JP2006353093A - Method for controlling semiconductor device - Google Patents

Method for controlling semiconductor device Download PDF

Info

Publication number
JP2006353093A
JP2006353093A JP2006192285A JP2006192285A JP2006353093A JP 2006353093 A JP2006353093 A JP 2006353093A JP 2006192285 A JP2006192285 A JP 2006192285A JP 2006192285 A JP2006192285 A JP 2006192285A JP 2006353093 A JP2006353093 A JP 2006353093A
Authority
JP
Japan
Prior art keywords
voltage
gate
resistance
current
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006192285A
Other languages
Japanese (ja)
Inventor
Hideki Miyazaki
英樹 宮崎
Katsunori Suzuki
勝徳 鈴木
Koji Tateno
孝治 立野
Junichi Sakano
順一 坂野
Masahiro Iwamura
将弘 岩村
Mutsuhiro Mori
睦宏 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005039944A external-priority patent/JP2005192394A/en
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006192285A priority Critical patent/JP2006353093A/en
Publication of JP2006353093A publication Critical patent/JP2006353093A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electronic Switches (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a driving device for suppressing a surge voltage generated when a power semiconductor device interrupts or energizes electric currents, and provide a method for controlling the same. <P>SOLUTION: A driving device of a power semiconductor device that energizes or interrupts main electric current, includes first resistance variable means for changing a first resistance depending on control voltage, second resistance variable means for changing a second resistance depending on a voltage between a first and a second terminals, wherein either one of a voltage of a control power supply or a voltage between the first and the second terminals is divided by the first resistance and the second resistance, and a divided voltage is applied to a control gate terminal when a main current is energized or interrupted. A surge voltage produced during declined electric current time of period can be controlled stably and reduced by applying gate voltages divided by the first and the second resistance variable means depending a control voltage and a voltage between input and output terminals on the power semiconductor device. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は半導体素子の駆動装置に係わり、特に半導体素子が電流を通流,遮断する過渡時に発生する過電圧を抑制させる駆動装置とその制御方法に関する。   The present invention relates to a drive device for a semiconductor element, and more particularly to a drive device that suppresses an overvoltage that occurs during a transient in which a semiconductor element passes and cuts off current, and a control method therefor.

電気自動車等、電池を電源とする電力変換システムでは、電池と負荷(モータ等)の間にインバータなどの電力変換装置を備えており、電力変換装置に使用するパワー半導体素子としては、電圧が低い場合はパワーMOSFET、高い場合にはIGBTが用いられる。パワーMOSFETやIGBTはいずれも電圧駆動型素子であり、低損失化の要求から一層の低オン抵抗化が望まれる。電圧駆動型のパワー半導体素子はそのオン抵抗が素子の表面付近に形成されゲート電圧に応じて電流を制限するチャネル部の抵抗と、素子のオフ時に空乏層を形成する半導体基板部の抵抗の和で決まる。チャネル部の抵抗は微細化で減少するが、基板部の抵抗は素子の耐電圧で決まり、オフ時に素子に印加される電圧を低減しない限り抵抗を下げることはできない。一方、電源の電圧を下げてパワー半導体素子の電圧を低減しようとしても、負荷への電力供給が一定であれば逆に素子に流れる電流が増加する。この場合、大電流を高速に遮断する為、サージ電圧(或いはスパイク電圧と呼ぶ)が増大する結果を招く。そこで、過渡的なサージ電圧をスナバ回路やゲート駆動回路等の回路的な対策で抑制し、持続的に印加される電源電圧は電源電圧を下げることで素子の耐電圧を低減することが考えられる。   In a power conversion system using a battery as a power source such as an electric vehicle, a power conversion device such as an inverter is provided between the battery and a load (motor, etc.), and the voltage is low as a power semiconductor element used in the power conversion device. In the case, a power MOSFET is used, and in the case of high, an IGBT is used. Power MOSFETs and IGBTs are both voltage-driven elements, and a further reduction in on-resistance is desired in order to reduce the loss. The voltage-driven power semiconductor element has the on-resistance formed near the surface of the element, the sum of the resistance of the channel section that limits the current according to the gate voltage and the resistance of the semiconductor substrate section that forms a depletion layer when the element is off. Determined by. Although the resistance of the channel portion decreases with miniaturization, the resistance of the substrate portion is determined by the withstand voltage of the element, and cannot be lowered unless the voltage applied to the element at the time of OFF is reduced. On the other hand, even if an attempt is made to reduce the voltage of the power semiconductor element by lowering the voltage of the power supply, if the power supply to the load is constant, the current flowing through the element increases. In this case, since a large current is cut off at high speed, the surge voltage (or called spike voltage) increases. Therefore, it is conceivable that the transient surge voltage is suppressed by circuit measures such as a snubber circuit and a gate drive circuit, and the withstand voltage of the element is reduced by lowering the power supply voltage of the continuously applied power supply voltage. .

素子がターンオン或いはターンオフする際に発生するサージ電圧を抑制する回路手法の一例として特開平6−291631号公報に開示される駆動回路がある。この回路は電圧駆動型パワー半導体素子の入力−出力端子間の電圧を検出し、この検出値に応じてゲート抵抗を変化させ、素子のゲート電圧が増加或いは減少する速度を遅くする。電圧駆動型のパワー半導体素子はゲート電圧により通流可能な電流を制限する飽和特性を持ち、ゲート電圧の増加或いは減少を抑制すれば電流のスイッチング速度もまた緩和される。素子の各端子間には寄生容量を有するが、特に入力端子とゲート端子間の帰還容量は過渡時において、ゲート電流により充電或いは放電の時間が制限される為、前述の従来技術はこの性質を利用してスイッチング時の電圧変化(dV/dt)も緩和している。このようにして電流変化(di/dt)、或いは電圧変化(dV/dt)が緩和されると、di/dt,
dV/dtが招くサージ電圧も低減する。特開平6−291631号公報には入力−出力端子間の電圧と共にゲート電圧を検出し、この検出結果に応じてゲート抵抗を変化させる手段も記載されている。本従来技術に関連した論文が平成7年電気学会産業応用部門全国大会論文誌No.88「IGBT駆動用ソフトスイッチングゲート駆動回路の検討」に記載されている。本論文に記載された駆動回路は、ターンオフ時にまず、スイッチング素子の入力−出力端子間の電圧を検出し、ゲート抵抗を小から大へと変化させる。続いてゲート電圧を検出しゲート抵抗を大から小と変化させる。この駆動回路によりスイッチング時のサージ電圧は抑制されたが、オン及びオフ時に電圧と電流波形がオーバーラップする期間が長くなり、従来のゲート駆動回路を使用した場合に比べてスイッチング損失が大幅に増加することが報告されている。
As an example of a circuit technique for suppressing a surge voltage generated when an element is turned on or turned off, there is a driving circuit disclosed in Japanese Patent Laid-Open No. Hei 6-291631. This circuit detects the voltage between the input and output terminals of the voltage-driven power semiconductor element, changes the gate resistance in accordance with the detected value, and slows the rate at which the gate voltage of the element increases or decreases. The voltage-driven power semiconductor element has a saturation characteristic that limits the current that can be passed by the gate voltage, and if the increase or decrease of the gate voltage is suppressed, the switching speed of the current is also reduced. Although there is a parasitic capacitance between each terminal of the element, especially the feedback capacitance between the input terminal and the gate terminal is limited in charge or discharge time by the gate current in the transient state. Utilizing this, the voltage change (dV / dt) during switching is also reduced. When the current change (di / dt) or the voltage change (dV / dt) is relaxed in this way, di / dt,
The surge voltage caused by dV / dt is also reduced. Japanese Patent Application Laid-Open No. 6-291631 also describes means for detecting the gate voltage together with the voltage between the input and output terminals and changing the gate resistance in accordance with the detection result. A paper related to this prior art is described in No. 88 “Study of Soft Switching Gate Drive Circuit for IGBT Drive” in the National Conference of Industrial Applications Division of the Institute of Electrical Engineers of Japan in 1995. The drive circuit described in this paper first detects the voltage between the input and output terminals of the switching element at the time of turn-off, and changes the gate resistance from small to large. Subsequently, the gate voltage is detected and the gate resistance is changed from large to small. This drive circuit suppresses the surge voltage during switching, but the period during which the voltage and current waveforms overlap at the time of on and off becomes longer, and the switching loss is greatly increased compared to the case of using the conventional gate drive circuit. It has been reported to do.

特開平6−291631号公報Japanese Patent Laid-Open No. Hei 6-291631 平成7年電気学会産業応用部門全国大会論文誌No.88「IGBT駆動用ソフトスイッチングゲート駆動回路の検討」1995 IEEJ National Application Division Annual Conference No.88 "Study of Soft Switching Gate Drive Circuit for IGBT Drive"

前述の従来技術の問題点を説明するため、電圧駆動型パワー半導体素子のターンオフ動作を次の4つの期間に分ける。尚、ここではモータなど誘導性の負荷を対象にしている。
(1)ゲート電圧放電期間;オフ信号の印加により抵抗を介してゲート電流が流れ、ゲートに蓄積した電荷を放電する期間である。ゲート電圧はゲート容量と抵抗の積を時定数とする指数関数に従って時間と共に減少する。この期間中の入力−出力端子間の主電流及び電圧はオン時の値を維持している。
(2)電圧上昇期間;素子は飽和動作に入り、ゲート電流によって帰還容量が充電され、この充電程度に応じて入力−出力端子間の電圧が増加する期間である。ゲート電流は帰還容量の充電に使われる為、この期間中にゲート電圧はほぼ一定の値となる。帰還容量は電圧依存性を持ち、入力−出力端子間の電圧に応じて減少する為、入力−出力端子間の電圧増加は途中から速くなる。
(3)電流下降期間;入力−出力端子間の電圧が電源電圧に到達した時点から主電流が減少を始める。主電流が減少し始めてから完全にゼロになるまでの期間を電流下降期間と呼ぶ。帰還容量充電期間の終了時点からゲート電圧は再び減少し、主電流はこのゲート電圧の瞬時値に応じて減少する。
(4)オフ定常期間;ゲート電圧はしきい値以下まで減少し、パワー半導体素子が電流を遮断する状態に維持されている期間である。
In order to explain the above-described problems of the prior art, the turn-off operation of the voltage-driven power semiconductor element is divided into the following four periods. Here, an inductive load such as a motor is targeted.
(1) Gate voltage discharge period: This is a period in which a gate current flows through a resistor by application of an off signal, and charges accumulated in the gate are discharged. The gate voltage decreases with time according to an exponential function having a product of gate capacitance and resistance as a time constant. During this period, the main current and voltage between the input and output terminals maintain the values at the on time.
(2) Voltage rise period: The element enters a saturation operation, the feedback capacitor is charged by the gate current, and the voltage between the input and output terminals increases according to the charge level. Since the gate current is used to charge the feedback capacitor, the gate voltage becomes a substantially constant value during this period. The feedback capacitance has voltage dependency and decreases according to the voltage between the input and output terminals, so that the voltage increase between the input and output terminals becomes faster from the middle.
(3) Current falling period: The main current starts decreasing from the time when the voltage between the input and output terminals reaches the power supply voltage. A period from when the main current starts to decrease until it becomes zero is called a current falling period. The gate voltage decreases again from the end of the feedback capacitor charging period, and the main current decreases according to the instantaneous value of the gate voltage.
(4) Off-state steady period; this is a period during which the gate voltage is reduced to a threshold value or less and the power semiconductor element is maintained in a state of interrupting current.

前述の従来技術の場合は、ゲート電圧放電期間はゲート抵抗値を小さくし、電圧上昇期間の途中で入力−出力端子間の電圧が増加したことを検出しゲート抵抗値を増加させる。
そして電圧上昇期間と電流下降期間にはゲート抵抗値を大きい値に維持させる。次にゲート電圧を検出してこの値がしきい値電圧以下になったことでオフの定常状態に入ったことを検知し、ゲート抵抗を再び小さい値にする。
In the case of the above-described prior art, the gate resistance value is decreased during the gate voltage discharging period, and the gate resistance value is increased by detecting that the voltage between the input and output terminals has increased during the voltage rising period.
The gate resistance value is maintained at a large value during the voltage increase period and the current decrease period. Next, the gate voltage is detected, and when this value falls below the threshold voltage, it is detected that an OFF steady state has been entered, and the gate resistance is reduced again.

一般的なゲート駆動回路では、ゲート電圧放電期間の開始からオフ定常期間の終了までゲート抵抗は小さく一定値であり、電圧上昇期間及び電流下降期間はそれぞれ数十から百ns程度と短い。一方、前記従来技術で電圧上昇期間にゲート抵抗値が小から大へと変化すると、電圧上昇期間及び電流下降期間はそれぞれ約1〜数μs程度に伸びる。しかしながら、検出或いは動作上の時間遅延があると、ゲート抵抗を小から大へ増加させる動作が間に合わなくなる。この場合、ゲート抵抗が小さい状態で電流を遮断する為、電流変化
(di/dt)によりサージ電圧が発生する。このようにサージ電圧が抑制できない事態もあることが第一の問題点である。
In a general gate drive circuit, the gate resistance is small and constant from the start of the gate voltage discharge period to the end of the off-stationary period, and the voltage rise period and the current fall period are as short as several tens to hundreds ns, respectively. On the other hand, when the gate resistance value changes from small to large during the voltage rise period in the prior art, each of the voltage rise period and the current drop period extends to about 1 to several μs. However, if there is a detection or operational time delay, the operation of increasing the gate resistance from small to large will not be in time. In this case, since the current is cut off with a small gate resistance, a surge voltage is generated due to a change in current (di / dt). The first problem is that the surge voltage cannot be suppressed in this way.

第二の問題は遅延時間の増加である。PWM(パルス幅変調)制御方式のインバータで搬送波の周波数を数kHzとすれば、インバータ上下素子の非ラップ時間は一般的に5
μsが上限であり、上記のように電圧上昇期間だけで3〜5μsになってしまうとPWM制御には適さなくなる。
The second problem is an increase in delay time. If the frequency of the carrier wave is several kHz in a PWM (pulse width modulation) type inverter, the non-wrap time of the upper and lower elements of the inverter is generally 5
μs is the upper limit, and if it becomes 3 to 5 μs only in the voltage rise period as described above, it is not suitable for PWM control.

また、ゲート抵抗値の増加により電圧上昇期間から電流下降期間におけるスイッチング損失は増加するが、サージ電圧を抑制しつつ同時にスイッチング損失をできる限り小さくすることが第3の問題である。   Although the switching loss increases from the voltage rising period to the current falling period due to the increase in the gate resistance value, the third problem is to suppress the surge voltage and simultaneously reduce the switching loss as much as possible.

更に誘導性負荷に対してはパワー半導体素子の入出力端子間に還流用のダイオードを設けるが、このダイオードが逆回復する際のサージ電圧を抑制することは困難であった。   Furthermore, for inductive loads, a return diode is provided between the input and output terminals of the power semiconductor element, but it is difficult to suppress the surge voltage when this diode reversely recovers.

本発明は上記の問題点を考慮してなされたものである。   The present invention has been made in consideration of the above problems.

本発明による駆動装置は、主電流が入出力する第1端子及び第2端子と制御ゲート端子とを有する半導体素子と、入力信号に応じて制御ゲート端子に制御電源から供給される制御電圧を印加または除去することにより主電流を通流または遮断する駆動回路手段とを備えた半導体素子の駆動装置であって、駆動回路手段は、第1の抵抗可変手段と第2の抵抗可変手段とを有し、第1の抵抗可変手段は、制御ゲート端子のゲート電圧に応じて抵抗値が変化する第1の抵抗手段と、入力信号に応じて第1の抵抗手段に流れる電流を通流または遮断するスイッチ手段とを有し、第2の抵抗可変手段は、第1端子と第2端子との間の電圧に応じて抵抗値が変化する第2の抵抗手段を有し、第2の抵抗手段は、第1端子と第2端子との間に接続されるツエナーダイオードを有し、駆動回路手段は、第1の抵抗手段とツエナーダイオードの端子間電圧とで分圧された電圧を制御ゲート端子に印加する。   A driving device according to the present invention applies a control voltage supplied from a control power source to a control gate terminal in accordance with an input signal, and a semiconductor element having a first terminal and a second terminal for inputting and outputting a main current, and a control gate terminal. Or a driving device for a semiconductor element comprising a driving circuit means for passing or interrupting a main current by removing the driving circuit means, the driving circuit means having a first resistance variable means and a second resistance variable means. The first variable resistance means passes or blocks the first resistance means whose resistance value changes according to the gate voltage of the control gate terminal and the current flowing through the first resistance means according to the input signal. Switch means, and the second resistance variable means has second resistance means whose resistance value changes in accordance with the voltage between the first terminal and the second terminal, and the second resistance means , A sleeve connected between the first terminal and the second terminal. Has over diode, drive circuit means applies a voltage divided by the voltage between terminals of the first resistor means and the Zener diode to the control gate terminal.

好ましくは、第1の抵抗可変手段は、さらに、制御ゲート端子と第2端子との間の電圧を検出する第1の電圧検出手段を有し、第1の電圧検出手段の出力に応じて第1の抵抗手段の抵抗値が変化するものである。より好ましくは、第1の抵抗手段は、制御ゲート端子と第2端子間に接続される抵抗器と、該抵抗器に並列に接続される容量手段を備える。   Preferably, the first resistance variable means further includes a first voltage detection means for detecting a voltage between the control gate terminal and the second terminal, and the first resistance variable means has a first voltage according to the output of the first voltage detection means. The resistance value of the first resistance means changes. More preferably, the first resistance means includes a resistor connected between the control gate terminal and the second terminal, and a capacitance means connected in parallel to the resistor.

また好ましくは、第2の抵抗可変手段は、第1,第2端子間の電圧を検出する第2の電圧検出手段と、第2の電圧検出手段の出力と予め設定した基準値の差を比較する増幅手段とを備える。   Further preferably, the second resistance variable means compares the difference between the second voltage detecting means for detecting the voltage between the first and second terminals and the output of the second voltage detecting means and a preset reference value. And amplifying means.

半導体素子の駆動装置の本発明による他の制御方法においては、制御ゲート端子と、主電流の入出力に係わる第1及び第2端子を有すると共に、該第1,第2端子間にダイオードを具備するパワー半導体素子に、制御電圧を印加或いは除去して前記主電流を通流或いは遮断するパワー半導体素子の制御方法であって、制御電圧を除去する過程において制御ゲート端子と第2端子間に具備した抵抗を所定の値まで増加させ、ダイオードの逆回復時に第1端子から制御ゲート端子に流れ込む変位電流と前記抵抗で生じる電圧降下を、パワー半導体素子のゲートしきい値電圧と同等な値にすることで還流ダイオードが逆回復する際のサージ電圧を抑制する。   In another control method according to the present invention for a driving device of a semiconductor device, the semiconductor device has a control gate terminal and first and second terminals related to input / output of a main current, and a diode is provided between the first and second terminals. A method for controlling a power semiconductor device in which a control voltage is applied to or removed from a power semiconductor device to pass or cut off the main current, and is provided between a control gate terminal and a second terminal in the process of removing the control voltage. The increased resistance is increased to a predetermined value, and the displacement current flowing from the first terminal to the control gate terminal during reverse recovery of the diode and the voltage drop caused by the resistance are made equal to the gate threshold voltage of the power semiconductor element. This suppresses the surge voltage when the freewheeling diode reversely recovers.

電池を電源とし、電池からコンデンサを経由してパワー半導体素子に主電流を供給する際の本発明による駆動装置の制御方法においては、コンデンサとパワー半導体素子を含む閉回路内に存在する配線の寄生インダクタンスの合計値をL、コンデンサの静電容量をC、パワー半導体素子が出力する主電流の瞬時値をI、この電流の実効値をIav、電池の開路電圧をVb、電池の内部抵抗をRb、増幅手段の基準値或いはツエナーダイオードによって決まるパワー半導体素子の電圧クランプ値をVcとして、パワー半導体素子が電流を遮断する時間tfを
tf=L×I/(Vc−Vb+Rb×Iav)
のように定め、主電流の瞬時最大値に対して時間tfがRb×Cで決まる時定数の10%以下になるよう基準値或いはツエナーダイオードを設定することでより良好なサージ電圧抑制効果が得られる。
In the method for controlling a driving device according to the present invention when a battery is used as a power source and main current is supplied from the battery to the power semiconductor element via the capacitor, the parasitic of wiring existing in the closed circuit including the capacitor and the power semiconductor element is provided. The total inductance value is L, the capacitance of the capacitor is C, the instantaneous value of the main current output from the power semiconductor element is I, the effective value of this current is Iav, the open circuit voltage of the battery is Vb, and the internal resistance of the battery is Rb The reference value of the amplifying means or the voltage clamp value of the power semiconductor element determined by the Zener diode is Vc, and the time tf when the power semiconductor element cuts off the current is tf = L × I / (Vc−Vb + Rb × Iav)
By setting the reference value or Zener diode so that the time tf is 10% or less of the time constant determined by Rb × C with respect to the instantaneous maximum value of the main current, a better surge voltage suppression effect can be obtained. It is done.

更に、パワー半導体素子が、それらが少なくとも2ケ直列に接続されるインバータ部を構成し、インバータ部をPWM制御させるためにPWM信号発生部によって駆動装置に制御信号を供給する場合、前記した
tf=L×I/(Vc−Vb+Rb×Iav)
の関係から電流遮断時間tfを演算すると共に、PWM信号発生部の出力にtfより長い非ラップ時間を設けることで必要最小限の遅延時間を求めることができる。
Further, when the power semiconductor element constitutes an inverter unit in which at least two of them are connected in series, and the PWM signal generator supplies a control signal to the drive device in order to perform PWM control of the inverter unit, tf = L × I / (Vc−Vb + Rb × Iav)
From the above relationship, the current interruption time tf is calculated, and the minimum delay time can be obtained by providing a non-wrap time longer than tf at the output of the PWM signal generator.

本発明による駆動装置によれば、それぞれ制御電圧と入出力端子間電圧に応じて変化する第1,第2の抵抗可変手段で分圧したゲート電圧をパワー半導体素子に印加することで電流下降期間に生じるサージ電圧を安定に抑制することができる。   According to the driving device of the present invention, the gate voltage divided by the first and second resistance variable means, which changes in accordance with the control voltage and the voltage between the input and output terminals, is applied to the power semiconductor element to thereby reduce the current falling period. Can be stably suppressed.

以下、本発明の第1実施例として図1から図3を参照して説明する。図1は本発明の駆動装置を備えたパワー半導体素子を含む電力変換装置の構成を表している。主回路は電源VBの正極と負極間にパワーMOSFET(例Q1)とその内蔵ダイオード(例QD1)からなるパワー半導体素子6ケを3相ブリッジに接続し、一般的な3相インバータの構成となっている。各相の出力端子はU,V,WでありモータMに接続している。パワー
MOSFET Q1〜Q6にはそれぞれ駆動装置1を備えている。駆動装置1の内部構成として、制御電源Vccの正極とQ1のゲート端子間にPチャンネルMOSFET M1及び抵抗R1を直列に接続したゲート充電手段を備える。PWM制御装置5から駆動装置1に備えた制御回路4に駆動信号が送られ、制御回路4はQ1に対するオン信号Sonとオフ信号Soff を作成する。オン信号SonがM1のゲート端子に与えられるとM1がオンし、R1を介してQ1にゲート電流を供給し、Q1のゲート・ソース端子間の入力容量Cgsを充電する。鎖線で囲んだ領域2が第1の抵抗可変手段であり、抵抗R2、Nチャンネル
MOSFET M4及びM2を直列に接続した第1のゲート放電回路をQ1のゲートとソース端子間に並列に備え、この第1のゲート放電回路に並列に抵抗R3、Nチャンネル
MOSFET M3を直列に接続した第2のゲート放電回路を備える。ここで、M2と
M3はゲート端子が共通接続であり、ゲート端子に制御回路4から伝達されるオフ信号
Soff が与えられるとオン状態となる。また第1の抵抗可変手段2の内部には、制御電源Vccの正極と負極間に抵抗R5とR6を直列に接続し両抵抗の接続点がカソード、Q1のゲート端子がアノードとなる極性に接続されたダイオードD1を備える。抵抗R5,R6及びD1でNチャンネルMOSFET M4に関するバイアス回路を構成している。このバイアス回路は、VccをR5とR6で分圧した電圧(V1と定義する)とQ1のゲート・ソース間電圧Vgsを比較して大きい方の電圧をM4のゲートに印加する。信号Soffが
M2,M3に入力されるとこれらの素子はオンするが、Soffが印加された直後は、分圧値V1よりQ1のゲート・ソース間電圧Vgsが大きく、この値がM4のゲートに印加される。Vgsと等しい電圧の供給を得て、M4のオン抵抗は小さい値となる。先に定義した第1のゲート放電回路(R2,M4,M2)の合成抵抗をRT1とし、第2のゲート放電回路(R3,M3)の合成抵抗をRT2とすれば、M4のゲート電圧がほぼVgsの定格値に近い条件では、RT1がRT2より小さくなるよう選定する。この時のRT1/RT2の比率は10分の1以下が望ましい。
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a configuration of a power conversion device including a power semiconductor element provided with a drive device of the present invention. The main circuit has a general three-phase inverter configuration by connecting six power semiconductor elements consisting of a power MOSFET (example Q1) and its built-in diode (example QD1) between the positive and negative electrodes of the power supply VB to a three-phase bridge. ing. The output terminals of each phase are U, V, W and are connected to the motor M. The power MOSFETs Q1 to Q6 are each provided with a driving device 1. As an internal configuration of the driving device 1, a gate charging unit is provided in which a P-channel MOSFET M1 and a resistor R1 are connected in series between the positive electrode of the control power supply Vcc and the gate terminal of Q1. A drive signal is sent from the PWM control device 5 to the control circuit 4 provided in the drive device 1, and the control circuit 4 creates an on signal Son and an off signal Soff for Q1. When the on signal Son is applied to the gate terminal of M1, M1 is turned on, a gate current is supplied to Q1 via R1, and the input capacitance Cgs between the gate and source terminals of Q1 is charged. A region 2 surrounded by a chain line is a first variable resistance means, and includes a first gate discharge circuit in which a resistor R2 and N-channel MOSFETs M4 and M2 are connected in series between the gate and the source terminal of Q1, in parallel. A second gate discharge circuit in which a resistor R3 and an N-channel MOSFET M3 are connected in series to the first gate discharge circuit is provided. Here, the gate terminals of M2 and M3 are connected in common, and the gate terminal is turned on when the off signal Soff transmitted from the control circuit 4 is given to the gate terminal. Further, inside the first resistance variable means 2, resistors R5 and R6 are connected in series between the positive electrode and the negative electrode of the control power supply Vcc, and the connection point of both resistors is connected to the polarity so that the cathode is the cathode and the gate terminal of Q1 is the anode. The diode D1 is provided. Resistors R5, R6 and D1 constitute a bias circuit for the N-channel MOSFET M4. This bias circuit compares the voltage Vcc divided by R5 and R6 (defined as V1) with the gate-source voltage Vgs of Q1, and applies the larger voltage to the gate of M4. When the signal Soff is input to M2 and M3, these elements are turned on. Immediately after Soff is applied, the gate-source voltage Vgs of Q1 is larger than the divided voltage value V1, and this value is applied to the gate of M4. Applied. With the supply of a voltage equal to Vgs, the on-resistance of M4 becomes a small value. If the combined resistance of the first gate discharge circuit (R2, M4, M2) defined above is RT1, and the combined resistance of the second gate discharge circuit (R3, M3) is RT2, the gate voltage of M4 is almost equal. Under conditions close to the rated value of Vgs, RT1 is selected to be smaller than RT2. In this case, the ratio of RT1 / RT2 is desirably 1/10 or less.

次に破線で囲んだ領域3が第2の抵抗可変手段であり、その内部にはVccの正極とQ1のゲート端子間に直列接続したPチャンネルMOSFET M5と抵抗R4からなるゲート充電回路を備え、抵抗R4には並列にキャパシタC1を設ける。またQ1ノードレイン端子とソース端子間に抵抗R7とR8で構成する分圧手段を備え、Q1ノードレイン・ソース間電圧Vdsを分圧した値(V2)を得る。ここでR8には並列にツエナーダイオードZD1を接続し、上記V2の上限値をZD1の降服電圧までとする。また、R7には並列にキャパシタC2を接続し、Vdsの過渡的な変化に対してはC2のインピーダンスとR8で分圧値を決め、Vdsがその後、定常値に落ち着くとR7とR8で分圧値V2が決まるようにしている。このようなキャパシタC2の働きをスピードアップコンデンサと呼ぶ。先に延べたR4に並列なキャパシタC1もスピードアップコンデンサとして働く。即ち、
M5がオンした瞬間にはC1のインピーダンスで抵抗R4オーバーイパスさせている。分圧値V2と基準値Vref はそれぞれ増幅器6の(−)入力端子と(+)入力端子に入力する。増幅器6では分圧値V2が基準値Vref を超えて増加すると出力の電位が下がり、その結果PチャンネルMOSFET M5がオンする。
Next, a region 3 surrounded by a broken line is the second variable resistance means, and a gate charging circuit comprising a P-channel MOSFET M5 and a resistor R4 connected in series between the positive terminal of Vcc and the gate terminal of Q1 is provided therein, A capacitor C1 is provided in parallel with the resistor R4. Further, voltage dividing means constituted by resistors R7 and R8 is provided between the Q1 node rain terminal and the source terminal, and a value (V2) obtained by dividing the Q1 node rain-source voltage Vds is obtained. Here, a Zener diode ZD1 is connected to R8 in parallel, and the upper limit value of V2 is set to the breakdown voltage of ZD1. In addition, a capacitor C2 is connected in parallel to R7, and the voltage division value is determined by the impedance of C2 and R8 for a transient change in Vds. Then, when Vds settles to a steady value, the voltage is divided by R7 and R8. The value V2 is determined. Such a function of the capacitor C2 is called a speed-up capacitor. The capacitor C1 in parallel with the previously extended R4 also functions as a speed-up capacitor. That is,
At the moment when M5 is turned on, the resistor R4 is over-passed by the impedance of C1. The divided voltage value V2 and the reference value Vref are input to the (−) input terminal and the (+) input terminal of the amplifier 6, respectively. In the amplifier 6, when the divided voltage value V2 increases beyond the reference value Vref, the output potential decreases, and as a result, the P-channel MOSFET M5 is turned on.

増幅器6の詳細な構成を図3に示す。基本は差動増幅器であり、抵抗R9とNチャンネルMOSFET M6とM7のカレントミラー回路で定電流源を作っており、差動部を構成するNチャンネルMOSFET M8とM9の電流合計値は定電流に等しい。一般的な差動増幅器ではM8ノードレイン端子とM9ノードレイン端子はカレントミラー型の負荷が接続されており、増幅器の利得を高くとれるようになっている。一方、図3の構成ではM8ノードレイン側には負荷抵抗がなく、M9ノードレイン側にのみ抵抗R10を設けている。前述の定電流をM8のオン抵抗(基準値Vref に依存する)とM9のオン抵抗(基準値V2に依存する)にR10を加算した合成抵抗の2つで分流する形となり利得が小さく、M5のゲート電圧は分圧値V2と基準値Vref の差電圧に応じて線形的に増加する特性にしている。図1の実施例は後述するように、制御電圧Vccを第1抵抗可変手段と第2抵抗可変手段で分圧してQ1のゲート端子に印加し、Q1のゲート電圧Vgsの時間的な変化を抑制することでスイッチング時のサージ電圧を抑制する。この場合に第1抵抗可変手段或いは第2抵抗可変手段の利得(Vgs或いはVdsの検出値に対する抵抗の変化率)が高すぎると、Q1の電圧Vds及びVgsが振動的になる。そこで、これらの利得は適度に小さいことが望ましく、図3はその一例である。   A detailed configuration of the amplifier 6 is shown in FIG. The basic is a differential amplifier, and a constant current source is formed by a current mirror circuit of a resistor R9 and N-channel MOSFETs M6 and M7, and the total current value of the N-channel MOSFETs M8 and M9 constituting the differential unit is a constant current. equal. In a general differential amplifier, a current mirror type load is connected to the M8 node rain terminal and the M9 node rain terminal so that the gain of the amplifier can be increased. On the other hand, in the configuration of FIG. 3, there is no load resistance on the M8 node rain side, and the resistor R10 is provided only on the M9 node rain side. The above-described constant current is shunted by two combined resistors of M8 on-resistance (which depends on the reference value Vref) and M9 on-resistance (which depends on the reference value V2) plus R10, and the gain is small. The gate voltage is linearly increased in accordance with the difference voltage between the divided voltage value V2 and the reference value Vref. In the embodiment of FIG. 1, as will be described later, the control voltage Vcc is divided by the first resistance variable means and the second resistance variable means and applied to the gate terminal of Q1, thereby suppressing the temporal change of the gate voltage Vgs of Q1. This suppresses the surge voltage during switching. In this case, if the gain of the first resistance variable means or the second resistance variable means (resistance change rate with respect to the detected value of Vgs or Vds) is too high, the voltages Vds and Vgs of Q1 become oscillating. Therefore, it is desirable that these gains are moderately small, and FIG. 3 is an example.

次に図1及び図3の実施例によるサージ電圧抑制効果を図2の動作波形を用いて説明する。   Next, the effect of suppressing the surge voltage according to the embodiment of FIGS. 1 and 3 will be described using the operation waveforms of FIG.

図2はQ1への駆動指令に対するQ1のゲート・ソース間電圧Vgs(Q1),ゲート電流Igs(Q1),ドレイン・ソース間電圧Vds(Q1),ドレイン電流Ids(Q1)の各波形と、M2及びM3のオン,オフ動作、並びにM4のオン抵抗Ron(M4),M5のオン抵抗Ron(M5)の時間的変化を表わしている。時刻t1からt2まではQ1はオン状態にあり、t2以降t7までがオフ動作である。時刻t2において図示していないがM1がオフし、図2のようにM2とM3がオンする。ここでt2以前のオン状態ではVgs
(Q1)は制御電圧Vccとほぼ等しい電圧値まで充電されており、M2がオンするとM4のゲート・ソース間にはVgs(Q1)とほぼ等しいゲート電圧が印加される。この結果、M4のオン抵抗Ron(M4)は非常に小さい値まで減少する。抵抗R2とRon(M4)及びM2のオン抵抗の和は抵抗R3とM3のオン抵抗の和に比べて前述のように1/10以下であると仮定すると、抵抗R2とRon(M4)及びM2のオン抵抗の和がゲート電圧の放電抵抗となり、Q1のゲート・ソース間に蓄積した電荷は急速に放電される。これが
t2〜t3の期間であり、前述のゲート電圧放電期間に相当する。この時、Q1のゲート電流Igs(Q1)はターンオフ動作中、最大の電流値になる。
FIG. 2 shows the waveforms of the gate-source voltage Vgs (Q1), the gate current Igs (Q1), the drain-source voltage Vds (Q1), and the drain current Ids (Q1) of Q1 in response to the drive command to Q1, and M2. And M3 on / off operation, and M4 on-resistance Ron (M4) and M5 on-resistance Ron (M5) over time. From time t1 to t2, Q1 is in an on state, and from t2 to t7 is an off operation. Although not shown at time t2, M1 is turned off, and M2 and M3 are turned on as shown in FIG. Here, in the ON state before t2, Vgs
(Q1) is charged to a voltage value substantially equal to the control voltage Vcc. When M2 is turned on, a gate voltage substantially equal to Vgs (Q1) is applied between the gate and source of M4. As a result, the on-resistance Ron (M4) of M4 is reduced to a very small value. Assuming that the sum of the on-resistances of the resistors R2, Ron (M4) and M2 is 1/10 or less as described above compared to the sum of the on-resistances of the resistors R3 and M3, the resistors R2, Ron (M4) and M2 The sum of the on-resistances becomes the discharge resistance of the gate voltage, and the charge accumulated between the gate and source of Q1 is rapidly discharged. This is the period from t2 to t3, which corresponds to the aforementioned gate voltage discharge period. At this time, the gate current Igs (Q1) of Q1 becomes the maximum current value during the turn-off operation.

次にt3以降になるとQ1のゲート電圧Vgs(Q1)が減少した結果、M4のゲート電圧も減少しそのオン抵抗Ron(M4)はVgs(Q1)の減少に依存して高くなる。図2には図示していないが、図1中の電圧V1が低下するためである。また、Ron(M4)の増加に伴いIgs(Q1)は低下する。この状態がt3〜t4の期間に継続され、途中、帰還容量がIgs(Q1)により充電され、ドレイン・ソース間電圧Vds(Q1)が増加する。
これが電圧上昇期間に相当する。Vgs(Q1)が或る電圧(例えば制御電圧Vccの1/2から1/3以下)より小さくなるとRon(M4)の増加も著しくなり、抵抗R2とRon
(M4)及びM2のオン抵抗の和は抵抗R3とM3のオン抵抗の和に対し10倍以上に増加するようM4の電流特性を選ぶ。この結果、t3の期間途中からQ1のゲート・ソース間抵抗はほぼ抵抗R3とM3のオン抵抗の和に等しくなり、更に、M3のオン抵抗はR3の抵抗値に比べて十分小さく選ぶことから、Q1のゲート・ソース間抵抗としては抵抗
R3のみを考慮すれば良い。尚、ドレイン・ソース間電圧Vds(Q1)の時間変化(dV/dt)はRon(M4)の増加に伴い小さくなる。
Next, after t3, the gate voltage Vgs (Q1) of Q1 is reduced. As a result, the gate voltage of M4 is also reduced, and the on-resistance Ron (M4) becomes higher depending on the decrease of Vgs (Q1). Although not shown in FIG. 2, the voltage V1 in FIG. 1 is decreased. In addition, Igs (Q1) decreases as Ron (M4) increases. This state is continued during the period from t3 to t4, and the feedback capacitance is charged by Igs (Q1) on the way, and the drain-source voltage Vds (Q1) increases.
This corresponds to the voltage rise period. When Vgs (Q1) becomes smaller than a certain voltage (for example, 1/2 to 1/3 or less of the control voltage Vcc), Ron (M4) increases remarkably, and the resistance R2 and Ron
The current characteristic of M4 is selected so that the sum of the on-resistances of (M4) and M2 increases to 10 times or more than the sum of the on-resistances of resistors R3 and M3. As a result, from the middle of the period t3, the gate-source resistance of Q1 is substantially equal to the sum of the resistances R3 and M3, and the on-resistance of M3 is selected to be sufficiently smaller than the resistance value of R3. Only the resistor R3 should be considered as the gate-source resistance of Q1. Note that the time change (dV / dt) of the drain-source voltage Vds (Q1) decreases as Ron (M4) increases.

電圧上昇期間の途中でVds(Q1)をR7とR8で分圧した値V2が基準値Vref 以上になると、増幅器6によって(V2−Vref) の差電圧に応じた出力電圧がM5のゲート電圧として印加されM5がオンする。M5がオンした時刻をt4とする。図2では分圧値
V2と基準値Vrefがほぼ等しくなる際のVds(Q1)がほぼ主電源の電圧VBに等しくなるよう、Vrefの値を選んでいる。ここで、本実施例ではt3〜t4の期間中にまず、Q1のゲート電圧Vgs(Q1)に応じてM4のオン抵抗Ron(M4)が増加するが、この効果としてQ1のゲート放電抵抗値が増加し、Q1の帰還容量の充電電流(Igs(Q1))が減り、帰還容量の充電は遅くなる。これはドレイン・ソース間電圧Vds(Q1)の電圧上昇も遅くなることを意味しており、前述の公知例のように電圧上昇が速すぎてVds(Q1)の検出に遅延が生じることを防いでいる。またスピードアップコンデンサC2の効果で分圧電圧V2の増加も速くなっており、これもVds(Q1)の検出遅延の短縮化に寄与している。更に、M5がオンした直後、スピードアップコンデンサC1によってM5の直列インピーダンスが一瞬小さくなるが、これも抵抗可変手段の動作遅延を短縮化させる効果がある。
When the value V2 obtained by dividing Vds (Q1) by R7 and R8 in the middle of the voltage rise period becomes equal to or higher than the reference value Vref, the output voltage corresponding to the difference voltage of (V2−Vref) by the amplifier 6 is used as the gate voltage of M5. Applied and M5 is turned on. The time when M5 is turned on is assumed to be t4. In FIG. 2, the value of Vref is selected so that Vds (Q1) when the divided voltage value V2 and the reference value Vref are substantially equal is substantially equal to the voltage VB of the main power supply. Here, in this embodiment, first, during the period from t3 to t4, the on-resistance Ron (M4) of M4 increases according to the gate voltage Vgs (Q1) of Q1, and as an effect of this, the gate discharge resistance value of Q1 increases. The charging current (Igs (Q1)) of the feedback capacity of Q1 decreases and charging of the feedback capacity becomes slow. This means that the voltage rise of the drain-source voltage Vds (Q1) also slows down, and prevents the delay in the detection of Vds (Q1) due to the voltage rise too fast as in the above-mentioned known example. It is out. In addition, the effect of the speed-up capacitor C2 increases the divided voltage V2, and this also contributes to shortening the detection delay of Vds (Q1). Further, immediately after M5 is turned on, the series impedance of M5 is reduced momentarily by the speed-up capacitor C1, which also has the effect of shortening the operation delay of the resistance variable means.

t4〜t6までの期間は第1の抵抗可変手段2と第2の抵抗可変手段3がいずれも動作している。第1の抵抗可変手段はQ1のゲート・ソース間に抵抗R2とRon(M4)及びM2のオン抵抗の和と抵抗R3とM3のオン抵抗の和をそれぞれ、並列に合成した値RT1を有し、一方の第2の抵抗可変手段は抵抗R4とRon(M5)の和で決まる値RT2を有するため、Q1のゲート電圧は制御電源VccをRT1とRT2で分圧した値になる。この値をVoと仮定すると、t5〜t6の電流下降期間において電流変化(di/dt)がサージ電圧を発生させようとしても、Vds(Q1)の増加に対し増幅器の働きでRon(M5)が更に減少して、Voを増加させる動作が働く。Voが増加するとQ1の過渡的なインピーダンスが低くなり、電流遮断が抑制される傾向に働く。このようにして、第1の抵抗可変手段と第2の抵抗可変手段の分圧とはゲート電圧Vgs(Q1)とドレイン電圧Vds
(Q1)をそれぞれ検出し、Vgs(Q1)が安定な値Voになるようフィードバック制御させる効果を持つ。この効果により電流変化(di/dt)は抑制され、サージ電圧は最小限に抑えられる。図1には図示していないが、主電源VBからQ1に電流を供給する配線の寄生インダクタンスをLs、Q1が遮断する主電流の瞬時値をI、サージ電圧を含むVgs(Q1)の最大値をVcとすれば、Q1が電流Iを遮断するために要する時間tfは Ls・di/dt=Vc−VB (1)の関係があり、また、di/dtを線形近似すると
tf=Ls×I/(Vc−VB) (2)で表わすことができる。このtfがt5〜t6の時間に等しく、この時間にはドレイン電圧Vds(Q1)とドレイン電流Ids(Q1)の重なりが生じターンオフ損失となるが、その値は配線の寄生インダクタンスLsに貯えられた電磁エネルギーに等しい。この電磁エネルギーはターンオフ時に必ず発生することから、ターンオフ損失も必要最小限に抑制されていると言える。
During the period from t4 to t6, both the first resistance variable means 2 and the second resistance variable means 3 are operating. The first resistance variable means has a value RT1 between the gate and source of Q1 and a combination of resistors R2 and Ron (M4) and the sum of the on resistances of M2 and the sum of the on resistances of resistors R3 and M3 in parallel. On the other hand, since the second variable resistance means has a value RT2 determined by the sum of the resistors R4 and Ron (M5), the gate voltage of Q1 becomes a value obtained by dividing the control power supply Vcc by RT1 and RT2. Assuming that this value is Vo, Ron (M5) is increased by the function of the amplifier with respect to the increase of Vds (Q1) even if the current change (di / dt) tries to generate a surge voltage during the current falling period from t5 to t6. The operation of further decreasing and increasing Vo works. As Vo increases, the transient impedance of Q1 becomes lower, which tends to suppress current interruption. In this way, the divided voltages of the first resistance variable means and the second resistance variable means are the gate voltage Vgs (Q1) and the drain voltage Vds.
(Q1) is detected, and feedback control is performed so that Vgs (Q1) becomes a stable value Vo. By this effect, the current change (di / dt) is suppressed, and the surge voltage is minimized. Although not shown in FIG. 1, the parasitic inductance of the wiring that supplies current from the main power supply VB to Q1 is Ls, the instantaneous value of the main current that Q1 cuts off is I, and the maximum value of Vgs (Q1) including the surge voltage Is Vc, the time tf required for Q1 to cut off the current I has the relationship Ls · di / dt = Vc−VB (1), and when di / dt is linearly approximated, tf = Ls × I / (Vc−VB) (2). This tf is equal to the time from t5 to t6. During this time, the drain voltage Vds (Q1) and the drain current Ids (Q1) overlap, resulting in turn-off loss, but this value is stored in the parasitic inductance Ls of the wiring. Equal to electromagnetic energy. Since this electromagnetic energy is always generated at the time of turn-off, it can be said that the turn-off loss is minimized.

図2で時刻t7以降はターンオン動作であるが、図1の実施例はQ1のターンオン時には特別な働きはせず、従来の駆動装置と同様にM1のオンにより抵抗R1を介してQ1のゲート・ソース間に電流を供給し、ゲート電圧を増加させる。この時、Q2に並列に設けられた還流ダイオードQD2が逆回復するが、このダイオードの逆回復時に発生するサージ電圧も本発明の駆動装置1で抑制することが可能である。この説明は図4と図5を用いて詳細に述べる。   In FIG. 2, the turn-on operation is performed after time t7. However, the embodiment of FIG. 1 does not perform any special function when Q1 is turned on. As in the case of the conventional driving device, when M1 is turned on, the gate of Q1 is connected via the resistor R1. Supply current between the sources to increase the gate voltage. At this time, the free-wheeling diode QD2 provided in parallel with Q2 reversely recovers, but the surge voltage generated during reverse recovery of the diode can also be suppressed by the driving device 1 of the present invention. This will be described in detail with reference to FIGS.

図4はダイオードQD2が逆回復する際の状態を説明する図である。図4に記載した回路部品で図1と同一のものには同じ記号を記載しており、説明は省略する。図1と異なる点として、3相インバータの各パワー半導体素子をQ1,Q2、及びQ4の3つしか記載していないが、これはQD2の動作を説明する為に必要な素子のみを記載し残りを省略しただけであり、正確な構成は図1と同じである。図4でQ2のゲート・ソース間には抵抗R3しか接続していないが、実際の構成は図1のQ1に対する駆動装置1と同じである。
図4でQ2がオフ、QD2に電流が流れている還流状態を想定すると、Q2のゲート・ソース間電圧はほぼ零であることから図1で述べたM4はそのオン抵抗が高抵抗状態にある。また、前述のようにM3のオン抵抗をR3の抵抗値に比べて十分小さく選んでいる為、QD2が還流状態にある場合のQ2のゲート・ソース間抵抗としては抵抗R3のみを考慮すれば良い。尚図4で新規に記載した部品としてLsがあるが、LsはQ2のゲート主電源VBの正極とQ2及びQ4ノードレイン端子をつなぐ配線の寄生インダクタンスである。また負荷は図1ではモータMであったが、図4では誘導性負荷として記載している。
FIG. 4 is a diagram illustrating a state when the diode QD2 is reversely recovered. The circuit parts shown in FIG. 4 that are the same as those in FIG. The difference from FIG. 1 is that only three power semiconductor elements Q1, Q2, and Q4 are described for each power semiconductor element of the three-phase inverter, but only the elements necessary for explaining the operation of QD2 are described. The exact configuration is the same as in FIG. In FIG. 4, only the resistor R3 is connected between the gate and source of Q2, but the actual configuration is the same as that of the driving device 1 for Q1 of FIG.
Assuming a reflux state in which Q2 is off and current flows in QD2 in FIG. 4, the gate-source voltage of Q2 is almost zero, so M4 described in FIG. 1 is in a high resistance state. . Further, since the on-resistance of M3 is selected to be sufficiently smaller than the resistance value of R3 as described above, only the resistor R3 should be considered as the gate-source resistance of Q2 when QD2 is in the reflux state. . Note that Ls is a component newly described in FIG. 4, and Ls is a parasitic inductance of a wiring connecting the positive electrode of the gate main power supply VB of Q2 and the Q2 and Q4 node rain terminals. Further, although the load is the motor M in FIG. 1, it is described as an inductive load in FIG.

図5にはダイオードQD2が逆回復する際の動作説明と、動作波形をそれぞれ示す。まず、図5(a)は従来の駆動装置を用いた場合である。図5(a)の抵抗R3は本発明のR3に比べて抵抗値が1/10以下とする。従来の駆動装置では図2に示したt2期間のターンオフ開始からt7期間のオフ定常の終了までゲート抵抗が変化せず、一般的にオフゲート抵抗はt2〜t3期間に大きなゲート電流を流すことを目的に選定される為である。図5(b)に従来の駆動装置における動作波形を示すが、還流電流I(QD2)はQD2のアノードからカソードに向かう極性を正として表示している。図5(b)でI(QD2)が減少し、やがて零以下になるがQD2に蓄積された電子とホールを全て排出するまでは逆極性の電流が流れる。これが逆回復と呼ばれる現象である。逆回復電流はピークに達した時点以降減少し始め、QD2にはカソードを正とする逆電圧(図中のVQ2)が印加される。この逆電圧は図5(b)に示したように電圧変化(dV/dt)が大きく、かつスパイク電圧が重畳する。このスパイク電圧は寄生インダクタンスLsと逆回復電流が減少する際の電流変化(dI/dt)により発生する。このように(dV/dt)が大きく、かつスパイク電圧が重畳した電圧VQ2によりQ2ノードレイン・ゲート間帰還容量を充電する電流が流れ、この充電電流はR3を介してQ2のソースへと向かう。従来の駆動装置では抵抗R3が小さい為、帰還容量の充電電流がR3で発生させる電圧降下は小さく、一般的にこの電圧降下はQ2のゲートしきい値電圧以下になるよう抵抗R3の値を選定していた。   FIG. 5 shows an operation explanation and an operation waveform when the diode QD2 performs reverse recovery. First, FIG. 5A shows a case where a conventional driving device is used. The resistance value of the resistor R3 in FIG. 5A is set to 1/10 or less as compared with R3 of the present invention. In the conventional driving device, the gate resistance does not change from the start of turn-off in the period t2 shown in FIG. 2 until the end of the off-state in the period t7, and the off-gate resistance generally aims to pass a large gate current in the period t2 to t3. This is because it is selected. FIG. 5B shows an operation waveform in the conventional drive device, and the return current I (QD2) is displayed with the polarity from the anode to the cathode of QD2 being positive. In FIG. 5B, I (QD2) decreases and eventually becomes less than zero, but a reverse polarity current flows until all the electrons and holes accumulated in QD2 are discharged. This is a phenomenon called reverse recovery. The reverse recovery current starts to decrease after reaching the peak, and a reverse voltage (VQ2 in the figure) with the cathode being positive is applied to QD2. The reverse voltage has a large voltage change (dV / dt) as shown in FIG. This spike voltage is generated by a current change (dI / dt) when the parasitic inductance Ls and the reverse recovery current decrease. In this way, a current VD2 having a large (dV / dt) and a spike voltage superimposed thereon flows a current for charging the feedback capacitor between the Q2 node rain gate and the gate, and this charging current is directed to the source of Q2 via R3. Since the resistance R3 is small in the conventional driving device, the voltage drop generated by the feedback capacitor charging current at R3 is small. In general, the value of the resistor R3 is selected so that this voltage drop is equal to or lower than the gate threshold voltage of Q2. Was.

図5(c)には本発明の駆動装置を用いた場合の動作を示す。QD2が逆回復し電圧変化(dV/dt)の大きい電圧VQ2が発生するまでの現象は従来の場合と同じである。
ここで、電圧VQ2によりQ2の帰還容量を充電する電流が流れ、この充電電流がR3に電圧降下を発生させる場合、本発明では抵抗R3が従来に比べ10倍以上大きい為、Q2のゲート・ソース間には図5(d)に示すような電圧が生じる。この電圧のピーク値は
Q2のゲートしきい値電圧よりわずかに大きくなるようにR3の値を決めておく。この結果、MOSFETQ2は一瞬、オンして図5(c)に示すようなドレインからソースに向かう電流が流れる。オンしたMOSFETQ2はゲート電圧が十分大きくない為、その抵抗は図2のt1〜t2期間と比べて大きいが、図5(a)の従来でオフ状態にある場合に比べるとはるかに小さい値になる。そして、QD2の逆回復電流に加えてQ2の電流が流れる為、図5(d)の電流I(QD2)は図5(b)に比べて導通期間が長く、かつ電流変化(dI/dt)は小さくなっている。このようにして(dI/dt)が小さくなると、図5(b)のようなスパイク電圧は発生せず、寄生インダクタンスLsに蓄積した電磁エネルギーは電圧VQ2とI(QD2)の積で決まる損失によって消費される。本発明は従来の駆動装置では避けていたMOSFETQ2のdV/dt誤点弧を発生させ、これを用いてスパイク電圧を抑制させている。逆回復時の電圧変化(dV/dt)により流れるMOSFETQ2の電流は従来の駆動装置を用いた場合に比べてスイッチング損失を増加させる欠点もあるが、R3の抵抗値を最適に選定すればQ2が導通したことで発生する損失の増加を最小限に抑えることも可能である。また、本発明のようにスパイク電圧を抑制すれば素子Q2の耐圧を従来より小さくできる為、Q2のオン抵抗を低減することが可能である。本発明によれば、スイッチング損失は増加するものの、素子の耐圧を低減することでオン抵抗を減少させ定常損失を低減することができる。定常損失の低減がスイッチング損失の増加に比べて大きければ、全体としては低損失化の効果になる。
FIG. 5C shows the operation when the driving device of the present invention is used. The phenomenon until QD2 recovers reversely and voltage VQ2 having a large voltage change (dV / dt) is generated is the same as in the conventional case.
Here, when a current for charging the feedback capacitor of Q2 flows by the voltage VQ2, and this charging current causes a voltage drop in R3, in the present invention, since the resistor R3 is more than 10 times larger than the conventional, the gate-source of Q2 A voltage as shown in FIG. The value of R3 is determined so that the peak value of this voltage is slightly larger than the gate threshold voltage of Q2. As a result, the MOSFET Q2 is turned on for a moment, and a current from the drain to the source as shown in FIG. 5C flows. Since the MOSFET Q2 that is turned on has a gate voltage that is not sufficiently high, its resistance is larger than the period from t1 to t2 in FIG. 2, but is much smaller than that in the conventional off state of FIG. . Since the current of Q2 flows in addition to the reverse recovery current of QD2, the current I (QD2) of FIG. 5D has a longer conduction period than that of FIG. 5B and the current change (dI / dt). Is getting smaller. When (dI / dt) is reduced in this way, the spike voltage as shown in FIG. 5B does not occur, and the electromagnetic energy accumulated in the parasitic inductance Ls is caused by the loss determined by the product of the voltages VQ2 and I (QD2). Is consumed. The present invention generates a dV / dt false firing of the MOSFET Q2, which is avoided in the conventional driving device, and suppresses the spike voltage by using this. The current of the MOSFET Q2 flowing due to the voltage change (dV / dt) at the time of reverse recovery also has a drawback of increasing the switching loss as compared with the case of using a conventional driving device, but if the resistance value of R3 is optimally selected, Q2 is It is also possible to minimize the increase in loss caused by the conduction. Further, if the spike voltage is suppressed as in the present invention, the withstand voltage of the element Q2 can be made smaller than before, so that the on-resistance of Q2 can be reduced. According to the present invention, although the switching loss increases, the on-resistance can be reduced and the steady loss can be reduced by reducing the breakdown voltage of the element. If the reduction of the steady loss is larger than the increase of the switching loss, the overall loss is reduced.

図6は図1に示した第2の抵抗可変手段3に関する第2の実施例である。図1の構成と異なる点は図1が増幅器の出力を直接M5のゲートに印加しているのに対して、図6ではダイオードD3とこれに並列な抵抗R11、及びD3のアノード端子とVccの負極間に設けたキャパシタC3で構成される遅延手段を介してM5のゲートに印加することである。
この遅延手段の効果でM5のゲート電位が下がる場合はC3の電圧が抵抗の小さいD3を介して放電され、その時間遅延はわずかである。一方、M5のゲート電位が上がる場合はC3の電圧が抵抗の大きいR11を介して充電され、R11とC3の時定数により時間遅延が発生する。この遅延手段によれば、図2の時刻t6においてVds(Q1)が減少した際にもM5が急に流していた電流を遮断するのではなく、ゆっくりと遮断に向かう。これは時刻t6直後のゲート電圧Vgs(Q1)がゆっくりと減少する効果をもたらし、Vds
(Q1)の波形振動を抑制することができる。遅延手段にもうけた抵抗R11とキャパシタC3で決まる時定数は、Q1ノードレイン・ソース間寄生容量(Coss )と図4に記載したように配線の寄生インダクタンスLsで決まる共振周期に対して約5〜10倍程度長くなるように選定すればVds(Q1)が時刻t6以降で振動することを防止することができる。
FIG. 6 shows a second embodiment relating to the second variable resistance means 3 shown in FIG. 1 differs from the configuration of FIG. 1 in that the output of the amplifier is applied directly to the gate of M5 in FIG. 1, whereas in FIG. 6, the diode D3 and the resistor R11 in parallel therewith, the anode terminal of D3, and the Vcc It is applied to the gate of M5 through a delay means composed of a capacitor C3 provided between the negative electrodes.
When the gate potential of M5 falls due to the effect of this delay means, the voltage of C3 is discharged through D3 having a small resistance, and the time delay is slight. On the other hand, when the gate potential of M5 increases, the voltage of C3 is charged through R11 having a large resistance, and a time delay occurs due to the time constant of R11 and C3. According to this delay means, even when Vds (Q1) decreases at time t6 in FIG. 2, the current that M5 was suddenly flowing is not interrupted, but is slowly interrupted. This brings about an effect that the gate voltage Vgs (Q1) immediately after time t6 decreases slowly, and Vds
The waveform vibration of (Q1) can be suppressed. The time constant determined by the resistor R11 and the capacitor C3 provided in the delay means is about 5 to about the resonance period determined by the Q1 node rain-source parasitic capacitance (Coss) and the parasitic inductance Ls of the wiring as shown in FIG. If the length is selected to be about 10 times longer, it is possible to prevent Vds (Q1) from vibrating after time t6.

図7は図1に示した第1の抵抗可変手段2に関する第2の実施例である。図7が図1と異なる点は、まず抵抗R2とnチャンネルMOSFET M2をQ1のゲート・ソース間に並列に接続し、制御信号Soff を抵抗R12,R13、及びMOSFET M6からなる直列接続に供給する。R12とR13の接続箇所からM2にゲート信号を供給する。
M6はQ1のゲート・ソース間電圧Vgs(Q1)と基準電圧Vref2を比較し、ゲート電圧Vgs(Q1)が基準電圧Vref2より高い場合はM6はオフ、低くなるとM6がオンするよう比較器7から信号を出力する。即ち、Vgs(Q1)がVref2 より高い場合はM6がオフしている為、M2には抵抗R12を介して制御信号Soff の電圧がそのまま印加される。この場合、抵抗R2とR3が並列になるが、図1と同様にR2はR3に比べ1/
10以下に選び、合成抵抗がほぼR2だけになるようにする。Q1のゲート電圧Vgs
(Q1)はこの合成抵抗によって急速に放電される。
FIG. 7 shows a second embodiment relating to the first variable resistance means 2 shown in FIG. 7 differs from FIG. 1 in that a resistor R2 and an n-channel MOSFET M2 are first connected in parallel between the gate and source of Q1, and a control signal Soff is supplied to a series connection comprising resistors R12 and R13 and a MOSFET M6. . A gate signal is supplied to M2 from the connection point of R12 and R13.
M6 compares the gate-source voltage Vgs (Q1) of Q1 with the reference voltage Vref2, and when the gate voltage Vgs (Q1) is higher than the reference voltage Vref2, M6 is turned off, and when it becomes lower, the comparator 7 turns on M6. Output a signal. That is, when Vgs (Q1) is higher than Vref2, since M6 is off, the voltage of the control signal Soff is applied to M2 through the resistor R12 as it is. In this case, the resistors R2 and R3 are in parallel, but R2 is 1 / compared to R3 as in FIG.
10 or less is selected so that the combined resistance is approximately only R2. Q1 gate voltage Vgs
(Q1) is rapidly discharged by this combined resistance.

次に、Vgs(Q1)がVref2 より低くなるとM6がオンしている為、制御信号Soff をR12とR13で分圧した電圧がM2のゲート電圧として印加される。ゲート電圧が
R12とR13の分圧により減少すると、M2のオン抵抗は高くなる。M2のオン抵抗が増加し、その値が抵抗R3に比べてはるかに大きくなるようM2の電流特性を選んでおくと、Q1のゲート・ソース間に接続された合成抵抗はほぼR3に等しい値になる。この結果、Q1のゲート電圧Vgs(Q1)は増加した合成抵抗によってゆっくりと放電され、図1及び図2で述べた動作と同じようになる。図1と図7を比較すると、図1の場合のM2とM4はターンオフ初期に大きなゲート電流を流す為、電流定格の大きなMOSFETが必要である。図7のM2も同様に定格の大きなMOSFETが必要であるが、M6はR12とR13で電流を制限する為、M2に比べると小さな電流定格で良い。使用するMOSFETの電流定格を下げることができれば低コスト化につながり、特に駆動装置を集積回路化する場合には低コストに効果的である。
Next, when Vgs (Q1) becomes lower than Vref2, since M6 is turned on, a voltage obtained by dividing the control signal Soff by R12 and R13 is applied as the gate voltage of M2. When the gate voltage decreases due to the voltage division of R12 and R13, the on-resistance of M2 increases. If the current characteristic of M2 is selected so that the on-resistance of M2 increases and its value is much larger than that of resistor R3, the combined resistance connected between the gate and source of Q1 is almost equal to R3. Become. As a result, the gate voltage Vgs (Q1) of Q1 is slowly discharged by the increased combined resistance, and the operation is the same as that described with reference to FIGS. Comparing FIG. 1 and FIG. 7, M2 and M4 in the case of FIG. 1 require a large current rating MOSFET because a large gate current flows at the beginning of turn-off. Similarly, M2 in FIG. 7 requires a MOSFET with a large rating. However, since M6 limits the current with R12 and R13, the current rating may be smaller than that of M2. If the current rating of the MOSFET to be used can be reduced, the cost can be reduced. In particular, when the drive device is integrated, the cost is effective.

図8には本発明の駆動装置に関する第2の実施例を示す。尚、図8に示すインバータ型の電力変換装置は図1と同じであり、駆動装置1の破線で囲んだ第2の抵抗可変手段3だけが異なっている。図8における第2の抵抗可変手段3は、Q1のパワーMOSFETを例にすると、Q1ノードレイン端子とゲート端子間にツエナーダイオードZD2とダイオードD2からなる直列接続を備える。本発明では、Q1ノードレイン・ソース間電圧Vds(Q1)を上記ZD2とD2からなる直列接続と第1の抵抗可変手段2で分圧し、この分圧した電圧をQ1のゲート電圧として印加させることが特徴である。パワー半導体素子の過電圧保護用として図8と同様にドレイン端子とゲート端子間にツエナーダイオードを備えた例はこれまでにもあるが、スイッチング時に発生するサージ電圧を抑制する目的でこの方法を用いると、毎回のスイッチングでツエナーダイオードが降服し電流が流れる為、ツエナーダイオードの損失が問題になる。本発明はツエナーダイオードと抵抗可変手段を併用することでサージ電圧を抑制すると共に、ツエナーダイオードの損失を低減することが狙いである。   FIG. 8 shows a second embodiment relating to the driving apparatus of the present invention. The inverter type power converter shown in FIG. 8 is the same as that shown in FIG. 1, and only the second resistance variable means 3 surrounded by the broken line of the drive device 1 is different. The second variable resistance means 3 in FIG. 8 includes a series connection including a Zener diode ZD2 and a diode D2 between the Q1 node rain terminal and the gate terminal, taking the power MOSFET of Q1 as an example. In the present invention, the Q1 node rain-source voltage Vds (Q1) is divided by the series connection of ZD2 and D2 and the first variable resistance means 2, and the divided voltage is applied as the gate voltage of Q1. Is a feature. Although there has been an example in which a Zener diode is provided between the drain terminal and the gate terminal as in FIG. 8 for overvoltage protection of the power semiconductor element, if this method is used for the purpose of suppressing a surge voltage generated during switching, Since the Zener diode falls and current flows every switching, the loss of the Zener diode becomes a problem. An object of the present invention is to suppress the surge voltage and reduce the loss of the Zener diode by using the Zener diode and the resistance variable means together.

尚、ツエナーダイオードZD2の降服電圧は、主電源の電圧VBに等しい特性を選ぶことが損失及び遅延時間の低減の点で望ましい。   It should be noted that it is desirable that the breakdown voltage of the Zener diode ZD2 is selected to have a characteristic equal to the voltage VB of the main power supply in terms of reduction of loss and delay time.

図9は図8の駆動装置を用いた場合の動作波形であり、時刻t4までの動作は図2と同様である。時刻t4においてQ1ノードレイン・ソース間電圧Vds(Q1)がツエナーダイオードZD2の降服電圧を超えるとZD2に電流が流れ、この電流はR2,M4,M2からなる第1のゲート放電抵抗と、R3とM3からなる第2のゲート放電抵抗に流れる。
ここで、第1のゲート放電抵抗にM4が無く、制御信号に応じてオンするM2とR2だけの場合を想定してみる。第2のゲート放電抵抗は設けていても前述のようにR2の値は
R3に比べて1/10以下である為、合成したゲート放電抵抗はほぼR2に等しく、小さな値になる。これは従来、過電圧保護用としてツエナーダイオードを備えた例と同じ特性になる。即ち、小抵抗R2がQ1のゲート・ソース間電圧Vgs(Q1)を減少させている状況であり、R2を流れるゲート電流は大きい。ZD2が降服するとZD2の電流はR2に流れ、その電流はR2を通るゲート電流にほぼ等しい値まで増加する。この時、R2が通流可能な電流はQ1のゲート・ソース間電圧Vgs(Q1)をR2で割った値である。
ZD2の電流がR2に通流可能な電流値まで増加すると、ゲート電圧Vgs(Q1)はそれ以上は減少せず、電流は緩やかに遮断される。又、電流変化(dI/dt)が小さくなる為、サージ電圧も抑制できる。図8でt5〜t6の電流下降期間がこれに相当し、Q1ノードレイン・ソース間電圧Vds(Q1)をZD2とR2で分圧した電圧がQ1のゲート・ソース間電圧Vgs(Q1)として印加されていると言える。一方、R2に通流可能な電流はR2の値が小さいほど大きくなり、ツエナーダイオードにはこの電流と降服電圧の積で決まる損失が発生する。
FIG. 9 shows operation waveforms when the driving apparatus of FIG. 8 is used, and the operation up to time t4 is the same as that of FIG. When the Q1 node rain-source voltage Vds (Q1) exceeds the breakdown voltage of the Zener diode ZD2 at time t4, a current flows through ZD2, and this current is a first gate discharge resistor composed of R2, M4, and M2, R3, It flows to the second gate discharge resistor consisting of M3.
Here, it is assumed that there is no M4 in the first gate discharge resistor, and only M2 and R2 that are turned on in response to the control signal are assumed. Even if the second gate discharge resistor is provided, since the value of R2 is 1/10 or less as compared with R3 as described above, the synthesized gate discharge resistance is substantially equal to R2 and a small value. This has the same characteristics as the conventional example in which a Zener diode is provided for overvoltage protection. That is, the small resistance R2 is reducing the gate-source voltage Vgs (Q1) of Q1, and the gate current flowing through R2 is large. When ZD2 falls, the current in ZD2 flows through R2, and the current increases to a value approximately equal to the gate current through R2. At this time, the current that R2 can flow is a value obtained by dividing the gate-source voltage Vgs (Q1) of Q1 by R2.
When the current of ZD2 increases to a current value that can flow through R2, the gate voltage Vgs (Q1) does not decrease any more, and the current is cut off gradually. Further, since the current change (dI / dt) is reduced, the surge voltage can be suppressed. In FIG. 8, the current falling period from t5 to t6 corresponds to this, and the voltage obtained by dividing the Q1 node rain-source voltage Vds (Q1) by ZD2 and R2 is applied as the gate-source voltage Vgs (Q1) of Q1. It can be said that. On the other hand, the current that can flow through R2 increases as the value of R2 decreases, and a loss determined by the product of this current and the breakdown voltage occurs in the Zener diode.

次に本発明による駆動装置の場合は図2で述べたように、時刻t3まではM4のオン抵抗が小さいが、それ以降はQ1のゲート電圧Vgs(Q1)の減少に依存してM4のオン抵抗が増加し、時刻t4ではゲート放電抵抗の合成値はR2に比べて10倍以上、大きい
R3になっている。この為、ZD2が降服した際に流れる電流もM4が無い場合に比べて大幅に低減する。従って、Q1のサージ電圧を抑制すると共に、ツエナーダイオードの損失も大幅に低減することが達成できる。
In the case of the driving device according to the present invention, as described with reference to FIG. 2, the on-resistance of M4 is small until time t3, but thereafter, M4 is turned on depending on the decrease in the gate voltage Vgs (Q1) of Q1. The resistance increases, and at time t4, the combined value of the gate discharge resistance is R3, which is 10 times larger than R2. For this reason, the current that flows when ZD2 falls is also greatly reduced compared to the case where there is no M4. Accordingly, the surge voltage of Q1 can be suppressed and the loss of the Zener diode can be greatly reduced.

図10は前述のスピードアップコンデンサの原理を用いて第1の抵抗可変手段を達成する実施例である。鎖線2で囲む第1の抵抗可変手段以外の構成は図8と同じであり、その説明は省略する。本実施例における第1の抵抗可変手段はQ1のゲート・ソース間に抵抗R2と駆動信号Soff によりスイッチングするM2を直列に備え、R2には並列にスピードアップコンデンサC4を備える。図9の動作波形に示したt2〜t3期間において、
Q1のゲート電圧が急峻に変化し大きなゲート電流が流れる場合にはスピードアップコンデンサC4のインピーダンスがR2より小さくなり、ゲート電流を流す。次のt3〜t6期間においてQ1のゲート電圧の時間的変化が小さくなると、C4のインピーダンスが高くなりR2がゲート抵抗として働く。そこで、図10においては抵抗R2の値を図8の例に比べて10倍程度大きくしておき、ターンオフ初期のt2〜t3期間ではC2を抵抗手段としてゲート電流の放電に使用し、ツエナーダイオードZD2が降服するt4〜t6期間ではR2をゲート抵抗として用いれば、図8で述べた原理によってツエナーダイオードの電流を軽減して低損失化を図ることができる。尚、C4の容量はQ1のゲート・ソース間容量と同等な値が望ましい。
FIG. 10 shows an embodiment for achieving the first resistance variable means by using the principle of the speed-up capacitor. The configuration other than the first resistance variable means surrounded by the chain line 2 is the same as that shown in FIG. The first variable resistance means in this embodiment includes a resistor R2 and M2 that switches by the drive signal Soff in series between the gate and source of Q1, and a speed-up capacitor C4 in parallel with R2. In the period t2 to t3 shown in the operation waveform of FIG.
When the gate voltage of Q1 changes sharply and a large gate current flows, the impedance of the speed-up capacitor C4 becomes smaller than R2 and the gate current flows. When the temporal change of the gate voltage of Q1 becomes small in the next period from t3 to t6, the impedance of C4 becomes high and R2 works as a gate resistance. Therefore, in FIG. 10, the value of the resistor R2 is set to be about 10 times larger than that in the example of FIG. 8, and C2 is used as a resistance means for discharging the gate current during the period t2 to t3 in the initial turn-off, and the Zener diode ZD2 If R2 is used as the gate resistance during the period from t4 to t6 when the current falls, the current of the Zener diode can be reduced and the loss can be reduced by the principle described in FIG. Note that the capacitance of C4 is preferably equal to the gate-source capacitance of Q1.

図1〜図10に記載した駆動装置1でキャパシタC1〜C4を除くMOSFET,抵抗,ツエナーダイオード,増幅器,比較器はいずれも集積回路(IC)に適した部品であり、これらを1つ或いは複数のICチップで構成しても良い。IC化により回路の動作遅延は大幅に短縮化され、本発明の狙いにとってより適した特性が得られる。   In the driving apparatus 1 described in FIGS. 1 to 10, the MOSFET, the resistor, the Zener diode, the amplifier, and the comparator excluding the capacitors C1 to C4 are all components suitable for an integrated circuit (IC), and one or a plurality of them are included. You may comprise with an IC chip. By using an IC, the operation delay of the circuit is greatly shortened, and characteristics more suitable for the purpose of the present invention can be obtained.

図11は本発明による駆動装置を備えたインバータ装置に大容量電池から電力を供給する電力変換システムの構成である。   FIG. 11 shows a configuration of a power conversion system that supplies power from a large-capacity battery to an inverter device equipped with a drive device according to the present invention.

図11でパワー半導体素子Q1〜Q6で構成される3相インバータと、これに負荷として接続されたモータM,Q1〜Q6に具備された図1或いは図8と同じ駆動装置1、及び駆動装置1に電力を供給する制御電源Vcc、駆動装置1にPWM制御信号を伝える制御装置5はいずれも図1或いは図8に記載した内容と同じであり、これらの説明は省略する。
Ls1はそれぞれ平滑コンデンサCFと3相インバータを接続する配線の寄生インダクタンス、Ls2も同様に電池VBと平滑コンデンサCFを接続する配線の寄生インダクタンスである。次に電池VBは等価回路的に表現すると、内部抵抗RBと開路電圧VBOで表すことができる。この電池VBを充電、或いは放電する電流を電流センサ8で計測し、電池の状態監視装置9に電流計測結果を逐次、伝えている。また、状態監視装置9は電池
VBの電圧も計測しており、計測した電池VBの電流,電圧情報から内部抵抗RBと開路電圧VBOを推定し、制御装置5に伝達する。
The three-phase inverter composed of the power semiconductor elements Q1 to Q6 in FIG. 11 and the motors M and Q1 to Q6 connected as loads to the motors M and Q1 to Q6 are the same drive device 1 and drive device 1 as FIG. 1 or FIG. The control power supply Vcc that supplies power to the control device 5 and the control device 5 that transmits the PWM control signal to the drive device 1 are all the same as those described in FIG. 1 or FIG.
Ls1 is the parasitic inductance of the wiring connecting the smoothing capacitor CF and the three-phase inverter, and Ls2 is the parasitic inductance of the wiring connecting the battery VB and the smoothing capacitor CF. Next, the battery VB can be expressed in terms of an equivalent circuit by an internal resistance RB and an open circuit voltage VBO. The current for charging or discharging the battery VB is measured by the current sensor 8, and the current measurement result is sequentially transmitted to the battery state monitoring device 9. The state monitoring device 9 also measures the voltage of the battery VB, estimates the internal resistance RB and the open circuit voltage VBO from the measured current and voltage information of the battery VB, and transmits them to the control device 5.

本発明は電池VBが大電流を通電した場合、その正負極間電圧は内部抵抗RBの影響で真の電圧(開路電圧VBO)より減少或いは増加して現れることから、この原理を前述の駆動装置に関する制御方法として応用することが狙いである。   In the present invention, when the battery VB is energized with a large current, the voltage between the positive and negative electrodes appears to decrease or increase from the true voltage (open circuit voltage VBO) due to the influence of the internal resistance RB. It is aimed to be applied as a control method.

前述の(1),(2)式で述べたように、平滑コンデンサCF(容量をCfとする)からパワー半導体素子を含む閉回路内に存在する配線の寄生インダクタンスをLs1,Q1〜Q6のパワー半導体素子が出力する主電流の瞬時値をI(電池にとっては放電電流)、この電流の実効値をIav、電池の正負極間電圧をVB、開路電圧をVBO、電池の内部抵抗をRB、駆動装置によってサージ電圧を抑制した場合のパワー半導体素子の最大電圧値をVc(図2でt5〜t6期間のVds(Q1)に相当する)、パワー半導体素子が電流を遮断する時間をtfとすれば、これらのパラメータには次の関係がある。
電流遮断期間に発生するサージ電圧は
Ls1×dI/dt=Vc−VB (3)電流遮断時のdI/dtを線形近似すると、
dI/dt=I/tf (4)電池の正負極間電圧はパワー半導体素子がオン定常期間中に流した電流の実効値Iavと内部抵抗の影響で減少しており、
VB=VBO−RB×Iav (5)と表すことができる。(3)式のサージ電圧は電流を遮断し始めた時刻(図2のt5)からLs1に蓄えられた電磁エネルギーが消費されるまで(図2のt6)の期間において、電流がdI/dtの勾配で変化しながらも流れ続けることを意味する。しかしながら、この電流は平滑コンデンサと配線の寄生インダクタ、及びパワー半導体素子の間で流れ、電池から電流を供給するわけではない。そこで、電池は(5)式に記載した内部抵抗と電流による電圧降下分(RB×Iav)が回復してゆく。この回復過程は内部抵抗RBと平滑コンデンサの容量Cfを時定数とする指数関数的な電圧変化となる。一方、パワー半導体素子のサージ電圧を抑制する観点から考えると、RBとCfの時定数は電流下降期間(t5〜t6)に対して十分長く、(3)式のVBが低い値に維持されている方が好ましい。Vcはパワー半導体素子の耐圧に対して80〜90%の値に選定すれば、VBが低いほど電流下降期間のdI/dtを大きく選ぶことができ、(4)式のtfが短くなる。これは公知例で問題であった遅延時間を短くしてPWMの非ラップ時間を確保することにつながる。
Rbを例えば20mΩ、Cfを5000μFと仮定すると、時定数は100μsであり、電流下降時間tfを上記時定数の10%以下に選べば電池電圧の回復に対して十分短く、電池電圧は電流遮断以前の値にほぼ等しい。PWMの非ラップ時間は前述のように上限5μsであり、上記時定数の例に対しては5%に相当し10%以下の条件を満足している。
遅延時間の制御は図1の基準値Vref、或いは図8のツエナーダイオードZD2の降服電圧を用いて、電流下降期間における電圧のクランプ値Vcを設定すれば良い。尚、(3)〜(5)式は遮断電流の振幅Iに依存しており、上記Vcの設定には主電流の最大値、或いは熱的には最大主電流に対する実効値を考慮する。
As described in the above equations (1) and (2), the parasitic inductance of the wiring existing in the closed circuit including the power semiconductor element from the smoothing capacitor CF (capacitance is Cf) is the power of Ls1, Q1 to Q6. The instantaneous value of the main current output from the semiconductor element is I (discharge current for the battery), the effective value of this current is Iav, the voltage between the positive and negative electrodes of the battery is VB, the open circuit voltage is VBO, and the internal resistance of the battery is RB. If the maximum voltage value of the power semiconductor element when the surge voltage is suppressed by the device is Vc (corresponding to Vds (Q1) in the period t5 to t6 in FIG. 2), and the time during which the power semiconductor element cuts off the current is tf. These parameters have the following relationship:
The surge voltage generated during the current interruption period is Ls1 × dI / dt = Vc−VB (3) When dI / dt at the time of current interruption is linearly approximated,
dI / dt = I / tf (4) The voltage between the positive and negative electrodes of the battery is decreased due to the effect of the effective value Iav of the current passed through the power semiconductor element during the on-state period and the internal resistance,
VB = VBO−RB × Iav (5) The surge voltage of the expression (3) has a current of dI / dt from the time when the current starts to be interrupted (t5 in FIG. 2) until the electromagnetic energy stored in Ls1 is consumed (t6 in FIG. 2). It means that it continues to flow while changing with the gradient. However, this current flows between the smoothing capacitor, the wiring parasitic inductor, and the power semiconductor element, and the current is not supplied from the battery. Therefore, the battery recovers the voltage drop (RB × Iav) due to the internal resistance and current described in equation (5). This recovery process is an exponential voltage change with the internal resistance RB and the capacitance Cf of the smoothing capacitor as time constants. On the other hand, from the viewpoint of suppressing the surge voltage of the power semiconductor element, the time constants of RB and Cf are sufficiently long with respect to the current falling period (t5 to t6), and VB in equation (3) is maintained at a low value. Is preferred. If Vc is selected to be 80 to 90% of the breakdown voltage of the power semiconductor element, dI / dt in the current falling period can be selected larger as VB is lower, and tf in equation (4) becomes shorter. This leads to shortening the delay time, which was a problem in the known example, and ensuring the PWM non-wrap time.
Assuming that Rb is 20 mΩ and Cf is 5000 μF, for example, the time constant is 100 μs. If the current fall time tf is selected to be 10% or less of the above time constant, the battery voltage is sufficiently short to recover the battery voltage. Is approximately equal to the value of As described above, the PWM non-wrap time has an upper limit of 5 μs, which corresponds to 5% for the above example of the time constant, and satisfies the condition of 10% or less.
The delay time can be controlled by setting the clamp value Vc of the voltage during the current falling period using the reference value Vref in FIG. 1 or the breakdown voltage of the Zener diode ZD2 in FIG. The expressions (3) to (5) depend on the amplitude I of the cutoff current, and the maximum value of the main current or the effective value for the maximum main current is considered in setting the Vc.

また、(3)及び(4)式より時間tfは
tf=L×I/(Vc−Vb+RB×Iav) (6)と表されることから、制御装置5は電池の状態監視装置9から得る情報に基づき、(6)式の計算を実施し、PWM信号にtfより長い非ラップ時間を設けることができる。この制御方法によれば、遮断電流の振幅Iが変化した場合でも正確な電流下降時間tfを把握でき、非ラップ時間に反映することができる。
Further, since the time tf is expressed as tf = L × I / (Vc−Vb + RB × Iav) (6) from the expressions (3) and (4), the control device 5 obtains information from the battery state monitoring device 9. Based on the above, the calculation of the equation (6) can be performed, and the PWM signal can be provided with a non-wrap time longer than tf. According to this control method, even when the amplitude I of the cutoff current changes, the accurate current fall time tf can be grasped and reflected in the non-lap time.

本発明による駆動装置によれば、それぞれ制御電圧と入出力端子間電圧に応じて変化する第1,第2の抵抗可変手段で分圧したゲート電圧をパワー半導体素子に印加することで電流下降期間に生じるサージ電圧を安定に抑制することができる。   According to the driving device of the present invention, the gate voltage divided by the first and second resistance variable means, which changes in accordance with the control voltage and the voltage between the input and output terminals, is applied to the power semiconductor element to thereby reduce the current falling period. Can be stably suppressed.

本発明による制御方法によれば還流ダイオードが逆回復する際に、これに並列なパワー半導体素子を短時間にdV/dt点弧させ、サージ電圧を抑制することが可能になる。
dV/dt点弧によりスイッチング損失はわずかに増加するが、耐圧を下げることで定常損失を大幅に低減し、全体では低損失化の効果がある。さらに、内部抵抗の影響を考慮して、第2抵抗可変手段の基準値、或いはツエナーダイオードの降服電圧を設定することにより、サージ抑制時の電圧を最適化し電流下降時間を短縮することができる。また、この時間を考慮したPWM制御の非ラップ時間が設定可能となる。
According to the control method of the present invention, when the freewheeling diode reversely recovers, the power semiconductor element in parallel with it can be dV / dt fired in a short time to suppress the surge voltage.
Although the switching loss slightly increases due to the dV / dt firing, the steady loss is greatly reduced by lowering the withstand voltage, and the entire loss is reduced. Furthermore, the voltage at the time of surge suppression can be optimized and the current fall time can be shortened by setting the reference value of the second resistance variable means or the breakdown voltage of the Zener diode in consideration of the influence of the internal resistance. In addition, it is possible to set a non-lap time of PWM control considering this time.

本発明の第1実施例を示す駆動装置の回路図。1 is a circuit diagram of a driving apparatus showing a first embodiment of the present invention. 動作波形図。Operation waveform diagram. 利得を適正化した増幅器の回路図。The circuit diagram of the amplifier which optimized the gain. ダイオードが逆回復を説明する回路図。The circuit diagram in which a diode explains reverse recovery. ダイオードが逆回復する際の動作説明図。Operation | movement explanatory drawing when a diode carries out reverse recovery. 遅延手段を設けた増幅器の回路図。The circuit diagram of the amplifier which provided the delay means. 第1の抵抗可変手段に関する第2の実施例。2nd Example regarding the 1st resistance variable means. 本発明の第2実施例を示す駆動装置の回路図。The circuit diagram of the drive device which shows 2nd Example of this invention. 動作説明図。FIG. 第1の抵抗可変手段に関する第3の実施例。A third embodiment relating to the first resistance variable means. 本発明の制御方法を示す電力変換装置のブロック図。The block diagram of the power converter device which shows the control method of this invention.

符号の説明Explanation of symbols

1…駆動装置、2…第1の抵抗可変手段、3…第2の抵抗可変手段、4…制御回路、5…PWM制御装置、6…増幅器、7…比較器、8…電流センサ、9…電池の状態監視装置、Q1〜Q2…パワー半導体素子、QD1〜QD6…還流用ダイオード、M1〜M9…
MOSFET、R1〜R11…抵抗、C1〜C4…キャパシタ、ZD1,ZD2…ツエナーダイオード、D1〜D3…ダイオード、M…モータ、VB…電源(或いは電池)、Vcc…制御電源、Vref及びVref2…基準値。
DESCRIPTION OF SYMBOLS 1 ... Drive device, 2 ... 1st resistance variable means, 3 ... 2nd resistance variable means, 4 ... Control circuit, 5 ... PWM control apparatus, 6 ... Amplifier, 7 ... Comparator, 8 ... Current sensor, 9 ... Battery state monitoring device, Q1 to Q2 ... power semiconductor element, QD1 to QD6 ... reflux diode, M1 to M9 ...
MOSFET, R1 to R11 ... resistor, C1 to C4 ... capacitor, ZD1, ZD2 ... Zener diode, D1 to D3 ... diode, M ... motor, VB ... power source (or battery), Vcc ... control power source, Vref and Vref2 ... reference value .

Claims (4)

制御ゲート端子と、主電流の入出力に係わる第1及び第2端子を有すると共に、該第1,第2端子間にダイオードを具備する半導体素子に、制御電圧を印加或いは除去して前記主電流を通流或いは遮断する半導体素子の制御方法であって、
前記ダイオードの逆回復時に、前記制御ゲート端子と前記第2端子との間に生じる電圧を、前記半導体素子のゲートしきい値電圧より大きくすることを特徴とする半導体素子の制御方法。
A control voltage is applied to or removed from a semiconductor element having a control gate terminal and first and second terminals related to input and output of the main current and having a diode between the first and second terminals. A method of controlling a semiconductor element that passes or blocks current,
A method of controlling a semiconductor element, wherein a voltage generated between the control gate terminal and the second terminal during reverse recovery of the diode is made larger than a gate threshold voltage of the semiconductor element.
請求項1記載の半導体素子の制御方法において、
前記ダイオードの逆回復時に、前記制御ゲート端子と前記第2端子との間に生じる電圧は、ピーク値が前記半導体素子のゲートしきい値電圧より若干大きくなるように設定されていることを特徴とする半導体素子の制御方法。
The method for controlling a semiconductor device according to claim 1,
The voltage generated between the control gate terminal and the second terminal during reverse recovery of the diode is set such that a peak value is slightly larger than a gate threshold voltage of the semiconductor element. For controlling a semiconductor device.
請求項1記載の半導体素子の制御方法において、
前記ダイオードの逆回復時に、前記制御ゲート端子と前記第2端子との間に生じる電圧は、前記第1端子から前記第2端子に向かって電流が瞬時的に流れるように設定されていることを特徴とする半導体素子の制御方法。
The method for controlling a semiconductor device according to claim 1,
The voltage generated between the control gate terminal and the second terminal during reverse recovery of the diode is set so that current flows instantaneously from the first terminal toward the second terminal. A method for controlling a semiconductor device.
制御ゲート端子と、主電流の入出力に係わる第1及び第2端子を有すると共に、該第1,第2端子間にダイオードを具備する半導体素子に、制御電圧を印加或いは除去して前記主電流を通流或いは遮断する半導体素子の制御方法であって、
前記制御電圧を除去する過程において前記制御ゲート端子と前記第2端子間に具備した抵抗を所定の値まで増加させ、前記ダイオードの逆回復時に前記第1端子から前記制御ゲート端子に流れ込む変位電流と前記抵抗で生じる電圧降下を、前記半導体素子のゲートしきい値電圧より大きい値にすることを特徴とする半導体素子の制御方法。
A control voltage is applied to or removed from a semiconductor element having a control gate terminal and first and second terminals related to input and output of the main current and having a diode between the first and second terminals. A method of controlling a semiconductor element that passes or blocks current,
In the process of removing the control voltage, a resistance provided between the control gate terminal and the second terminal is increased to a predetermined value, and a displacement current flows from the first terminal to the control gate terminal during reverse recovery of the diode; A method for controlling a semiconductor element, wherein a voltage drop caused by the resistor is set to a value larger than a gate threshold voltage of the semiconductor element.
JP2006192285A 2005-02-17 2006-07-13 Method for controlling semiconductor device Pending JP2006353093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006192285A JP2006353093A (en) 2005-02-17 2006-07-13 Method for controlling semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005039944A JP2005192394A (en) 2000-01-31 2005-02-17 Driving device of semiconductor element and its control method
JP2006192285A JP2006353093A (en) 2005-02-17 2006-07-13 Method for controlling semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005039944A Division JP2005192394A (en) 2000-01-31 2005-02-17 Driving device of semiconductor element and its control method

Publications (1)

Publication Number Publication Date
JP2006353093A true JP2006353093A (en) 2006-12-28

Family

ID=37648306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006192285A Pending JP2006353093A (en) 2005-02-17 2006-07-13 Method for controlling semiconductor device

Country Status (1)

Country Link
JP (1) JP2006353093A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077744A1 (en) * 2009-12-24 2011-06-30 パナソニック株式会社 Power converter having semiconductor switching element
JP2011135671A (en) * 2009-12-24 2011-07-07 Panasonic Corp Power converter having semiconductor switching element
JP2013126278A (en) * 2011-12-14 2013-06-24 Fuji Electric Co Ltd Semiconductor device
US8687330B2 (en) 2010-09-28 2014-04-01 Fuji Electric Co., Ltd. Semiconductor device
JP2017221004A (en) * 2016-06-06 2017-12-14 株式会社東芝 Semiconductor device, power conversion device, and vehicle
JP2019216599A (en) * 2019-08-09 2019-12-19 株式会社東芝 Semiconductor device, power conversion device, and vehicle
CN110932582A (en) * 2018-09-04 2020-03-27 株式会社东芝 Switching device, power conversion device, control device, and recording medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02103927U (en) * 1989-02-04 1990-08-17
JPH06291631A (en) * 1993-03-31 1994-10-18 Hitachi Ltd Method and circuit for driving voltage driven element
JPH1023743A (en) * 1996-07-05 1998-01-23 Mitsubishi Electric Corp Drive circuit of semiconductor device
JPH10209832A (en) * 1997-01-27 1998-08-07 Fuji Electric Co Ltd Semiconductor switch circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02103927U (en) * 1989-02-04 1990-08-17
JPH06291631A (en) * 1993-03-31 1994-10-18 Hitachi Ltd Method and circuit for driving voltage driven element
JPH1023743A (en) * 1996-07-05 1998-01-23 Mitsubishi Electric Corp Drive circuit of semiconductor device
JPH10209832A (en) * 1997-01-27 1998-08-07 Fuji Electric Co Ltd Semiconductor switch circuit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077744A1 (en) * 2009-12-24 2011-06-30 パナソニック株式会社 Power converter having semiconductor switching element
JP2011135671A (en) * 2009-12-24 2011-07-07 Panasonic Corp Power converter having semiconductor switching element
US9036384B2 (en) 2009-12-24 2015-05-19 Panasonic Intellectual Property Management Co., Ltd. Power converter having semiconductor switching element
US8687330B2 (en) 2010-09-28 2014-04-01 Fuji Electric Co., Ltd. Semiconductor device
JP2013126278A (en) * 2011-12-14 2013-06-24 Fuji Electric Co Ltd Semiconductor device
JP2017221004A (en) * 2016-06-06 2017-12-14 株式会社東芝 Semiconductor device, power conversion device, and vehicle
US11139753B2 (en) 2016-06-06 2021-10-05 Kabushiki Kaisha Toshiba Semiconductor device, power conversion apparatus, and vehicle
CN110932582A (en) * 2018-09-04 2020-03-27 株式会社东芝 Switching device, power conversion device, control device, and recording medium
CN110932582B (en) * 2018-09-04 2023-01-10 株式会社东芝 Switching device, power conversion device, control device, and recording medium
JP2019216599A (en) * 2019-08-09 2019-12-19 株式会社東芝 Semiconductor device, power conversion device, and vehicle

Similar Documents

Publication Publication Date Title
JP3752943B2 (en) Semiconductor device driving apparatus and control method thereof
US8614568B2 (en) Gate drive circuit of the voltage drive type semiconductor element and power converter
JP6351736B2 (en) Short-circuit protection circuit for self-extinguishing semiconductor devices
US9438228B2 (en) High efficiency gate drive circuit for power transistors
JP5616980B2 (en) Driving device for semiconductor switch element
EP2013956B1 (en) Regenerative gate drive circuit for a power mosfet
JP2016092907A (en) Semiconductor device
Paredes et al. A novel active gate driver for silicon carbide MOSFET
JP2006353093A (en) Method for controlling semiconductor device
KR20130020527A (en) Gate drive circuit and power converter
JP2021013259A (en) Gate drive device and power conversion device
US20160314914A1 (en) Power switch circuit
JP2013005474A (en) Power supply circuit
US11621709B2 (en) Power module with built-in drive circuits
JP4816198B2 (en) Inverter with through current control device
JP6233330B2 (en) Power converter
JP3900178B2 (en) Level shift circuit
US20230073162A1 (en) High-voltage power supply device
JP6758486B2 (en) Semiconductor element drive and power converter
JP5069259B2 (en) Semiconductor circuit device
JP6025145B2 (en) Inverter control device
JP6873855B2 (en) Power factor improvement circuit and control method of power factor improvement circuit
Zhou et al. A gate driver with a negative turn off bias voltage for GaN HEMTs
JPH10209832A (en) Semiconductor switch circuit
WO2023062745A1 (en) Driving circuit for power semiconductor device, power semiconductor module, and power converter

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100216