JP2007263391A - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
JP2007263391A
JP2007263391A JP2006085466A JP2006085466A JP2007263391A JP 2007263391 A JP2007263391 A JP 2007263391A JP 2006085466 A JP2006085466 A JP 2006085466A JP 2006085466 A JP2006085466 A JP 2006085466A JP 2007263391 A JP2007263391 A JP 2007263391A
Authority
JP
Japan
Prior art keywords
stage
rotary compression
evaporator
defrosting
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006085466A
Other languages
English (en)
Other versions
JP5144897B2 (ja
Inventor
Osamu Kuwabara
修 桑原
Kentaro Yamaguchi
賢太郎 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006085466A priority Critical patent/JP5144897B2/ja
Publication of JP2007263391A publication Critical patent/JP2007263391A/ja
Application granted granted Critical
Publication of JP5144897B2 publication Critical patent/JP5144897B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

【課題】低段側のロータリ圧縮手段と高段側のロータリ圧縮手段を備えた冷凍サイクル装置において、蒸発器の除霜運転時における不安定な運転状況を回避しながら、除霜効率の向上を図る。
【解決手段】低段側のロータリ圧縮機(低段側ロータリ圧縮手段)から吐出された冷媒を減圧せずに蒸発器に供給するための低段側除霜回路と、高段側のロータリ圧縮機(高段側ロータリ圧縮手段)から吐出された冷媒を減圧せずに蒸発器に供給するための高段側除霜回路と、各ロータリ圧縮機から各除霜回路への冷媒の流入を制御する流路制御装置としての電磁弁とを備え、蒸発器の除霜時、電磁弁により両ロータリ圧縮機から吐出された冷媒を両除霜回路により合流させて蒸発器に流すと共に、高段側除霜回路には、入口側と出口側との間で圧力差を構成する差圧発生手段としてのキャピラリチューブを設けた。
【選択図】図1

Description

本発明は、低段側ロータリ圧縮手段、高段側ロータリ圧縮手段、放熱器、減圧装置及び蒸発器を備えた冷凍サイクル装置に関するものである。
従来のこの種冷凍サイクル装置は、例えば、圧縮手段として密閉容器内に低段側の回転圧縮要素(低段側のロータリ圧縮手段)と、高段側の回転圧縮要素(高段側のロータリ圧縮手段)とを備えた内部中間圧型二段圧縮式のロータリコンプレッサ、放熱器、膨張弁(減圧装置)、蒸発器を順次接続することにより冷凍サイクルが構成されている。そして、低温低圧の冷媒が低段側の回転圧縮要素の吸込ポートからシリンダ(圧縮部)の低圧室側に吸入され、ローラとベーンの動作により圧縮されて中間圧となり、シリンダの高圧室側より吐出ポート、吐出消音室を経て密閉容器内に吐出される。
密閉容器内に吐出された中間圧の冷媒は、高段側の回転圧縮要素の吸込ポートからシリンダの低圧室側に吸入され、ローラとベーンの動作により二段目の圧縮が行われて高温高圧の冷媒となり、高圧室側より、吐出ポート、吐出消音室を経てロータリコンプレッサの外部に吐出されて、放熱器に流入する。放熱器に流入した冷媒は当該放熱器で放熱した後、膨張弁で減圧されて蒸発器に入る。そこで冷媒は周囲から吸熱して蒸発し、その後、ロータリコンプレッサの低段側の回転圧縮要素に吸入されるサイクルを繰り返す。
このような冷凍サイクル装置では、長時間上述した運転を繰り返すと蒸発器に霜が付着して、当該蒸発器における冷凍能力が著しく低下するため、従来より蒸発器の着霜を除去するための除霜運転が行われていた。当該除霜運転時には、ロータリコンプレッサの吸込側と吐出側の圧力差が通常運転時と比較して著しく小さくなることが知られている。この場合、例えばロータリコンプレッサの高段側の回転圧縮要素から吐出された冷媒を放熱器をバイパスし、膨張弁で減圧することなく蒸発器に供給すると、高段側の回転圧縮要素から吐出された冷媒が殆ど圧力低下することなく、ロータリコンプレッサの低圧側の回転圧縮要素に吸い込まれて圧縮されるため、高段側の回転圧縮要素の吐出側圧力より、低段側の圧縮要素の吐出側圧力の方が上昇し、高段側の回転圧縮要素の吐出側と吸込側とで圧力が逆転する問題が生じていた。
また、ロータリコンプレッサの高段側の回転圧縮要素から吐出された冷媒と低段側の回転圧縮要素から吐出された冷媒とを共に、減圧せずに蒸発器に供給して、蒸発器の除霜を行う装置もあるが、この場合にも係る高段側の回転圧縮要素における圧力差を確保することができなかった(例えば、特許文献1参照)。
特に、前述したように高段側の回転圧縮要素のベーンに背圧として、当該高段側の回転圧縮要素から吐出される高圧冷媒が印加されている場合、このような高段側の回転圧縮要素の吐出側と吸込側との圧力逆転、或いは、高段側の回転圧縮要素における圧力差を確保することができなくなると、ベーンがローラ側に付勢される付勢力が無くなる、或いは小さくなり、ベーンがローラに追従できなくなって、高段側のロータリ圧縮要素のベーン飛びが発生し、高段側のロータリ圧縮要素の運転が不安定となる問題が生じていた。
具体的には、ロータリコンプレッサが一定以上の回転数で回転している場合、ベーンの慣性でベーンがローラから離れる力が働くため、スプリングと冷媒との圧力差による押しつけ力を加えなければ、ベーンをローラに追従させることができず、ベーン飛びが生じてしまう。これによって、ベーンがローラに衝突する衝突音が発生したり、圧縮効率が著しく低下するなどの問題が生じ、最悪の場合にはベーン及びローラが破損するなどの不都合が生じていた。
このため、低段側の回転圧縮要素から吐出された中間圧冷媒のみを減圧せずに蒸発器に供給することにより、当該蒸発器の除霜運転が行われていた(例えば、特許文献2参照)。
特開2003−185306号公報 特開2004−294059号公報
しかしながら、上述した低段側の回転圧縮要素から吐出された中間圧冷媒のみを減圧せずに蒸発器に供給する方式では、高段側の回転圧縮要素から吐出された高温冷媒は、放熱器及び膨張弁を通過するため、放熱器の熱容量と放熱によって放熱器の出口温度が上昇する迄に時間がかかると共に、膨張弁を全開にしても当該膨張弁を冷媒が通過する際の圧力損失により温度が低下するため、蒸発器の着霜を除去するのに時間がかかっていた。また、膨張弁の圧力損失により、ロータリコンプレッサの入力が大きくなる問題も生じていた。
本発明は、係る従来技術の課題を解決するために成されたものであり、低段側のロータリ圧縮手段と高段側のロータリ圧縮手段を備えた冷凍サイクル装置において、蒸発器の除霜運転時における不安定な運転状況を回避しながら、除霜効率の向上を図ることを目的とする。
即ち、本発明の冷凍サイクル装置は、低段側ロータリ圧縮手段、高段側ロータリ圧縮手段、放熱器、減圧装置及び蒸発器とを備え、低段側ロータリ圧縮手段で圧縮されて吐出された冷媒を高段側ロータリ圧縮手段に吸い込ませて圧縮し、この高段側ロータリ圧縮手段から吐出された冷媒を放熱器、減圧装置及び蒸発器に順次流して蒸発器から出た冷媒を低段側ロータリ圧縮手段に吸い込ませるよう構成したものであって、低段側ロータリ圧縮手段から吐出された冷媒を減圧せずに蒸発器に供給するための低段側除霜回路と、高段側ロータリ圧縮手段から吐出された冷媒を減圧せずに蒸発器に供給するための高段側除霜回路と、各ロータリ圧縮手段から各除霜回路への冷媒の流入を制御する流路制御装置とを備え、蒸発器の除霜時、流路制御装置により両ロータリ圧縮手段から吐出された冷媒を両除霜回路により合流させて蒸発器に流すと共に、高段側除霜回路には、入口側と出口側との間で圧力差を構成する差圧発生手段を設けたことを特徴とする。
請求項2の発明の冷凍サイクル装置は、請求項1に記載の発明において低段側ロータリ圧縮手段と高段側ロータリ圧縮手段は単一の密閉容器内に収納されており、流路制御装置の少なくとも一部と差圧発生手段を密閉容器内に配置したことを特徴とする。
請求項3の発明の冷凍サイクル装置は、請求項2に記載の発明において高段側ロータリ圧縮手段の吐出マフラー室と連通する空間を設け、この空間に流路制御装置の少なくとも一部と差圧発生手段を収納したことを特徴とする。
本発明によれば、低段側ロータリ圧縮手段、高段側ロータリ圧縮手段、放熱器、減圧装置及び蒸発器とを備え、低段側ロータリ圧縮手段で圧縮されて吐出された冷媒を高段側ロータリ圧縮手段に吸い込ませて圧縮し、この高段側ロータリ圧縮手段から吐出された冷媒を放熱器、減圧装置及び蒸発器に順次流して蒸発器から出た冷媒を低段側ロータリ圧縮手段に吸い込ませるよう構成した冷凍サイクル装置において、低段側ロータリ圧縮手段から吐出された冷媒を減圧せずに蒸発器に供給するための低段側除霜回路と、高段側ロータリ圧縮手段から吐出された冷媒を減圧せずに蒸発器に供給するための高段側除霜回路と、各ロータリ圧縮手段から各除霜回路への冷媒の流入を制御する流路制御装置とを備え、蒸発器の除霜時、流路制御装置により両ロータリ圧縮手段から吐出された冷媒を両除霜回路により合流させて蒸発器に流すので、高段側ロータリ圧縮手段と低段側ロータリ圧縮手段からの冷媒を減圧装置にて減圧することなく、蒸発器に流すことができる。これにより、冷凍サイクル装置の除霜効果が向上する。
また、高段側除霜回路には、入口側と出口側との間で圧力差を構成する差圧発生手段を設けたので、除霜時に高段側ロータリ圧縮手段の吐出側と吸込側とで圧力差を構成することができるようになり、高段側ロータリ圧縮手段における圧力逆転を解消し、当該高段側ロータリ圧縮手段が不安定な運転状況に陥る不都合を回避することができる。
また、差圧発生手段により構成される圧力差を、除霜時に高段側ロータリ圧縮手段の吐出側と吸込側とで圧力差を確保できる最小限の値に設定すれば、除霜時における入力アップを解消することができる。
請求項2の発明によれば、上記発明において低段側ロータリ圧縮手段と高段側ロータリ圧縮手段は単一の密閉容器内に収納されており、流路制御装置の少なくとも一部と差圧発生手段を密閉容器内に配置したので、装置全体のコンパクト化を図ることができる。
特に、請求項2の発明において、請求項3の如く高段側ロータリ圧縮手段の吐出マフラー室と連通する空間を設け、この空間に流路制御装置の少なくとも一部と差圧発生手段を収納すれば、密閉容器のコンパクト化が可能となる。
本発明は、低段側ロータリ圧縮手段と高段側ロータリ圧縮手段を備えた冷凍サイクル装置において、蒸発器の除霜運転時に高段側のロータリ圧縮手段の吸込側と吐出側の圧力差が確保できずに、当該高段側ロータリ圧縮手段が不安定な運転状況に陥る不都合を解消すると共に、除霜効率を向上するために成されたものである。除霜運転時における不安定な運転状況を回避しながら、除霜効率の向上を図るという目的を低段側ロータリ圧縮手段から吐出された冷媒を減圧せずに蒸発器に供給するための低段側除霜回路と、高段側ロータリ圧縮手段から吐出された冷媒を減圧せずに蒸発器に供給するための高段側除霜回路と、各ロータリ圧縮手段から各除霜回路への冷媒の流入を制御する流路制御装置とを備え、蒸発器の除霜時、流路制御装置により両ロータリ圧縮手段から吐出された冷媒を両除霜回路により合流させて蒸発器に流すと共に、高段側除霜回路には、入口側と出口側との間で圧力差を構成する差圧発生手段を設けることにより実現した。以下、図面に基づき本発明の実施形態を説明する。
図1は、本発明の一実施例の冷凍サイクル装置の冷媒回路図、図2は低段側のロータリ圧縮要素(低段側ロータリ圧縮手段)2と高段側のロータリ圧縮要素(高段側ロータリ圧縮手段)3を備えたロータリコンプレッサ1の一部断面図、図3はロータリコンプレッサの各シリンダの構成を説明する概略図をそれぞれ示している。本実施例の冷凍サイクル装置は、低段側のロータリ圧縮要素2と高段側のロータリ圧縮要素3を備えたロータリコンプレッサ1、放熱器4、減圧装置としての膨張弁5及び蒸発器7等から冷凍サイクルが構成されている。本実施例の冷凍サイクル装置は、ヒートポンプ用途、例えば、給湯機として使用されるものである。
ロータリコンプレッサ1は、図2に示すように単一の密閉容器1A内に低段側のロータリ圧縮要素2と高段側のロータリ圧縮要素3が収納され、低段側のロータリ圧縮要素2で圧縮された冷媒を密閉容器1Aに吐出した後、中間配管21を介して、高段側のロータリ圧縮要素3に吸い込ませて圧縮して、当該高段側のロータリ圧縮要素3から吐出する、所謂内部中間圧型二段圧縮式のロータリコンプレッサである。
この場合、ロータリコンプレッサ1の吐出側配管22は放熱器4の入口に接続されて、放熱器4の出口は膨張弁5の入口に接続された冷媒配管24に接続されている。そして、蒸発器7の蒸発器入口側配管26がこの膨張弁5の出口に接続され、蒸発器7の出口には低段側のロータリ圧縮機2の吸込側配管20が接続されて、環状の冷媒回路が構成されている。
ここで、上記ロータリコンプレッサ1の構成を図2を用いて説明する。密閉容器1A内には低段側のロータリ圧縮要素2と高段側のロータリ圧縮要素3と両ロータリ圧縮要素2、3を駆動する図示しない電動要素が収納されている。電動要素は、密閉容器1Aの内部空間の内周面に沿って環状に取り付けられたステータと、このステータの内側に挿入は位置されたロータとからなり、このロータには中心を鉛直方向に延びる回転軸30が固定されている。
前記低段側のロータリ圧縮要素2と高段側のロータリ圧縮要素3との間には中間仕切板32が狭持されている。即ち、低段側のロータリ圧縮要素2と高段側のロータリ圧縮要素3は、中間仕切板32と、この中間仕切板32の上下に配置されたシリンダ34、36と、このシリンダ34、36内を180度の位相差を有して回転軸30に設けた偏心部38、40に嵌合されて偏心回転するローラ42、44と、このローラ42、44に当接してシリンダ34、36内をそれぞれ低圧室側と高圧室側に区画するベーン46、48と(図3)、各ベーン46、48のローラ42、44とは反対側に形成された収納部47、49内に設けられ、各ベーン46、48の端部に当接して、ベーン46、48をローラ42、44側に付勢するスプリング47S、49Sと、シリンダ34の上側の開口面及びシリンダ36の下側の開口面を閉塞して、回転軸30の軸受けを兼用する上部支持部材50(メインフレーム)及び下部支持部材52にて構成されている。
高段側のロータリ圧縮要素3のベーン46はスプリング47Sに加えて、高段側のロータリ圧縮要素3の吐出側の圧力(高圧)が背圧として印加されて、当該背圧によってもローラ42側に付勢されている。また、低段側のロータリ圧縮要素2のベーン48はスプリン49Sに加えて、低段側のロータリ圧縮要素2の吐出側の圧力(中間圧)が背圧として印加され、当該背圧によってもローラ44側に付勢されている。
上部支持部材50及び下部支持部材52内には、一部を凹陥させ、この凹陥部を上部カバー66、下部カバー68にて閉塞することにより形成される吐出マフラー室62、64と、シリンダ34、36の内部の高圧室側と上記吐出マフラー室62、64とをそれぞれ連通する吐出ポート54、56が設けられている。また、吐出マフラー室64と密閉容器1A内とはシリンダ34、36、中間仕切板32、上下支持部材50、52を軸心方向に貫通する図示しない連通路にて連通されており、連通路の上端には中間吐出管70が立設され、この中間吐出管70から低段側のロータリ圧縮要素2で圧縮された中間圧の冷媒が密閉容器1A内に吐出される。
密閉容器1Aの側面には、シリンダ34の低圧室側、シリンダ36の低圧室側、吐出マフラー室62、上部カバー66の上方に対応する位置にそれぞれスリーブが溶接固定されている。そして、シリンダ34の低圧室側に対応する位置に固定された図示しないスリーブ内にはシリンダ34に冷媒を導入するための中間配管21が挿入接続され、この中間配管21の一端がシリンダ34の低圧室内と連通する。当該中間配管21は密閉容器1Aの上方を通過し、他端は上部カバー66の上方に対応する位置に固定された図示しないスリーブ内に挿入接続されて密閉容器1A内と連通する。
また、シリンダ36の低圧室側に対応する位置に固定された図示しないスリーブ内にはシリンダ36に冷媒を導入するための吸込側配管20が挿入接続され、吸込側配管20の一端はシリンダ36の低圧室内と連通する。当該吸込側配管20の他端は蒸発器7の出口に接続される。また、吐出マフラー室62に対応する位置に固定されたスリーブ72内には吐出側配管22の一端が挿入接続され、この吐出側配管22の一端は吐出マフラー室62内と連通し、他端は放熱器4の入口に接続される。
一方、前記放熱器4はロータリコンプレッサ1から吐出された高温高圧の冷媒と、図示しない貯湯タンクに循環する水とを熱交換するための水−冷媒熱交換型の熱交換器である。即ち、放熱器4には、高段側のロータリ圧縮要素3で圧縮された高温高圧の冷媒が流れる冷媒配管4Aと、前記貯湯タンクからの水が流れる配管4Bとが熱交換可能に配置されている。当該放熱器4において、配管4Bを流れる水は、冷媒配管4Aを流れる高温高圧の冷媒との熱交換により当該冷媒から熱を受け取って加熱される。これにより、給湯に適した高温の湯が生成され、生成された湯は貯湯タンクに貯えられる。
そして、蒸発器7は、膨張弁5で減圧された冷媒を水、又は、空気、又は、その他の熱媒体とを直接又は間接的に熱交換させて蒸発させるものである。本実施例の蒸発器7は、ファン7Fによる通風により空気(外気)から吸熱して蒸発するものとする。
以上の構成から成る冷凍サイクル装置によれば、先ず、図示しない電動要素が駆動されると、回転軸30と一体に設けた偏心部38、40に嵌合されたローラ42、44が各シリンダ34、36内を偏心回転する。これにより、吸込側配管20からロータリコンプレッサ1の低段側のロータリ圧縮要素2のシリンダ36の低圧室側に低温低圧の冷媒が吸入され、ローラ44とベーン48の動作により圧縮されて中間圧となり、シリンダ36の高圧室側より吐出ポート56、下部支持部材52に形成された吐出マフラー室64から図示しない連通路を経て中間吐出管70から密閉容器1A内に吐出される。これによって、密閉容器1A内は中間圧となる。
そして、密閉容器1A内の中間圧の冷媒は、中間配管21から一旦、密閉容器1Aの外部を通過した後、密閉容器1A内に戻り、シリンダ34の低圧室側に吸入される。吸入された中間圧の冷媒は、ローラ42とベーン46の動作により2段目の圧縮が行われて、高温高圧の冷媒となり、シリンダ34の高圧室側から吐出ポート54を通り、上部支持部材50に形成された吐出マフラー室62、吐出側配管22を経由して冷媒配管4Aの入口から放熱器4内に流入する。このとき、冷媒温度は略+100℃まで上昇しており、係る高温高圧の冷媒は放熱器4において冷媒配管4Aと交熱的に配置された配管4Bを流れる水と熱交換する。これにより、冷媒が放熱し、配管4Bを流れる水は冷媒から熱を受け取って加熱され、これにより高温の湯が生成される。
他方、放熱器4において冷媒自体は冷却され、放熱器4から出る。そして、膨張弁5で減圧された後、蒸発器7に流入する。当該蒸発器7にて冷媒はファン7Fにる通風により吸熱して蒸発した後、吸込側配管20からロータリコンプレッサ1の低段側のロータリ圧縮要素2に吸い込まれるサイクルを繰り返す。
ところで、このような冷凍サイクル装置では、長時間の運転により、蒸発器7に霜が付着して当該蒸発器7の蒸発能力が著しく低下する不都合が生じる。これにより、蒸発器7において外気と熱交換して外気の熱を充分に汲み上げることができなくなるため、放熱器4における加熱能力も低下して、湯の生成に支障を来す恐れがあった。
そこで、従来よりこの種の冷凍サイクル装置では、蒸発器の着霜を除去するための除霜運転が行われている。当該除霜運転はロータリコンプレッサにて圧縮された冷媒を減圧せずに蒸発器に流して、蒸発器を加熱することにより着霜を溶かしているため、ロータリコンプレッサの吸込側と吐出側の圧力差が通常運転時と比較して極めて小さくなる。この場合、例えばロータリコンプレッサの高段側のロータリ圧縮要素から吐出された高温冷媒を放熱器、膨張弁をバイパスして蒸発器に供給すると、高段側のロータリ圧縮要素から吐出された冷媒が殆ど圧力低下することなく、ロータリコンプレッサの低圧側のロータリ圧縮要素に吸い込まれて圧縮されるため、高段側のロータリ圧縮要素の吐出側圧力より、低段側のロータリ圧縮要素の吐出側圧力の方が上昇し、高段側のロータリ圧縮要素の吐出側と吸込側とで圧力が逆転する不都合が生じていた。
また、図11に示す冷凍サイクル装置は、ロータリコンプレッサ100の高段側のロータリ圧縮要素103から吐出された高圧冷媒と低段側のロータリ圧縮要素102から吐出された中間圧冷媒とを共に、放熱器104及び膨張弁105を迂回する除霜回路110から蒸発器107に供給して、蒸発器107の除霜を行うものであるが、当該除霜回路110を用いて、蒸発器107の除霜運転を行った場合にも、係る高段側のロータリ圧縮要素102における圧力差を確保することができなかった。
特に、前述したように高段側のロータリ圧縮要素のベーンに背圧として、当該高段側のロータリ圧縮要素から吐出される高圧冷媒が印加されている場合、このような高段側のロータリ圧縮要素の吐出側と吸込側との圧力逆転、或いは、高段側のロータリ圧縮要素における圧力差を確保することができなくなると、ベーンがローラ側に付勢される付勢力が無くなる、或いは小さくなり、ベーンがローラに追従できなくなって、高段側のロータリ圧縮要素のベーン飛びが発生し、高段側のロータリ圧縮要素の運転が不安定となる問題が生じていた。
具体的には、ロータリコンプレッサが一定以上の回転数で回転している場合、ベーンの慣性でベーンがローラから離れる力が働くため、スプリングと冷媒との圧力差による押しつけ力を加えなければ、ベーンをローラに追従させることができず、ベーン飛びが生じてしまう。これによって、ベーンがローラに衝突する衝突音が発生したり、圧縮効率が著しく低下するなどの問題が生じ、最悪の場合にはベーン及びローラが破損するなどの不都合が生じていた。このため、ロータリコンプレッサでは回転数やスプリングの押しつけ力に応じて、各圧縮要素の前後の圧力差を確保する必要がある。
上述したように高段側のロータリ圧縮要素の運転が不安定となる不都合を解消するため、従来では図12に示すように、低段側のロータリ圧縮要素102から吐出された中間圧冷媒のみを放熱器104及び膨張弁105を迂回する除霜回路120から蒸発器107に供給することにより、当該蒸発器107の除霜が行われていた。具体的には、除霜運転時に電磁弁130を開くと、中間配管121から低段側のロータリ圧縮要素102で圧縮され、高段側のロータリ圧縮要素103に向かう途中の中間圧冷媒の一部が、除霜回路120を経て、蒸発器107に供給される。このような冷凍サイクル装置を用いることで、除霜運転時の高段側のロータリ圧縮要素103の圧力差を確保しながら、蒸発器107の着霜を除去することができるようになった。
しかしながら、上述した低段側のロータリ圧縮要素102から吐出された中間圧冷媒の一部を除霜回路120に流して蒸発器107に供給する方式では、高段側のロータリ圧縮要素から吐出された高圧冷媒は、放熱器104及び膨張弁105を通過するため、放熱器104の熱容量と放熱によって放熱器104の出口温度が上昇する迄に時間がかかり、膨張弁105を全開にしても当該膨張弁105を冷媒が通過する際の圧力損失により温度が低下するため、蒸発器107の着霜を除去するのに時間がかかっていた。また、膨張弁105で圧力差が発生するため、ロータリコンプレッサ100の入力も大きくなり、消費電力が高騰する問題も生じていた。このように、従来の冷凍サイクル装置は、除霜効率が著しく悪いものであった。
そこで、本発明の冷凍サイクル装置は、低段側のロータリ圧縮要素2から吐出された冷媒を減圧せずに蒸発器7に供給するための低段側除霜回路8と、高段側のロータリ圧縮要素3から吐出された冷媒を減圧せずに蒸発器7に供給するための高段側除霜回路9と、各ロータリ圧縮要素2、3から各除霜回路8、9への冷媒の流入を制御する流路制御装置とを備え、蒸発器7の除霜時、流路制御装置により両ロータリ圧縮要素2、3から吐出された冷媒を両除霜回路8、9により合流させて蒸発器7に流すと共に、高段側除霜回路9には、入口側と出口側との間で圧力差を構成する差圧発生手段を設ける。
具体的には、低段側除霜回路8の冷媒配管の入口は、中間配管21の途中部に接続され、出口は蒸発器入口側配管26の途中部に接続されいる。また、高段側除霜回路9の冷媒配管の入口は、ロータリコンプレッサ1の吐出側配管22の途中部に接続され、出口は低段側除霜回路8の前記電磁弁10Aの下流側(出口側)に接続されている。また、低段側除霜回路8上及び高段側除霜回路9上には、電磁弁10A及び電磁弁10Bがそれぞれ設けられている。電磁弁10A、10Bは、除霜時に両ロータリ圧縮要素2、3から吐出された冷媒を両除霜回路蒸発器8、9に流すための流路制御装置であり、例えば、冷凍サイクル装置の図示しない制御手段により開閉が制御されている。更に、高段側除霜回路9上には、圧力発生手段としてキャピラリチューブ12が設けられている。当該キャピラリチューブ12は当該高段側除霜回路9を流れる高圧冷媒に入口側と出口側との間で圧力差を構成させるためのものであり、除霜時に高段側のロータリ圧縮要素3の吐出側と吸込側とで圧力差を確保できる最小限の値に設定されている。従って、高段側除霜回路9は、当該高段側除霜回路9を流れる高段側のロータリ圧縮要素3の吐出側の高温高圧の冷媒が、キャピラリチューブ12で減圧された後、低段側除霜回路8に入り、当該低段側除霜回路8を流れる中間圧の冷媒と合流するよう構成されている。
以上の構成から成る本発明の冷凍サイクル装置の除霜時における動作を説明する。尚、当該冷凍サイクル装置は図示しない制御手段により、定期的に或いは任意の指示操作に基づいて電磁弁10A及び電磁弁10Bを開放し、膨張弁5を全閉して除霜運転を実行するよう制御されているものとする。先ず、電磁弁10A及び電磁弁10Bが開放され、膨張弁5が閉じられると、低段側のロータリ圧縮要素2から吐出された密閉容器1A内の冷媒の一部は、中間配管21の途中部に接続された入口から低段側除霜回路8に流入する。一方、中間配管21から高段側のロータリ圧縮要素3に吸い込まれた他の冷媒は、高段側のロータリ圧縮要素3にて圧縮された後、ロータリコンプレッサ1から吐出される。そして、ロータリコンプレッサ1から吐出された高温高圧の冷媒は、吐出側配管22の途中部に接続された入口から高段側除霜回路9に流入し、キャピラリチューブ12にて減圧された後、出口から高段側除霜回路9を出て、低段側除霜回路8を流れる中間圧の冷媒と合流する。
このとき、上述したキャピラリチューブ12による減圧効果により、高段側除霜回路9を流れた高段側のロータリ圧縮要素3の吐出側の高温高圧の冷媒は、高段側のロータリ圧縮要素3の吐出側と吸込側とで圧力差が確保できる程度に圧力低下している。
その後、合流した冷媒は、低段側除霜回路8から出て、蒸発器入口側配管26を介して蒸発器7内に流入する。係る低段側除霜回路8及び高段側除霜回路9からの冷媒の流入によって蒸発器7は加熱され、着霜は融解除去されていく。
蒸発器7を加熱した冷媒は、その後、吸込側配管22からロータリコンプレッサ1内に吸い込まれて、低段側のロータリ圧縮要素2にて圧縮され、密閉容器1A内に吐出されるサイクルを繰り返す。
かかる除霜運転は、例えば、蒸発器7の所定の除霜終了温度や時間などにより終了し、除霜が終わると、各電磁弁10A、10Bが閉塞されると共に、膨張弁5の開度が戻され、通常運転に復帰することになる。
このように、蒸発器7の除霜時、電磁弁10A、10Bを開放し、両ロータリ圧縮要素2、3から吐出された冷媒を両除霜回路8、9により合流させて蒸発器7に流すことで、高段側のロータリ圧縮要素3と低段側のロータリ圧縮要素2からの冷媒を膨張弁5にて減圧することなく流すこと、蒸発器7に流して、蒸発器7の着霜を速やかに融解除去することができる。
特に、高段側除霜回路9には、入口側と出口側との間で圧力差を構成するキャピラリチューブを設けたので、この除霜時に高段側のロータリ圧縮要素3の吐出側と吸込側とで最小限の圧力差を構成することができるようになり、高段側のロータリ圧縮要素3における圧力逆転を解消し、当該高段側のロータリ圧縮要素3が上述のような不安定な運転状況に陥る不都合を回避することができる。更に、本実施例の如くキャピラリチューブ12により構成される圧力差を、除霜時に高段側のロータリ圧縮要素3の吐出側と吸込側とで圧力差を確保できる最小限の値に設定することで、除霜時における入力アップを解消し、消費電力を低減することができる。
以上詳述した如く、本発明により蒸発器7の除霜運転時における不安定な運転状況を確実に回避しながら、除霜効率の向上を図ることができるようになる。
尚、本発明の冷凍サイクル装置は、上記実施例1に示す回路構成に限定されるものでなく、低段側ロータリ圧縮手段から吐出された冷媒を減圧せずに蒸発器に供給するための低段側除霜回路と、高段側ロータリ圧縮手段から吐出された冷媒を減圧せずに蒸発器に供給するための高段側除霜回路と、各ロータリ圧縮手段から各除霜回路への冷媒の流入を制御する流路制御装置とを備えて、蒸発器の除霜時、流路制御装置により両ロータリ圧縮手段から吐出された冷媒を両除霜回路により合流させて蒸発器に流すと共に、高段側除霜回路に入口側と出口側との間で圧力差を構成する差圧発生手段を設置したものであればどのような構成であっても構わない。
例えば、図4に示すように、流路制御装置を電磁弁10と逆止弁11により構成しても構わない。この場合、高段側除霜回路9に電磁弁を設けずに、低段側除霜回路8の高段側除霜回路9の出口より下流側に電磁弁10を設け、低段側除霜回路8の前記高段側除霜回路9の出口より上流側に高段側除霜回路9の出口側を順方向とする逆止弁11を設置している。逆止弁11は、通常運転時において、高段側除霜回路9から低段側除霜回路8を経て中間配管21に冷媒が逆流する不都合を回避するためのものであり、電磁弁10を低段側除霜回路8上のみに設けた場合、必要となる。尚、図4において、図1乃至図3と同一の符号が付されたものは、同一或いは類似の作用効果を奏するものであり、詳細な説明を省略する。
このように、図4に示す回路を備えた冷凍サイクル装置であっても、上記実施例と同様に除霜時、電磁弁10を開放することで、両ロータリ圧縮要素2、3から吐出された冷媒を両除霜回路8、9により合流させて蒸発器7に流れるので、高段側のロータリ圧縮要素3と低段側のロータリ圧縮要素2からの冷媒が膨張弁5にて減圧されることなく、蒸発器7に流すことができる。これにより、上記実施例同様に冷凍サイクル装置の除霜効果の向上を図ることができる。更に、キャピラリチューブ12により高段側のロータリ圧縮要素3の吐出側と吸込側とで圧力差を構成することができるようになり、高段側のロータリ圧縮要素3における圧力逆転を解消し、当該高段側のロータリ圧縮要素3が不安定な運転状況に陥る不都合も回避することができる。
また、上記各実施例では、流路制御装置及び減圧発生手段を共にロータリコンプレッサ1の外部の冷媒回路上に配置するものとしたが、流路制御装置の少なくとも一部と差圧発生手段を密閉容器1A内に配置しても本発明は有効である。図5はこの場合の一実施例のロータリコンプレッサの模式図である。尚、図5において、図1乃至図4と同一の符号が付されているものは、同様、或いは、類似の効果を奏するものであり、ここでは説明を省略する。
本実施例の減圧発生手段は、前記各実施例と同様にキャピラリチューブ12により構成されている。また、ロータリコンプレッサ1の密閉容器1Aには低段側除霜回路8の冷媒配管が挿入接続され、当該低段側除霜回路8の入口は密閉容器1A内の電動要素Mと高段側のロータリ圧縮要素3の間となる位置で開口している。また、低段側除霜回路8の出口は、上記各実施例と同様に蒸発器入口側配管26の途中部に接続されている。また、高段側除霜回路9の冷媒配管の入口は、高段側のロータリ圧縮要素3の吐出側となる吐出マフラー室62、或いは、当該吐出マフラー室62に連通された吐出側配管22に接続され、出口は、密閉容器1A内の低段側除霜回路8の逆止弁11と電磁弁10の間となる位置に接続されている。即ち、本実施例では、高段側除霜回路9が全てロータリンプレッサ1の密閉容器1A内部に設置され、低段側除霜回路8の一部(電磁弁10B及び一部配管)がロータリコンプレッサ1の密閉容器1A外に設けられている。
このように、流路制御装置の少なくとも一部(本実施例では逆止弁11)と差圧発生手段(キャピラリチューブ12)を密閉容器1A内に配置することで、上記各実施例の効果に加えて、冷凍サイクル装置全体のコンパクト化を図ることができるようになる。
次に、図6乃至図9を用いて前記実施例3の如く流路制御装置の少なくとも一部と差圧発生手段を密閉容器1A内に配置した場合のもう一つの実施例について説明する。図6はこの実施例のロータリコンプレッサ1の一部断面図、図7は上部支持部材(メインフレーム)の平面図、図8は上部カバーの平面図、図9は本実施例の流路制御装置の一部を構成する逆止弁の側面図をそれぞれ示している。尚、図6乃至図9において図1乃至図5と同一の符号が付されたものは同様、或いは、類似の作用又は効果を奏するものであり、詳細な説明は省略する。
本実施例のロータリコンプレッサ1は、上部支持部材50に除霜取り出し用の空間90が形成され、当該空間90の底面と吐出マフラー室62の空間92の底面とが連通穴93により連通されている。本実施例では、連通穴93は、シリンダ34の上側に形成された細孔94と上部支持部材50に軸心方向に形成された孔93A、93Bから形成される。
また、空間90内の底部には、逆止弁95が設置されている。この逆止弁95は本発明の流路制御装置の一部と差圧発生手段とを構成するものである。当該逆止弁95は、縦長金属板などの弾性部材にて構成されており、図9に示すように一側は孔93Aに一定の押し付け力で当接して密着すると共に、他側は孔93Aと所定の間隔を存して設けられた図示しないネジ穴に図示しないネジで固定される。そして、孔93から逆止弁95に所定値以上の圧力がかかると、逆止弁95の一側が僅かに押し上がり、孔93Aから離れる。これにより、孔93A上端と逆止弁95の一側の底面の間に僅かな隙間が形成され、当該隙間から空間90内に吐出マフラー室62の空間92(孔93A)からの冷媒が流入する。この隙間は通路面積が小さいため、孔93Aからの冷媒は当該隙間を通過する過程で差圧が発生することとなる。
また、空間90の上面と密閉容器1A内とは連通孔96により連通され、当該空間90の上面には逆止弁99が取り付けられている。当該逆止弁99は、上記逆止弁95と同様に縦長金属板などの弾性部材にて構成されており、一側は連通孔96に一定の押し付け力で当接して密着すると共に、他側は連通孔96と所定の間隔を存して設けられた図示しないネジ穴に図示しないネジで固定される。そして、密閉容器1Aから逆止弁99を下方向に押すある値以上の圧力がかかると、逆止弁99の一端が僅かに下がり、連通孔96から離れる。これにより、連通孔96下端と逆止弁99の一端の天面の間に僅かな隙間が形成され、当該隙間から空間90内に密閉容器1A内からの冷媒が流入することとなる。尚、図7において55は、高段側のロータリ圧縮要素3の吐出ポート54と吐出マフラー室62の空間92とを開閉可能に閉塞する弁装置である。
また、密閉容器1A側面の空間90に対応する位置にはスリーブ97が溶接固定され、当該スリーブ97内には低段側及び高段側除霜回路の除霜配管98が挿入接続され、当該除霜配管98の一端が空間90内と連通接続される。当該除霜配管98はロータリコンプレッサ1外部に延在し、流路制御手段の一部を構成する図示しない電磁弁を介して、他端は蒸発器7の入口に接続された蒸発器入口側配管26の途中部に接続される。
以上の構成で、本実施例における除霜時における動作を説明する。先ず、除霜配管98上に設置された図示しない電磁弁が開放され、膨張弁5が閉じられると、低段側のロータリ圧縮要素2から吐出された密閉容器1A内の冷媒の一部は、連通孔96に流入し、前記逆止弁99を押し開けて、空間90に流入する。一方、密閉容器1A内の他の冷媒は高段側のロータリ圧縮要素3に吸い込まれて圧縮された後、シリンダ36の高圧室側から吐出ポート54に入り、弁装置55を押し開けて、吐出マフラー室62の空間92内に吐出される。吐出マフラー室62の空間92内に吐出された冷媒は、連通穴93の孔93B、細孔94、孔93Aを通過し、前記逆止弁95を前記所定値以上の圧力で逆止弁95を上方向に押す。これにより、逆止弁95の下方向の押し付け力と逆止弁95を押し上げる冷媒の圧力がつり合うように差圧が発生しながら冷媒が逆止弁95と孔93Aとの間に形成される隙間を通過する。そして、当該隙間を通過して減圧された冷媒は、空間90に流入し、前記密閉容器1Aからの中間圧冷媒と合流する。
その後、合流した冷媒は、除霜配管98、蒸発器入口側配管26を介して蒸発器7内に流入する。これにより、蒸発器7が加熱され、着霜は融解除去されていく。
蒸発器7を加熱した冷媒は、その後、吸込側配管22からロータリコンプレッサ1内に吸い込まれて、低段側のロータリ圧縮要素2にて圧縮され、密閉容器1A内に吐出されるサイクルを繰り返す。
かかる除霜運転は、前述したように、例えば、蒸発器7の所定の除霜終了温度や時間などにより終了し、除霜が終わると、除霜配管98の前記電磁弁が閉塞されると共に、膨張弁5の開度が戻され、通常運転に復帰することになる。
このように、本実施例においても、上記各実施例と同様に除霜時、除霜配管98の前記電磁弁を開放することで、両ロータリ圧縮要素2、3から吐出された冷媒を膨張弁5にて減圧することなく、蒸発器7に流すことができる。これにより、冷凍サイクル装置の除霜効果の向上を図ることができる。更に、差圧発生手段(本実施例では逆止弁95)により高段側のロータリ圧縮要素3の吐出側と吸込側とで圧力差を構成することができるようになり、高段側のロータリ圧縮要素3における圧力逆転を解消し、当該高段側のロータリ圧縮要素3が不安定な運転状況に陥る不都合を回避することができる。
更に、本実施例では、上部支持部材50内に形成された空間90に流路制御装置の一部であり、差圧発生手段も兼ねる逆止弁95を収納したので、密閉容器1Aのコンパクト化が可能となる。
尚、この実施例では、差圧発生手段を逆止弁95にて構成したが、これに限らず、差圧発生手段を通路面積の小さい細孔により構成し、当該細孔を冷媒が通過することにより差圧が発生する構造としても良い。この場合にも密閉容器1Aのコンパクト化が可能である。
また、差圧発生手段を図10に示すように構成しても構わない。この場合、封止部151と当該封止部151の他端(図10において封止部151の左端)に取り付けられ、封止部151をある所定の付勢力で、一端側(図10の左方向)に付勢するバネ部材152とから成るリード弁150により構成され、当該リード弁150の封止部151内に差圧発生手段としての細孔154が形成されている。これらは通路140内に設けられ、当該通路140の内径より、更に小径に形成された入口142が当該封止部151の一端により、開閉可能に閉塞されている。細孔154は入口142が閉塞された状態(図10の破線)で、入口142の上側に位置するよう形成されている。
そして、冷媒が一端側(図10の左側)から封止部151を矢印方向に所定の圧力で押すと、封止部151が他端側(図10の右側)に押されて、通路140の入口142が開放される。これにより、当該通路140の入口142からの冷媒が、矢印の如く細孔154を経て他端の出口144側へと流れる。このとき、細孔154による減圧効果により、当該通路140の入口142側と出口144側とで冷媒に圧力差が発生する。
このような構成の差圧発生手段を用いても、冷凍サイクル装置のコンパクト化を図ることができるようになる。
本発明の一実施例の冷凍サイクル装置の冷媒回路図である。 図1の冷凍サイクル装置の一部を構成するロータリコンプレッサ(圧縮手段)の一例を示す断面図である。 図2のロータリコンプレッサの各シリンダの構成を説明する概略図である。 本発明の他の実施例の冷凍サイクル装置の冷媒回路図である。 本発明のもう一つの他の実施例の冷凍サイクル装置の冷媒回路である。 本発明の冷凍サイクル装置の一部を構成するロータリコンプレッサ(圧縮手段)の他の実施例を示す断面図である。 図5のロータリコンプレッサのメインフレームの上面図である。 図5のロータリコンプレッサの上部カバーの上面図である。 図5のロータリコンプレッサ内に設けられた流路制御装置の一部の側面図である。 本発明の冷凍サイクル装置の流路制御装置の一部及び差圧発生手段の他の実施例を示す説明図である。 従来の冷凍サイクル装置の一例を示す冷媒回路図である。 従来の冷凍サイクル装置の他の例を示す冷媒回路図である。
符号の説明
1 ロータリコンプレッサ
1A 密閉容器
2 低段側のロータリ圧縮機(低段側ロータリ圧縮手段)
3 高段側のロータリ圧縮機(高段側ロータリ圧縮手段)
4 放熱器
5 膨張弁(減圧装置)
7 蒸発器
8 低段側除霜回路
9 高段側除霜回路
10、10A、10B 電磁弁
11 逆止弁
12 キャピラリチューブ

Claims (3)

  1. 低段側ロータリ圧縮手段、高段側ロータリ圧縮手段、放熱器、減圧装置及び蒸発器とを備え、前記低段側ロータリ圧縮手段で圧縮されて吐出された冷媒を前記高段側ロータリ圧縮手段に吸い込ませて圧縮し、該高段側ロータリ圧縮手段から吐出された冷媒を前記放熱器、減圧装置及び蒸発器に順次流して該蒸発器から出た冷媒を前記低段側ロータリ圧縮手段に吸い込ませるよう構成した冷凍サイクル装置において、
    前記低段側ロータリ圧縮手段から吐出された冷媒を減圧せずに前記蒸発器に供給するための低段側除霜回路と、前記高段側ロータリ圧縮手段から吐出された冷媒を減圧せずに前記蒸発器に供給するための高段側除霜回路と、前記各ロータリ圧縮手段から各除霜回路への冷媒の流入を制御する流路制御装置とを備え、前記蒸発器の除霜時、前記流路制御装置により前記両ロータリ圧縮手段から吐出された冷媒を前記両除霜回路により合流させて前記蒸発器に流すと共に、前記高段側除霜回路には、入口側と出口側との間で圧力差を構成する差圧発生手段を設けたことを特徴とする冷凍サイクル装置。
  2. 前記低段側ロータリ圧縮手段と前記高段側ロータリ圧縮手段は単一の密閉容器内に収納されており、前記流路制御装置の少なくとも一部と前記差圧発生手段を前記密閉容器内に配置したことを特徴とする請求項1に記載の冷凍サイクル装置。
  3. 前記高段側ロータリ圧縮手段の吐出マフラー室と連通する空間を設け、該空間に前記流路制御装置の少なくとも一部と前記差圧発生手段を収納したことを特徴とする請求項2に記載の冷凍サイクル装置。
JP2006085466A 2006-03-27 2006-03-27 冷凍サイクル装置 Expired - Fee Related JP5144897B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006085466A JP5144897B2 (ja) 2006-03-27 2006-03-27 冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006085466A JP5144897B2 (ja) 2006-03-27 2006-03-27 冷凍サイクル装置

Publications (2)

Publication Number Publication Date
JP2007263391A true JP2007263391A (ja) 2007-10-11
JP5144897B2 JP5144897B2 (ja) 2013-02-13

Family

ID=38636555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006085466A Expired - Fee Related JP5144897B2 (ja) 2006-03-27 2006-03-27 冷凍サイクル装置

Country Status (1)

Country Link
JP (1) JP5144897B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077136A1 (ja) * 2011-11-24 2013-05-30 ダイキン工業株式会社 空気調和装置
JP2013108730A (ja) * 2011-11-24 2013-06-06 Daikin Industries Ltd 空気調和装置
JP2020128858A (ja) * 2019-02-12 2020-08-27 株式会社富士通ゼネラル 空気調和機
US20210055045A1 (en) * 2017-01-12 2021-02-25 Emerson Climate Technologies, Inc. Micro Booster Supermarket Refrigeration Architecture
JPWO2020003590A1 (ja) * 2018-06-29 2021-07-08 パナソニックIpマネジメント株式会社 冷凍サイクル装置およびそれを備えた液体加熱装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0213765A (ja) * 1988-06-30 1990-01-18 Toshiba Corp 冷凍サイクル装置
JPH0428975A (ja) * 1990-05-25 1992-01-31 Hitachi Ltd 冷凍サイクル
JP2003049777A (ja) * 2001-08-07 2003-02-21 Sanyo Electric Co Ltd 密閉型圧縮機およびそれを用いた冷凍装置
JP2003074998A (ja) * 2001-09-04 2003-03-12 Sanyo Electric Co Ltd 冷凍サイクル装置
JP2003106741A (ja) * 2001-09-27 2003-04-09 Sanyo Electric Co Ltd 冷媒回路の除霜装置
JP2003201963A (ja) * 2002-01-07 2003-07-18 Hitachi Ltd 密閉形圧縮機
JP2004163084A (ja) * 2002-09-24 2004-06-10 Denso Corp 蒸気圧縮式冷凍機
JP2004293857A (ja) * 2003-03-26 2004-10-21 Matsushita Electric Ind Co Ltd ヒートポンプ装置
JP2005147511A (ja) * 2003-11-14 2005-06-09 Kobe Steel Ltd 冷凍装置
JP2005214444A (ja) * 2004-01-27 2005-08-11 Sanyo Electric Co Ltd 冷凍装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0213765A (ja) * 1988-06-30 1990-01-18 Toshiba Corp 冷凍サイクル装置
JPH0428975A (ja) * 1990-05-25 1992-01-31 Hitachi Ltd 冷凍サイクル
JP2003049777A (ja) * 2001-08-07 2003-02-21 Sanyo Electric Co Ltd 密閉型圧縮機およびそれを用いた冷凍装置
JP2003074998A (ja) * 2001-09-04 2003-03-12 Sanyo Electric Co Ltd 冷凍サイクル装置
JP2003106741A (ja) * 2001-09-27 2003-04-09 Sanyo Electric Co Ltd 冷媒回路の除霜装置
JP2003201963A (ja) * 2002-01-07 2003-07-18 Hitachi Ltd 密閉形圧縮機
JP2004163084A (ja) * 2002-09-24 2004-06-10 Denso Corp 蒸気圧縮式冷凍機
JP2004293857A (ja) * 2003-03-26 2004-10-21 Matsushita Electric Ind Co Ltd ヒートポンプ装置
JP2005147511A (ja) * 2003-11-14 2005-06-09 Kobe Steel Ltd 冷凍装置
JP2005214444A (ja) * 2004-01-27 2005-08-11 Sanyo Electric Co Ltd 冷凍装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077136A1 (ja) * 2011-11-24 2013-05-30 ダイキン工業株式会社 空気調和装置
JP2013108730A (ja) * 2011-11-24 2013-06-06 Daikin Industries Ltd 空気調和装置
US20210055045A1 (en) * 2017-01-12 2021-02-25 Emerson Climate Technologies, Inc. Micro Booster Supermarket Refrigeration Architecture
JPWO2020003590A1 (ja) * 2018-06-29 2021-07-08 パナソニックIpマネジメント株式会社 冷凍サイクル装置およびそれを備えた液体加熱装置
JP7133817B2 (ja) 2018-06-29 2022-09-09 パナソニックIpマネジメント株式会社 冷凍サイクル装置およびそれを備えた液体加熱装置
JP2020128858A (ja) * 2019-02-12 2020-08-27 株式会社富士通ゼネラル 空気調和機

Also Published As

Publication number Publication date
JP5144897B2 (ja) 2013-02-13

Similar Documents

Publication Publication Date Title
JP4820180B2 (ja) 冷凍装置
JP5698160B2 (ja) 空気調和機
KR101280155B1 (ko) 히트 펌프 장치, 2단 압축기 및 히트 펌프 장치의 운전 방법
TWI656310B (zh) 高壓壓縮機及具有該高壓壓縮機的冷凍機
JP4561225B2 (ja) 容積型膨張機及び流体機械
JP5144897B2 (ja) 冷凍サイクル装置
WO2015122168A1 (ja) 空気調和機の室外ユニット
JP2006194565A (ja) 空気調和装置
JP2007511700A (ja) 連結通路に吐出弁を持つタンデム圧縮機
KR20110074712A (ko) 냉동장치
JP2007146747A (ja) 冷凍サイクル装置
JP5515289B2 (ja) 冷凍装置
JP2003065615A (ja) 冷凍機
JP3963740B2 (ja) ロータリコンプレッサ
JP2007154726A (ja) 密閉型圧縮機及び冷凍サイクル装置
JP2008202477A (ja) 圧縮機
JP4963971B2 (ja) ヒートポンプ式設備機器
JP2010156498A (ja) 冷凍装置
JP2009162438A (ja) 空気調和装置およびその運転方法
JP2006214445A (ja) ロータリコンプレッサ
WO2018097124A1 (ja) 空気調和装置
WO2013027237A1 (ja) 二段圧縮機及びヒートポンプ装置
JP3594570B2 (ja) 二段圧縮型圧縮機およびそれを用いた冷凍装置
JP4661561B2 (ja) 冷凍装置
JP2007127052A (ja) 膨張機とその膨張機を用いた冷凍サイクル装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees