JP7210403B2 - 超電導磁石装置及び粒子線治療システム - Google Patents

超電導磁石装置及び粒子線治療システム Download PDF

Info

Publication number
JP7210403B2
JP7210403B2 JP2019146137A JP2019146137A JP7210403B2 JP 7210403 B2 JP7210403 B2 JP 7210403B2 JP 2019146137 A JP2019146137 A JP 2019146137A JP 2019146137 A JP2019146137 A JP 2019146137A JP 7210403 B2 JP7210403 B2 JP 7210403B2
Authority
JP
Japan
Prior art keywords
cooling plate
inner peripheral
cooling
particle beam
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019146137A
Other languages
English (en)
Other versions
JP2021027268A (ja
Inventor
知新 堀
洋之 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2019146137A priority Critical patent/JP7210403B2/ja
Publication of JP2021027268A publication Critical patent/JP2021027268A/ja
Application granted granted Critical
Publication of JP7210403B2 publication Critical patent/JP7210403B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radiation-Therapy Devices (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

本発明は、超電導磁石装置及び粒子線治療システムに関する。
超電導磁石は、超電導線を巻回した超電導コイルを極低温に冷却して使用する。例えば特許文献1には、「超電導コイルは、NbTiからなる超電導線がアルミニウム合金で作製された巻枠に所定回数巻回されて形成されている。そして、蓄冷型冷凍機の最終段の熱ステージが伝熱バーを介して巻枠のフランジ部に熱的に接続されている」(要約)と記載された、超電導磁石装置が開示されている。
特開平11-176629号公報
特許文献1のように、環状に巻回される超電導コイルの内周側に、熱伝導率の高い部材(冷却板)を配置することは、磁束が集中して交流損失の大きくなる内周側の巻線部を冷却する観点で望ましい。しかし、超電導コイルの通電電流が変化すると、冷却板を貫く磁束量も変化するので、冷却板に渦電流損失が生じる。このとき、巻線部の上下に位置する上冷却板や下冷却板を貫く磁束量は、巻線部の内周側に位置する内周冷却板を貫く磁束量よりも大きいため、上冷却板や下冷却板に発生する誘導起電力は、内周冷却板に発生する誘導起電力よりも大きい。しかし、特許文献1のように、内周冷却板が、上冷却板及び下冷却板と電気的に接続されていると、小さな誘導起電力しか発生していない内周冷却板にも、上冷却板や下冷却板で発生した大きな渦電流が流れ込み、内周冷却板で大きな渦電流損失が発生して超電導コイルを加熱してしまう可能性がある。
本発明の目的は、超電導コイルの温度上昇を抑制した超電導磁石装置及びその超電導磁石装置を備えた粒子線治療システムを提供することにある。
前記課題を解決するために、本発明は、環状に巻回される超電導線と、前記超電導線を冷却する冷却板と、を備えた超電導磁石装置であって、前記冷却板は、前記超電導線の内周面と熱的に接触する内周冷却板と、前記超電導線の上面と熱的に接触する上冷却板と、前記超電導線の下面と熱的に接触する下冷却板と、を有し、前記内周冷却板を、前記上冷却板及び前記下冷却板に対して、電気的に絶縁したことを特徴とする。
本発明によれば、超電導コイルの温度上昇を抑制した超電導磁石装置及びその超電導磁石装置を備えた粒子線治療システムを提供できる。
実施例1における粒子線治療システムの概念図である。 実施例1における偏向電磁石の断面模式図である。 実施例1における超電導コイルの平面図である。 実施例1における上冷却板の平面図である。 実施例1における内周冷却板の平面図である。 実施例1における超電導コイルの断面図である。 実施例2における上冷却板の平面図である。
以下に本発明の超電導磁石装置及びこの超電導磁石装置を備えた粒子線治療システムの実施形態について、図面を用いて説明する。
まず、図1を用いて粒子線治療システムの全体構成を説明する。粒子線治療は放射線治療の一種であり、腫瘍に陽子線や炭素線などの粒子線を照射してがん細胞を破壊する治療方法である。
図1において、粒子線治療を施すための粒子線治療システム1001は、建屋(図示省略)の床面に設置される。この粒子線治療システム1001は、粒子線発生装置1002、粒子線輸送装置1013、回転ガントリー1006、粒子線照射装置1007、及び制御システム1065を備えている。
粒子線発生装置1002は、イオン源1003と、このイオン源1003が接続される加速器1004を有する。加速器1004としては、シンクロトロン、サイクロトロン、シンクロサイクロトロンといった加速器が用いられる。
粒子線輸送装置1013は、粒子線照射装置1007に達する粒子線経路1048を有しており、この粒子線経路1048に、加速器1004から粒子線照射装置1007に向かって、複数の四極電磁石1046、偏向電磁石1041、複数の四極電磁石1047、偏向電磁石1042、四極電磁石1049,1050、及び偏向電磁石1043,1044がこの順に配置されることで構成されている。
粒子線輸送装置1013の粒子線経路1048の一部は、回転ガントリー1006に設置されており、偏向電磁石1042、四極電磁石1049,1050、及び偏向電磁石1043,1044も回転ガントリー1006に設置されている。粒子線経路1048は、加速器1004に設けられた出射チャネル1019に接続されている。
回転ガントリー1006は、回転軸1045を中心に回転可能に構成されており、粒子線照射装置1007を回転軸1045の周りで旋回させる回転装置である。
回転ガントリー1006に設置されている偏向電磁石1042~1044には、超電導磁石が用いられる。これらの超電導磁石については後述する。
粒子線照射装置1007は、二台の走査電磁石1051,1052、粒子線位置モニタ1053及び線量モニタ1054を備えている。これら走査電磁石1051,1052、粒子線位置モニタ1053及び線量モニタ1054は、粒子線照射装置1007の中心軸、すなわち、粒子線軸に沿って配置されている。走査電磁石1051,1052、粒子線位置モニタ1053及び線量モニタ1054は粒子線照射装置1007のケーシング(図示省略)内に配置されている。
粒子線位置モニタ1053及び線量モニタ1054は、走査電磁石1051,1052の下流に配置される。走査電磁石1051及び走査電磁石1052は、それぞれ粒子線を偏向し、粒子線を粒子線照射装置1007の中心軸に垂直な平面内において互いに直交する方向に走査する。粒子線位置モニタ1053は照射される粒子線の通過位置を計測する。線量モニタ1054は照射される粒子線の線量を計測する。
粒子線照射装置1007は、回転ガントリー1006に取り付けられており、偏向電磁石1044の下流に配置される。
粒子線照射装置1007の下流側には、患者1056が横たわる治療台1055が、粒子線照射装置1007に対向するように配置される。
制御システム1065は、中央制御装置1066、加速器・輸送系制御装置1069、走査制御装置1070、回転制御装置1088及びデータベース1072を有する。
中央制御装置1066は、中央演算装置(CPU)1067及びCPU1067に接続されたメモリ1068を有する。加速器・輸送系制御装置1069、走査制御装置1070、回転制御装置1088及びデータベース1072は、中央制御装置1066内のCPU1067に接続されている。
粒子線治療システム1001は更に治療計画装置1073を有しており、治療計画装置1073はデータベース1072に接続されている。粒子線治療システム1001では、粒子線の照射エネルギーや照射角度などが粒子線の照射に先立って治療計画装置1073で治療計画として作成されており、この治療計画に基づいて照射が実行される。
中央制御装置1066のCPU1067は、データベース1072に保存されている治療計画から粒子線治療システム1001を構成する各機器の照射に関係する各種の動作制御プログラムを読み込み、読み込んだプログラムを実行して、加速器・輸送系制御装置1069、走査制御装置1070、回転制御装置1088を介して指令を出力することで、粒子線治療システム1001内の各機器の動作を制御する。
なお、実行される動作の制御処理は、一つのプログラムにまとめられていても、それぞれが複数のプログラムに分かれていても良く、それらの組み合わせでも良い。また、プログラムの一部又はすべては専用ハードウェアで実現しても良く、モジュール化されていても良い。更には、各種プログラムは、プログラム配布サーバや外部記憶メディアによって計算機にインストールされても良い。
また、各制御装置は、各々が独立した装置で有線又は無線のネットワークで接続されたものであっても、二つ以上が一体化していても良い。
粒子線電流測定装置1098は、移動装置1017および位置検出器1039を含んでいる。
高周波電源1036は、加速器1004内に設置された高周波加速空洞1037に導波管1010を通じて電力を入力し、高周波加速空洞1037に接続された電極と設置電極の間に粒子線を加速する高周波電場を励起させる。
以上述べた粒子線治療システム1001において、粒子線は、磁場によって偏向されて進行方向が変化し、粒子線発生装置1002から粒子線輸送装置1013、回転ガントリー1006、粒子線照射装置1007を経て、患者1056の腫瘍に到達する。ここで、粒子線の磁場による偏向量は、照射する粒子線の質量mと電荷qの比m/qに依存する。すなわち、m/qが大きいほど、磁場による偏向量が小さくなり、偏向半径が大きくなる。従って、質量電荷比が大きくなると、粒子線治療システムは大型化する傾向がある。そこで、本実施形態では、この傾向を抑制して粒子線治療システムを小型化するために、大きな磁場が生成できる超電導磁石装置を回転ガントリー1006に採用した。
次に、回転ガントリー1006に設置されている超電導磁石装置の構成について、図2以降を用いて説明する。
図2は、偏向電磁石1043のa1-a2による断面図である。二重円筒形状の真空容器1の内部に、二重円筒形状の輻射シールド2が設置されており、輻射シールド2の内部に、6個の超電導コイル5~10が収められている。真空容器1の空洞部3にはビームダクト4が設置され、その内部を粒子線が通過する。超電導コイル5~10によって、空洞部3に略一様な磁場が生成される。超電導コイル5~10の基本的構成は同一なので、以下では、超電導コイル6を例に挙げてその構成を説明する。
図3は、超電導コイル6の平面図である。図3のステンレス容器11内には、超電導線を巻回して構成された巻線部と、この巻線部と熱的に接触させて冷凍機から伝導冷却する無酸素銅製の冷却板と、が格納されている。なお、本明細書における「熱的に接触している」とは、直接接触しているか、空気よりも熱伝導率が高い部材を介在させていることを指すものとする。また、超電導線の材質としては、例えば、ニオブチタン(NbTi)などが用いられる。さらに、冷却板の材質としては、無酸素銅に限らず、純アルミニウムなどを用いることができるが、熱伝導率が少なくとも10W/mK以上、望ましくは300W/mK以上の他の材料を用いても良い。
超電導コイル6は、略レーストラック形状を基本としながら若干湾曲した、湾曲レーストラック形状となっている。湾曲しているが、超電導コイル6の部位を示す便宜上、内側長直線部101、コーナー部102,104,106,108、短直線部103,107、外側長直線部105と呼ぶことにする。なお、内側長直線部101は、超電導コイル6の部位を示すのであって、ステンレス容器11の一部以外に、巻線部の一部や冷却板の一部を含む。同様に、コーナー部102,104,106,108、短直線部103,107、外側長直線部105も、超電導コイル6の部位を示すのであって、ステンレス容器11の一部以外に、巻線部の一部や冷却板の一部を含む。
冷却板の冷却端子14~27は、超電導コイル6の内周側、ステンレス容器11の外に位置している。冷凍機先端部12,13は、超電導コイル6の内周側にある。冷却端子14~27は、いずれも巻線径方向にスリットが入っている。冷凍機先端部12は、冷却端子14~17,19,25,27の近傍にあり、熱良導体(図示せず)を介してこれらの冷却端子と接続されている。同様に、冷凍機先端部13は、冷却端子18,20~24,26の近傍にあり、熱良導体を介してこれらの冷却端子と接続されている。
図4は、ステンレス容器11を外した状態における、超電導コイル6の上冷却板の平面図である。巻線部50の上面と熱的に接触している上冷却板28~35は、巻線周方向に分割(例えば上冷却板29と上冷却板31)されるとともに、巻線径方向にも分割(例えば上冷却板28と上冷却板29)されている。また、上冷却板28~35とステンレス容器11との間は、ポリイミドフィルムなどで電気的に絶縁されている。上冷却板28には冷却端子14が、上冷却板29には冷却端子15,16が、上冷却板30には冷却端子17,18が、上冷却板31には冷却端子19,20が、上冷却板32には冷却端子21が、上冷却板33には冷却端子22,23が、上冷却板34には冷却端子24,25が、上冷却板35には冷却端子26,27が、それぞれ備わっている。
上冷却板28~35は、周方向や径方向のスリットで互いに隔てられており、互いに電気的に絶縁されている。なお、各上冷却板の間にポリアミドフィルム等を挟んでも良い。ここで、本明細書において「電気的に絶縁している」とは、例えば電気抵抗値が1MΩ以上ある状態を指すものとする。また、図示していないが、下冷却板は上冷却板と同じ構造をしている。
図5は、内周冷却板46~49を示した平面図である。巻線部50の内周面に熱的に接触している内周冷却板は、内周冷却板46~49のように、巻線周方向に分割されている。そして、内周冷却板46には冷却端子36~38が、内周冷却板47には冷却端子39,40が、内周冷却板48には冷却端子41~43が、内周冷却板49には冷却端子44,45が、それぞれ備わっている。
また、内周冷却板46~49の冷却端子36~45は、いずれも超電導コイルの内周側に位置している。そして、冷却端子36~45は、いずれも巻線径方向にスリットが入っている。さらに、冷却端子36~39,45は、熱良導体を介して冷凍機先端部12と接続されている。同様に、冷却端子40~44は、熱良導体を介して冷凍機先端部13と接続されている。
図6は、超電導コイル6の断面図であり、具体的には、図4のb1-b2断面における磁束線の様子を破線矢印で示したものである。内周冷却板46は、中央スリット51によって上下に二分割されている。図示しないが、内周冷却板47~49も中央スリットによって二分割されている。冷却端子14と冷却端子36は重なっているが、間にポリイミドフィルムなどを挟むことで電気的に絶縁されている。
次に、図2から図6で示された超電導磁石装置の構成による効果について説明する。
超電導コイルの通電電流が変化して、巻線部50を貫く磁束量が変化すると、巻線部50に交流損失が発生して発熱する。そこで、本実施例では、巻線部50の上面と熱的に接触する上冷却板28,29と、巻線部50の内周面と熱的に接触する内周冷却板46と、巻線部50の下面と熱的に接触する下冷却板52,53と、を設けた。これらの冷却板は冷却端子14,36,54,55から熱良導体を経て冷凍機と接続されているため、巻線部50の交流損失で発生した熱が伝導冷却される。
特に、コイルが環状の場合、巻線部50の内周側に磁束が集中し、巻線部50を貫く磁束分布は、内周側が密になり、外周側が疎になる。従って、超電導コイルの通電電流が変化したとき、巻線部50のうち、印加される磁場が大きい内周側の交流損失が、大きくなる。このため、超電導線の内周面と熱的に接触する内周冷却板46を設けることで、超電導線の内周側の交流損失を速やかに除熱できる。このように、巻線部50の内周側に生じる交流損失が速やかに除熱できると、超電導状態を維持することが可能となる。
さらに、本実施例のように、超電導線を略レーストラック状に巻回している場合、短直線部から円弧部(コーナー部102等)を通って長直線部の入口付近までにおける内周側が、特に磁場が大きくなり、交流損失が大きくなる。そこで、本実施例では、短直線部の内周側に冷却端子36,41を設け、長直線部の入口付近(長直線部のうち円弧部寄り)の内周側に冷却端子37,38,42,43を設けた。このように、発熱量の大きい箇所に冷却端子を効率的に配置して、冷凍機からの伝熱経路を確保している。なお、本実施例では、円弧部と比べて冷却端子を設置し易い直線部に各冷却端子を設けたが、円弧部に冷却端子を設置しても良い。
また、超電導コイルの通電電流が変化すると、冷却板を貫く磁束量も変化するので、冷却板に渦電流損失が生じる。特に、冷却板は無酸素銅などの金属製であるため、渦電流損失が大きくなり易い。このとき、図6に示したように、上冷却板28や下冷却板52を貫く磁束量は、内周冷却板46を貫く磁束量よりも大きいため、上冷却板28や下冷却板52に発生する誘導起電力は、内周冷却板46に発生する誘導起電力よりも大きい。従って、内周冷却板46と上冷却板28や下冷却板52が電気的に接続されていると、小さな誘導起電力しか発生していない内周冷却板46にも、上冷却板28や下冷却板52で発生した大きな渦電流が流れ込んでしまう。その場合、内周冷却板46で大きな渦電流損失が発生して超電導コイルを加熱してしまう可能性がある。そこで、本実施例では、上冷却板28と内周冷却板46の間、下冷却板52と内周冷却板46との間に、ポリイミドフィルム等を挟んで互いを電気的に絶縁することで、内周冷却板46に大きな渦電流が流れ込むのを防ぎ、内周冷却板46での渦電流損失を抑制している。
さらに、上冷却板を貫く磁束量も、内周側(例えば上冷却板28)の方が、外周側(上冷却板29)よりも大きいので、内周側に大きな誘導起電力が発生する。従って、上冷却板28と上冷却板29のように、上冷却板や下冷却板を巻線周方向のスリットを設け、巻線径方向に電気的に絶縁することで、内周側の冷却板で発生した渦電流が外周側の冷却板に流れ込むのを防ぎ、渦電流損失を抑制できる。
また、上下冷却板も内周冷却板も、巻線周方向に分割され、複数の冷却板で形成されているため、巻線周方向にコイルを一周する大きな電流経路を切ることができ、冷却板の渦電流損失をさらに抑制できる。さらに、各冷却端子にも、巻線径方向のスリットが設けられているので、巻線径方向への伝熱経路を確保しつつ、冷却端子における渦電流損失も抑制できる。
なお、上冷却板、下冷却板及び内周冷却板は、ステンレス容器11によって巻線部50に押さえ付けられている。さらに、ステンレス容器11と冷却板との間には、ポリイミドフィルム等を挟むことで、ステンレス容器11と冷却板とが電気的に絶縁されている。これによって、分割されている冷却板に、ステンレス容器11を経由して、渦電流が流れてしまうのを防ぐとともに、冷却板と巻線部50が熱的に接触する状態を確保して冷却性能を維持することが可能となる。
以上のように、本実施例の超電導磁石装置では、超電導コイルの電流変化に伴う交流損失が最も大きい巻線部内周側に内周冷却板が熱的に接触しているので、交流損失を速やかに除熱できる。また、冷却端子が内周側に位置しているので、冷凍機から内周冷却板までの伝熱距離が効率的であり、より速やかに除熱できる。さらに、内周冷却板が、上冷却板及び下冷却板と電気的に絶縁されているので、内周冷却板に渦電流が流れ込んで超電導コイルを加熱するのも抑制できる。
また、本実施例の超電導磁石装置を粒子線治療システムに適用することで、以下のような効果も得られる。
まず、本実施例の超電導磁石装置を回転ガントリーに適用すると、常伝導磁石の回転ガントリーよりも重量を軽減でき、粒子線治療システムとしても小型化が可能となる。
さらに、粒子線治療では、粒子線のエネルギーを変更することで、照射部位の深さ方向を調整する。粒子線のエネルギーを変更すると、磁場による粒子線の偏向量が変化する。従って、粒子線発生装置で発生した粒子線を腫瘍の所望位置に照射するためには、粒子線に印加する磁場強度をエネルギー変更に追随させる必要がある。しかし、上述のような超電導磁石装置を回転ガントリーに適用することにより、エネルギー変更に伴って超電導磁石の通電電流を変化させても、交流損失の大きい内周側の超電流コイルを内周冷却板で効率よく冷却できる。このため、粒子線のエネルギー変更を高速化して、粒子線治療システムの処理能力を向上させることが可能となる。
本実施例の超電導磁石装置では、実施例1と異なり、各冷却板の外周側に冷却端子が形成されている。図7は、ステンレス容器11を外した状態における、本実施例の上冷却板の平面図である。本実施例の短直線部にある上冷却板28,29,32,33は、それぞれ巻線周方向に分割(例えば上冷却板28aと上冷却板28b)されている。そして、上冷却板28aには冷却端子14aが、上冷却板28bには冷却端子14bが、上冷却板29aには冷却端子15aが、上冷却板29bには冷却端子15bが、それぞれ備わっている。同様に、他の上冷却板30~35についても、冷却端子が備わっている。
なお、本実施例では、巻線周方向に分割された上冷却板の各冷却端子が互いに面する部分に、内周冷却板の冷却端子を挟み込むような構成となっている。例えば、上冷却板28a,28bの冷却端子14a,14bの間に、内周冷却板46の冷却端子36が位置している。このため、内周冷却板46~49の冷却端子36~45も、外周側に形成することが可能となっている。
本実施例によれば、超電導コイルの内周側を通過する粒子線に対して、冷却端子が遠くなるため、冷却端子に流れる渦電流が生成する磁場が粒子線に与える影響を小さくすることができる。
なお、本発明は、上述の実施例1,2に限定されるものではなく、様々な変形例が含まれる。上述の実施例1,2は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることも可能である。
例えば、上述の本実施例1,2では、超電導コイルの形状が、短直線部と長直線部とを有するものであったが、短直線部が存在しなくても良く、楕円を含む他の環状の超電導コイルであっても構わない。
1 真空容器、2 輻射シールド、3 空洞部、4 ビームダクト、5~10 超電導コイル、11 ステンレス容器、12,13 冷凍機先端部、14~27 冷却端子、28~35 上冷却板、36~45 冷却端子、46~49 内周冷却板、50 巻線部、51 中央スリット、52,53 下冷却板、54,55 冷却端子、101 内側長直線部、102,104,106,108 コーナー部、103,107 短直線部、105 外側長直線部、1001 粒子線治療システム、1002 粒子線発生装置、1013 粒子線輸送装置、1006 回転ガントリー、1007 粒子線照射装置、1065 制御システム

Claims (7)

  1. 環状に巻回される超電導線と、前記超電導線を冷却する冷却板と、を備えた超電導磁石装置であって、
    前記冷却板は、前記超電導線の内周面と熱的に接触する内周冷却板と、前記超電導線の上面と熱的に接触する上冷却板と、前記超電導線の下面と熱的に接触する下冷却板と、を有し、
    前記内周冷却板が、前記上冷却板及び前記下冷却板に対して、電気的に絶縁されていることを特徴とする超電導磁石装置。
  2. 請求項1に記載の超電導磁石装置であって、
    前記内周冷却板、前記上冷却板、前記下冷却板のうち少なくとも1つを冷凍機と接続する冷却端子が、前記超電導線の内周側に位置することを特徴とする超電導磁石装置。
  3. 請求項1に記載の超電導磁石装置であって、
    前記内周冷却板、前記上冷却板、前記下冷却板のうち少なくとも1つを冷凍機と接続する冷却端子が、前記超電導線の巻線径方向のスリットを有することを特徴とする超電導磁石装置。
  4. 請求項1に記載の超電導磁石装置であって、
    前記超電導線が、直線部と円弧部とを有するレーストラック状に巻回されており、
    前記内周冷却板、前記上冷却板、前記下冷却板のうち少なくとも1つを冷凍機と接続する冷却端子が、前記円弧部、または前記直線部のうち前記円弧部寄りに位置することを特徴とする超電導磁石装置。
  5. 請求項1に記載の超電導磁石装置であって、
    前記内周冷却板、前記上冷却板、前記下冷却板のうち少なくとも1つが、巻線周方向に分割されていることを特徴とする超電導磁石装置。
  6. 請求項1に記載の超電導磁石装置であって、
    前記内周冷却板、前記上冷却板、前記下冷却板のうち少なくとも1つが、巻線径方向に分割されていることを特徴とする超電導磁石装置。
  7. 請求項1乃至6のいずれかに記載の超電導磁石装置を備えた回転ガントリーを有することを特徴とする粒子線治療システム。
JP2019146137A 2019-08-08 2019-08-08 超電導磁石装置及び粒子線治療システム Active JP7210403B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019146137A JP7210403B2 (ja) 2019-08-08 2019-08-08 超電導磁石装置及び粒子線治療システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019146137A JP7210403B2 (ja) 2019-08-08 2019-08-08 超電導磁石装置及び粒子線治療システム

Publications (2)

Publication Number Publication Date
JP2021027268A JP2021027268A (ja) 2021-02-22
JP7210403B2 true JP7210403B2 (ja) 2023-01-23

Family

ID=74664956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019146137A Active JP7210403B2 (ja) 2019-08-08 2019-08-08 超電導磁石装置及び粒子線治療システム

Country Status (1)

Country Link
JP (1) JP7210403B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324615A (ja) 2007-07-23 2007-12-13 Sumitomo Heavy Ind Ltd コイル用巻き枠及びコイル
JP2009188065A (ja) 2008-02-04 2009-08-20 Sumitomo Electric Ind Ltd 超電導装置
JP2015222750A (ja) 2014-05-22 2015-12-10 住友重機械工業株式会社 超伝導電磁石
WO2015189881A1 (ja) 2014-06-09 2015-12-17 株式会社日立製作所 超電導磁石
JP2017117980A (ja) 2015-12-25 2017-06-29 三菱電機株式会社 超電導マグネット、及びmri用超電導マグネット装置
WO2017163534A1 (ja) 2016-03-24 2017-09-28 株式会社日立製作所 変圧器および電力変換装置
JP2019207916A (ja) 2018-05-28 2019-12-05 住友電気工業株式会社 超電導コイル体および超電導機器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727814B2 (ja) * 1985-02-05 1995-03-29 株式会社日立製作所 強制冷却超電導コイル装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324615A (ja) 2007-07-23 2007-12-13 Sumitomo Heavy Ind Ltd コイル用巻き枠及びコイル
JP2009188065A (ja) 2008-02-04 2009-08-20 Sumitomo Electric Ind Ltd 超電導装置
JP2015222750A (ja) 2014-05-22 2015-12-10 住友重機械工業株式会社 超伝導電磁石
WO2015189881A1 (ja) 2014-06-09 2015-12-17 株式会社日立製作所 超電導磁石
JP2017117980A (ja) 2015-12-25 2017-06-29 三菱電機株式会社 超電導マグネット、及びmri用超電導マグネット装置
WO2017163534A1 (ja) 2016-03-24 2017-09-28 株式会社日立製作所 変圧器および電力変換装置
JP2019207916A (ja) 2018-05-28 2019-12-05 住友電気工業株式会社 超電導コイル体および超電導機器

Also Published As

Publication number Publication date
JP2021027268A (ja) 2021-02-22

Similar Documents

Publication Publication Date Title
JP6804581B2 (ja) アクティブリターンシステムおよび陽子線治療システム
CN110012585B (zh) 加速器以及粒子束照射装置
JP2022118114A (ja) 適応開口
JP2019147008A (ja) 粒子ビーム走査
US20170281968A1 (en) Scanning system
US10256004B2 (en) Particle-beam control electromagnet and irradiation treatment apparatus equipped therewith
JP2007260222A (ja) 荷電粒子線偏向装置および荷電粒子線照射装置
US20210298162A1 (en) System and method for gantry-less particle therapy
JP2015225871A (ja) 超伝導電磁石装置及び荷電粒子線治療装置
JP2018057858A (ja) Mriを備える粒子治療装置
JP7293042B2 (ja) 荷電粒子ビーム照射装置および荷電粒子ビーム照射方法
JP7210403B2 (ja) 超電導磁石装置及び粒子線治療システム
WO2019220714A1 (ja) 粒子線加速器および粒子線治療システム
KR102265598B1 (ko) 입자선빔 수송 장치, 회전 겐트리 및 입자선빔 조사 시스템
TWI515026B (zh) 中隔電磁石及粒子束治療裝置
US20240023225A1 (en) Accelerator and particle therapy system
US20230282436A1 (en) Accelerator and particle therapy system
JP6663618B2 (ja) 加速器および粒子線照射装置
JP2022190590A (ja) 粒子線加速器、および、粒子線治療システム
JP2022147237A (ja) 走査電磁石装置及び荷電粒子ビーム照射システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220124

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230111

R150 Certificate of patent or registration of utility model

Ref document number: 7210403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150