JP5807960B2 - 磁場発生装置および磁気分光測定装置 - Google Patents

磁場発生装置および磁気分光測定装置 Download PDF

Info

Publication number
JP5807960B2
JP5807960B2 JP2012041922A JP2012041922A JP5807960B2 JP 5807960 B2 JP5807960 B2 JP 5807960B2 JP 2012041922 A JP2012041922 A JP 2012041922A JP 2012041922 A JP2012041922 A JP 2012041922A JP 5807960 B2 JP5807960 B2 JP 5807960B2
Authority
JP
Japan
Prior art keywords
magnetic field
superconducting
magnetic
coils
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012041922A
Other languages
English (en)
Other versions
JP2013178153A (ja
Inventor
充穂 古瀬
充穂 古瀬
眞 岡野
眞 岡野
修一郎 淵野
修一郎 淵野
淳 藤森
淳 藤森
利治 門野
利治 門野
潤一 藤平
潤一 藤平
誠一 藤平
誠一 藤平
公 内田
公 内田
秀幸 藤平
秀幸 藤平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
University of Tokyo NUC
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, University of Tokyo NUC filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2012041922A priority Critical patent/JP5807960B2/ja
Publication of JP2013178153A publication Critical patent/JP2013178153A/ja
Application granted granted Critical
Publication of JP5807960B2 publication Critical patent/JP5807960B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、磁場発生装置に係り、特に磁気二色性測定のような磁気分光測定用などとして有用性の高い磁場発生装置に関し、また、その磁場発生装置を用いた磁気分光測定装置に関する。
磁性体には、マイクロ波からX線に至る光の吸収係数や発光効率が偏光方向に対する印加磁化の角度で変化するという性質がある。円偏光の吸収係数や発光効率が右回りと左回りで異なる性質は磁気円二色性(Magnetic Circular Dichroism;MCD)と呼ばれ、直線偏光の吸収係数が磁化に平行と垂直で異なる性質は磁気線二色性(Magnetic Linear Dichroism;MLD)と呼ばれる。
そして、偏光(円偏光又は直線偏光)にX線を用いる場合はX線磁気円二色性又はX線磁気線二色性と呼ばれ、X線として軟X線を用いる場合は軟X線磁気円二色性又は軟X線磁気線二色性と呼ばれる。これらの磁気二色性を利用する磁気分光測定(磁気光学測定)は、磁気材料の分析や評価などに用いられている(例えば特許文献1、特許文献2)。
磁気分光測定では、測定対象の試料に対して外部磁場を印加する必要がある。そのため磁気分光測定装置は、磁場発生源を備え、その磁場発生源で得られる磁場空間にセットする試料に偏光を照射できるように構成されている。
図7に示すのは、磁気分光測定装置の代表的な一つである軟X線磁気円二色性測定装置の従来における構成例の一つである(非特許文献1)。この例の軟X線磁気円二色性測定装置は、それぞれ主鉄心Yaと補助鉄心Ybからなる一対のヨークを有するダブルヨーク型の電磁石Mgを磁場発生源としている。
電磁石Mgは、補助鉄心Ybが先細り状に形成されており、この補助鉄心Ybが真空チャンバCを貫通して先端部を真空チャンバCの中心部に臨ませるようにされている。また電磁石Mgは一方のヨークにX線入射用パイプPaが貫通状態で設けられ、他方のヨークにX線出射用パイプPbが貫通状態で設けられている。
そして、X、Y、Zの3軸方向の回転操作を可能とするマニピュレータMaに接続されたクライオチューブCrの先端に取り付けて真空チャンバCの中心部にセットされる試料SにX線入射用パイプPaを通して円偏光の軟X線Rを照射できるようにされている。
図8に示すのは、従来における軟X線磁気円二色性測定装置の構成例の他の一つである(非特許文献2)。この例の軟X線磁気円二色性測定装置は、液体窒素Nで冷却する磁場発生コイルMcを磁場発生源としており、磁場発生コイルMcを貫通する真空パイプPの中にセットする試料Sに円偏光の軟X線Rを照射できるようにされている。磁場発生コイルMcは、パルス磁場方式とされ、21テスラといった超強力なパルス磁場の発生を可能としている。
特開平5−45304号公報 特開2007−248311号公報
中村哲也、"軟X線磁気円二色性測定による応用磁性材料の磁気評価技術"、[online]、 SPring-8産業利用研究会(第23回)、2008年3月19日、[平成23年10月31日検索]、インターネット(URL:www.spring8.or.jp/ext/ja/iuss/htm/text/06file/sp8_indu_appl_mtg-23/2.pdf) 東北大学他、"プレスリリース;世界で初めて超強力磁場中の軟X線分光実験を実現"、[online]、平成23年5月30日、[平成23年10月31日検索]、インターネット(URL:www.tohoku.ac.jp/japanese/newimg/pressimg/tohokuuniv-press20110530_1.pdf)
磁気円二色性測定などの磁気分光測定では、試料に対する外部磁場の印加が重要で、なかでも印加磁場の角度に関する制御性は重要な要素の一つといえる。つまり、試料への外部磁場の印加に関しては、必要な強さの磁場を試料に印加できるという条件下で、印加磁場の角度(磁場方向、磁場ベクトル)の制御性(印加磁場角度の自由度)が加わることが望まれ、印加磁場角度の制御性を加えることで、印加磁場角度を制御できない状態では不可能であった配置での測定を行えるようになって試料について新しい情報を得ることができるようになるなど、磁気分光測定の効用をさらに高めることが期待できるということである。
こうした観点からすると、図7の磁気円二色性測定装置や図8の磁気円二色性測定装置のような従来の磁気分光測定装置は、磁場発生源による発生磁場そのものに対する角度制御性を備えておらず、必ずしも十分でない。
図7の磁気円二色性測定装置は、先細り状の補助鉄心Ybを有するダブルヨーク型の電磁石Mgを磁場発生源とすることで、補助鉄心Ybにより発生磁場を真空チャンバCの中心部、つまり試料Sがセットされる領域に集中させることができ、これにより試料Sに対し適切な強さの磁場を印加できる。
しかし、電磁石Mgが発生する磁場は角度が一軸方向に固定的なものである。このため、角度固定の磁場に対してマニピュレータMaでクライオチューブCr先端の試料Sを3軸方向に回転させることができるようにし、その試料回転により試料Sへの印加磁場の角度を変えることができるようにしている。この範囲では印加磁場角度について最低限の制御性を確保できているといえる。
しかし、クライオチューブCrを介したマニピュレータMaによる試料Sの回転は、印加磁場角度だけでなく試料との関係における偏光方向も同時に同じだけ変化させてしまい、印加磁場角度の制御性としては不十分なものである。
図8の磁気円二色性測定装置は、パルス磁場方式の磁場発生コイルMcを磁場発生源とすることで、21テスラといった超強力なパルス磁場の発生を可能とする。しかし、その持続時間は数ミリ秒程度といったきわめて短いものに限られる。また、磁場発生コイルMcが発生する磁場の角度が一軸方向に固定的なものであるという点では図7の磁気円二色性測定装置と同様である。
したがって、印加磁場角度の制御は、図7の磁気円二色性測定装置におけるのと同様に、試料の回転操作に頼らざるを得ず、印加磁場角度と偏光方向を同時に同じだけ変化させてしまうことになり、印加磁場角度の制御性という点で不十分である。
磁気分光測定装置には、以上のような印加磁場角度の制御性に関する問題の他に、小型化の問題もある。磁気分光測定装置の小型化には、磁場発生源の小型化が大きな比重を占める。したがって、適切な強さの磁場を試料に印加できるという条件下で磁場発生源をできるだけ小型にできるようにすることが望まれることになる。
本発明は、以上のような事情を背景にしてなされたものであり、磁気円二色性測定のような磁気分光測定などで必要とされる試料への磁場印加を効果的になせるような磁場の発生を可能としつつ、発生磁場の自由な角度制御を可能とし、さらに小型化も可能とする磁場発生装置の提供を第1の課題とし、またそのような磁場発生装置を用いた磁気分光測定装置の提供を第2の課題としている。
磁場発生装置の一つとして、ベクトルマグネットと呼ばれる装置構造が知られている。ベクトルマグネットは、発生させる磁場の方向を自由に回転させることができる。したがって、ベクトルマグネット構造を利用すれば、磁気分光測定などで求められる印加磁場角度の制御性という要求に応えることが可能性である。
しかし、既存のベクトルマグネット構造の磁場発生装置は、磁気分光測定用の磁場発生源としての機能性を有していない。つまり、磁気分光測定では、磁場発生源による磁場空間に試料の出し入れを行えるとともに、磁場空間にセットされた試料への偏光の照射を行えるようにすることが求められるが、既存のベクトルマグネット構造の磁場発生装置はこうした機能性を有していない。
また、既存のベクトルマグネット構造の磁場発生装置は、いずれも大型であり、磁気分光測定装置の磁場発生源用として求められるような小型化要求を充足させることができない。そこで、本願発明者等は、磁気分光測定装置の小型化要求に応えることのできる装置サイズの範囲内で、磁気分光測定などで必要とされる磁場を発生させ、かつ磁気分光測定などで必要とされる偏光照射などに関する機能性を満足させるためのベクトルマグネット構造について鋭意検討を重ねてきた。
その結果、ベクトルマグネット構造で必要とする複数の超電導ユニットコイルについて互いの間の距離(間隙)をできるだけ小さくすることがきわめて有効であること、そして、そのためには、超電導ユニットコイルをテーパ状とするのが最も有効であることが見いだされた。
本発明では以上のような知見に基づいて上記第1の課題を解決する。したがって、第1の発明では、磁場空間に発生させる磁場の方向を回転可能とする磁場発生装置において、中心部の前記磁場空間を挟んで対向するようにして対で配置されるユニットコイルを複数対備え、前記ユニットコイルは、前記磁場空間に臨む先端側に向けて先細り状態となるテーパ状に形成されていることを特徴としている。
このような磁場発生装置では、各ユニットコイルを隣接するユニットコイル間で密接するような状態にして配置することができる。このため、発生させる磁場を利用するための磁場空間に対して磁場をより効率的に発生させることができるとともに、大幅な小型化が可能となる。また、複数対のユニットコイルにより、ベクトルマグネット構造における磁場方向の自由回転性が得られ、磁気分光測定などにおける試料への印加磁場の角度制御性を高いレベルで実現できる。
磁気分光測定などにおける磁場発生源として求められる要求によりよく応えるには、超電導方式とするのが好ましい。こうしたことから、第2の発明では、上記第1の発明の磁場発生装置について、前記ユニットコイルは、超電導ユニットコイルであることを特徴としている。
超電導ユニットコイルをテーパ状にする構造として有力な一つは、超電導パンケーキコイルを用いる構造である。超電導パンケーキコイルは、テープ状の高温超電導線材を巻き重ねて形成され、円板状を呈する。したがって、外径の異ならせた複数の超電導パンケーキコイルを外径の小さい順で先端側から基端側に向けて配列することで、上述のような隣接超電導ユニットコイル間での密接的な配置を可能とするテーパ状を容易に実現することができる。
こうしたことから、第3の発明では、上記第2の発明の磁場発生装置について、前記超電導ユニットコイルは、外径の異なる複数の超電導パンケーキコイルを備え、前記複数の超電導パンケーキコイルは、外径の小さい順で先端側から基端側に向けて配列されていることを特徴としている。
第4の発明では、上記第3の発明の磁場発生装置について、高熱伝導材で形成されたテーパ状のケーシングを備え、前記複数の超電導パンケーキコイルが前記ケーシングに納められていることを特徴としている。このようにすることにより、超電導ユニットコイルで必要となる冷却を伝導冷却で行うことが可能となり、装置構造の簡素化を図れる。
第5の発明では、上記第4の発明の磁場発生装置について、前記ケーシングは、前記複数の超電導パンケーキコイルにより形成される段々面に対応する段々構造の内周テーパ面を有していることを特徴としている。このようにすることにより、ケーシングを介する伝導冷却の効率を高めることができ、また発生磁場で生じる応力に関する超電導パンケーキコイルの安定性を高めることができる。
磁気分光測定などで必要となる印加磁場角度の制御については、X−Z面内、X−Y面内、Y−Z面内のいずれか一つで行えるようにするか、あるいはいずれでも行えるようにするかである。こうしたことから、第6の発明では、上記第1〜第5のいずれかの発明の磁場発生装置について、前記ユニットコイル又は超電導ユニットコイルを2対又は3対有していることを特徴としている。
第7の発明では、上記第2の課題を解決するために、磁気分光測定装置について、試料への磁場印加用の磁場発生源として、上記第1〜第6のいずれかの発明による磁場発生装置を備えていることを特徴としている。
以上のような本発明によれば、磁気分光測定などで必要とされる試料への磁場印加を効果的になせるような磁場の発生を可能としつつ、発生磁場の自由な角度制御を可能とし、さらに小型化も可能とする磁場発生装置が得られる。
一実施例による磁場発生装置の外観構造を示す図である。 図1の磁場発生装置の内部構造を一部断面状態で示す図である。 超電導ユニットコイルの断面構造を示す図である。 ケーシングの断面構造を示す図である。 発生磁場の解析結果を示す図である。 一実施例による軟X線磁気円二色性測定装置の構成を簡略化して示す図である。 従来の軟X線磁気円二色性測定装置の一構成例を示す図である。 従来の軟X線磁気円二色性測定装置の他の構成例を示す図である。
本発明による磁場発生装置は、その発生磁場の特性を活かせる範囲で様々な用途に適用可能であるが、磁気分光測定装置の磁場発生源として特に有用である。したがって、以下では磁気分光測定装置の代表的な一つである軟X線磁気円二色性測定装置の磁場発生源用である場合の超電導磁場発生装置の例について説明する。
図1と図2に、一実施例による超電導磁場発生装置1の構成を示す。図1は、超電導磁場発生装置1の外観構造を示し、図2は、超電導磁場発生装置1の内部構造を一部断面の状態で示している。超電導磁場発生装置1は、複数、具体的には6個の超電導ユニットコイル2(2xa、2xb、2za、2zb、2ya、2yb)を組み合わせて形成されている。
6個の超電導ユニットコイル2は、X、Y、Zの各軸方向に関して2個ずつで対をなすようされている。具体的には、超電導ユニットコイル2xa、2xbがX軸方向対となり、超電導ユニットコイル2za、2zbがZ軸方向対となり、超電導ユニットコイル2ya、2ybがY軸方向対となるようにされている。これら3対6個の超電導ユニットコイル2は、それらで均等的に囲まれる磁場空間3が中心部に形成されるように配列されている。つまり、3対6個の超電導ユニットコイル2は、中心部の磁場空間3を均等的に囲むように配列されている。
より具体的にいうと、X軸方向対超電導ユニットコイル2xa、2xbは、磁場空間3を挟んでX軸上で対向して対となるように配置され、Z軸方向対超電導ユニットコイル2za、2zbは、磁場空間3を挟んでZ軸上で対向して対となるように配置され、Y軸方向対超電導ユニットコイル2ya、2ybは、磁場空間3を挟んでY軸上で対向して対となるように配置されている。
図3に、超電導ユニットコイル2の断面構造を示す。超電導ユニットコイル2は、ケーシング4の内部に複数、具体的には7個の超電導パンケーキコイル5(5a、5b、5c、5d、5e、5f、5g)で形成されるパンケーキコイル集合体6を納めた構成とされている。
図4に、ケーシング4の断面構造を示す。ケーシング4は、いずれも高熱伝導材、具体的には銅材で形成されたベース部材7、カバー部材8、および芯部材9で構成され、全体的にテーパ状となるようにされている。
ベース部材7は、適度な厚みを有する円板状に形成されており、中心部に組付け孔11が設けられ、周縁部に組付け段部12が設けられている。
カバー部材8は、ケーシング4における全体的なテーパ状を形成するために、外周テーパ面13と内周テーパ面14を有するテーパ筒状に形成され、先端開口15を有している。このカバー部材8は、基端部を組付け段部12に嵌め込むようにしてベース部材7にボルト止めなどにより組み付けられる。したがって、カバー部材8は、ベース部材7とともに有底のテーパ体を形成することになる。カバー部材8の外周テーパ面13は滑らかに形成されている。
一方、内周テーパ面14は、後述のようなパンケーキコイル集合体6におけるテーパ状の段々面(パンケーキコイル集合体6における7個の超電導パンケーキコイル5により形成される段々面)に対応する段々構造の段々面に形成されている。このことは、ケーシング4を介する後述のような超電導パンケーキコイル5の伝導冷却の効率を高めるのに役立ち、また発生磁場で生じる応力に関する超電導パンケーキコイル5の安定化にも役立つ。
芯部材9は、肉薄の円筒状に形成されており、基端部にフランジ部16が設けられている。この芯部材9は、組付け孔11に嵌入させることでベース部材7に組み付けられ、先端がカバー部材8の先端開口15に臨むようにされている。こうした芯部材9には二つの機能がある。
一つは、後述するような超電導パンケーキコイル5の巻芯(これには直接的に巻芯となる場合と、巻芯用のボビンの支持として間接的に巻芯となる場合がある)としての機能である。他の一つは、外部から磁場空間3に通じる貫通路17を超電導ユニットコイル2に形成する機能である。芯部材9が形成する貫通路17は、超電導ユニットコイル2xa、2xb、2za、2zb、2ya、2ybそれぞれの配置関係に応じた様々な役割を負わされる。
本実施例では、超電導ユニットコイル2xaと超電導ユニットコイル2xbの貫通路17は、磁場空間3にセットされる試料(磁気円二色性測定における試料;図示せず)に照射するX線の通路の役割を負い、超電導ユニットコイル2zaは、磁場空間3を真空状態にする排気のための通路の役割を負い、超電導ユニットコイル2yaの貫通路17は、磁場空間3に試料をセットするための試料導入路の役割を負うようにされ、残りの超電導ユニットコイル2zbと超電導ユニットコイル2ybの貫通路17は、磁場空間3を目視するためなどに利用する場合とされている。
こうした貫通路17の役割を果たさせるには、超電導磁場発生装置1を磁気円二色性測定装置に組み込んだ際に、磁気円二色性測定装置における対応構造部に芯部材9を接続することになるが、その接続はフランジ部16を介してなすことになる。
ここで、パンケーキコイル集合体6を覆うケーシング4は、上述のように銅材で形成され、高い熱伝導性を有する。このようにしたのは、超電導ユニットコイル2を超電導状態に保つのに必要となる超電導ユニットコイル2の冷却を伝導冷却で行えるようにするためである。つまり、高熱伝導性のケーシング4を介した伝導冷却でパンケーキコイル集合体6の冷却をなせるようにし、これにより液体窒素などのような冷媒を不要にして装置構造の簡素化を図れるようにするということである。
こうしたケーシング4を介した伝導冷却については、ケーシング4の内周テーパ面14と超電導パンケーキコイル5の外周面の間に隙間を生じることのないように銅材によるスペーサ18を介在させ、さらにケーシング4に納めた状態でパンケーキコイル集合体6にパラフィン含浸を施している。このようにすることで、ケーシング4と超電導パンケーキコイル5の間に真空部位が生じるのを効果的に避けることができ、ケーシング4を介した伝導冷却をより効率的に行えるようになる。
超電導パンケーキコイル5は、テープ状の高温超電導線材を巻き重ねて形成する。具体的には、ケーシング4の芯部材9に重ねた円筒状のボビン19を巻芯にしてテープ状導体を巻き重ねて形成する。ただし、図3の例では、超電導パンケーキコイル5aについては、後述のように超電導パンケーキコイル5bと外径を同じにしつつ巻数を異ならせるために、芯部材9を直接的に巻芯とするようにしてある。また、超電導パンケーキコイル5は、その高温超電導線材としてイットリウム系を用いて形成している。イットリウム系の高温超電導線材としては、例えばSuper Power社のSCS4050AP(商品名)が好ましい例である。
超電導パンケーキコイル5は、上述のように、超電導パンケーキコイル5a〜5gとして7個が用いられている。これら7個の超電導パンケーキコイル5a〜5gは、半田接続で互いに接続され、パンケーキコイル集合体6を形成しており、電流リード20が超電導パンケーキコイル5aと超電導パンケーキコイル5gのそれぞれに接続されている。また7個の超電導パンケーキコイル5a〜5gは、それぞれの外径を異ならされている。
具体的には、それぞれの外径に関して、5aと5b、5cと5d、5eと5fをダブルパンケーキコイル構造としつつ、超電導パンケーキコイル5a=超電導パンケーキコイル5b<超電導パンケーキコイル5c=超電導パンケーキコイル5d<超電導パンケーキコイル5e=超電導パンケーキコイル5f<超電導パンケーキコイル5gとなるようにされている。
したがって、7個の超電導パンケーキコイル5a〜5gは、外径の小さい順で先端側(磁場空間3に向く側)から基端側に向けて配列されていることになり、そのためパンケーキコイル集合体6は、先端側に向けて段々面で先細り状態となるテーパ状を呈するようになっている。超電導パンケーキコイル5a〜5gに上記のような外径関係を与えるには、それぞれの巻数を異ならせる。本実施例における超電導パンケーキコイル5の巻数などの仕様を表1に示す。
Figure 0005807960
以上のような超電導磁場発生装置1は、サイズ的には、例えば超電導ユニットコイル2におけるケーシング4の基端径Rが134mm、中心部の磁場空間3の幅Wが65mm、超電導ユニットコイル2の貫通路17の径rが40mmといったサイズであり、きわめて小型である。そして、このように小型でありながら、超電導磁場発生装置1は、磁気円二色性測定装置にこれを適用した場合、最大1テスラといった強い磁場を試料に印加可能とする磁場発生能力を有している。
このことには、超電導ユニットコイル2が上述のようなテーパ状であることが大きく関係している。すなわち、テーパ状であることから、図1や図2に見られるように、中心部の磁場空間3を均等的に囲むように配置される各超電導ユニットコイル2を隣接する超電導ユニットコイル間で密接するような状態にすることができる。このため、超電導ユニットコイル2の内部でなく、超電導ユニットコイル2の外部に対しより効率的に磁場を発生させることができる。
つまり、発生させる磁場を利用するための磁場空間3に対して磁場をより効率的に発生させることができ、このことにより磁気円二色性測定で求められる試料への磁場印加能力を満足させることができるようになるということである。
また、超電導磁場発生装置1は、磁場空間3に発生させる磁場の方向を自由に回転させることができる。その磁場方向の回転は、X軸方向対超電導ユニットコイル2xa、2xb、Z軸方向対超電導ユニットコイル2za、2zb、Y軸方向対超電導ユニットコイル2ya、2ybのそれぞれに流す電流の制御でなされ、したがってきわめて高速になすことができる。
図5に示すのは、X軸方向対超電導ユニットコイル2xa、2xbとZ軸方向対超電導ユニットコイル2za、2zbについての発生磁場の解析結果である。図5の(a)は、磁場の回転角度Θ=0、つまりX軸又はZ軸に平行な磁場とした場合である。この場合は、X軸方向対超電導ユニットコイル2xa、2xb又はZ軸方向対超電導ユニットコイル2za、2zbのいずれか一方に170Aの電流を流すことで、試料に1テスラの磁場を印加可能な磁場を発生させることができる。
図5の(b)は、磁場の回転角度Θ=45°、つまりX軸とZ軸に対して45°で傾く磁場とした場合である。この場合は、X軸方向対超電導ユニットコイル2xa、2xbとZ軸方向対超電導ユニットコイル2za、2zbのそれぞれに120Aの電流を流すことで、試料に1テスラの磁場を印加可能な磁場を発生させることができる。
以上のことから、X軸方向対超電導ユニットコイル2xa、2xb、Z軸方向対超電導ユニットコイル2za、2zb、Y軸方向対超電導ユニットコイル2ya、2ybそれぞれの通電値を個別に0〜±170Aの間で変化させることで、磁場方向をきわめて高速に360°自由に回転させることができる。したがって、固定のままの試料に対し印加磁場角度をきわめて高速に360°自由に変えつつ磁場を印加することができることになり、印加磁場の角度制御性としてきわめて高いものが実現される。
図6に、一実施例による磁気分光測定装置である軟X線磁気円二色性測定装置21の構成を簡略化して示す。軟X線磁気円二色性測定装置21は、磁場発生源として上述の超電導磁場発生装置1を備えている。超電導磁場発生装置1は、適度に真空状態が保たれるクライオスタット22に納められており、各超電導ユニットコイル2がそれぞれの芯部材9において磁気円二色性測定装置21における対応構造部に接続されている。
具体的には以下のとおりである。超電導ユニットコイル2yaは、試料(図示せず)を磁場空間3にセットする操作を行うマニピュレータ23から延びる試料導入管24が接続され、超電導ユニットコイル2zaは、図外の吸引系に連結して磁場空間3を高度な真空状態にするための排気をなす排気管25に接続され、超電導ユニットコイル2xaは、磁場空間3にセットされる試料に照射するX線の入射路となるX線入射管(これは超電導ユニットコイル2xaの後ろに隠れた状態にある)に接続され、超電導ユニットコイル2ybは、横方向から磁場空間3を目視するための横覗き管26に接続され、超電導ユニットコイル2zbは、縦方向から磁場空間3を目視するための縦覗き管27に接続されている。なお、図6では、超電導ユニットコイル2xbの図示を省略した状態にしてある。
また、超電導磁場発生装置1は、伝導冷却構造で冷凍機28と熱的に接続されており、運転中に例えば30K程度の温度状態を保てるように、冷凍機28により伝導冷却で冷却できるようにされている。さらに超電導磁場発生装置1は、コントローラ29により磁場制御をなせるようにされている。その磁場制御は、上述のように、各超電導ユニットコイル2に流す電流を0〜±170Aの間で変化させるように個々に制御することでなされ、それにより試料に対し磁場角度を360°自由に変えつつ磁場を印加することができる。
以上、本発明を実施するための形態について説明したが、これは代表的な例に過ぎず、本発明はその趣旨を逸脱することのない範囲で様々な形態で実施することができる。例えば、上述の例の磁場発生装置は磁気円二色性測定装置に適用する場合であったが、これに限られるものでなく、上述のような特性の磁場を必要とする用途に広く有用なものとして適用可能である。また、上述の例の磁場発生装置は、超電導ユニットコイルを3対備える場合であったが、これに限られるものでなく、2対とする構造も可能である。
1 超電導磁場発生装置(磁場発生装置)
2 超電導ユニットコイル(ユニットコイル)
3 磁場空間
4 ケーシング
5 超電導パンケーキコイル
14 内周テーパ面
21 磁気円二色性測定装置(磁気分光測定装置)

Claims (7)

  1. 磁場空間に発生させる磁場の方向を回転可能とする磁場発生装置において、
    中心部の前記磁場空間を挟んで対向するようにして対で配置されるユニットコイルを複数対備え、前記ユニットコイルは、前記磁場空間に臨む先端側に向けて先細り状態となるテーパ状に形成されていることを特徴とする磁場発生装置。
  2. 前記ユニットコイルは、超電導ユニットコイルであることを特徴とする請求項1に記載の磁場発生装置。
  3. 前記超電導ユニットコイルは、外径の異なる複数の超電導パンケーキコイルを備え、前記複数の超電導パンケーキコイルは、外径の小さい順で先端側から基端側に向けて配列されていることを特徴とする請求項2に記載の磁場発生装置。
  4. 前記超電導ユニットコイルは、高熱伝導材で形成されたテーパ状のケーシングを備え、前記複数の超電導パンケーキコイルが前記ケーシングに納められていることを特徴とする請求項3に記載の磁場発生装置。
  5. 前記ケーシングは、前記複数の超電導パンケーキコイルにより形成される段々面に対応する段々構造の内周テーパ面を有していることを特徴とする請求項4に記載の磁場発生装置。
  6. 前記ユニットコイル又は前記超電導ユニットコイルを2対又は3対有していることを特徴とする請求項1〜請求項5のいずれか1項に記載の磁場発生装置。
  7. 試料への磁場印加用の磁場発生源として、請求項1〜請求項6のいずれか1項に記載の磁場発生装置を備えていることを特徴とする磁気分光測定装置。
JP2012041922A 2012-02-28 2012-02-28 磁場発生装置および磁気分光測定装置 Active JP5807960B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012041922A JP5807960B2 (ja) 2012-02-28 2012-02-28 磁場発生装置および磁気分光測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012041922A JP5807960B2 (ja) 2012-02-28 2012-02-28 磁場発生装置および磁気分光測定装置

Publications (2)

Publication Number Publication Date
JP2013178153A JP2013178153A (ja) 2013-09-09
JP5807960B2 true JP5807960B2 (ja) 2015-11-10

Family

ID=49269923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012041922A Active JP5807960B2 (ja) 2012-02-28 2012-02-28 磁場発生装置および磁気分光測定装置

Country Status (1)

Country Link
JP (1) JP5807960B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6256962B1 (ja) 2017-06-21 2018-01-10 朝日インテック株式会社 磁気式の方位・位置測定装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5005256B2 (ja) * 2005-11-28 2012-08-22 株式会社日立ハイテクノロジーズ 磁場計測システム及び光ポンピング磁束計
EP2467056B1 (en) * 2009-08-21 2018-03-14 Koninklijke Philips N.V. Apparatus and method for generating and moving a magnetic field having a field free line
JP5455690B2 (ja) * 2010-02-04 2014-03-26 Ckd株式会社 電磁コイル、電子レンズ、および電磁バルブ

Also Published As

Publication number Publication date
JP2013178153A (ja) 2013-09-09

Similar Documents

Publication Publication Date Title
TWI559822B (zh) 小型低溫超導之等時迴旋加速器
JP4716284B2 (ja) 荷電粒子線偏向装置および荷電粒子線照射装置
Arenholz et al. Design and performance of an eight-pole resistive magnet for soft X-ray magnetic dichroism measurements
JP2010283186A (ja) 冷凍機冷却型超電導磁石
US8849364B2 (en) High-temperature superconductor magnet system
US20090242785A1 (en) Super conducting beam guidance magnet, which can rotate and has a solid-state cryogenic thermal bus
JP5807960B2 (ja) 磁場発生装置および磁気分光測定装置
TWI458397B (zh) 用於粒子加速之磁鐵結構
Casalbuoni et al. Superconducting undulator coils with period length doubling
KR101922688B1 (ko) 초전도 자석 회전형 직류 유도 가열 장치
Watasaki et al. Stability model of bulk HTS field pole of a synchronous rotating machine under load conditions
KR101877118B1 (ko) 자기장 변위를 이용한 초전도 직류 유도가열 장치
JP2016226138A (ja) 超伝導モーター及び超伝導発電機
Voccio et al. Magic-angle-spinning NMR magnet development: Field analysis and prototypes
Huang et al. A commercial HTS dipole magnet for X-ray magnetic circular dichroism (XMCD) experiments
Grau et al. First experimental demonstration of period length switching for superconducting insertion devices
Kim et al. Shape optimization of the stacked HTS double pancake coils for compact NMR relaxometry operated in persistent current mode
Khrushchev et al. 3.5 Tesla 49-pole superconducting wiggler for DLS
US11357094B2 (en) Deflection electromagnet device
Gupta et al. Design construction and test results of a HTS solenoid for energy recovery linac
JP2006054454A (ja) 超伝導コイル構造、超伝導スペクトルメータ、磁束の生成方法、及び荷電粒子の運動量計測方法
Kovalenko et al. DESIGN OF A FAST CYCLED LOW LOSS 6T MODEL DIPOLE COOLING AT 1.9 K
Li et al. Superconducting 16-Pole Wiggler for Beijing Electron-Positron Collider II
JP2017162646A (ja) 超伝導サイクロトロン及び超伝導電磁石装置
Kovalenko et al. JACoW: Design of a fast cycled low loss 6 T model dipole cooling at 1.9 K

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150903

R150 Certificate of patent or registration of utility model

Ref document number: 5807960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250