JP2007260222A - 荷電粒子線偏向装置および荷電粒子線照射装置 - Google Patents

荷電粒子線偏向装置および荷電粒子線照射装置 Download PDF

Info

Publication number
JP2007260222A
JP2007260222A JP2006090868A JP2006090868A JP2007260222A JP 2007260222 A JP2007260222 A JP 2007260222A JP 2006090868 A JP2006090868 A JP 2006090868A JP 2006090868 A JP2006090868 A JP 2006090868A JP 2007260222 A JP2007260222 A JP 2007260222A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
axis
deflection scanning
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006090868A
Other languages
English (en)
Other versions
JP4716284B2 (ja
Inventor
Hiroshi Toki
博 土岐
Kichiji Hatanaka
吉治 畑中
Takeo Kawaguchi
武男 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KT SCIENCE KK
Osaka University NUC
Original Assignee
KT SCIENCE KK
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KT SCIENCE KK, Osaka University NUC filed Critical KT SCIENCE KK
Priority to JP2006090868A priority Critical patent/JP4716284B2/ja
Publication of JP2007260222A publication Critical patent/JP2007260222A/ja
Application granted granted Critical
Publication of JP4716284B2 publication Critical patent/JP4716284B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】偏向走査用の磁界を印加するための荷電粒子線偏向装置を、荷電粒子線の進行方向およびその直交方向に小型化する。
【解決手段】荷電粒子線の進行方向であるZ軸方向に直交するX軸方向に荷電粒子線を偏向走査させるX軸偏向走査コイル15と、Z軸方向およびX軸方向に直交するY軸方向に荷電粒子線を偏向走査させるY軸偏向走査コイル16とを備える。X軸偏向走査コイルおよびY軸偏向走査コイルは、ヨークを用いることなく高温超電導コイルを用いて形成されるとともに、Z軸方向に直交する同一平面内でY軸偏向走査コイルの外周側にX軸偏向走査コイルが位置するように配置され、Y軸偏向走査コイルおよびX軸偏向走査コイルを冷却するための冷却部22、23、24、25が設けられ、X軸偏向走査コイルおよびY軸偏向走査コイルに対して、偏向走査のために1Hz以上の周波数の交番電流が印加される。
【選択図】図8

Description

この発明は、例えば癌治療用の荷電粒子線照射装置、特に、荷電粒子線を偏向して所定の照射領域を得るための偏向装置の小型化に関する。
図12は、例えば特許文献1の第1図に記載された、従来の荷電粒子線照射装置を構成する荷電粒子線偏向装置の概略構成を示す。図中、荷電粒子線1の進行方向をZ軸方向として説明する。荷電粒子線1は、加速器(図示省略)から送られてZ軸方向に進行する。荷電粒子線1の軌道に沿って、荷電粒子線1をX軸方向に偏向走査するためのX軸偏向走査磁石2、荷電粒子線1をY軸方向に偏向走査するためのY軸偏向走査磁石3、およびレンジシフター4が配置されている。X軸偏向走査磁石2およびY軸偏向走査磁石3が発生する磁界により荷電粒子線1を偏向走査して、支持台5上に載置された被照射体(図示せず)の必要な領域に荷電粒子線1を照射することができる。レンジシフター4は、通過する荷電粒子線の速度を減衰させることにより、被照射体への荷電粒子線1のZ軸方向侵入深さを制御するために用いられる。
図12は、荷電粒子線照射部のX−Z平面に沿った断面図であり、荷電粒子線1に対するX軸方向の偏向走査の状態が示される。図13は、図12におけるY−Z平面に沿った断面図であり、荷電粒子線1のY軸方向の偏向走査の状態が示される。
図14は、図12におけるX軸偏向走査磁石2のA−A断面を示す。X軸偏向走査磁石2は、2組のコイル7a、7bを磁性体のヨーク8に装着して構成されている。図15は、図12におけるY軸偏向走査磁石3のB−B断面を示す。Y軸偏向走査磁石3は、2組のコイル9a、9bを磁性体のヨーク10に装着して構成されている。X軸偏向走査磁石2のコイル7a、7bに電流を流すことにより、ギャップ11に磁界Byを発生させる。また、Y軸偏向走査磁石3のコイル9a、9bに電流を流すことにより、ギャップ12に磁界Bxを発生させる。ヨーク8、10を配置することにより、コイルの起磁力を低減することが可能である。
図12に示すように、荷電粒子線1はX軸偏向走査磁石2の発生する磁界ByによりX軸方向に偏向走査され、被照射体6表面上で変位X1を生じる。同様に図13に示すように、Y軸偏向走査磁石3の発生する磁界Bxにより、荷電粒子線1はY軸方向に偏向走査され、被照射体6表面上で変位Y1を生じる。この作用に基づき、X軸偏向走査磁石2およびY軸偏向走査磁石3に所定の交番電流を印加することにより、被照射体6の±X1、±Y1の領域に荷電粒子線1の照射を行うことができる。
以上のように構成された荷電粒子線照射装置は、例えば陽子線がん治療に用いる場合、特許文献2の図7及び図8に示されるような回転ガントリーに設置される。回転ガントリーにより荷電粒子線照射装置を回転させて、被照射体である患者に対する荷電粒子線の照射方向を変化させることが可能になっている。
特公平7−8300号公報 特開2003−250917号公報
上記従来の荷電粒子線照射装置では、X軸偏向走査磁石2とY軸偏向走査磁石3がZ軸方向に直列に並んで配置されている。そのため、照射装置の長さLが長くなり、照射装置が大型になっていた。また、図12に示すように、Y軸偏向走査磁石3の下端では、X軸偏向走査磁石2による偏向走査の結果、荷電粒子線が±X2の幅に広がっているので、Y軸偏向走査磁石3のギャップ12を大きくする必要があり、Y軸偏向走査磁石3を大型化せざるを得なかった。すなわち、従来の荷電粒子線照射装置は、X軸偏向走査磁石とY軸偏向走査磁石が荷電粒子線の進行方向に直列に並んで配置されることが、装置の大型化の重大な要因であった。
また、医療用に用いられるような、電子線以外の陽子線や炭素線等の重粒子線を偏向させるには、大きなエネルギーが必要であり、荷電粒子線照射装置は、強い磁界を印加することが可能でなければならない。そのことも、荷電粒子線照射装置の大型化を必要とする要因として、避けられないものであった。例えば、陽子線を例に取れば、陽子の静止質量は電子の約1800倍と大きい。したがって、同じ加速エネルギーの荷電粒子線を同じ強度の磁界で偏向走査する場合、相対論効果を無視すれば、その偏向半径は陽子線の場合では電子線の1800倍と大きくなる。その結果、ブラウン管のように電子線を用いる装置に比べ、電子線以外の荷電粒子線照射装置は特に大型になる。
その結果、回転ガントリーに従来の荷電粒子線照射装置を設置する場合、回転ガントリーの直径が相当に大型化していた。例えば2.5億電子ボルトの陽子線を癌治療用に使用する場合、従来の回転ガントリー照射装置の最大直径は10m以上の大規模なものになっていた。
本発明は、偏向走査用の磁界を印加するための荷電粒子線偏向装置が、荷電粒子線の進行方向およびその直交方向に小型化された荷電粒子線照射装置を提供することを目的とする。
本発明の荷電粒子線偏向装置は、基本構成として、荷電粒子線の進行方向であるZ軸方向に直交するX軸方向に前記荷電粒子線を偏向走査させるX軸偏向走査コイルと、前記Z軸方向および前記X軸方向に直交するY軸方向に前記荷電粒子線を偏向走査させるY軸偏向走査コイルとを備える。
上記課題を解決するために、本発明の第1の構成の荷電粒子線偏向装置は、前記X軸偏向走査コイルおよび前記Y軸偏向走査コイルは、ヨークを用いることなく高温超電導コイルを用いて形成されるとともに、前記Z軸方向に直交する同一平面内で前記Y軸偏向走査コイルの外周側に前記X軸偏向走査コイルが位置するように配置され、前記Y軸偏向走査コイルおよび前記X軸偏向走査コイルを冷却するための冷却部が設けられ、前記X軸偏向走査コイルおよび前記Y軸偏向走査コイルに対して、前記偏向走査のために1Hz以上の周波数の交番電流が印加されることを特徴とする。
本発明の第2の構成の荷電粒子線偏向装置は、前記X軸偏向走査コイルおよび前記Y軸偏向走査コイルは、ヨークを用いることなくコイルを用いて形成されるとともに、前記Z軸方向に直交する同一平面内で前記Y軸偏向走査コイルの外周側に前記X軸偏向走査コイルが位置するように配置され、前記X軸偏向走査コイルおよび前記Y軸偏向走査コイルは、非磁性からなるコイル支持体内に支持され、前記Y軸偏向走査コイルおよび前記X軸偏向走査コイルを水を用いて冷却するための水冷装置が設けられ、前記X軸偏向走査コイルおよび前記Y軸偏向走査コイルに対して、前記偏向走査のために1Hz以上の周波数の交番電流が印加されることを特徴とする。
本発明の荷電粒子線照射装置は、上記いずれかの構成の荷電粒子線偏向装置と、電子線以外の前記荷電粒子線を前記荷電粒子線偏向装置に導く荷電粒子線輸送部と、前記X軸偏向走査コイルとY軸偏向走査コイルに各々供給する電流を制御することにより、前記荷電粒子線のXY平面上の照射領域を制御する制御部とを備える。
上記構成の荷電粒子線照射装置によれば、X軸偏向走査コイルとY軸偏向走査コイルが、荷電粒子線の進行方向に直交する同一平面内に重ねて配置されるので、装置の長さを大幅に短縮できる。また、一方の偏向走査コイルによる荷電粒子線の軌道の広がりが他方の偏向走査コイルの寸法に与える影響を解消することができるので、荷電粒子線の進行方向に直交する面の方向における装置の寸法も低減される。
上記構成の本発明の第1の構成の荷電粒子線偏向装置において、前記X軸偏向走査コイルおよび前記Y軸偏向走査コイルを支持する非磁性のコイル支持体と、前記X軸偏向走査コイル、前記Y軸偏向走査コイルおよび前記コイル支持体を収容する断熱真空容器と、前記断熱真空容器内に配置された冷凍機コールドヘッドと、前記X軸偏向走査コイルおよび前記Y軸偏向走査コイルと前記冷凍機コールドヘッドを熱的に接続する熱伝導板とを備え、前記X軸偏向走査コイルおよび前記Y軸偏向走査コイルは、前記コイル支持体内に支持され、前記冷凍機コールドヘッドと前記熱伝導板により前記冷却部が構成されることが好ましい。
また、上記いずれかの構成の荷電粒子線偏向装置において、前記X軸偏向走査コイルの周囲に、コイル全体を取り囲む筒状の磁気シールドが配置されることが好ましい。
上記構成の本発明の荷電粒子線照射装置において、前記荷電粒子線偏向装置および前記荷電粒子線輸送部の少なくとも一部を回転可能に支持し、前記荷電粒子線により照射すべき位置の周囲に前記荷電粒子線偏向装置を回転させるように構成された回転ガントリーを備えた構成とすることができる。
この構成において、前記荷電粒子線輸送部は、前記荷電粒子線偏向装置に対する荷電粒子線進行方向の上流側に配置された超電導の双極偏向電磁石を有し、前記双極偏向電磁石は前記回転ガントリーに装着されて、前記回転ガントリーにより前記荷電粒子線偏向装置とともに回転させるように構成されることが好ましい。
以下に、本発明の実施の形態について、図面を参照して詳細に説明する。
(実施の形態1)
図1は、本発明の実施の形態1における荷電粒子線照射装置の概略構成を示す断面図である。同図において、荷電粒子線1の進行方向をZ軸とする。荷電粒子線1の軌道に沿って、荷電粒子線偏向装置13、レンジシフター4、および被照射体を載置するための支持台5が配置されている。但し図1には、荷電粒子線偏向装置13を構成するコイルのうち、X軸偏向走査コイル15のみ、および磁気シールド14が示される。
荷電粒子線偏向装置13は、Z軸に直交するXY平面内で荷電粒子線1を偏向走査させるための、X軸方向の磁界およびY軸方向の磁界を発生する。図1は、X−Z平面に沿った断面を示し、従って、荷電粒子線1のX軸方向における偏向走査の状態が示される。
図2は、図1におけるY−Z平面に沿った断面を示し、従って、荷電粒子線1のY軸方向における偏向走査の状態が示される。図2には、荷電粒子線偏向装置13を構成するコイルのうち、Y軸偏向走査コイル16のみが示される。
図3は、図1の荷電粒子線偏向装置13におけるC−C断面図であり、荷電粒子線偏向装置13を構成する、磁気シールド14、X軸偏向走査コイル15およびY軸偏向走査コイル16の平面構造が示される。同図に示されるように、Y軸偏向走査コイル16は4組のエレメントコイルに分割されている。各エレメントコイルは、互いに接続されたコイルエレメント(16a+、16a−)、(16b+、16b−)、(16c+、16c−)、および(16d+、16d−)により構成されている。Y軸偏向走査コイル16の全コイルエレメントには同じ電流が流される。また、X軸偏向走査コイル15は、Z軸から見た径方向位置において、Y軸偏向走査コイル16よりも外周側に配置されており、4組のエレメントコイルに分割されている。各エレメントコイルは、互いに接続されたコイルエレメント(15a+、15a−)、(15b+、15b−)、(15c+、15c−)、(15d+、15d−)により構成されている。Y軸偏向走査コイル15の全コイルエレメントには同じ電流が流される。
上記のような配置により、Y軸偏向走査コイル16はX軸方向に磁界Bxを発生させ、またX軸偏向走査コイル15はY軸方向に磁界Byを発生させる。磁気シールド14は、X軸およびY軸偏向走査コイル15、16の外周側に、すべてのコイルを取り囲むように配置され、これらのコイルの発生する磁界が荷電粒子線偏向装置13の外部に漏れないようにシールドしている。磁気シールド14としては、例えば鉄板をZ軸方向に積層したものを用いることができる。
図1〜図3に示されるように、本実施の形態のX軸偏向走査コイル15およびY軸偏向走査コイル16は、ヨーク(磁心)を用いることなく、コイルのみで構成されている。上記のように、X軸およびY軸偏向走査コイル15、16を重ね合わせた構成においては、コイル位置より内周の領域にヨークを挿入すると、磁界BxとByがヨークを通じて相互に影響を及ぼすので、X軸偏向走査コイルでByのみを、又、Y軸偏向走査コイルでBxのみを制御することができなくなる。従って本発明ではヨークを用いることなく偏向走査コイルを構成する。
X軸およびY軸偏向走査コイル15、16の具体的な形状を、図4および図5に示す。
図4は、図3に示した荷電粒子線偏向装置13の偏向走査コイル部分、すなわちX軸偏向走査コイル15とY軸偏向走査コイル16が組合わされた状態を示す斜視図である。図5AはY軸偏向走査コイル16のみを示す斜視図、図5BはX軸偏向走査コイル15のみを示す斜視図である。
以上のような本実施の形態の荷電粒子線照射装置では、図1および図2に示したように、X軸偏向走査コイル15とY軸偏向走査コイル16を荷電粒子線1の進行方向に並べることなく、荷電粒子線1の進行方向に直交する同一のXY平面内に両コイルが重ねて配置される。従って、同一領域で荷電粒子線1をX軸方向およびY軸方向に偏向走査できる。これにより、荷電粒子線照射装置の長さLを従来のものに比べて大幅に小さくできる。すなわち、荷電粒子線偏向装置13を構成する偏向走査コイルの荷電粒子線1の進行方向(Z方向)における寸法を低減させることができる。本実施の形態に基づく一例としては、荷電粒子線1の進行方向における荷電粒子線偏向装置13の長さを、従来の1メートルから半分の0.5メートル程度に小型にすることが可能である。
また、従来のようにX軸方向偏向走査による荷電粒子線の軌道の広がりがY軸偏向走査コイルの寸法に与える影響を解消することができるので、荷電粒子線1の進行方向に直交するXY面方向における荷電粒子線偏向装置13の寸法も低減される。
図6は、本実施の形態に基づく荷電粒子線偏向装置による発生磁界を計算した一例を示す。この結果は、Z軸方向の位置±20cmの範囲で、磁界Bx、By共、約800mT(8,000ガウス)が得られることを示している。図7は、上記の磁界による2.5億電子ボルトの陽子ビームの偏向走査位置を計算したものである。荷電粒子線偏向装置13のZ軸中心から1m下流位置で、X軸方向およびY軸方向にそれぞれ約12cmの偏向走査ができることを示す。
なお、図3ではX軸およびY軸偏向走査コイルをそれぞれ4エレメントコイルに分割したが、分割数は任意である。また、各エレメントコイルの断面形状は図に示した形でなくても良い。図3の磁気シールド14の断面形状は円形としたが、多角形であっても良い。また、外部に対して漏れ磁界の影響が間題にならない場合には、磁気シールド14が無くても良い。また、いわゆるアクティブシールドコイルを設けることにより、磁気シールドを無くしてもよい。
以上のような構成の荷電粒子線照射装置に、加速器から荷電粒子線を導き、Z軸方向に進入させるように配置することにより、荷電粒子線を所定の照射領域に偏向走査することができる。偏向走査のためには、X軸偏向走査コイル15およびY軸偏向走査コイル16に対して、1Hz以上の周波数の交番電流が印加される。
上記のような本実施の形態の荷電粒子線照射装置では、偏向させる荷電粒子線のエネルギーが非常に大きいので、強い磁界を印加することが必要である。ところが、上述のとおり、X軸偏向走査コイルをY軸偏向走査コイルの外側に重ねて集中配置した構成においては、ヨークを用いた場合、磁界BxとByがヨークを通じて相互に影響を及ぼすので、X軸偏向走査コイルでByのみを、又、Y軸偏向走査コイルでBxのみを制御することができなくなる。従って、X軸およびY軸偏向走査コイルを集中配置するためには、ヨークを用いない構成とする。
一方、ヨークを使用せずに荷電粒子線に強い磁界を印加するためには、大きな起磁力が必要である。コイルの発生起磁力を大きくするためには、高い電流密度で使用することが可能なコイルが必要である。例えば、図6に示したような磁界を発生させるためには、コイルの電流密度として1万アンペア毎平方センチメートル(10,000A/cm2)程度が必要である。そのため本発明者らは、超電導コイルを使用することにより、高い電流密度の使用を可能とすることを検討した。
また、荷電粒子線を所望の範囲で偏向走査するために、上述のとおり、X軸およびY軸偏向走査コイルには1Hz以上の周波数の交番電流が印加される。この偏向走査のための交流成分に起因して、X軸およびY軸偏向走査コイルには、渦電流による温度上昇が生じる。したがって、超電導コイルを使用して充分な超電導臨界温度の余裕を持たせるために、本実施の形態では、高温超電導コイルを用いる。本発明者らの実験によれば、高温超電導コイルを用いることにより、荷電粒子線の偏向走査のための交流成分に対して、実用的に十分な程度に超電導臨界温度の余裕を持たせることが可能であった。すなわち、高温超電導コイルを例えば、臨界温度より10K(ケルビン)から20K低い温度で冷却運転することにより、交番電流印加によるコイルの温度上昇が生じても、運転を維持可能であった。なお、高温超電導コイルとしては、ビスマス系やイットリウム系等の酸化物高温超電導体を用いることができる。
図8は、本実施の形態における荷電粒子線照射装置の具体的な構成例を示す断面図である。図3と同様の荷電粒子線偏向装置13の部分における平面構造が、断面で示される。装置の中央部に非磁性材料からなるコイル支持体20、21が配置され、Y軸偏向走査コイル16およびX軸偏向走査コイル15をそれぞれ支持している。コイル支持体20、21は円筒形状を有し、各々その外周面にコイル収納溝20a、21aが設けられている。コイル収納溝20a、21aに各々、Y軸偏向走査コイル16およびX軸偏向走査コイル15が収納されている。コイル支持体20、21は、偏向走査コイルの位置決めと共に、コイルに加わる電磁力に抗してコイルを支持する機能を有する。コイル収納溝20a、21aの開口部には、熱伝導板22、23が配置され、各々Y軸偏向走査コイル16およびX軸偏向走査コイル15と熱的に接続されている。
コイル支持体20、21は、磁界の乱れを生じさせないように非磁性であるとともに、コイルの磁界変化を妨げない材質により構成されることが必要である。例えば、ステンレスのような非磁性金属の薄板をZ軸方向に積層したもの、あるいは合成樹脂のような非金属材で構成する。
熱伝導板22、23は、熱伝導板24と相互に熱的に接続され(図示省略)、熱伝導板24は冷凍機コールドヘッド25に熱的に接続されている。それにより、Y軸偏向走査コイル16およびX軸偏向走査コイル15は、例えば絶対温度10K(ケルビン)から30Kの低温に維持可能である。
Y軸偏向走査コイル16およびX軸偏向走査コイル15の周囲は、断熱真空容器26に包囲されている。断熱真空容器26により形成される真空空間27を真空状態に維持することにより、大気側から偏向走査コイルへの熱侵入が抑制される。このような構成にすることにより、液体冷媒を用いない高温超電導コイルを実用的な範囲で作動させることができる。磁気シールド14は、断熱真空容器26の周囲に配置されている。
(実施の形態2)
図9は、実施の形態2における荷電粒子線照射装置の概略構成を示す正面図である。この荷電粒子線照射装置は、実施の形態1と同様の荷電粒子線照射装置の構成を、回転ガントリーを有する構成に適用した場合の一例である。30は回転ガントリーであり、その中心部に被照射体である被治療患者31が収容される。図1〜図8に示したような構成を有する荷電粒子線偏向装置13およびレンジシフター4が、被治療患者31に近接して配置される。
荷電粒子線1は、荷電粒子線を輸送する輸送磁石32、および荷電粒子線を偏向誘導する双極偏向磁石33により誘導され、荷電粒子線偏向装置13およびレンジシフター4を経由して被治療患者31に照射される。荷電粒子線偏向装置13およびレンジシフター4により、荷電粒子線1は治療に必要な照射面積と深さに設定される。
輸送磁石32、双極偏向磁石33、荷電粒子線偏向装置13およびレンジシフター4は、回転ガントリー30に固定され、治療に最適な角度に回転されて、荷電粒子線の照射領域が調節される。本実施の形態によれば、図9に示す長さL1を大幅に小さくできるので、荷電粒子線照射装置の小型化に極めて有効である。
また本実施の形態によれば、高温超電導コイルを用いることにより液体冷媒が不要であるため、荷電粒子線偏向装置13を回転ガントリーに装着した構成であっても、液体冷媒を使用した際に発生する回転による液面変化等の問題を回避でき、装置の構成を簡略化して小型化が容易である。
また、図9の構成において、双極偏向磁石33を超電導磁石とすることにより、長さL2を短くでき、回転ガントリーを用いた荷電粒子線照射装置を更に小型化することができる。
(実施の形態3)
図10は、実施の形態3における荷電粒子線照射装置の構成を示す断面図である。図8に示した実施の形態1の場合と同様、荷電粒子線偏向装置13の部分における平面構造が断面で示される。荷電粒子線照射装置の全体構造は、図1〜図8に示した実施の形態1の場合と同様である。
本実施の形態の荷電粒子線照射装置では、実施の形態1とは異なり、X軸偏向走査コイル40およびY軸偏向走査コイル41は、高温超電導コイルではなく通常用いられる導体を用いて構成され、水冷装置により冷却されることにより高い電流密度を可能とする構成が採用されている。したがって、図10は、水冷装置により冷却されるコイルを使用した場合の具体的な構成例を示す。
この荷電粒子線照射装置において、X軸偏向走査コイル40およびY軸偏向走査コイル41の構造および配置は、実施の形態1の場合と同様である。すなわち、X軸偏向走査コイル40およびY軸偏向走査コイル41は、ヨークを用いることなくコイルのみで構成されている。また、Y軸偏向走査コイル41は互いに接続された4組のエレメントコイルに分割され、全コイルエレメントには同じ電流が流される。また、X軸偏向走査コイル15は、Z軸から見た径方向位置において、Y軸偏向走査コイル41よりも外周側に配置されており、互いに接続された4組のエレメントコイルに分割され、全コイルエレメントには同じ電流が流される。
Y軸偏向走査コイル41およびX軸偏向走査コイル40は、コイル支持体28、29のコイル収納溝28a、29aに収納されている。コイル支持体28、29は円筒形状を有し、その外周面にコイル収納溝28a、29aが設けられている。コイル支持体28、29は、偏向走査コイルの位置決めと共にコイルに加わる電磁力に抗して偏向走査コイルを支持する機能を有する。外側のコイル支持体29には外周4箇所に突起29bが設けられ、この突起29bを磁気シールド14に当接させてコイル支持体29が固定支持されている。
コイル支持体28、29は非磁性体であり、例えば、非磁性金属の薄板をZ軸方向に積層したもの、もしくは非金属材等により構成される。コイルは、例えば中空導体を積み重ねた構成の場合であれば、導体内に冷却水を通すことによりコイルを冷却することができる。そのような例を、図11に示す。図11は、図10に示したY軸偏向走査コイル41およびX軸偏向走査コイル40の構造の一例を示す断面図である。中空導体42は中空部42aを有し、中空導体42の周りには電気絶縁材43が施工されている。複数の中空導体42を束ねてコイル40、41が形成され、コイル40、41の周りには電気絶縁材44が施工されている。中空導体42の中空部42aに冷却水を通すことにより、偏向走査コイル40、41を冷却する。偏向走査コイル40、41に発生する熱を冷却水により取り去ることにより、コイル40、41を高電流密度に耐えられるようにすることができる。
本実施の形態のように水冷装置によりコイルを冷却する構成は、超電導コイルを使用する場合と比べて、実現可能な起磁力は低くなるが、用途に応じて十分に実用的な性能を得ることは可能である。例えばサイン波形で運転した場合を例にとれば、波高値として10,000A/cm2 の電流密度に対して、熱発生的な実効電流は波高値の1/1.41=0.71、すなわち、7,100A/cm2の実効電流密度となるので、水冷コイルを実現することは可能である。より高い起磁力、すなわちより大きい電流密度を要する場合は超電導コイルを用いればよい。
なお、本実施の形態における荷電粒子線照射装置についても、図9に示したような回転ガントリーを用いた構成を適用することは可能である。
以上の説明では、医療用の荷電粒子線照射装置を主に述べてきたが、本発明は材料照射分野等、その他の分野における荷電粒子線照射装置にも適用可能である。
本発明の荷電粒子線照射装置の構成によれば、装置の寸法を大幅に小型化することができ、例えば医療用の荷電粒子線照射装置として有用である。
本発明の実施の形態1における荷電粒子線照射装置の概略構成を示す断面図 図1の荷電粒子線照射装置におけるY−Z平面に沿った断面図 図1の荷電粒子線照射装置を構成する荷電粒子線偏向装置におけるC−C断面図 図3の荷電粒子線偏向装置の偏向走査コイルを示す斜視図 同荷電粒子線偏向装置の偏向走査コイルのうちY軸偏向走査コイルを示す斜視図 同荷電粒子線偏向装置の偏向走査コイルのうちX軸偏向走査コイルを示す斜視図 同荷電粒子線偏向装置による発生磁界を計算した一例を示す図 同発生磁界による2.5億電子ボルトの陽子ビームの偏向走査位置を計算した結果を示す図 本発明の実施の形態1における荷電粒子線照射装置の概要を断面で示す平面図 本発明の実施の形態2における回転ガントリーを有する荷電粒子線照射装置の構成の概要を示す正面図 本発明の実施の形態3における荷電粒子線照射装置の概要を断面で示す平面図 図10に示された偏向走査コイルの構造の一例を示す断面図 従来例の荷電粒子線照射装置を構成する荷電粒子線偏向装置の基本配置を示す断面図 図12の荷電粒子線偏向装置におけるY−Z平面に沿った断面図 図12の荷電粒子線偏向装置におけるX軸偏向走査磁石の構成をA−A断面で示す断面図 図12の荷電粒子線偏向装置におけるY軸偏向走査磁石の構成をB−B断面で示す断面図
符号の説明
1 荷電粒子線
2 X軸偏向走査磁石
3 Y軸偏向走査磁石
4 レンジシフター
5 支持台
6 被照射体
7a、7b、9a、9b コイル
8、10 ヨーク
11、12 ギャップ
13 荷電粒子線偏向装置
14 磁気シールド
15、40 X軸偏向走査コイル
16、41 Y軸偏向走査コイル
15a+〜15d+、15a−〜15d−、16a+〜16d+、16a−〜16d− コイルエレメント
20、21、28、29 コイル支持体
20a、21a、28a、29a コイル収納溝
22、23、24 熱伝導板
25 冷凍機コールドヘッド
26 断熱真空容器
27 真空空間
29b 突起
30 回転ガントリー
31 被治療患者
32 輸送磁石
33 双極偏向磁石
42 中空導体
42a 中空部
43、44 電気絶縁材

Claims (7)

  1. 荷電粒子線の進行方向であるZ軸方向に直交するX軸方向に前記荷電粒子線を偏向走査させるX軸偏向走査コイルと、前記Z軸方向および前記X軸方向に直交するY軸方向に前記荷電粒子線を偏向走査させるY軸偏向走査コイルとを備えた荷電粒子線偏向装置において、
    前記X軸偏向走査コイルおよび前記Y軸偏向走査コイルは、ヨークを用いることなく高温超電導コイルを用いて形成されるとともに、前記Z軸方向に直交する同一平面内で前記Y軸偏向走査コイルの外周側に前記X軸偏向走査コイルが位置するように配置され、
    前記Y軸偏向走査コイルおよび前記X軸偏向走査コイルを冷却するための冷却部が設けられ、
    前記X軸偏向走査コイルおよび前記Y軸偏向走査コイルに対して、前記偏向走査のために1Hz以上の周波数の交番電流が印加されることを特徴とする荷電粒子線偏向装置。
  2. 前記X軸偏向走査コイルおよび前記Y軸偏向走査コイルを支持する非磁性のコイル支持体と、
    前記X軸偏向走査コイル、前記Y軸偏向走査コイルおよび前記コイル支持体を収容する断熱真空容器と、
    前記断熱真空容器内に配置された冷凍機コールドヘッドと、
    前記X軸偏向走査コイルおよび前記Y軸偏向走査コイルと前記冷凍機コールドヘッドを熱的に接続する熱伝導板とを備え、
    前記X軸偏向走査コイルおよび前記Y軸偏向走査コイルは、前記コイル支持体内に支持され、
    前記冷凍機コールドヘッドと前記熱伝導板により前記冷却部が構成される請求項1に記載の荷電粒子線偏向装置。
  3. 荷電粒子線の進行方向であるZ軸方向に直交するX軸方向に前記荷電粒子線を偏向走査させるX軸偏向走査コイルと、前記Z軸方向および前記X軸方向に直交するY軸方向に前記荷電粒子線を偏向走査させるY軸偏向走査コイルとを備えた荷電粒子線偏向装置において、
    前記X軸偏向走査コイルおよび前記Y軸偏向走査コイルは、ヨークを用いることなくコイルを用いて形成されるとともに、前記Z軸方向に直交する同一平面内で前記Y軸偏向走査コイルの外周側に前記X軸偏向走査コイルが位置するように配置され、
    前記X軸偏向走査コイルおよび前記Y軸偏向走査コイルは、非磁性からなるコイル支持体内に支持され、
    前記Y軸偏向走査コイルおよび前記X軸偏向走査コイルを水を用いて冷却するための水冷装置が設けられ、
    前記X軸偏向走査コイルおよび前記Y軸偏向走査コイルに対して、前記偏向走査のために1Hz以上の周波数の交番電流が印加されることを特徴とする荷電粒子線偏向装置。
  4. 前記X軸偏向走査コイルの周囲に、コイル全体を取り囲む筒状の磁気シールドが配置された請求項1〜3のいずれか1項に記載の荷電粒子線偏向装置。
  5. 請求項1〜4のいずれか1項に記載の荷電粒子線偏向装置と、
    電子線以外の前記荷電粒子線を前記荷電粒子線偏向装置に導く荷電粒子線輸送部と、
    前記X軸偏向走査コイルとY軸偏向走査コイルに各々供給する電流を制御することにより、前記荷電粒子線のXY平面上の照射領域を制御する制御部とを備えた荷電粒子線照射装置。
  6. 前記荷電粒子線偏向装置および前記荷電粒子線輸送部の少なくとも一部を回転可能に支持し、前記荷電粒子線により照射すべき位置の周囲に前記荷電粒子線偏向装置を回転させるように構成された回転ガントリーを備えた請求項5に記載の荷電粒子線照射装置。
  7. 前記荷電粒子線輸送部は、前記荷電粒子線偏向装置に対する荷電粒子線進行方向の上流側に配置された超電導の双極偏向電磁石を有し、前記双極偏向電磁石は前記回転ガントリーに装着されて、前記回転ガントリーにより前記荷電粒子線偏向装置とともに回転させるように構成された請求項6に記載の荷電粒子線照射装置。
JP2006090868A 2006-03-29 2006-03-29 荷電粒子線偏向装置および荷電粒子線照射装置 Expired - Fee Related JP4716284B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006090868A JP4716284B2 (ja) 2006-03-29 2006-03-29 荷電粒子線偏向装置および荷電粒子線照射装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006090868A JP4716284B2 (ja) 2006-03-29 2006-03-29 荷電粒子線偏向装置および荷電粒子線照射装置

Publications (2)

Publication Number Publication Date
JP2007260222A true JP2007260222A (ja) 2007-10-11
JP4716284B2 JP4716284B2 (ja) 2011-07-06

Family

ID=38633790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006090868A Expired - Fee Related JP4716284B2 (ja) 2006-03-29 2006-03-29 荷電粒子線偏向装置および荷電粒子線照射装置

Country Status (1)

Country Link
JP (1) JP4716284B2 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011072717A (ja) * 2009-10-01 2011-04-14 High Energy Accelerator Research Organization 荷電粒子線ビームの制御用電磁石及びこれを備えた照射治療装置
JP2013096949A (ja) * 2011-11-04 2013-05-20 Hitachi Ltd 走査電磁石および荷電粒子ビーム照射装置
WO2015045017A1 (ja) * 2013-09-25 2015-04-02 株式会社日立製作所 超伝導電磁石および粒子線治療システムならびに超伝導電磁石の運転方法
JP2015220403A (ja) * 2014-05-20 2015-12-07 住友重機械工業株式会社 超伝導電磁石及び荷電粒子線治療装置
WO2016067820A1 (ja) * 2014-10-28 2016-05-06 国立研究開発法人 放射線医学総合研究所 荷電粒子ビーム照射装置
JP2016083344A (ja) * 2014-10-28 2016-05-19 国立研究開発法人放射線医学総合研究所 荷電粒子ビーム照射装置
JP2017000584A (ja) * 2015-06-15 2017-01-05 住友重機械工業株式会社 荷電粒子線治療装置
WO2018092753A1 (ja) * 2016-11-15 2018-05-24 株式会社東芝 粒子線ビーム輸送装置、回転ガントリ及び粒子線ビーム照射治療システム
JP2020010824A (ja) * 2018-07-18 2020-01-23 株式会社東芝 スキャニング電磁石装置及び荷電粒子ビーム照射システム
WO2021020004A1 (ja) * 2019-07-26 2021-02-04 株式会社日立製作所 走査電磁石および粒子線治療システム
JP2021032611A (ja) * 2019-08-20 2021-03-01 株式会社東芝 荷電粒子ビーム照射装置および荷電粒子ビーム照射方法
TWI744671B (zh) * 2018-08-03 2021-11-01 日商紐富來科技股份有限公司 電子光學系統及多射束圖像取得裝置
CN113993269A (zh) * 2021-09-22 2022-01-28 成都利尼科医学技术发展有限公司 磁极气隙对称一体式270°偏转系统及其制作方法
JP7191259B1 (ja) 2022-03-23 2022-12-16 株式会社ビードットメディカル 荷電粒子ビーム偏向装置
WO2023181434A1 (ja) * 2022-03-23 2023-09-28 株式会社ビードットメディカル 荷電粒子ビーム偏向装置
CN113993269B (zh) * 2021-09-22 2024-05-03 成都利尼科医学技术发展有限公司 磁极气隙对称一体式270°偏转系统及其制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264797A (ja) * 1992-03-17 1993-10-12 Hitachi Ltd ビーム照射方法及びその装置
JP2002542457A (ja) * 1999-02-19 2002-12-10 ジー エス アイ ゲゼルシャフト フュア シュベールイオーネンフォルシュンク エム ベー ハー イオンビーム走査システム及び該システムの操作方法
JP2004518978A (ja) * 2001-02-06 2004-06-24 ジー エス アイ ゲゼルシャフト フュア シュベールイオーネンフォルシュンク エム ベー ハー 重イオンガントリー用ビーム走査システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264797A (ja) * 1992-03-17 1993-10-12 Hitachi Ltd ビーム照射方法及びその装置
JP2002542457A (ja) * 1999-02-19 2002-12-10 ジー エス アイ ゲゼルシャフト フュア シュベールイオーネンフォルシュンク エム ベー ハー イオンビーム走査システム及び該システムの操作方法
JP2004518978A (ja) * 2001-02-06 2004-06-24 ジー エス アイ ゲゼルシャフト フュア シュベールイオーネンフォルシュンク エム ベー ハー 重イオンガントリー用ビーム走査システム

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011072717A (ja) * 2009-10-01 2011-04-14 High Energy Accelerator Research Organization 荷電粒子線ビームの制御用電磁石及びこれを備えた照射治療装置
JP2013096949A (ja) * 2011-11-04 2013-05-20 Hitachi Ltd 走査電磁石および荷電粒子ビーム照射装置
WO2015045017A1 (ja) * 2013-09-25 2015-04-02 株式会社日立製作所 超伝導電磁石および粒子線治療システムならびに超伝導電磁石の運転方法
JP2015220403A (ja) * 2014-05-20 2015-12-07 住友重機械工業株式会社 超伝導電磁石及び荷電粒子線治療装置
WO2016067820A1 (ja) * 2014-10-28 2016-05-06 国立研究開発法人 放射線医学総合研究所 荷電粒子ビーム照射装置
JP2016083344A (ja) * 2014-10-28 2016-05-19 国立研究開発法人放射線医学総合研究所 荷電粒子ビーム照射装置
DE112015004883B4 (de) 2014-10-28 2024-03-28 Toshiba Energy Systems & Solutions Corporation Bestrahlungsvorrichtung mit geladenem Teilchenstrahl
US10090132B2 (en) 2014-10-28 2018-10-02 National Institutes For Quantum And Radiological Science And Technology Charged particle beam irradiation apparatus
JP2017000584A (ja) * 2015-06-15 2017-01-05 住友重機械工業株式会社 荷電粒子線治療装置
KR102265598B1 (ko) * 2016-11-15 2021-06-17 가부시끼가이샤 도시바 입자선빔 수송 장치, 회전 겐트리 및 입자선빔 조사 시스템
CN109982747B (zh) * 2016-11-15 2021-04-02 株式会社东芝 粒子束输送装置、旋转机架和粒子束照射治疗系统
WO2018092753A1 (ja) * 2016-11-15 2018-05-24 株式会社東芝 粒子線ビーム輸送装置、回転ガントリ及び粒子線ビーム照射治療システム
US11383105B2 (en) 2016-11-15 2022-07-12 Kabushiki Kaisha Toshiba Particle beam transport apparatus, rotary gantry, and particle beam irradiation treatment system
CN109982747A (zh) * 2016-11-15 2019-07-05 株式会社东芝 粒子束输送装置、旋转机架和粒子束照射治疗系统
KR20190059950A (ko) * 2016-11-15 2019-05-31 가부시끼가이샤 도시바 입자선빔 수송 장치, 회전 겐트리 및 입자선빔 조사 치료 시스템
JP7068083B2 (ja) 2018-07-18 2022-05-16 株式会社東芝 スキャニング電磁石装置及び荷電粒子ビーム照射システム
JP2020010824A (ja) * 2018-07-18 2020-01-23 株式会社東芝 スキャニング電磁石装置及び荷電粒子ビーム照射システム
TWI744671B (zh) * 2018-08-03 2021-11-01 日商紐富來科技股份有限公司 電子光學系統及多射束圖像取得裝置
US11742105B2 (en) 2019-07-26 2023-08-29 Hitachi, Ltd. Scanning magnet and particle therapy system
CN114080256A (zh) * 2019-07-26 2022-02-22 株式会社日立制作所 扫描电磁铁及粒子束治疗系统
JP2021019747A (ja) * 2019-07-26 2021-02-18 株式会社日立製作所 走査電磁石および粒子線治療システム
WO2021020004A1 (ja) * 2019-07-26 2021-02-04 株式会社日立製作所 走査電磁石および粒子線治療システム
CN114080256B (zh) * 2019-07-26 2023-11-03 株式会社日立制作所 扫描电磁铁及粒子束治疗系统
JP7217208B2 (ja) 2019-07-26 2023-02-02 株式会社日立製作所 走査電磁石および粒子線治療システム
EP4006920A4 (en) * 2019-07-26 2023-08-30 Hitachi, Ltd. SCANNING ELECTROMAGNET AND PARTICLE BEAM RADIOTHERAPY SYSTEM
JP7293042B2 (ja) 2019-08-20 2023-06-19 株式会社東芝 荷電粒子ビーム照射装置および荷電粒子ビーム照射方法
JP2021032611A (ja) * 2019-08-20 2021-03-01 株式会社東芝 荷電粒子ビーム照射装置および荷電粒子ビーム照射方法
CN113993269A (zh) * 2021-09-22 2022-01-28 成都利尼科医学技术发展有限公司 磁极气隙对称一体式270°偏转系统及其制作方法
CN113993269B (zh) * 2021-09-22 2024-05-03 成都利尼科医学技术发展有限公司 磁极气隙对称一体式270°偏转系统及其制作方法
WO2023181434A1 (ja) * 2022-03-23 2023-09-28 株式会社ビードットメディカル 荷電粒子ビーム偏向装置
JP2023140535A (ja) * 2022-03-23 2023-10-05 株式会社ビードットメディカル 荷電粒子ビーム偏向装置
JP7191259B1 (ja) 2022-03-23 2022-12-16 株式会社ビードットメディカル 荷電粒子ビーム偏向装置

Also Published As

Publication number Publication date
JP4716284B2 (ja) 2011-07-06

Similar Documents

Publication Publication Date Title
JP4716284B2 (ja) 荷電粒子線偏向装置および荷電粒子線照射装置
US5959454A (en) Magnet arrangement for an NMR tomography system, in particular for skin and surface examinations
JP4733742B2 (ja) 磁気共鳴画像化手段を含む粒子線治療装置
CN104813750A (zh) 调整主线圈位置的磁垫片
US20090242785A1 (en) Super conducting beam guidance magnet, which can rotate and has a solid-state cryogenic thermal bus
EP1977632A2 (en) High-field superconducting synchrocyclotron
JPH0584647B2 (ja)
US20090091409A1 (en) Curved beam control magnet
CN115380630A (zh) 采用磁场集中或引导扇区的等时性回旋加速器
JP7102560B2 (ja) 粒子線ビーム輸送装置、回転ガントリ及び粒子線ビーム照射治療システム
JP2007296195A (ja) 水平静磁場方式の楕円筒状ガントリおよびそれに適合するアクティブシールド型傾斜磁場コイル装置を有する磁気共鳴イメージング装置
JP2008028146A (ja) 超電導磁石用熱シールド、超電導磁石装置および磁気共鳴イメージング装置
Borovikov et al. Superconducting 7 T wiggler for LSU CAMD
US11357094B2 (en) Deflection electromagnet device
JP4886482B2 (ja) 超電導磁石装置及び核磁気共鳴イメージング装置
JP2011131009A (ja) 磁気共鳴イメージング装置
US11320504B2 (en) Open-type magnetic resonance imaging apparatus
JP7210403B2 (ja) 超電導磁石装置及び粒子線治療システム
JP5807960B2 (ja) 磁場発生装置および磁気分光測定装置
JP7249906B2 (ja) 超電導コイルおよび超電導磁石装置
CN108369265B (zh) 用于质子治疗的可旋转磁体
JP6460922B2 (ja) ビーム用超電導偏向電磁石およびそれを用いたビーム偏向装置
JP2006186139A (ja) 磁界発生装置
JP2008130707A (ja) 超電導磁石装置及び核磁気共鳴イメージング装置
JP2006095022A (ja) 超電導磁石装置及びこれを用いた磁気共鳴イメージング装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100917

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees