JP2007237307A - Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance in heavy cutting - Google Patents

Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance in heavy cutting Download PDF

Info

Publication number
JP2007237307A
JP2007237307A JP2006061331A JP2006061331A JP2007237307A JP 2007237307 A JP2007237307 A JP 2007237307A JP 2006061331 A JP2006061331 A JP 2006061331A JP 2006061331 A JP2006061331 A JP 2006061331A JP 2007237307 A JP2007237307 A JP 2007237307A
Authority
JP
Japan
Prior art keywords
layer
hard coating
cutting
coating layer
basic shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006061331A
Other languages
Japanese (ja)
Other versions
JP4761136B2 (en
Inventor
Tetsuhiko Honma
哲彦 本間
Takatoshi Oshika
高歳 大鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006061331A priority Critical patent/JP4761136B2/en
Publication of JP2007237307A publication Critical patent/JP2007237307A/en
Application granted granted Critical
Publication of JP4761136B2 publication Critical patent/JP4761136B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cermet-made cutting tool having a hard coating layer exhibiting excellent chipping resistance in heavy cutting. <P>SOLUTION: The surface coated cermet-made cutting tool is formed by depositing the hard coating layer including: (a) a Ti compound layer as a lower layer; and (b) an aluminum oxide layer as an upper layer all over a cutting face, a flank and a cutting blade ridge line part where both of these faces intersect of a tip base. In the cutting tool, extending all over either of the cutting face and the flank, or both of them, either of a single basic shape mark and a set of the single basic shape marks or both of them are dispersed and distributed, and the single basic shape mark is formed by irradiating a hard coating layer residual stress reducing pattern in which one of the constituting layers of the hard coating layer is exposed to form a sinking surface with a laser beam. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、特に各種の鋼や鋳鉄などの切削加工を、高負荷のかかる高切り込みや高送りなどの重切削条件で行なった場合に、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具(以下、被覆切削工具という)に関するものである。   The present invention provides a surface coating that exhibits excellent chipping resistance with a hard coating layer, particularly when cutting various steels and cast irons under heavy cutting conditions such as high cutting and high feed with high load. The present invention relates to a cermet cutting tool (hereinafter referred to as a coated cutting tool).

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)のすくい面および逃げ面、さらにこれら両面が交わる切刃稜線部の全面に亘って、
(a)下部層として、炭化チタン(以下、TiCで示す)層、窒化チタン(以下、同じくTiNで示す)層、炭窒化チタン(以下、TiCNで示す)層、炭酸化チタン(以下、TiCOで示す)層、および炭窒酸化チタン(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜12μmの全体平均層厚を有するTi化合物層、
(b)上部層として、1〜6μmの平均層厚を酸化アルミニウム層(以下、Al23層で示す)、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる被覆切削工具が知られており、この被覆切削工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられることは良く知られるところである。
Conventionally, a rake face of a substrate (hereinafter collectively referred to as a tool substrate) made of tungsten carbide (hereinafter referred to as WC) based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) based cermet. And the flank, and further across the entire surface of the cutting edge ridge line where these both sides intersect,
(A) As a lower layer, a titanium carbide (hereinafter referred to as TiC) layer, a titanium nitride (hereinafter also referred to as TiN) layer, a titanium carbonitride (hereinafter referred to as TiCN) layer, a titanium carbonate (hereinafter referred to as TiCO) A Ti compound layer composed of one or two or more of a layer and a titanium carbonitride oxide (hereinafter referred to as TiCNO) layer and having an overall average layer thickness of 3 to 12 μm,
(B) As an upper layer, an average layer thickness of 1 to 6 μm is an aluminum oxide layer (hereinafter referred to as an Al 2 O 3 layer),
A coated cutting tool formed by vapor-depositing the hard coating layer constituted by the above (a) and (b) is known, and this coated cutting tool is used for continuous cutting and intermittent cutting of various steels and cast irons, for example. It is well known that it is used.

また、上記の被覆切削工具において、これの硬質被覆層の構成層は、一般に粒状結晶組織を有し、さらに、下部層であるTi化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
特開平6−31503号公報 特開平6−8010号公報
In the above-mentioned coated cutting tool, the constituent layer of the hard coating layer generally has a granular crystal structure, and further, the TiCN layer constituting the Ti compound layer as the lower layer is intended to improve the strength of the layer itself. In a normal chemical vapor deposition apparatus, a gas mixture containing organic carbonitrides is used as a reaction gas, and it is formed by chemical vapor deposition at an intermediate temperature range of 700 to 950 ° C. so that it has a vertically grown crystal structure. It is also known to do.
Japanese Unexamined Patent Publication No. 6-31503 Japanese Patent Laid-Open No. 6-8010

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工の効率化を図る目的で、高い負荷のかかる高切り込みや高送りなどの重切削条件での切削加工が行われる傾向にあるが、上記の従来被覆切削工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特に加工条件のうちの切り込みや送りなどを高くした場合には、硬質被覆層にチッピング(微少欠け)が発生し易く、この結果比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor-saving and energy-saving for cutting, and further cost reduction. Although cutting tends to be performed under heavy cutting conditions such as cutting and high feed, the conventional coated cutting tool described above was used for continuous cutting and intermittent cutting under normal conditions such as steel and cast iron. In particular, there is no problem, but especially when the cutting and feeding of the processing conditions are increased, chipping (small chipping) is likely to occur in the hard coating layer, resulting in a service life in a relatively short time. is the current situation.

そこで、本発明者等は、上述のような観点から、上記の従来被覆切削工具の硬質被覆層に着目し、これの耐チッピング性向上を図るべく研究を行った結果、
(a)通常、上記の従来被覆切削工具における硬質被覆層は、化学蒸着装置で、約1000℃前後の反応温度で工具基体表面に蒸着され、常温に冷却されることにより形成されるが、前記の冷却過程で、前記工具基体の熱膨張係数に比して前記硬質被覆層の熱膨張係数の方がきわめて大きいので、前記硬質被覆層には引張の応力が残留するようになり、この硬質被覆層中の残留応力が原因で切削加工、特に重切削条件での切削加工に際して、チッピングが発生し易くなること。
Therefore, the present inventors focused on the hard coating layer of the above-mentioned conventional coated cutting tool from the above viewpoint, and as a result of conducting research to improve its chipping resistance,
(A) Usually, the hard coating layer in the above-described conventional coated cutting tool is formed by being deposited on the surface of the tool substrate at a reaction temperature of about 1000 ° C. and cooled to room temperature by a chemical vapor deposition apparatus. In the cooling process, since the thermal expansion coefficient of the hard coating layer is much larger than the thermal expansion coefficient of the tool base, tensile stress remains in the hard coating layer. Chipping is likely to occur during cutting, especially under heavy cutting conditions, due to residual stress in the layer.

(b)これに対して、単一基本形状マーク、例えば円形や三角形および四角形、さらにこれらの類似形などの単一基本形状マークを、前記工具基体のすくい面および逃げ面のいずれか、またはこれら両面の全面に亘って、レーザービームを用いて、例えば図1〜7に前記単一基本形状マークを円形とした場合の実施例で示される通り、前記単一基本形状マークおよび前記単一基本形状マークの集合マークのいずれか、または両方が分散分布し(この場合、図1〜3に例示のものは硬質被覆層の層厚が相対的に薄く、図4,5および図5,7に例示されるに従って層厚が厚くなる場合の分布態様を示す)、かつ前記単一基本形状マークを、上記硬質被覆層の構成層のうちのいずれかの層が露出した掘下げ面とした条件(この場合の前記単一基本形状マークの露出面の掘下げ深さは前記硬質被覆層の層厚に対応して個々に調整されるが、残留応力の効率的低減を図るには層厚の5〜20%に相当する深さが目安とされる)で照射形成すると、前記硬質被覆層の残留応力が著しく低減するようになり、この硬質被覆層残留応力低減模様を形成した被覆切削工具は、特に高負荷のかかる重切削条件での切削加工に際して、硬質被覆層中の残留応力が原因のチッピングの発生が一段と抑制され、長期に亘ってすぐれた切削性能を発揮すること。
以上(a)および(b)に示される研究結果を得たのである。
(B) On the other hand, a single basic shape mark, for example, a single basic shape mark such as a circle, a triangle and a quadrangle, or a similar shape thereof, is used for either the rake face or the flank face of the tool base, or these The single basic shape mark and the single basic shape, as shown in the embodiment in which the single basic shape mark is circular, for example, in FIGS. One or both of the mark set marks are distributed and distributed (in this case, the layers shown in FIGS. 1 to 3 have a relatively thin hard coating layer and are shown in FIGS. 4, 5 and 5 and 7). The distribution form in the case where the layer thickness increases as it is done), and the condition that the single basic shape mark is a dug surface where any one of the constituent layers of the hard coating layer is exposed (in this case) The single basic of The depth of the exposed surface of the mark mark is individually adjusted in accordance with the layer thickness of the hard coating layer, but in order to reduce the residual stress efficiently, the depth corresponding to 5 to 20% of the layer thickness The residual stress of the hard coating layer is remarkably reduced, and the coated cutting tool formed with this hard coating layer residual stress reduction pattern is particularly suitable for heavy cutting conditions with high loads. When cutting at, the occurrence of chipping due to residual stress in the hard coating layer is further suppressed, and excellent cutting performance is demonstrated over a long period of time.
The research results shown in (a) and (b) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、工具基体のすくい面および逃げ面、さらにこれら両面が交わる切刃稜線部の全面に亘って、
(a)下部層として、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜12μmの全体平均層厚を有するTi化合物層、
(b)上部層として、1〜6μmの平均層厚を有するAl23層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる被覆切削工具において、
上記すくい面および逃げ面のいずれか、またはこれら両面の全面に亘って、単一基本形状マークおよび前記単一基本形状マークの集合マークのいずれか、または両方が分散分布してなると共に、前記単一基本形状マークを、上記硬質被覆層の構成層のうちのいずれかの層が露出した掘下げ面とした硬質被覆層残留応力低減模様をレーザービーム照射形成してなる、
硬質被覆層が重切削加工ですぐれた耐チッピング性を発揮する被覆切削工具に特徴を有するものである。
This invention has been made based on the above research results, and it covers the rake face and flank face of the tool base, and the entire surface of the cutting edge ridge line where these both faces meet.
(A) a Ti compound layer composed of one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer as a lower layer, and having an overall average layer thickness of 3 to 12 μm,
(B) Al 2 O 3 layer having an average layer thickness of 1 to 6 μm as an upper layer,
In the coated cutting tool formed by vapor-depositing the hard coating layer composed of (a) and (b) above,
Either one or both of the rake face and the flank face, or the single basic shape mark and the set mark of the single basic shape mark are distributed over the entire surface of both the rake face and flank face. One basic shape mark is formed by irradiating a laser beam with a hard coating layer residual stress reduction pattern in which any one of the constituent layers of the hard coating layer is exposed.
The hard coating layer is characterized by a coated cutting tool that exhibits excellent chipping resistance in heavy cutting.

なお、この発明の被覆切削工具の硬質被覆層に関し、下部層のTi化合物層は、Al23層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するほか、工具基体とAl23層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性を向上させる作用を有するが、その全体平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その全体平均層厚が12μmを越えると、偏摩耗の原因となる熱塑性変形を起し易くなることから、その全体平均層厚を3〜12μmと定めたものであり、また、上部層のAl23層は、すぐれた高温硬さと耐熱性を有し、被覆切削工具の耐摩耗性向上に寄与するが、その平均層厚が1μm未満では、所望のすぐれた耐摩耗性を長期に亘って発揮させることができず、一方その平均層厚が6μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜6μmと定めたのである。 In addition, regarding the hard coating layer of the coated cutting tool of the present invention, the lower Ti compound layer exists as a lower layer of the Al 2 O 3 layer, and the high temperature strength of the hard coating layer is improved by the excellent high temperature strength possessed by itself. In addition to contributing firmly to the tool substrate and the Al 2 O 3 layer, it has the effect of improving the adhesion of the hard coating layer to the tool substrate, but if the overall average layer thickness is less than 3 μm, The above-mentioned action cannot be sufficiently exerted. On the other hand, if the total average layer thickness exceeds 12 μm, it becomes easy to cause thermoplastic deformation causing uneven wear, so the total average layer thickness is 3 to 12 μm. The upper Al 2 O 3 layer has excellent high-temperature hardness and heat resistance and contributes to improving the wear resistance of the coated cutting tool. However, if the average layer thickness is less than 1 μm, Good wear resistance desired The can not be exerted for a long time, whereas when the average layer thickness becomes too thick beyond the 6 [mu] m, since the chipping is likely to occur, it's the average layer thickness was defined as 1 to 6 m.

この発明の被覆切削工具は、すくい面および逃げ面のいずれか、またはこれら両面の全面に亘って、単一基本形状マークおよび前記単一基本形状マークの集合マークのいずれか、または両方が分散分布してなると共に、前記単一基本形状マークを、硬質被覆層の構成層のうちのいずれかの層が露出した掘下げ面とした硬質被覆層残留応力低減模様をレーザービーム照射形成することにより、硬質被覆層における引張残留応力が著しく小さなものとなることから、各種の鋼や鋳鉄などの切削加工を、高負荷のかかる高切り込みや高送りなどの重切削条件で行うのに用いた場合にも、すぐれた耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を発揮するようになるものである。   In the coated cutting tool of the present invention, either or both of the rake face and the flank face, or both of the single basic shape mark and the collective mark of the single basic shape mark are distributed over the entire surface of both surfaces. In addition, a hard coating layer residual stress reduction pattern in which the single basic shape mark is formed as a dug surface where any one of the constituent layers of the hard coating layer is exposed is formed by laser beam irradiation. Because the tensile residual stress in the coating layer is extremely small, cutting of various steels and cast iron, etc., when used to perform heavy cutting conditions such as high cutting with high load and high feed, It exhibits excellent chipping resistance and exhibits excellent wear resistance over a long period of time.

つぎに、この発明の被覆切削工具を実施例により具体的に説明する。   Next, the coated cutting tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG160608に規定する工具形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By performing the processing, tool bases A to F made of WC-base cemented carbide having a tool shape specified in ISO · CNMG160608 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG160608のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN base cermet having a standard / CNMG160608 chip shape were formed.

ついで、これらの工具基体A〜Fおよび工具基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、
まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表4に示される目標層厚のTi化合物層およびAl23層を硬質被覆層の下部層および上部層として蒸着形成し、
ついで、レーザービーム照射装置を用い、上記硬質被覆層に、
レーザービーム出力:10W、
単一基本形状マークの形状:直径が0.5mmの円形、
硬質被覆層残留応力低減模様:図1〜7に示される実施模様のうちのいずれかを表4に示される組み合わせで適用、
単一基本形状マークの露出面の掘下げ深さ:表4に全目標層厚に対する割合で示される深さ、
の条件で硬質被覆層残留応力低減模様を形成することにより本発明被覆切削工具1〜13をそれぞれ製造した。
Then, each of these tool bases A to F and tool bases a to f is charged into a normal chemical vapor deposition apparatus,
First, Table 3 (l-TiCN in Table 3 indicates the conditions for forming a TiCN layer having a vertically grown crystal structure described in JP-A No. 6-8010, and other than that, a normal granular crystal structure is shown. Under the conditions shown in Table 4), the Ti compound layer and the Al 2 O 3 layer having the target layer thickness shown in Table 4 are vapor-deposited as the lower layer and the upper layer of the hard coating layer,
Next, using a laser beam irradiation device, the hard coating layer,
Laser beam output: 10W
The shape of a single basic shape mark: a circle with a diameter of 0.5 mm,
Hard coating layer residual stress reduction pattern: any one of the implementation patterns shown in FIGS. 1 to 7 is applied in the combination shown in Table 4.
Depth of exposed surface of single basic shape mark: Depth shown as a percentage of total target layer thickness in Table 4,
The coated cutting tools 1 to 13 of the present invention were produced by forming a hard coating layer residual stress reduction pattern under the conditions described above.

また、比較の目的で、表5に示される通り、上記硬質被覆層に硬質被覆層残留応力低減模様の形成を行なわない以外は同一の条件で従来被覆切削工具1〜13をそれぞれ製造した。   For comparison purposes, as shown in Table 5, conventionally coated cutting tools 1 to 13 were produced under the same conditions except that the hard coating layer residual stress reduction pattern was not formed on the hard coating layer.

また、上記本発明被覆切削工具1〜13および従来被覆切削工具1〜13の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Moreover, when the thickness of the structural layer of the hard coating layer of the said invention coated cutting tool 1-13 and the conventional coated cutting tool 1-13 was measured using the scanning electron microscope (longitudinal section measurement), all were target. The average layer thickness (average value of 5-point measurement) substantially the same as the layer thickness was shown.

つぎに、上記の本発明被覆切削工具1〜13および従来被覆切削工具1〜13の各種の被覆切削工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・FC300の丸棒、
切削速度:300m/min、
切り込み:3mm、
送り:0.3mm/rev、
切削時間:10分、
の条件(切削条件Aという)での鋳鉄の乾式連続高切り込み切削加工試験(通常の切り込みは2mm)、
被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:300m/min、
切り込み:2mm、
送り:0.5mm/rev、
切削時間:10分、
の条件(切削条件Bという)での炭素鋼の乾式断続高送り切削加工試験(通常の送りは0.3mm/rev)、さらに、
被削材:JIS・SCM440の長さ方向等間隔4本縦溝入り丸棒、
切削速度:250m/min、
切り込み:3.5mm、
送り:0.35mm/rev、
切削時間:10分、
の条件(切削条件Cという)での合金鋼の乾式断続高切り込み切削加工試験(通常の切り込みは2mm)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
Next, for the various coated cutting tools of the present invention coated cutting tools 1 to 13 and the conventional coated cutting tools 1 to 13, all of them are screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / FC300 round bar,
Cutting speed: 300 m / min,
Incision: 3mm,
Feed: 0.3mm / rev,
Cutting time: 10 minutes,
A continuous continuous high-cutting cutting test of cast iron under the conditions (cutting condition A) (normal cutting is 2 mm),
Work material: JIS · S45C lengthwise equal 4 round grooved round bars,
Cutting speed: 300 m / min,
Cutting depth: 2mm,
Feed: 0.5mm / rev,
Cutting time: 10 minutes,
Carbon steel dry intermittent high feed cutting test under normal conditions (referred to as cutting condition B) (normal feed is 0.3 mm / rev),
Work material: JIS · SCM440 lengthwise equidistant 4 vertical grooved round bar,
Cutting speed: 250 m / min,
Cutting depth: 3.5mm,
Feed: 0.35mm / rev,
Cutting time: 10 minutes,
A dry interrupted high cut cutting test (normal cutting is 2 mm) of the alloy steel under the above conditions (referred to as cutting conditions C) was performed, and the flank wear width of the cutting blade was measured in any cutting test. The measurement results are shown in Table 6.

Figure 2007237307
Figure 2007237307

Figure 2007237307
Figure 2007237307

Figure 2007237307
Figure 2007237307

Figure 2007237307
Figure 2007237307

Figure 2007237307
Figure 2007237307

Figure 2007237307
Figure 2007237307

表4〜6に示される結果から、本発明被覆切削工具1〜13は、いずれも硬質被覆層にレーザービーム照射形成された硬質被覆層残留応力低減模様によって、前記硬質被覆層における残留引張応力が著しく低減されることから、鋼や鋳鉄の高切り込みや高送りなどの高い負荷のかかる重切削条件での切削加工でも、前記硬質被覆層にチッピングの発生なく、長期に亘ってすぐれた切削性能を発揮するのに対して、前記硬質被覆層残留応力低減模様の形成のない従来被覆切削工具1〜13においては、いずれも前記重切削条件での切削加工では、硬質被覆層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 4 to 6, all of the coated cutting tools 1 to 13 of the present invention have a residual tensile stress in the hard coating layer due to the hard coating layer residual stress reduction pattern formed by laser beam irradiation on the hard coating layer. Since it is remarkably reduced, even when cutting under heavy cutting conditions with high loads such as high cutting and high feed of steel and cast iron, the hard coating layer does not generate chipping and has excellent cutting performance over a long period of time. In contrast, in the conventional coated cutting tools 1 to 13 without the formation of the hard coating layer residual stress reduction pattern, chipping occurs in the hard coating layer in the cutting under the heavy cutting conditions, It is clear that the service life is reached in a relatively short time.

上述のように、この発明の被覆切削工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に切削加工を高負荷のかかる重切削条件で行なった場合にもすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cutting tool of the present invention can be used not only for continuous cutting and intermittent cutting under normal conditions such as various steels and cast iron, but particularly when the cutting is performed under heavy cutting conditions with high load. Since it exhibits excellent chipping resistance and exhibits excellent cutting performance over a long period of time, it can sufficiently satisfactorily cope with labor saving and energy saving of cutting work and cost reduction.

実施例としての硬質被覆層残留応力低減模様をレーザービーム照射形成した本発明被覆切削チップの概略斜視図である。It is a schematic perspective view of this invention coating cutting tip which formed the hard coating layer residual stress reduction pattern as an Example by laser beam irradiation formation. 図1以外の実施例としての硬質被覆層残留応力低減模様をレーザービーム照射形成した本発明被覆切削チップの概略斜視図である。FIG. 2 is a schematic perspective view of a coated cutting tip of the present invention in which a hard coating layer residual stress reducing pattern as an embodiment other than FIG. 1 is formed by laser beam irradiation. 図1,2以外の実施例としての硬質被覆層残留応力低減模様をレーザービーム照射形成した本発明被覆切削チップの概略斜視図である。FIG. 3 is a schematic perspective view of a coated cutting tip of the present invention in which a hard coating layer residual stress reducing pattern as an embodiment other than FIGS. 図1〜3以外の実施例としての硬質被覆層残留応力低減模様をレーザービーム照射形成した本発明被覆切削チップの概略斜視図である。FIG. 4 is a schematic perspective view of a coated cutting tip of the present invention in which a hard coating layer residual stress reduction pattern as an embodiment other than FIGS. 図1〜4以外の実施例としての硬質被覆層残留応力低減模様をレーザービーム照射形成した本発明被覆切削チップの概略斜視図である。FIG. 5 is a schematic perspective view of a coated cutting tip of the present invention in which a hard coating layer residual stress reducing pattern as an embodiment other than FIGS. 図1〜5以外の実施例としての硬質被覆層残留応力低減模様をレーザービーム照射形成した本発明被覆切削チップの概略斜視図である。FIG. 6 is a schematic perspective view of a coated cutting tip of the present invention in which a hard coating layer residual stress reduction pattern as an embodiment other than FIGS. 図1〜6以外の実施例としての硬質被覆層残留応力低減模様をレーザービーム照射形成した本発明被覆切削チップの概略斜視図である。FIG. 7 is a schematic perspective view of a coated cutting tip of the present invention in which a hard coating layer residual stress reducing pattern as an embodiment other than FIGS. 1 to 6 is formed by laser beam irradiation.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体のすくい面および逃げ面、さらにこれら両面が交わる切刃稜線部の全面に亘って、
(a)下部層として、炭化チタン層、窒化チタン層、炭窒化チタン層、炭酸化チタン層、および炭窒酸化チタン層のうちの1層または2層以上からなり、かつ3〜12μmの全体平均層厚を有するTi化合物層、
(b)上部層として、1〜6μmの平均層厚を有する酸化アルミニウム層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる、表面被覆サーメット製切削工具において、
上記すくい面および逃げ面のいずれか、またはこれら両面の全面に亘って、単一基本形状マークおよび前記単一基本形状マークの集合マークのいずれか、または両方が分散分布してなると共に、前記単一基本形状マークを、上記硬質被覆層の構成層のうちのいずれかの層が露出した掘下げ面とした硬質被覆層残留応力低減模様をレーザービーム照射形成したこと、
を特徴とする、硬質被覆層が重切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具。
Over the rake face and flank face of the tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, and further across the entire surface of the cutting edge ridge line where these both sides intersect,
(A) The lower layer is composed of one or more of a titanium carbide layer, a titanium nitride layer, a titanium carbonitride layer, a titanium carbonated carbon layer, and a titanium carbonitride oxide layer, and has an overall average of 3 to 12 μm. A Ti compound layer having a layer thickness,
(B) As an upper layer, an aluminum oxide layer having an average layer thickness of 1 to 6 μm,
In the surface-coated cermet cutting tool formed by vapor-depositing the hard coating layer composed of (a) and (b) above,
Either one or both of the rake face and the flank face, or the single basic shape mark and the set mark of the single basic shape mark are distributed over the entire surface of both the rake face and flank face. The hard coating layer residual stress reduction pattern was formed by laser beam irradiation, with one basic shape mark as a dug surface where any one of the constituent layers of the hard coating layer was exposed,
A surface-coated cermet cutting tool with a hard coating layer that exhibits excellent chipping resistance in heavy cutting.
JP2006061331A 2006-03-07 2006-03-07 Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in heavy cutting Expired - Fee Related JP4761136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006061331A JP4761136B2 (en) 2006-03-07 2006-03-07 Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in heavy cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006061331A JP4761136B2 (en) 2006-03-07 2006-03-07 Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in heavy cutting

Publications (2)

Publication Number Publication Date
JP2007237307A true JP2007237307A (en) 2007-09-20
JP4761136B2 JP4761136B2 (en) 2011-08-31

Family

ID=38583338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006061331A Expired - Fee Related JP4761136B2 (en) 2006-03-07 2006-03-07 Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in heavy cutting

Country Status (1)

Country Link
JP (1) JP4761136B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020250625A1 (en) * 2019-06-11 2021-09-13 住友電工ハードメタル株式会社 Cutting tools
JPWO2020250626A1 (en) * 2019-06-11 2021-09-13 住友電工ハードメタル株式会社 Cutting tools

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136320A (en) * 1985-12-05 1987-06-19 Mitsubishi Electric Corp Fine recessed and projected pattern forming method
JPH05116003A (en) * 1991-10-30 1993-05-14 Toshiba Tungaloy Co Ltd Tool member excellent in chipping resistance
JPH11226805A (en) * 1998-02-12 1999-08-24 Sumitomo Electric Ind Ltd Cutting tool made of coated cemented carbide
JP2002026007A (en) * 2000-07-10 2002-01-25 Matsushita Electric Ind Co Ltd Method of forming thin-film structure, and method of adjusting stress in the thin-film structure
JP2006035345A (en) * 2004-07-23 2006-02-09 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136320A (en) * 1985-12-05 1987-06-19 Mitsubishi Electric Corp Fine recessed and projected pattern forming method
JPH05116003A (en) * 1991-10-30 1993-05-14 Toshiba Tungaloy Co Ltd Tool member excellent in chipping resistance
JPH11226805A (en) * 1998-02-12 1999-08-24 Sumitomo Electric Ind Ltd Cutting tool made of coated cemented carbide
JP2002026007A (en) * 2000-07-10 2002-01-25 Matsushita Electric Ind Co Ltd Method of forming thin-film structure, and method of adjusting stress in the thin-film structure
JP2006035345A (en) * 2004-07-23 2006-02-09 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020250625A1 (en) * 2019-06-11 2021-09-13 住友電工ハードメタル株式会社 Cutting tools
JPWO2020250626A1 (en) * 2019-06-11 2021-09-13 住友電工ハードメタル株式会社 Cutting tools

Also Published As

Publication number Publication date
JP4761136B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP2006015426A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP2006231433A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP2006231422A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP5023839B2 (en) Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP2007160497A (en) SURFACE COATED CUTTING TOOL MADE OF CERMET HAVING PROPERTY-MODIFIED ALPHA TYPE Al2O3 LAYER OF HARD COATING LAYER HAVING EXCELLENT CRYSTAL GRAIN INTERFACE STRENGTH
JP6139057B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4716250B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP4720418B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP5023896B2 (en) Surface coated cutting tool
JP2006334710A (en) Surface coated cermet cutting tool whose hard coating layer exhibits high chipping resistance in high-speed heavy cutting operation
JP4761136B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in heavy cutting
JP2009166193A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2008080476A (en) Surface coated cutting tool with hard coated layer exerting excellent abrasion resistance in high speed cutting work
JP5023895B2 (en) Surface coated cutting tool
JP2009006427A (en) Surface coated cutting tool
JP4811787B2 (en) Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer
JP2006289586A (en) Surface-coated cermet cutting tool having hard coating layer exhibiting superior chipping resistance in high speed intermittent cutting work
JP5158560B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting
JP2011031318A (en) Surface coated cutting tool with hard coated layer having excellent anti-chipping property
JP4474644B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4761137B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in heavy cutting
JP5088475B2 (en) Surface coated cutting tool
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4747386B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high speed cutting
JP2009101462A (en) Surface-coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees