JP2007248050A - 生細胞の微弱光による解析を行なうための細胞の処理方法および解析方法 - Google Patents

生細胞の微弱光による解析を行なうための細胞の処理方法および解析方法 Download PDF

Info

Publication number
JP2007248050A
JP2007248050A JP2006053882A JP2006053882A JP2007248050A JP 2007248050 A JP2007248050 A JP 2007248050A JP 2006053882 A JP2006053882 A JP 2006053882A JP 2006053882 A JP2006053882 A JP 2006053882A JP 2007248050 A JP2007248050 A JP 2007248050A
Authority
JP
Japan
Prior art keywords
cell
image
luminescence
cells
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006053882A
Other languages
English (en)
Inventor
Hirofumi Suzuki
浩文 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2006053882A priority Critical patent/JP2007248050A/ja
Publication of JP2007248050A publication Critical patent/JP2007248050A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

【課題】微弱光を発生する微弱光試料でも、所望の細胞解析が可能な処理方法および解析方法を提供すること。
【解決手段】生きた細胞を発光用成分で処理するとともに、発光用成分に対し発光を誘起するための基質溶液を適宜の培養環境下で存在させることにより細胞を発光させて、細胞の発光画像に基づく解析を行うにあたり、解析すべき培養期間に応じて細胞の生物学的活性を損なわない基質濃度に設定したことを特徴とする。
【選択図】なし

Description

本発明は、細胞や組織等の生体試料中における生物学的活性をその活性を極力損なわないようにして長期間ないし連続的に検出する微弱光解析方法に適する生きた細胞の処理方法に関する。本発明は、その方法により実行される画像解析方法にも適用可能であり、そのような画像解析を行なうソフトウェアも包含する。
生物学分野や医学分野の研究において、細胞等の生体試料の生物学的活性をレポータアッセイにより検出する技術が広く利用されてきた。レポータアッセイを用いると、視覚的に調べることが不可能な様様な生物学的活性を可視化することができる。従来の臨床的な検査は、生体試料から調べたい生体関連物質(核酸、血液、ホルモン、タンパク質等)のみを種々の分離方法により単離して、その単離した生体関連物質の量や活性を試薬と反応させていた。しかし、生命体においては、多様な生体関連物質同士の相互作用こそが真の生物学的活性を示すものである。近年、医療用薬剤を研究または開発する場合、生きた生体試料中での生物学的活性に対して最も効果的に作用する薬剤が決定的条件となっている。生きた生体試料を対象としたレポータアッセイには、生体試料と調べたい生体関連物質とを画像化して、生体試料内外におぇる動的変化を経時的に観察する必要性が高まってきている。
具体的には、レポーター物質としての発光(生物発光、化学発光)や蛍光を用いる観察を利用する研究分野では、試料内のタンパク質分子の動的な機能発現を捉えるためにタイムラプスや動画撮像が求められている。現状では、蛍光試料を対象として撮像した画像による動的変化の観察(例えば、蛍光を利用したタンパク質1分子の動画観察)が行われている。蛍光試料の撮像の場合、励起光を照射し続けることで蛍光試料から発せられる光量が時間の経過とともに減少するという性質があるため、定量的な評価に利用できる安定した画像を経時的に撮ることが困難であったが、しかし、鮮明な、つまり、空間分解能の高い画像を短い露出時間で撮ることができた。一方、発光試料を対象とした画像による動的変化の経時的観察においては、発光試料からの発光が極めて小さいので、発光試料の観察には、イメージ・インテンシファイアを装着したCCDカメラを用いて行われていた。発光試料の撮像の場合、励起光を照射する必要がないため、定量的な評価に利用できる安定した画像を経時的に撮ることができた。
これまで、発光試料の観察においては、発光試料からの発光量の測定が行われていた。例えば、ルシフェラーゼ遺伝子が導入された細胞の観察では、ルシフェラーゼ遺伝子の発現の強さ(具体的には発現量)を調べるために、ルシフェラーゼ活性に因る細胞からの発光量の測定が行われていた。そして、ルシフェラーゼ活性に因る細胞からの発光量の測定は、まず細胞を溶解した細胞溶解液とルシフェリンやATPやマグネシウムなどを含む基質溶液とを反応させ、ついで基質溶液と反応させた細胞溶解液からの発光量を光電子増倍管を用いたルミノメーターで定量する、という手順で行われていた。つまり、発光量は細胞を溶解した後に測定されていた。これにより、ある時点でのルシフェラーゼ遺伝子の発現量を細胞全体の平均値として測定することができた。ここで、ルシフェラーゼ遺伝子などの発光遺伝子をレポーター遺伝子として細胞に導入する方法には例えばリン酸カルシウム法やリポフェクチン法やエレクトロポーション法などがあり、各方法は目的や細胞の種類の違いに応じて使い分けられている。また、ルシフェラーゼ遺伝子がレポーター遺伝子として導入された細胞においてルシフェラーゼ遺伝子の発現の強さをルシフェラーゼ活性に因る細胞からの発光量を指標として調べる際、細胞に導入するルシフェラーゼ遺伝子の上流や下流に目的のDNA断片を繋ぐことで当該DNA断片がルシフェラーゼ遺伝子の転写に及ぼす影響を調べることができ、また、細胞に導入するルシフェラーゼ遺伝子の転写に影響を及ぼすと思われる転写因子などの遺伝子を発現ベクターに繋いでルシフェラーゼ遺伝子と共発現させることで当該遺伝子の遺伝子産物がルシフェラーゼ遺伝子の発現に及ぼす影響を調べることができる。
また、時間経過に沿って発光遺伝子の発現量を捉えるには生きた細胞からの発光量を経時的に測定する必要がある。そして、生きた細胞からの発光量の経時的測定は、まず細胞を培養するインキュベーターにルミノメーターの機能を付け、ついで培養している全細胞集団からの発光量をルミノメーターで一定時間ごとに定量する、という手順で行われていた。これにより、一定の周期性をもった発現リズムなどを測定することができ、よって、細胞全体における発光遺伝子の発現量の経時的な変化を捉えることができた。ルミノメーターによる測定感度を充分確保するために、ホタルルシフェリンのような汎用の基質溶液を1mM以上の濃度で細胞を処理するようにしていた。この濃度設定においては、細胞を取り出して処理するので、培養環境に戻せるような生きた状態では処理されない。一方、発光遺伝子の発現が一過性である場合には、個々の細胞での発現量に大きなばらつきがある。例えば、HeLa細胞などのクローン化した培養細胞であっても、細胞膜表面のレセプターを介した薬剤の応答が個々の細胞でばらつくことがある。すなわち、細胞全体としての応答は検出されなくとも数個の細胞は応答している場合がある。このことから、発光遺伝子の発現が一過性である場合には、細胞全体からではなく個々の細胞から発光量を経時的に測定することが重要である。そして、顕微鏡を用いた生きた個々の細胞からの発光量の経時的測定は、各細胞の発光が極めて弱いので、液体窒素温度レベルの冷却CCDカメラで長時間露光したり、イメージ・インテンシファイアを装着したCCDカメラとフォトンカウンティング装置とを用いたりして行われていた。これにより、生きた個々の細胞における発光遺伝子の発現量の経時的な変化を捉えることができた。どのような培養期間であっても、発光のための試薬条件は変更されない。
以上の説明において、例えば蛍光タンパク質をレポーター遺伝子として用いる遺伝子発現の解析方法および装置は特許文献1(特表2004−500576)に開示されている。また、ルミノメーターを用いて生物発光による遺伝子発現の解析方法およぼ装置は特許文献2(特開2005−118050)に開示されている。
特表2004−500576 特開2005−118050
しかしながら、微弱な発光の発光試料を撮像する場合、発光試料からの発光量が極めて少ないため、どうしても肉眼では見ることが出来ず、CCDのような蓄積型の撮像手段を用いて光量を蓄積しなければ画像生成することができない、という制約が有る。しかも、単一の細胞ないし組織を構成する細胞群において、細胞1個当りから発生する微弱光は、あまりに弱過ぎるので、鮮明な画像を撮るのに必要な露出時間が長くなる、という問題点があった。即ち、撮像の時間間隔は単位時間あたりの光量に制約されるため、微弱な発光の発光試料を撮像する場合、鮮明な画像を長い時間間隔で、例えば60分間隔で、経時的に撮ることができても、10〜30分程度の短い露光時間、ひいては1〜5分の露光でリアルタイムに撮像することはできなかった、という問題点があった。特に生細胞を長時間(例えば、50分以上)露光すると、培養容器等の支持体上でさえ細胞自身が動いて鮮明な画像を形成できない場合がある。一般に、画像を用いた解析を行なうためには、正確な輪郭を認識できなければならない。従って、画像が不鮮明なときは解析結果が不正確である可能性が有る。
本発明は、上記問題点に鑑みてなされたものであって、肉眼で見えないような微弱光を発生する微弱光試料でも、所望の細胞解析が可能な処理方法および解析方法を提供することを目的とする。また、鮮明な画像を短い露出時間で、ひいてはリアルタイムに撮ることができる発光試料撮像方法を組合わせた解析方法を提供することも目的とする。
特筆すべきことに、培養期間に応じて基質濃度の設定を変更することにより、発光画像を長期間得ることと、細胞の生物学的活性を長期間維持することとを同時に達成できることを見出した。すなわち、本発明者は、培養環境下で上述した課題を解決し、目的を達成するために、本発明の請求項1は、生きた細胞を発光用成分で処理するとともに、発光用成分に対し発光を誘起するための基質溶液を適宜の培養環境下で存在させることにより細胞を発光させて、細胞の発光画像に基づく解析を行うにあたり、解析すべき培養期間に応じて細胞の生物学的活性を損なわない基質濃度に設定したことを特徴とする画像解析のための生細胞の処理方法である。また、請求項2は、前記培養期間が数日以上の場合には、前記基質を700μM以下の濃度とすることを特徴とする処理方法である。また、請求項3は、前記培養期間が数日未満の場合には、前記基質を800μm以上、1mM以下の濃度とすることを特徴とする処理方法である。また、請求項4は、請求項1または2に記載の方法において、前記基質濃度を200μM以上としたことを特徴とする処理方法である。
また、請求項5は、請求項1から4のいずれかに記載の方法において、基質がホタルルシフェリンまたはセレンテラジンであることを特徴とする処理方法である。本発明の処理方法は、上記のような基質濃度範囲で培養し続けることにより、生物学的活性が低下しない状態を維持しながら、培養期間中、常に画像化可能な発光量を保つものである。
他方、本発明の請求項6は、生きた細胞を発光用成分で処理するとともに、発光用成分に対し発光を誘起するための基質溶液を適宜の培養環境下で存在させることにより細胞を発光させて、細胞の発光画像に基づく解析を行うにあたり、開口数(NA)および投影倍率(β)で表される(NA÷β)の2乗の値が0.01以上である光学的条件で細胞からの発光を収集するとともに、基質濃度を600μM以下に設定することを特徴とする生細胞の画像解析方法である。また、請求項7は、請求項6に記載の方法において、前記光学条件としての(NA÷β)の2乗の値が0.039以上であることを特徴とする解析方法である。また、請求項8は、請求項6に記載の方法が、さらに蛍光成分を含んでいる細胞に適用することとされ、発光画像と蛍光画像による総合的な画像解析を行うことを特徴とする解析方法である。また、請求項9は、請求項8に記載の方法が、発光画像の取得に必要な時間に応じて励起光量を決定することを特徴とする解析方法である。また、請求項10は、請求項6から9のいずれかに記載の方法において、前記基質濃度を200μM以上で存在させるとともに、30分以内の撮像時間で発光画像を得ることを特徴とする解析方法である。なお、本発明において、発光試料を光学イメージングするには、開口数(NA)および投影倍率(β)で表される(NA÷β)2の値が0.01以上である対物レンズを用いることにより、発光だけの画像も短時間でイメージングできるという利点がある。短時間で発光画像が得られれば画像解析を正確に行うに充分な画質を保証することが可能となる。また、同様の光学的条件によると、高価な極低温冷却型の撮像素子を使わずに小型且つ経済的な撮像が可能となる利点もある。
とくに、開口数(NA)および投影倍率(β)で表される(NA÷β)2の値が0.039以上である対物レンズを用いることにより、従来よりも顕著に高速にイメージングを実行でき、動き易い細胞(神経細胞、シアノバクテリア等)の画像解析を確実に行える点で好ましい。
さらに、開口数(NA)および投影倍率(β)で表される(NA÷β)2の値が0.071以上である場合に1分〜5分という短時間で対物レンズを用いることにより、あらゆる細胞解析において、リアルタイムなイメージングを実行できる点で好ましい。
また、本発明は発光イメージングを高い開口数(NA)の対物レンズを用いて、短かい時間間隔の画像解析を行なうことが可能になるので、あらゆる刺激応答性を見逃さない。これにより、創薬や診断において優れた方法を提供する。また、発光量の少ない発光試料(例えば、発光タンパク質(例えば、導入された遺伝子(例えばルシフェラーゼ遺伝子)から発現された発光タンパク質)や、発光性の細胞または発光性の細胞の集合体や、発光性の組織試料や、発光性の個体(例えば動物や臓器など)など)でも、鮮明な画像を短い露出時間で、ひいてはリアルタイムな解析が可能となる。
本発明の微弱光解析方法によれば、肉眼で見えないような微弱光を発生する微弱光試料でも、所望の細胞解析が可能な処理方法および解析方法を提供できる。また、対物レンズが特定の条件を満たす場合に、鮮明な画像を短い露出時間で、ひいてはリアルタイムに解析できる解析方法を提供できる。
以下に、本発明にかかる微弱光解析方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
本発明にかかる方法を実施するための装置の構成について図1を参照して説明する。図1は、本発明にかかる発光試料撮像方法を実施するための装置の構成の一例を示す図である。図1に示すように、本発明にかかる発光試料撮像方法を実施するための装置は、撮像対象であるサンプル1を短い露出時間で、ひいてはリアルタイムに撮像するためのものであり、対物レンズ2と集光レンズ3とCCDカメラ4とモニタ5とで構成されている。なお、当該装置は図示の如くズームレンズ6をさらに備えてもよい。
サンプル1は、発光試料であり、例えば、発光タンパク質(例えば導入された遺伝子(ルシフェラーゼ遺伝子など)から発現された発光タンパク質)や、発光性の細胞や、発光性の細胞の集合体や、発光性の組織試料や、発光性の臓器や、発光性の個体(動物など)などである。また、サンプル1は、具体的には、ルシフェラーゼ遺伝子を導入した発光細胞でもよい。対物レンズ2は、開口数(NA)および投影倍率(β)で表される(NA÷β)2の値が0.01以上のものである。集光レンズ3は、対物レンズ2を介して到達したサンプル1からの発光を集める。CCDカメラ4は、0℃程度の冷却CCDカメラであり、対物レンズ2や集光レンズ3を介してサンプル1を撮像する。モニタ5はCCDカメラ4で撮像した画像を出力する。
そして、対物レンズ2や対物レンズ2の包装容器(パッケージ)には、(NA/β)2の値を表記する。従来の対物レンズにはレンズ種類(例えば“PlanApo”)、倍率/NA油侵(例えば“100×/1.40oil”)および無限遠/カバーガラス厚(例えば“∞/0.17”)が表記されていた。しかし、本発明の方法にかかる撮像手段の対物レンズ(対物レンズ2)には、レンズ種類(例えば“PlanApo”)、倍率/NA油侵(例えば“100×/1.40oil”)、無限遠/カバーガラス厚(例えば“∞/0.17”)の他に、さらに射出開口角(例えば、“(NA/β)2:0.05”)が表記されている。
以上、説明したように、本発明にかかる発光試料撮像方法を実施するための装置において、対物レンズ2は、開口数(NA)および投影倍率(β)で表される(NA÷β)2の値が0.01以上である。これにより、発光量の少ない発光試料(例えば、発光タンパク質(例えば、導入された遺伝子(例えばルシフェラーゼ遺伝子)から発現された発光タンパク質)や、発光性の細胞または発光性の細胞の集合体や、発光性の組織試料や、発光性の個体(例えば動物や臓器など)など)でも、鮮明な画像を短い露出時間で、ひいてはリアルタイムに撮ることができる。具体的には、ルシフェラーゼ遺伝子を導入した発光細胞を撮像対象として、鮮明な画像を短い露出時間で、ひいてはリアルタイムに撮ることができる。また、対物レンズ2は、従来の対物レンズと比較して、開口数が大きく且つ倍率が小さいので、対物レンズ2を用いれば広範囲を分解能よく撮像することができる。これにより、例えば動きのある発光試料や移動する発光試料や広い範囲に分布する発光試料を撮像対象とすることができる。また、対物レンズ2は、当該対物レンズ2および/または当該対物レンズ2を包装する包装容器(パッケージ)に、開口数(NA)および投影倍率(β)で表される(NA÷β)2の値(例えば0.01以上)を表記した。これにより、例えば発光画像観察を行う者は、表記された(NA÷β)2の値を確認すれば、発光試料を短い露出時間で、ひいてはリアルタイムに撮像するのに適した対物レンズを容易に選択することができる。
従来、ルシフェラーゼ遺伝子を用いたレポーターアッセイにおいては、細胞を溶解した後に発光量を測定するため、ある時点での発現量しか捉えることができず、しかも細胞全体の平均値としての計測になってしまう。また、培養しながらの計測においては、細胞コロニーの経時的な発現量の変化を捉えることはできるが、個々の細胞での発現量の変化を捉えることはできない。そして、個々の細胞の発光を顕微鏡で観察するためには、生きた細胞からの発光量が極めて弱いため、液体窒素温度レベルの冷却CCDカメラで長時間露光したり、イメージ・インテンシファイアを装着したCCDカメラでフォトンカウンティングをしたりしなければならない。そのため、発光検出のカメラは高価で大掛かりなものになってしまう。しかし、レポーター遺伝子産物としてのルシフェラーゼ活性を示す個々の細胞の発光を顕微鏡によって観察する際、本発明にかかる発光試料撮像方法を実施するための装置を利用すれば、イメージ・インテンシファイアを装着することなく、0℃程度の冷却CCDカメラを用いて定量的な画像を取得することができる。すなわち、本発明にかかる発光試料撮像方法を実施するための装置を利用すれば、生きた状態で個々の細胞の発光を0℃程度の冷却CCDカメラによって観察することができるので、イメージ・インテンシファイアやフォトンカウンティングのための装置が不要である。つまり、低コストで発光試料の撮像を行うことができる。また、本発明にかかる発光試料撮像方法を実施するための装置を利用すれば、個々の生きた細胞の発光を、培養しながら経時的に観察することができ、さらにリアルタイムに観察することもできる。また、本発明にかかる発光試料撮像方法を実施するための装置を利用すれば、同じ細胞について、異なった条件での薬剤や刺激の応答をモニタすることができる。
ここで、本発明にかかる発光試料撮像方法、発光細胞撮像方法および対物レンズの理解を容易にするために、従来の対物レンズおよびそれを用いた発光画像観察について簡単に説明する。
一般に、顕微鏡観察における空間分解能εは、下記数式1で表される。
ε=0.61×λ÷NA ・・・(数式1)
(数式1において、λは光の波長であり、NAは開口数である。)
また、観察範囲の直径dは、下記数式2で表される。
d=D÷M ・・・(数式2)
(数式2において、Dは視野数であり、Mは倍率である。なお、視野数は一般に22から26である。)
従来、顕微鏡用対物レンズの焦点距離は国際規格で45mmとされていた。そして、最近では、焦点距離を60mmとする対物レンズが使われはじめている。この焦点距離を前提にしてNAが大きい、つまり空間分解能が高いレンズを設計すると作動距離(WD)は一般には0.5mm程度であり、また長WD設計のものでも8mm程度であった。このような対物レンズを用いた場合、観察範囲は0.5mm径程度である。
しかし、ディッシュやガラズボトムディッシュに分散した細胞群や組織、個体の観察を行う場合、観察範囲が1から数cmに及ぶことがある。このような範囲を分解能よく観察したいときには、低倍率でありながらNAを大きい値で維持しなければならない。換言すると、NAはレンズ半径と焦点距離との比であるので、NAが大きいまま広い範囲を観察できる対物レンズは、低倍である必要がある。そして、結果的に、このような対物レンズは大口径となる。なお、大口径の対物レンズの製作では、一般的に光学材料の物性の均一性やコーティングの均一性において、また、レンズ形状においても高い精度が求められる。
また、顕微鏡観察の場合、光学系の透過率や対物レンズの開口数やCCDカメラのチップ面での投影倍率やCCDカメラの性能などが像の明るさに大きく影響してくる。そして、像の明るさは、開口数(NA)を投影倍率(β)で割った値の2乗、すなわち(NA/β)2で評価される。ここで、対物レンズには、一般に、入射開口角NAと射出開口角NA'との間に下記数式3の関係があり、NA'2が観察者の目やCCDカメラなどに届く明るさを示す値である。
NA'=NA÷β ・・・(数式3)
(数式3において、NAは入射開口角(開口数)であり、NA'は射出開口角であり、βは投影倍率である。)
一般の対物レンズにおいて、NA'は高々0.04であり、NA'2は0.0016である。また、現在市販されている一般的な顕微鏡の対物レンズにおける像の明るさ(NA/β)2の値を調査したところ、0.0005から0.002の範囲であった。
ところが、上記のような現在市販されている対物レンズを装着した顕微鏡を用いて、例えば細胞内でルシフェラーゼ遺伝子を発現させ発光している細胞を観察しても、当該細胞からの発光を目視で観察することができないし、さらに0℃程度に冷却したCCDカメラを用いて撮像した発光画像を観察しても細胞からの発光を確認することができない。なお、発光試料を観察する場合には、蛍光観察に必要な励起光の投影は不要である。例えば、落射蛍光観察では、対物レンズは、励起光投影レンズと蛍光を集光して画像を形成するレンズとの両方の機能を満たしている。
そこで、光量の少ない発光を画像で観察するためには、大きなNAと小さいβの特性を有する対物レンズが必要である。そして、結果的に、当該対物レンズは大口径となる傾向がある。なお、このような対物レンズでは、励起光投影の機能を考慮することなく機能を単純化して設計、製造しやすくすることが求められる。
また、発光や蛍光観察を利用する研究分野では、試料内のタンパク質分子の動的な機能発現を捉えるためにタイムラプスや動画撮像が求められている。最近では、蛍光を利用したタンパク質1分子の動画観察が行われている。これらの撮像では単位時間の撮像フレーム数が多いほど画像1フレームあたりの露出時間は短くなる。このような観察においては、明るい光学系、特に、明るい対物レンズが必要となる。しかし、蛍光に比べて発光タンパク質の光量は少ないので、1フレームの撮像に、例えば20分の露出時間を要することが多い。このような露出時間でタイムラプス観察を行うには動的な変化が非常に遅い試料に限られる。例えば、約1時間に一度分裂する細胞では、その周期内の変化を観察することはできない。従って、シグナル・ノイズ比を高く維持しながら少ない光量を効率よく画像化するために、光学系の明るさを向上することは重要である。
以上の経緯を踏まえて製作された本発明の対物レンズは、上記の一般に市販されている対物レンズに比べて、大きなNAと小さいβの特性を有している。よって、本発明の対物レンズのNA'2は大きな値である。つまり、本発明の対物レンズは明るい対物レンズであると言うことができる。これにより、本発明の対物レンズのような明るい対物レンズを用いれば、光量の少ない発光試料からの発光を画像で観察することができる。また、より暗い像を観察するために、開口数の大きい本発明の対物レンズを実体顕微鏡に装着することで、イメージ・インテンシファイアを装着することなく、0℃程度に冷却したCCDカメラでも、細胞の発光を画像で観察することができる。また、液体窒素冷却を用いるCCDカメラで感度を上げる方法があるが、この場合CCDカメラが非常に高価に、大規模になる。しかし、本発明の対物レンズを用いれば、ペルチェ冷却によるCCDカメラでも、細胞の発光を画像で観察することができる。また、本発明の対物レンズは、数から10cm程度の大口径である。これにより、従来では撮像対象となり得なかった移動する発光試料や広い範囲に分布する発光試料などを撮像対象とすることができる。
本発明の方法を実施するための測定原理、光学系の構成その他については、図1により既に説明したが、本出願人による出願(特願2005−267531号および特願2005−44737号)を参照してもよい。前記出願にも記載されるように、本出願人は、光学的実験を通じ、対物レンズの開口数(NA)および投影倍率(β)で表される(NA÷β)の2乗の値が0.01以上の光学系で撮像することによって、単一の細胞から発生する発光だけで画像化できる証明データを取得した。さらに、本出願人は、検討を進め、同一シャーレ内で培養された複数の細胞において、遺伝子発現の変動パターンが異なることも発見した。驚くべきことに、上記の撮像条件は、本発明において実施される応用例で取り扱われる微弱な発光画像に対しても適用でき、短い時間(例えば1分〜20分)で生物発光のような微弱な発光成分による細胞画像を撮像できる。さらに、撮像装置の対物レンズを開口数(NA)/投影倍率(β)の2乗で表される光学的条件が0.071以上である場合に、1〜5分以内で画像化でき、画像解析も可能な細胞画像を提供できることも分かった。
上述した図1に示すように、本発明にかかる撮像方法を実施するための装置は、撮像対象であるサンプル1を短い露出時間で、ひいてはリアルタイムに撮像するためのものであり、従来採用されたことの無い高開口数(NA)の対物レンズ2とCCDカメラ4とモニタ5とで基本的に構成されている。これらの基本構成を備える装置を、本発明では発光顕微鏡と称することとする。発光顕微鏡は、暗視野での撮像を行うために、適宜、遮光用のフタまたはハウジングによって収容されているのが好ましい。また、適当な培養条件を維持できる培養装置を発光顕微鏡と一体に組合せることで、撮像を長期間に亘り、自動的に実行できる。なお、撮像を行う機構を有する構造であれば、顕微鏡の形態である必要はなく、マイクロプレートリーダーのような測定機器の形態であってもよい。
次に、本発明で使用する発光顕微鏡の構成、形態とその作用を説明する。 発光顕微鏡の基本的な特徴は、顕微鏡視野中の細胞に発現させた発光タンパク質から発する光を、対物レンズ(NA0.75)および光学フィルタを通してデジタルカメラで画像化することで、短時間でモニタリング出来ることである。遺伝子の発現パターンを発光画像としてリアルタイムに取得できるため、細胞を用いた遺伝子発現アッセイ系の幅広い研究対象に応用できると期待されている技術である。基本的な測定系の構成は、培養装置部に隣接した光学系を試料観察部とし、そこでの発光を対物レンズ(NA0.75、好ましくはNA0.75以上)および光学フィルタを通してデジタルカメラで捉えた後、デジタル画像取り込み用のパソコンでデータの記録と解析を行うようになっている。培養装置部はヒートプレートおよびチャンバーにより保温、保湿することができる。培養装置部内の温度は25−37℃に設定して試料を観察する。好ましくは37℃に設定して試料を観察する。湿度は0〜100%に設定して観察する。好ましくは60〜100%に設定する。 さらに、発光の光学イメージングを行なったときと同視野において明視野による画像を取得し、画像解析ソフト等で発光画像と明視野画像を重ね合わせることによって、発光している細胞を同定することができる。
本発明の方法に関する用語の定義を以下に示す。
<刺激により発現が誘導される遺伝子のプロモーター領域>
本発明における刺激により発現が誘導される遺伝子プロモーター領域としては、最初期遺伝子のプロモーターが挙げられる。本発明で用いられる最初期遺伝子のプロモーターとしては、例えば、c-fosプロモーター領域が挙げられる。また、本発明で用いられるプロモーターとしては、前記プロモーターの任意の動物種の対応物も含まれる。ここでプロモーター領域とは、プロモーター活性を有するために必要な最小の塩基配列を含む任意の領域を意味する。例えば、該遺伝子の転写部位に対して上流500から2000塩基の領域の一部または全部を用いることができる。
<レポーター遺伝子>
本発明におけるレポーター遺伝子は、検出可能な蛍光を発するレポータータンパク質をコードする遺伝子を意味する。例えば、蛍もしくはウミシイタケなどに由来するルシフェラーゼを挙げることができる。さらには、例えば、βガラクトシダーゼをコードする遺伝子、アルカリホスファターゼをコードする遺伝子を挙げることができる。かかるレポーター遺伝子を発光させるための基質としては、任意のものに適用できるが、とくにホタルルシフェリン、セレンテラジンに好適に適用できる。
<光学イメージング>
本発明における光学イメージングとは、細胞や組織等の生体試料から発せられる検出可能なシグナルの存在、不在または強度をモニタリング、記録および分析するイメージング方法を意味する。例えば、レポーター遺伝子を導入した細胞においてレポーター遺伝子により光学イメージングを達成するためには、レポーター遺伝子により発せられるシグナルの強度が、シグナルを細胞の外部から分析することができるように、十分に高い感度でなければならない。光学イメージングは自動化に容易に適用可能であることから、多数の遺伝子発現を同時にモニタリングするのに用いることができる。なお、イメージングした試料画像の任意の位置について、時系列に2次元または3次元に画像情報を処理する技術は、本出願人による特願2004−172156、特願2004−178254、特願2004−342940、特願2005−267531等を参照してもよい。蛍光観察と発光観察における時系列な画像取得の違いは、発光観察が励起光による光学的走査(レーザスキャン)を必要としない点で余計な光による影響が無い点にある。本発明で行うイメージング技術によれば、リアルタイムに発光画像を撮像できる。
B.遺伝子発現の光学イメージング方法
<遺伝子発現ベクターの作製>
動物細胞を用いる場合、発現ベクターは少なくともプロモーター、開始コドン、目的のタンパク質をコードするDNA、終止コドンを含んでいることが好ましい。また、シグナルペプチドをコードするDNA、エンハンサー配列、該タンパク質をコードする遺伝子の5'側および3'側の非翻訳領域、スプライシング接合部、ポリA付加シグナル、選択マーカー領域または複製可能単位などを含んでいてもよい。
<細胞への遺伝子導入方法>
遺伝子を細胞へ導入する方法としては、塩化カルシウム法または塩化カルシウム/塩化ルビジウム法、リポフェクション法、エレクトロポレーション法などが挙げられる。本発明で使用される遺伝子導入した細胞には一過性発現細胞あるいは安定発現細胞のいずれもが含まれる。
<刺激による遺伝子発現の光学イメージング>
本発明は、任意の発光反応を誘起し得る物質を細胞に接触させる刺激により、発光量を時系列的に解析することが可能である。刺激および解析の対象となる細胞は、単一細胞でも細胞群でもよい。発光イメージングを行うことにより、任意の特定細胞をいつまでの追跡することが可能となり、細胞の違いによる発光強度ないし発光挙動を正確に評価できる。
遺伝子導入された細胞の定数(例えば、1〜1x109個、好ましくは1x103〜1x106個)は所望の細胞培養が可能な器具(例えば、シャーレ、多数のウェルを有するマルチプレートなど)を用いて所望の栄養培地(例えば、D-MEM培地など)中で培養する。この定数の細胞からなる試料を、あらかじめ細胞にとって最適な温度(例えば、25〜37℃、好ましくは35〜37℃)に保温し、試料の乾燥を防ぐため水を注入して保湿した発光顕微鏡の培養装置部に設置し、該発光顕微鏡の試料観察部にある対物レンズを通してデジタルカメラで発光イメージを記録する。前記の試料に、細胞に接触させて刺激を行なうための物質(例えば、化合物)を所望の濃度(例えば、1pM〜1M、好ましくは100nM〜1mM)で加えて、所望の時間間隔(例えば5分間〜5時間、好ましくは10分間〜1時間)で発光イメージを記録することにより画像解析が可能な画像を準備することができる。準備した画像の画像解析は、市販または独自の解析アルゴリズムに設計された解析用ソフトウェアによって自動的に解析することが可能である。ディスプレイ画面に時系列の並列表示または動画映像で表示することにより、肉眼での解析も可能となる。
次に、本発明の方法に適用可能な諸条件について論ずる。まず、本発明は、試料としての細胞群または生体組織における生きた細胞を、発光用成分(例えば発光蛋白融合遺伝子)で処理するとともに、発光用成分に対し発光を誘起するための基質溶液を適宜の培養環境下で存在させることにより細胞を発光させて、細胞の発光画像に基づく解析を行うにあたり、解析すべき培養期間に応じて細胞の生物学的活性を損なわない基質濃度に設定したことを特徴とする方法である。生きた細胞を培養しながら経時的に画像解析するためには、種々の試薬条件の中でも、特に発光用成分を化学的に励起するための基質溶液の濃度を適切に設定することが好ましいことが分かった。ここで、培養期間が数日以上の場合には、基質溶液の濃度を700μM以下の濃度とすることで余分に高い濃度での発光反応を行なわずに、有効な発光画像を得ることが出来ることが判明した。他方、培養期間が数日未満の場合には、基質溶液を800μm以上、1mM以下の濃度とすることで、細胞の生物学的活性を数日ないし約1週間程度、一定の活性状態に維持しながら、解析可能な発光画像を安定に提供できる。また、基質濃度を200μM以上とすることで、感受性が強い細胞であっても長期間(例えば数週間以上)安定に生物学的活性を維持しつつ、発光画像の観察を可能にするという利点がある。ここで、基質としては、典型的な例として、ホタルルシフェリン、セレンテラジンを例示できるが、他の種類の基質であるとか、各種基質の化学的転換体ないし遺伝子工学的改変体であってもよい。本発明の処理方法は、上記のような基質濃度範囲で生きた細胞を培養し続けることにより、生物学的活性が低下しない状態を維持しながら、培養期間中、常に画像化可能な発光量を保つものである。
他の一面では、本発明は、生きた細胞を発光用成分で処理するとともに、発光用成分に対し発光を誘起するための基質溶液を適宜の培養環境下で存在させることにより細胞を発光させて、細胞の発光画像に基づく解析を行うにあたり、開口数(NA)および投影倍率(β)で表される(NA÷β)の2乗の値が0.01以上である光学的条件で細胞からの発光を収集するとともに、基質濃度を600μM以下に設定することを特徴とする生細胞の画像解析方法である。上述したように、(NA÷β)の2乗の値が0.01以上という光学的条件は、生物発光を発する細胞を1個づつ識別できるような対物レンズの明るさと投影倍率の適切な組合わせを請求するものである。この光学条件としての(NA÷β)の2乗の値が、0.039以上である場合には、さらに低濃度(例えば300μM以下、好ましくは100〜200μM)の基質溶液であっても、画像解析が可能な程度に明瞭な発光画像を常時得ることが出来る。
本発明の変形例として、発光用成分以外に、さらに蛍光用成分(例えば、緑色蛍光蛋白(GFP),黄色蛍光蛋白YFP等)を含んでいる細胞に適用することが可能である。これら発光と蛍光の両方を同一の細胞に対して適用することにより、発光画像と蛍光画像による総合的な画像解析を行うことが可能となり、細胞内外の多様な物質に関する検出を容易にする。ここで、発光画像の取得に必要な時間(生物発光の場合、解析可能な画像が得られるまでの、CCDカメラ等の撮像素子に対する露光時間)に応じて励起光量も決定することとし、例えば、画像化に必要な露光時間が長いほど、蛍光用の励起光の強度を弱くなるように設定することできる。良好な検出条件の例として、基質濃度を200μM以上700μM以下で細胞と接触させるとともに、30分以内、好ましくは10分以内の撮像時間で発光画像を得るように光学条件を設定することにより、生きた細胞を極めて長期間(例えば数週間以上)ありのままの生物学的活性状態に保つことが出来るので、種々の細胞ベースのスクリーニングアッセイや映像による肉眼での活性変化を安定に実行できる。これに対し、蛍光、赤外線、X線等の高感度な画像化のみに依存する検出を行なうと、多少なりとも照射光による連続的な光毒性の影響を受けてしまうので、解析精度を低下させる要因となり得る。
本発明の他の一面として、被検試料が肉厚の生体組織(例えば、視交差上核等の脳、胚、ゼブラフィッシュ等の微小な魚類、マウスやカエル(特にアフリカツメガエル)等の小動物ないし植物(例えばシロイヌナズナ)の一部の器官(例えば、手、足、毛根、葉、花茎、根毛)である場合に、生物発光による発光イメージングに適した厚みを所定の容器等に2次元的に拡がって分布する2次元形状細胞群(例えば、組織スライス切片ないし細胞群フィルム上シート等)に調製することが好ましい。本発明における検討では、個々の細胞が識別できる程度の発光イメージングを行なう場合に、150μm以下、好ましくは100μm以下、特に85μm未満の有効範囲からなる厚みの生体組織を使用することで、極めて微弱な発光だけであっても生体組織中の細胞を個々にイメージングすることが可能となる。生体組織中に分布する細胞群は多様な反応パターン(例えば、遺伝子発現量ないしその発現量変化パターン)を示すことが多いので、混在する多数の細胞群の中から同一ないし類似の反応パターンを示す細胞同士をグループ化して正確な解析を行うことが出来るようになる。さもなければ、一見してランダムな反応結果が出力されるだけであり、グループごとの同定など到底不可能に思われる。このように、本来微弱光による反応または検出が困難な肉厚の生体組織においても、上記のような有効範囲の肉薄の厚みでもって2次元的にほぼ一定の状態に配置することにより、生体組織での微弱光を用いた解析が可能となる。従って、本発明では、生物発光のような極めて微弱な光により単一細胞レベルの解析を行なって生体組織全体の動態を正確に知るための検出を行なう場合に、微弱光による光シグナルを適宜の明るさの集光レンズ(図1では対物レンズ)で画像形成できる程度に薄い厚みとする処理方法も含まれる。各種生体組織を上記の数値範囲内でなるべく肉薄の厚みに設定することにより、細胞同士が検出用光路上でオーバーラップしない密度となるので画像解析を正確にする。さらに、上記の厚みに調製された任意の生体試料は、従来よりも充分に有意な肉薄寸法の厚みであることにより、上述した有効濃度の基質溶液による発光反応を充分に許容し得るような反応時間(単一細胞における発光反応時間とほぼ同等の時間)内で進行させることができ、さらには、他の薬剤(例えば、治療薬(抗がん剤、ホルモン剤等)、診断薬(生化学検査試薬、免疫学検査試薬、遺伝学検査試薬等)、毒性試験物質(遺伝的変異原物質、発ガン性物質、アレルゲン物質)、予防医薬(ワクチン等)、体質改善薬(漢方、ビタミン剤、サプリメント薬等))に対しても充分な反応性を保障できるという特筆すべき作用効果も有する。
反面、生体組織を30μm未満、とくに20μm以下の厚みに調製した場合には、スライス処理によって破損した細胞が多数存在するようになり、画像解析においては解析ソフトウェアにより個々の細胞認識にエラーが生じ易くなったり、短期間(例えば24時間未満)で細胞の生物学的活性を低下ないし失活してしまう場合が有る。従って、本発明の方法においては、発光画像を得るための被検試料が生体組織である場合に、厚み30μm以上で且つ150μm以下の厚みにスライスしたり、シート状の細胞層とするのが好ましい。好適には、40〜60μm以上(特に50μm以上)とすることにより、広範囲の種類の細胞、とくに哺乳類(例えば、ヒト、マウス等)を検出用光路上に準備することが可能となる。これに対し、病理切片等のスライド標本を蛍光色素、量子ドット、化学発光色素等の高輝度染料で染色する場合には、300μm以上の肉厚の切片を用いて組織内を透過した光シグナルを画像化する場合が多い為に、生物発光のような極めて微弱な発光を試料の外部から検出することは極めて困難である。100μmを超える厚みの生体試料では細胞同士がオーバーラップする場合が有り、200μm以上、特に300μm以上の厚みでは発光画像による個々の細胞の識別は非常に困難となった。
以上のように、各種生体組織に由来する2次元形状細胞群を用いる例において、本発明は、微弱光により単一細胞レベルの解析を行なって生体組織の検査等を行なう際に適用され、細胞内で微弱光を発生させるための発光用試薬との反応性若しくは細胞内における発光用試薬による発光反応に変化をもたらす可能性のある薬剤との反応性を損なわずに、発光反応による微弱光シグナルを外部から検出し得る程度に2次元的にほぼ一定の厚みに形成した細胞群を用いることを特徴とする生細胞の解析方法を提供する。
ルシフェラーゼを用いた発光試料(細胞)の観察には,発光基質としてルシフェリンを培養液に投与する必要がある。ルシフェリンは高価であること,また細胞への影響を考慮すると,より低濃度で測定できることが望ましい。そこで、生細胞の発光観察に必要なルシフェリンの濃度を設定することにより、発光による光学イメージングを以下のように最適化した。
HeLa細胞に発光遺伝子用ベクター(プロメガpGL3−control vector)を導入した後の生物発光を次に示す各条件により光学イメージングした。
撮像条件:動作温度が5℃であるCCDカメラ DP−30(オリンパス株式会社製)、投影倍率が20倍で開口数がNA0.8であるような対物レンズ(油浸)、結像倍率5倍に設定された発光顕微鏡(図1参照)を用いて、室温で1分間露出させることにより、発光画像を得た。
ルシフェリン濃度:上記撮像条件において、上記の発光遺伝子導入細胞を収容した培地内に対して、1mM、 0.5mM、0.1mMの最終濃度となるようにルシフェリン濃度を含有させることにより、各発光反応を実施した。
本実施例の結果として、1mMから0.5mMの範囲のルシフェリン濃度で十分であることが分かった。また、ルシフェリン1mMに対して0.5mM では多少発光画像が暗くなるが,大きな差はみられない(図2、図3)ことも分かった。但し、0.1mMになると、1分露出ではだいぶ発光画像が暗くなり、この場合には、5分間の露出に変更することにより、0.5mMで5分間の露出に相当する高分解能の発光画像を得ることが出来た。なお,1分露出の場合はdark画面を引かないraw画面(図2〜4)であり、それぞれ図2が1mM、図3が0.5mM、図4が0.1mMの各ルシフェリン濃度での結果である。5分露出の場合(0.1 mMルシフェリン、5分間露出)は、dark画面を差し引いた画面である(図5)。
なお、本発明は上述した実施形態や実施例等に述べた説明にも限定されず、種々の態様やその均等物を含むことができる。また、本発明で述べた種々の処理条件同士の組合わせも任意に行なってもよい。さらに、本発明の処理方法を行なって製造され、流通可能に安定化処理(例えば、乾燥処理、真空パッケージング、シート形状化処理、増粘性糖類溶液含浸処理等)された生産物の形態でもよい。また、生体組織を肉薄にした2次元形状細胞群である場合には、単一のチップ基板ないし単一のシャーレ等の容器底面を必要な表面積について被覆してもよいし、多数の異なる生体組織を小断片化した各2次元形状細胞群をそれぞれ異なるアドレス位置にマトリックス状に点着することでマイクロアレイ化してもよい。
本発明の解析方法を実施するための装置の概要を示す図である。 ルシフェリン濃度が高濃度で、露光時間が極短時間の場合の発光画像の写真図面である。 ルシフェリン濃度が中間濃度で、露光時間が極短時間の場合の発光画像の写真図面である。 ルシフェリン濃度が低濃度で、露光時間が極短時間の場合の発光画像の写真図面である。 ルシフェリン濃度が低濃度で、露光時間を長めに設定した場合の発光画像の写真図面である。
符号の説明
1:サンプル
2:対物レンズ
3:集光レンズ
4:CCDカメラ
5:モニタ
6:ズームレンズ


Claims (17)

  1. 生きた細胞を発光用成分で処理するとともに、発光用成分に対し発光を誘起するための基質溶液を適宜の培養環境下で存在させることにより細胞を発光させて、細胞の発光画像に基づく解析を行うにあたり、解析すべき培養期間に応じて細胞の生物学的活性を損なわない基質濃度に設定したことを特徴とする画像解析のための生細胞の処理方法。
  2. 前記培養期間が数日以上の場合には、前記基質を700μM以下の濃度とすることを特徴とする処理方法。
  3. 前記培養期間が数日未満の場合には、前記基質を800μm以上、1mM以下の濃度とすることを特徴とする処理方法。
  4. 請求項1または2に記載の方法において、前記基質濃度を200μM以上としたことを特徴とする処理方法。
  5. 請求項1から4のいずれかに記載の方法において、基質がホタルルシフェリンまたはセレンテラジンであることを特徴とする処理方法。
  6. 生きた細胞を発光用成分で処理するとともに、発光用成分に対し発光を誘起するための基質溶液を適宜の培養環境下で存在させることにより細胞を発光させて、細胞の発光画像に基づく解析を行うにあたり、開口数(NA)および投影倍率(β)で表される(NA÷β)の2乗の値が0.01以上である光学的条件で細胞からの発光を収集するとともに、基質濃度を600μM以下に設定することを特徴とする生細胞の画像解析方法。
  7. 請求項6に記載の方法において、前記光学条件としての(NA÷β)の2乗の値が0.039以上であることを特徴とする解析方法。
  8. 請求項6に記載の方法が、さらに蛍光成分を含んでいる細胞に適用することとされ、発光画像と蛍光画像による総合的な画像解析を行うことを特徴とする解析方法。
  9. 請求項8に記載の方法が、発光画像の取得に必要な時間に応じて励起光量を決定することを特徴とする解析方法。
  10. 請求項6から9のいずれかに記載の方法において、前記基質濃度を200μM以上で存在させるとともに、30分以内の撮像時間で発光画像を得ることを特徴とする解析方法。
  11. 微弱光により単一細胞レベルの解析を行なって生体組織の検査等を行なう際に適用され、細胞内で微弱光を発生させるための発光用試薬との反応性若しくは細胞内における発光用試薬による発光反応に変化をもたらす可能性のある薬剤との反応性を損なわずに、発光反応による微弱光シグナルを外部から検出し得る程度に肉薄の厚みでもって2次元的にほぼ一定の状態に配置した細胞群を用いることを特徴とする生細胞の解析方法。
  12. 請求項11において、前記細胞群を、微弱光による個々の細胞から発する光シグナルを適宜の明るさの集光レンズで画像形成できる程度に薄い厚みとしたことを特徴とする解析方法。
  13. 請求項11において、前記細胞群を、細胞同士が検出用光路上でオーバーラップしない密度としたことを特徴とする解析方法。
  14. 請求項11において、前記細胞群を、スライス切片ないしシート状細胞に調製したことを特徴とする解析方法。
  15. 請求項11〜15のいずれかに記載の方法において、150μm以下、好ましくは100μm以下、特に85μm未満の厚みとしたことを特徴とする解析方法。
  16. 請求項15において、40μm以上、好ましくは50μm以上の厚みとしたことを特徴とする解析方法。
  17. 請求項11〜16のいずれかに記載の方法において、被検試料が肉厚の生体組織(例えば、視交差上核等の脳、胚、ゼブラフィッシュ等の微小な魚類、マウスやカエル(特にアフリカツメガエル)等の小動物ないし植物(例えばシロイヌナズナ)の一部の器官(例えば、手、足、毛根、葉、花茎、根毛)である


JP2006053882A 2006-02-17 2006-02-28 生細胞の微弱光による解析を行なうための細胞の処理方法および解析方法 Pending JP2007248050A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006053882A JP2007248050A (ja) 2006-02-17 2006-02-28 生細胞の微弱光による解析を行なうための細胞の処理方法および解析方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006040206 2006-02-17
JP2006053882A JP2007248050A (ja) 2006-02-17 2006-02-28 生細胞の微弱光による解析を行なうための細胞の処理方法および解析方法

Publications (1)

Publication Number Publication Date
JP2007248050A true JP2007248050A (ja) 2007-09-27

Family

ID=38592550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006053882A Pending JP2007248050A (ja) 2006-02-17 2006-02-28 生細胞の微弱光による解析を行なうための細胞の処理方法および解析方法

Country Status (1)

Country Link
JP (1) JP2007248050A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148255A (ja) * 2007-11-29 2009-07-09 Olympus Corp シグナル伝達解析方法およびシグナル伝達解析システム
JP2014089193A (ja) * 2007-04-04 2014-05-15 Olympus Corp 発光タンパクによる長期モニタリング方法および解析方法
WO2017109983A1 (ja) * 2015-12-25 2017-06-29 オリンパス株式会社 微弱発光試料の解析方法及び解析システム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003506711A (ja) * 1999-08-05 2003-02-18 セロミックス インコーポレイテッド 光学システムによる細胞の解析

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003506711A (ja) * 1999-08-05 2003-02-18 セロミックス インコーポレイテッド 光学システムによる細胞の解析

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012017107; KITAYAMA Y. et al.: 'An In vivo Dual-Reporter System of Cyanobacteria Using Two Railroad-Worm Luciferase with Different C' Plant. Cell. Physiol Vol.45,No.1, 200401, P.109-113 *
JPN6014005162; 大橋(八田)陽子 ほか: '発行イメージングによる生細胞レポーターアッセイ' 日本分子生物学会年会講演要旨集 Vol.28th, 20051125, P.555 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014089193A (ja) * 2007-04-04 2014-05-15 Olympus Corp 発光タンパクによる長期モニタリング方法および解析方法
JP2009148255A (ja) * 2007-11-29 2009-07-09 Olympus Corp シグナル伝達解析方法およびシグナル伝達解析システム
WO2017109983A1 (ja) * 2015-12-25 2017-06-29 オリンパス株式会社 微弱発光試料の解析方法及び解析システム
JPWO2017109983A1 (ja) * 2015-12-25 2018-10-18 オリンパス株式会社 微弱発光試料の解析方法及び解析システム

Similar Documents

Publication Publication Date Title
US7986824B2 (en) Predetermined site luminescence measuring method, predetermined site luminescence measuring apparatus, expression amount measuring method, and measuring apparatus
JP5953293B2 (ja) 発光タンパクによる長期モニタリング方法および解析方法
JP5307539B2 (ja) 生体試料撮像方法および生体試料撮像装置
JP4754661B2 (ja) 流体サンプル中のミクロ粒子を検出するための方法及び装置
JP2007108154A (ja) 生体試料の長期間ないし連続的検出方法
JP4889437B2 (ja) 微弱光撮像装置
JP2015018266A (ja) 解析方法
KR101359946B1 (ko) 생물학적 샘플을 이미지화하고 개질하기 위한 장치 및 방법
JP5143348B2 (ja) 生物学的活性を長期的に評価する装置または自動解析する方法
CN101310173A (zh) 用于检测活细胞活性的装置和方法
JP5265092B2 (ja) 微弱光検体の検査方法
JP2007248050A (ja) 生細胞の微弱光による解析を行なうための細胞の処理方法および解析方法
JP4800801B2 (ja) 閉鎖型反応検出装置
JP2007155558A (ja) 微弱光解析方法
JP4839073B2 (ja) 微弱光解析方法
JP2007155557A (ja) 微弱光解析方法
JP5276784B2 (ja) 生きた試料の画像に関する表示方法
JP5226179B2 (ja) 生物学的相互作用の解析方法および試薬キット
JP5153068B2 (ja) 生物学的相互作用の解析方法
US20230256435A1 (en) Apparatuses and methods for analyzing live cells
JP5567777B2 (ja) シグナル伝達解析方法およびシグナル伝達解析システム
WO2016189628A1 (ja) 発光測定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140731