を想定する。この時、PWM制御ではダイオードD1が導通時においてもIGBT Q1にゲート電圧を印加する指令が出されており、Vge(Q1)はVccにほぼ等しい。次に、駆動信号SgによってQ1のゲート電圧を除去する指令が出されると、図3のコンパレータ7はVge(Q1)がVccにほぼ等しいことを検出し、Highの信号を出力し、前述のOR回路5とNAND回路6の結果によってS1がオン状態になり、Vge(Q1)が減少する。Vge(Q1)がしきい値(Vth)以下になってもダイオードD1が負荷電流を還流させている状態は変わらない為、コレクタ電圧Vce(Q1)は約−1〜2Vと低い。そして、時刻T1においてVge(Q1)がしきい値以下に設定された基準電圧(Vbias、図3の基準電圧8に等しい)以下になると、コンパレータ7がこれを検知して出力がLowに変わり、OR回路5とNAND回路6の結果によってS1がオフ状態に変化する。 In FIG. 4, it is assumed that the diode D1 is circulating the load current in the forward direction at time T 0 . At this time, in the PWM control, a command for applying a gate voltage to the IGBT Q1 is issued even when the diode D1 is conductive, and Vge (Q1) is substantially equal to Vcc. Next, when a command to remove the gate voltage of Q1 is issued by the drive signal Sg, the comparator 7 in FIG. 3 detects that Vge (Q1) is substantially equal to Vcc, outputs a High signal, and outputs the OR described above. As a result of the circuit 5 and the NAND circuit 6, S1 is turned on, and Vge (Q1) decreases. Even when Vge (Q1) is equal to or lower than the threshold value (Vth), the state in which the diode D1 is circulating the load current does not change, so the collector voltage Vce (Q1) is as low as about −1 to 2 V. The reference voltage Vge (Q1) is set below the threshold at time T 1 becomes below (Vbias, equal to the reference voltage 8 in FIG. 3), the output comparator 7 detects this turns Low The S1 changes to the OFF state depending on the results of the OR circuit 5 and the NAND circuit 6.

この結果、Vge(Q1)には基準電圧(Vbias)に等しい電圧が残留する。次にデッドタイム期間の後に駆動信号によって上アームIGBT Q2にゲート電圧が与えられVge(Q2)が増加し、しきい値(Vth)を越えるとオン状態になる。Q2には電流I(Q2)が流れ、ダイオードD1を還流していた負荷電流がQ2に転流する。時刻T2において転流が起き、ダイオードD1が逆回復しIGBT Q1のコレクタ電圧Vce(Q1)が急激に増加する。Vce(Q1)の電圧変化(dV/dt)によってIGBTQ1のコレクタとゲート間帰還容量が充電され、Q1のゲートに充電電流が流れ込みVge(Q1)がしきい値を超えて増加し、IGBT Q1がオンする。この時、IGBT Q1の電流I(Q1)は図4の破線で示すような波形になり、この電流は上下IGBTを貫通して流れる為、IGBT Q2の電流I(Q2)の波形にも重畳する。 As a result, a voltage equal to the reference voltage (Vbias) remains in Vge (Q1). Next, after the dead time period, a gate voltage is applied to the upper arm IGBT Q2 by the drive signal, and Vge (Q2) increases. When the threshold voltage (Vth) is exceeded, the device is turned on. The current I (Q2) flows through Q2, and the load current that has circulated through the diode D1 is commutated to Q2. Commutation occurs at time T 2, the diode D1 the collector voltage Vce of reverse recovery and IGBT Q1 (Q1) is rapidly increased. The voltage change (dV / dt) of Vce (Q1) charges the collector of IGBT Q1 and the feedback capacitance between the gates, charging current flows into the gate of Q1, Vge (Q1) increases beyond the threshold value, and IGBT Q1 Turn on. At this time, the current I (Q1) of the IGBT Q1 has a waveform as shown by a broken line in FIG. 4, and since this current flows through the upper and lower IGBTs, it is also superimposed on the waveform of the current I (Q2) of the IGBT Q2. .

時刻T2においてVge(Q1)がしきい値を超える結果、図3のコンパレータ7がこれを検知して出力がHighに変わり、OR回路5とNAND回路6の結果によってS1がオン状態に変化する。この時、IGBT Q1のゲートには電圧変化(dV/dt)による帰還容量の変位電流が流れ込む一方、S1のオンによるゲートの放電電流が流出することになる。通常、変位電流の方が大きいためS1がオンしても直ぐにはVge(Q1)が減少できないが、S1がオフのままである場合に比べてゲート電圧Vge(Q1)の増加を抑制し、過大な貫通電流が流れることを防止する。 In time T 2, the results Vge (Q1) exceeds a threshold value, changes to High, and outputs the detection comparator 7 of Figure 3 is the same, S1 the result of the OR circuit 5 and the NAND circuit 6 is changed to the ON state . At this time, the displacement current of the feedback capacitance due to the voltage change (dV / dt) flows into the gate of the IGBT Q1, while the discharge current of the gate due to the ON of S1 flows out. Usually, since the displacement current is larger, Vge (Q1) cannot be decreased immediately after S1 is turned on, but the increase in the gate voltage Vge (Q1) is suppressed and excessive as compared with the case where S1 remains off. Prevent through current from flowing.

電圧変化(dV/dt)によってIGBT Q1がオンすると、上下IGBTの間で電圧分担が生じ、Vce(Q1)の電圧増加は緩和される。図3の電圧検出手段は遅延手段によって時刻T2からやや遅れて動作し、電圧検出手段の出力はHighに変わり、OR回路5とNAND回路6の結果によってS1をオンさせる論理条件を作る。Vce(Q1)はやがて電源電圧に達し電圧変化(dV/dt)が無くなるため、その後はS1によってVge(Q1)は指数関数的に減少する。Vge(Q1)が基準電圧(Vbias)以下になっても電圧検出手段の働きでS1のオン状態は維持される。 When the IGBT Q1 is turned on by the voltage change (dV / dt), voltage sharing occurs between the upper and lower IGBTs, and the voltage increase of Vce (Q1) is alleviated. The voltage detection means in FIG. 3 operates slightly delayed from the time T 2 by the delay means, the output of the voltage detection means changes to High, and a logical condition for turning on S1 is created based on the results of the OR circuit 5 and the NAND circuit 6. Since Vce (Q1) eventually reaches the power supply voltage and the voltage change (dV / dt) disappears, Vge (Q1) decreases exponentially by S1 thereafter. Even if Vge (Q1) becomes equal to or lower than the reference voltage (Vbias), the ON state of S1 is maintained by the action of the voltage detection means.

以上はダイオードD1が順方向に負荷電流を還流させている場合の動作であるが、IGBT Q1が負荷電流を流す条件であればVge(Q1)がしきい値に達する以前にコレクタ電圧Vce(Q1)が増加し、これを電圧検出手段が検知する為、図4のS1に実線で示すようにS1のオン状態は維持される。即ち、このように本発明はダイオードが逆回復する条件において、ゲート回路のオフ用スイッチ手段S1をオン、オフ、オンと切り替えることが特徴であり、この動作によってダイオードに並列なIGBTのゲート電圧増加を抑制し、逆回復時のサージ電圧を低減すると同時に貫通電流を抑制させることができる。   The above is the operation in the case where the diode D1 is circulating the load current in the forward direction. If the IGBT Q1 is a condition for flowing the load current, the collector voltage Vce (Q1) is reached before Vge (Q1) reaches the threshold value. ) Increases, and this is detected by the voltage detection means, so that the ON state of S1 is maintained as indicated by the solid line in S1 of FIG. That is, the present invention is characterized in that the switching means S1 for turning off the gate circuit is switched on, off, and on under the condition that the diode reversely recovers, and this operation increases the gate voltage of the IGBT in parallel with the diode. Can be suppressed, and the surge voltage at the time of reverse recovery can be reduced, and at the same time, the through current can be suppressed.

図5は本発明の貫通電流制御装置を備えたパワー半導体素子を含む電力変換装置の実施例である。3相インバータの全体構成は図1、図3の実施例と同様のため記載は省略した。本実施例ではIGBT Q1〜Q6にそれぞれ備える貫通電流制御を備えた駆動装置9について説明する。   FIG. 5 shows an embodiment of a power conversion device including a power semiconductor element provided with the through current control device of the present invention. The overall configuration of the three-phase inverter is the same as that of the embodiment of FIGS. In the present embodiment, a description will be given of the driving device 9 provided with through current control provided in each of the IGBTs Q1 to Q6.

駆動装置9の内部構成として、PチャンネルMOSFET S3及び抵抗R3を備えたゲート充電手段と、Vccの負極とQ1のゲート端子間にNチャンネルMOSFET S1、抵抗R1を備えたゲート放電手段を配置する点は図1や図3と同じであり、S3は駆動信号Sgに応じてオン、オフが制御されるスイッチである。本実施例はゲート電圧の検出手段と、IGBT Q1の主電流に比例した電流を検出する手段を備え、これらの検出結果から図3と同様にS3のオン、オフ状態を切り替える。   As an internal configuration of the driving device 9, a gate charging unit including a P-channel MOSFET S3 and a resistor R3, and a gate discharging unit including an N-channel MOSFET S1 and a resistor R1 are arranged between the negative terminal of Vcc and the gate terminal of Q1. Is the same as FIG. 1 and FIG. 3, and S3 is a switch that is controlled to be turned on and off in accordance with the drive signal Sg. The present embodiment includes a gate voltage detecting means and a means for detecting a current proportional to the main current of the IGBT Q1, and the on / off state of S3 is switched from these detection results as in FIG.

コンパレータ7−1はIGBT Q1のゲート電圧と複数のダイオードを直列化した基準電圧Vbiasを比較し、ゲート電圧が高い場合にHighの信号を出力する。ここで、Vbiasは図3の実施例と同様にIGBT Q1のゲートに残留させる電圧である。また、複数のダイオードの順電圧を総和として基準電圧を作るが、基準電圧Vbiasの温度依存性がIGBT Q1のしきい値に関する温度依存性と同等になるように抵抗R6でダイオードに流す電流値を調整する。   The comparator 7-1 compares the gate voltage of the IGBT Q1 with a reference voltage Vbias obtained by serializing a plurality of diodes, and outputs a High signal when the gate voltage is high. Here, Vbias is a voltage that remains in the gate of the IGBT Q1, as in the embodiment of FIG. Further, a reference voltage is created by summing forward voltages of a plurality of diodes. A current value passed through the diode by the resistor R6 is set so that the temperature dependence of the reference voltage Vbias is equivalent to the temperature dependence regarding the threshold value of the IGBT Q1. adjust.

本実施例では、IGBT Q1の主電流に比例した電流を検出する手段は、Q1が図5に示すようにエミッタ端子を2つ備え、それぞれのエミッタ電極面積に比例した電流を通電する電流センス型デバイスを使用する。電流センス端子には抵抗Rsとノイズ吸収用コンデンサCfを備える。この信号をコンパレータ7−2に入力し、基準電圧Vrefと比較する。この電流検出手段はIGBT Q1に流れる電流が所定の電流値以下(ダイオードD1に還流する場合は負値であり、所定値以下になる)を検出し、コンパレータ7−2がHighの信号を出力する。   In this embodiment, the means for detecting the current proportional to the main current of the IGBT Q1 is a current sensing type in which Q1 has two emitter terminals as shown in FIG. 5 and supplies a current proportional to the area of each emitter electrode. Use the device. The current sense terminal includes a resistor Rs and a noise absorbing capacitor Cf. This signal is input to the comparator 7-2 and compared with the reference voltage Vref. This current detection means detects that the current flowing through the IGBT Q1 is less than or equal to a predetermined current value (a negative value when returning to the diode D1 and becomes a predetermined value or less), and the comparator 7-2 outputs a High signal. .

コンパレータ7−1と7−2の出力をOR回路5に入力し、いずれかの入力がHighであればOR回路5はHighの信号を出力する。OR回路5の出力は遅延手段2を経てNAND回路6に伝え、NAND回路6はこの遅延手段の出力と駆動信号SgからNチャンネルMOSFET S1を導通或いは遮断させる。   The outputs of the comparators 7-1 and 7-2 are input to the OR circuit 5, and if either input is High, the OR circuit 5 outputs a High signal. The output of the OR circuit 5 is transmitted to the NAND circuit 6 through the delay means 2, and the NAND circuit 6 conducts or cuts off the N-channel MOSFET S1 from the output of the delay means and the drive signal Sg.

図5の実施例の動作は、図4に示したダイオードD1の電流I(D1)が負値(即ち還流)の状態において、コンパレータ7−2はLowの出力をしており、図4の時刻T2までは前述の図3の実施例と同じである。そして、時刻T2においてD1が逆回復し、その時のdV/dtでQ1がオンすると、Q1を流れる貫通電流をコンパレータ7−2が検出し、出力がLowからHighに変わる。これ以後の動作は図3の実施例と同様であり、ゲート電圧が基準電圧Vbias以上であるか、或いは電流検出用コンパレータ7−2の検出でHighを判定するかのいずれか一方の条件でS1がオン状態となり、dV/dtによるゲート電圧の増加を抑制し、貫通電流を低減させるよう働く。 In the operation of the embodiment of FIG. 5, the comparator 7-2 outputs Low when the current I (D1) of the diode D1 shown in FIG. The process up to T 2 is the same as that of the embodiment shown in FIG. Then, D1 is reverse recovery at time T 2, is turned on Q1 is in dV / dt at the time, the current flowing through the Q1 detected by the comparator 7-2 outputs changes to High from Low. The subsequent operation is the same as that of the embodiment of FIG. 3, and S1 is performed under either of the following conditions: the gate voltage is equal to or higher than the reference voltage Vbias, or the High is detected by the detection of the current detection comparator 7-2. Is turned on, suppresses an increase in gate voltage due to dV / dt, and works to reduce the through current.

実施例1のインバータの全体構成と駆動装置を示す回路図である。It is a circuit diagram which shows the whole structure of the inverter of Example 1, and a drive device. 実施例1のインバータの動作波形である。4 is an operation waveform of the inverter according to the first embodiment. 実施例2のインバータの全体構成と駆動装置を示す回路図である。It is a circuit diagram which shows the whole structure of the inverter of Example 2, and a drive device. 実施例2のインバータの動作波形である。It is an operation | movement waveform of the inverter of Example 2. 実施例3のインバータの駆動装置を示す回路図である。FIG. 6 is a circuit diagram illustrating an inverter drive device according to a third embodiment.

符号の説明Explanation of symbols

1、4、9…駆動装置、2…遅延手段、3…AND回路、5…OR回路、6…NAND回路、7…コンパレータ、8…基準電圧。
DESCRIPTION OF SYMBOLS 1, 4, 9 ... Drive device, 2 ... Delay means, 3 ... AND circuit, 5 ... OR circuit, 6 ... NAND circuit, 7 ... Comparator, 8 ... Reference voltage.

Claims (4)

上下のアーム配置したに電圧制御型パワー半導体素子と該パワー半導体素子に逆並列に接続したダイオードと、該電圧制御型パワー半導体素子の駆動回路とを備えたインバータにおいて、
前記駆動回路が、
前記電圧制御型パワー半導体素子が主電流を出力する為に必要な制御しきい値電圧より少なくとも低い値を設定電圧として、順電圧の総和が前記設定電圧とほぼ等しい複数の第二のダイオードを、前記電圧制御型パワー半導体素子をオフさせるスイッチ手段に直列に備えることを特徴とするインバータ。
In an inverter comprising a voltage-controlled power semiconductor element arranged in upper and lower arms, a diode connected in antiparallel to the power semiconductor element, and a drive circuit for the voltage-controlled power semiconductor element,
The drive circuit is
A plurality of second diodes having a sum of forward voltages substantially equal to the set voltage, wherein the voltage-controlled power semiconductor element has a set voltage that is at least lower than a control threshold voltage required for outputting the main current, An inverter provided in series with switch means for turning off the voltage-controlled power semiconductor element.
請求項1記載のインバータの貫通電流制御装置において、
前記複数の第二のダイオードに並列な第二のスイッチ手段を配置し、前記電圧制御型パワー半導体素子の入力と出力端子間の電圧を検出する電圧検出手段を備え、該電圧検出手段の出力に応じて前記第二のスイッチ手段を導通することを特徴とするインバータ。
In the through current control device for an inverter according to claim 1,
A second switch means arranged in parallel with the plurality of second diodes is provided, and voltage detection means for detecting a voltage between the input and output terminals of the voltage controlled power semiconductor element is provided, and an output of the voltage detection means is provided. In response, the second switch means is turned on.
上下のアーム配置した電圧制御型パワー半導体素子と該パワー半導体素子に逆並列に接続したダイオードと、該電圧制御型パワー半導体素子の駆動回路とを備えたインバータにおいて、
前記駆動回路が、
前記電圧制御型パワー半導体素子が主電流を出力する為に必要な制御しきい値電圧より少なくとも低い第一の電圧を検知する第一の電圧検出手段と、
前記電圧制御型パワー半導体素子の入力と出力端子間の電圧が予め設定した第二の電圧より高いことを検出する第二の電圧検出手段とを備え、
前記電圧制御型パワー半導体素子のオフ時に、前記第一の電圧検出手段と前記第二の電圧検出手段の検出結果に応じて、前記駆動回路のスイッチ手段を導通、遮断、導通再開の順に駆動することを特徴とするインバータ。
In an inverter comprising a voltage-controlled power semiconductor element in which upper and lower arms are arranged, a diode connected in antiparallel to the power semiconductor element, and a drive circuit for the voltage-controlled power semiconductor element,
The drive circuit is
First voltage detecting means for detecting a first voltage at least lower than a control threshold voltage required for the voltage-controlled power semiconductor element to output a main current;
A second voltage detecting means for detecting that the voltage between the input and output terminals of the voltage controlled power semiconductor element is higher than a preset second voltage;
When the voltage-controlled power semiconductor element is turned off, the switch means of the drive circuit is driven in the order of conduction, interruption, and conduction resumption in accordance with the detection results of the first voltage detection means and the second voltage detection means. An inverter characterized by that.
上下のアーム配置した電圧制御型パワー半導体素子と該パワー半導体素子に逆並列に接続したダイオードと、該電圧制御型パワー半導体素子の駆動回路とを備えたインバータにおいて、
前記駆動回路が、
前記電圧制御型パワー半導体素子が主電流を出力する為に必要な制御しきい値電圧より少なくとも低い第一の電圧を検知する第一の電圧検出手段と、
前記電圧制御型パワー半導体素子の出力電流に比例した第二の電流が予め設定した基準電流値より低いことを検出する電流検出手段とを備え、
前記電圧制御型パワー半導体素子のオフ時に、前記第一の電圧検出手段と前記電流検出手段の検出結果に応じて、前記駆動回路のスイッチ手段を導通、遮断、導通再開の順に駆動することを特徴とするインバータ。
In an inverter comprising a voltage-controlled power semiconductor element in which upper and lower arms are arranged, a diode connected in antiparallel to the power semiconductor element, and a drive circuit for the voltage-controlled power semiconductor element,
The drive circuit is
First voltage detecting means for detecting a first voltage at least lower than a control threshold voltage required for the voltage-controlled power semiconductor element to output a main current;
Current detecting means for detecting that a second current proportional to the output current of the voltage-controlled power semiconductor element is lower than a preset reference current value;
When the voltage-controlled power semiconductor element is turned off, the switch means of the drive circuit is driven in the order of conduction, cutoff, and conduction resumption in accordance with the detection results of the first voltage detection means and the current detection means. And inverter.
JP2006092744A 2006-03-30 2006-03-30 Inverter with through current control device Active JP4816198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006092744A JP4816198B2 (en) 2006-03-30 2006-03-30 Inverter with through current control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006092744A JP4816198B2 (en) 2006-03-30 2006-03-30 Inverter with through current control device

Publications (2)

Publication Number Publication Date
JP2007267560A true JP2007267560A (en) 2007-10-11
JP4816198B2 JP4816198B2 (en) 2011-11-16

Family

ID=38639995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006092744A Active JP4816198B2 (en) 2006-03-30 2006-03-30 Inverter with through current control device

Country Status (1)

Country Link
JP (1) JP4816198B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009261060A (en) * 2008-04-14 2009-11-05 Denso Corp Driving circuit for power inverter circuit, and power conversion system
JP2012143115A (en) * 2011-01-06 2012-07-26 Denso Corp Load drive circuit
WO2013115000A1 (en) * 2012-02-03 2013-08-08 株式会社日立製作所 Drive circuit for semiconductor switching element and power conversion circuit using same
JP2015046654A (en) * 2013-08-27 2015-03-12 三菱電機株式会社 Drive circuit and semiconductor device
CN107547071A (en) * 2016-06-28 2018-01-05 富士电机株式会社 Semiconductor device
EP3780365A4 (en) * 2018-03-30 2021-12-01 Omron Corporation Power conversion device and inverter circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129731U (en) * 1984-02-07 1985-08-30 三菱電機株式会社 Gate circuit of gate turn-off thyristor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129731U (en) * 1984-02-07 1985-08-30 三菱電機株式会社 Gate circuit of gate turn-off thyristor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009261060A (en) * 2008-04-14 2009-11-05 Denso Corp Driving circuit for power inverter circuit, and power conversion system
JP2012143115A (en) * 2011-01-06 2012-07-26 Denso Corp Load drive circuit
WO2013115000A1 (en) * 2012-02-03 2013-08-08 株式会社日立製作所 Drive circuit for semiconductor switching element and power conversion circuit using same
JP2013162590A (en) * 2012-02-03 2013-08-19 Hitachi Ltd Semiconductor switching element drive circuit and power converter circuit using the same
JP2015046654A (en) * 2013-08-27 2015-03-12 三菱電機株式会社 Drive circuit and semiconductor device
CN107547071A (en) * 2016-06-28 2018-01-05 富士电机株式会社 Semiconductor device
EP3780365A4 (en) * 2018-03-30 2021-12-01 Omron Corporation Power conversion device and inverter circuit
US11218085B2 (en) 2018-03-30 2022-01-04 Omron Corporation Power conversion device having an inverter circuit including current limitation circuits and a control circuit controlling same

Also Published As

Publication number Publication date
JP4816198B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP6351736B2 (en) Short-circuit protection circuit for self-extinguishing semiconductor devices
JP3886876B2 (en) Power semiconductor element drive circuit
JP3339311B2 (en) Driver circuit for self-extinguishing semiconductor device
JP5761215B2 (en) Gate drive circuit
JP6617571B2 (en) Semiconductor switching element gate drive circuit
JP4432215B2 (en) Semiconductor switching element gate drive circuit
JP4770304B2 (en) Semiconductor device gate drive circuit
JP2008306618A (en) Drive circuit for driving voltage driven element
JP2006296119A (en) Drive circuit of semiconductor switching element
JP4816198B2 (en) Inverter with through current control device
JP4779549B2 (en) A gate driving circuit of a voltage driven semiconductor element.
JPH0947015A (en) Drive circuit for self-extinguishing semiconductor element
JP4360310B2 (en) Drive device
JP2007306166A (en) Driving device of insulating gate type semiconductor element and method thereof
JP2018011467A (en) Gate drive circuit for semiconductor switching element
JP2017079534A (en) Gate control circuit
JP2019110431A (en) Semiconductor device and power module
JP4321491B2 (en) Voltage-driven semiconductor device driving apparatus
JP2006353093A (en) Method for controlling semiconductor device
JP2020127267A (en) Over-current protection circuit and switching circuit
JP5298557B2 (en) Voltage-driven semiconductor device gate drive device
JP4506276B2 (en) Drive circuit for self-extinguishing semiconductor device
CN115088169A (en) Semiconductor switching element drive circuit and semiconductor device
JP2017163681A (en) Drive circuit for voltage-driven semiconductor switch element
JP6758486B2 (en) Semiconductor element drive and power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4816198

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350