JP2007234874A - 固体撮像装置の製造方法 - Google Patents

固体撮像装置の製造方法 Download PDF

Info

Publication number
JP2007234874A
JP2007234874A JP2006055002A JP2006055002A JP2007234874A JP 2007234874 A JP2007234874 A JP 2007234874A JP 2006055002 A JP2006055002 A JP 2006055002A JP 2006055002 A JP2006055002 A JP 2006055002A JP 2007234874 A JP2007234874 A JP 2007234874A
Authority
JP
Japan
Prior art keywords
implantation
state imaging
type
imaging device
photodiode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2006055002A
Other languages
English (en)
Inventor
Ken Mimuro
研 三室
Mototaka Ochi
元隆 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006055002A priority Critical patent/JP2007234874A/ja
Publication of JP2007234874A publication Critical patent/JP2007234874A/ja
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

【課題】フォトダイオードとウェル間に発生する電界の強度を緩和させ、白キズ・暗電流等を低減させるとともに、残像等のフォトダイオード特性を向上させた固体撮像装置の製造方法を提供する。
【解決手段】入射光を電気信号に変換するN型フォトダイオードが形成される領域を開口したレジストをシリコン基板上に形成するステップと、N型フォトダイオードを形成するためのイオン注入を、シリコン基板の主面の法線方向に対して注入角度をつけて、かつ、互いに異なる注入方向から複数回行うステップを含む。
【選択図】図1

Description

本発明は、固体撮像装置の製造方法に関し、より特定的には、低電圧で画像信号などの読み出しを可能とし、画像欠陥(特に白キズ、暗電流に代表される)を抑制した増幅型MOSイメージセンサを用いた固体撮像装置の製造方法に関する。
近年、固体撮像装置の一つとして増幅型MOSイメージセンサを用いた固体撮像装置(以下、MOS固体撮像装置という)が注目されている。MOS固体撮像装置は、画素であるセルごとにフォトダイオードによって検出した信号をトランジスタによって増幅するものである。そして、CCDイメージセンサを用いた固体撮像装置と比べて高感度であるという特徴をもつ。このようなMOS固体撮像装置には、二次元に配列された画素を有する撮像部を水平走査または垂直走査する回路としてダイナミック型シフトレジスタが用いられ、回路の簡素化、高密度化及び低消費電力化が図られている。
従来の固体撮像装置の製造方法では、特許文献1の図1及び図8に示されるように、1回のリンの注入によってフォトダイオードのN型領域を形成している。そして、このとき、半導体基板に対して垂直方向から注入する場合と、半導体基板に対してある程度傾けた方向から注入する場合とがある。ここで、シリコン(以下、Siという)基板表面に形成されるP型領域と読み出しゲートの閾値を制御するP型領域とを形成するためのイオン注入については、異なる方向から複数回に分けて斜めに注入する方法がある。しかし、フォトダイオードを形成するN型領域を形成する注入については、1回のイオン注入で行われることが一般的である。
以下に、従来技術であるMOS固体撮像装置の製造方法を図8、図9、図10A〜Cを用いて説明する。図8は従来のMOS固体撮像装置の断面図である。図8において、Si基板1の上部にPウェル2が形成され、Pウェル2の内部に光を電気信号へ変換(以下、光電変換という)するためのN型フォトダイオード3が形成される。このN型フォトダイオード3に閾値注入領域6の一端が隣接している。閾値注入領域6の上にゲート酸化膜5が形成され、ゲート酸化膜5の上にゲート電極4が形成される。ゲート電極4とゲート酸化膜5と閾値注入領域6とはMOSトランジスタ構造を構成している。この閾値注入領域6の他端に、N型ドレイン領域7が隣接して形成される。そして、上記したN型フォトダイオード3及びMOSトランジスタを構成する複数の素子は素子分離10によってそれぞれ分離されている。ここで、光電変換された電子は、N型フォトダイオード3に蓄積された後にN型ドレイン領域7に転送されて信号として検出される。
N型フォトダイオード3の上面には、閾値注入領域6の一端に隣接してP型拡散層8が形成されてこのP型拡散層8に隣接して高濃度のP型拡散層9が形成される。P型拡散層8は、信号電荷の読み出し特性と白キズの発生特性とのバランスを考慮して、1E12/cm2 オーダのイオン注入によって形成される。P型拡散層9は、1E14/cm2 オーダのイオン注入によって形成される。そして、P型拡散層9から拡散したボロンなどの不純物は、P型拡散層8に含まれる不純物の濃度の一部として寄与している。P型拡散層9は、N型フォトダイオード3の上面をシールドする表面シールド層である。そして、P型拡散層9は、Si基板表面と結晶欠陥・金属汚染によってSi基板表面に形成される自然酸化膜(SiO2 )等との間にできる界面の界面準位の影響を抑制させる。また、P型拡散層9は、Si基板表面とSi基板表面に形成されるTEOS、BPSG膜との間にできる界面の界面準位の影響を抑制させる。つまり、P型拡散層9は、SiとSiO2 との間にできた不要なダングリングボンドを高濃度の正孔によって不活性化し、また、応力によって発生したSi結晶のひずみと金属汚染とによってできた界面準位を高濃度の正孔によって不活性化する。
図9は、従来のMOS固体撮像装置の製造方法を示す平面図である。そして、フォトダイオードをイオン注入によって形成する前の状態である固体撮像装置の縦3列×横3列(以下、3×3という)の画素平面パターンレイアウトを表わす。Si基板上にPウェル2と素子分離10とが形成された後にN型注入領域11を開口したレジスト12が形成される。次に、N型注入領域11に矢印の方向からN型イオン注入13が行われることによってN型拡散層(=N型フォトダイオード)が形成される。なお、図11には後に形成される代表的なゲート電極4を示している。
図10A〜Cは、従来の固体撮像装置に対するイオン注入方法を示す。図10Aは、図9において、N型注入領域11にN型イオン注入13が行われることによってN型拡散層(=N型フォトダイオード3)が形成されるところを示す。図10Bは、図10Aのa−a’断面を示す。図10Cは、図10AのN型イオン注入13を注入する方向を示す矢印と平行であるb−b’断面を示す。
図10Bに示すように、Si基板1の上部にPウェル2と素子分離10とが形成される。また、N型フォトダイオード3が形成されるN型注入領域11を開口したレジスト12が形成される。そして、このレジスト12を用いてSi基板1の上面からN型イオン注入13を1回行うことによって、N型フォトダイオード3が形成される。このとき、図10Cに示すように、N型イオン注入13は、Si基板1のイオン注入が成される面(以下、主面という)の法線方向に対して或る一定の角度(以下、注入角度という)θ1 をつけて行われる(一般的には、θ1 =7°である)。また、図10Aに示すように、N型イオン注入13は、或る一定の方向(以下、注入方向という)から注入される。この注入方向は、a−a’断面に対して角度θ2 をつけた方向である(一般的には、θ2 =24°である)。この注入角度θ1 および注入方向(θ2 )は、イオン注入のチャネリングを考慮して設定される。例えば、基板面方位が[100]であるSiウェハを用いた場合、図10Aの縦方向(a−a’方向)は[001]面、横方向(a−a’に対して垂直方向)は[010]面となる。そして、[111]面にN型イオン注入13を行うために注入角度θ1 =7°、注入方向(θ2=24°)でN型イオン注入13を行う。このことによって、イオン注入の際のチャネリングの影響を抑制することが可能である。
特開平6−112464号公報
近年、固体撮像素子の微細化が進むに伴ってフォトダイオードも微細化している。この一方で、固体撮像装置の感度を維持又は向上させるためにフォトダイオードに蓄積される電荷量を維持又は増加させる必要がある。このために、フォトダイオードに注入するイオン量を示すドーズ量を多くすることによって、フォトダイオードの単位面積あたりの蓄積電子数を増やす必要がある。しかし、このドーズ量を多くするとフォトダイオード中の不純物濃度が高くなる。
図11は、従来技術によって、1方向から1回のみのイオン注入(1step注入)を行ったときのN型注入領域11のc−c’断面(図11)における不純物プロファイル(不純物濃度分布)である。そして、最も不純物濃度が高い図面中心部分がN型不純物濃度ピーク領域32であり、外側に行くに従ってN型不純物濃度が薄くなっていくことを示している。また、白線はPN接合100を示している。
ここで、従来の1step注入では、1回で所望のイオンのドーズ量がN型注入領域11全体に注入される。このことによって、図11のG部分が示す通り、N型不純物濃度ピーク領域32が、N型注入領域11両端近くにまで広がり、そして、PN接合100にまで及んでいる。つまり、従来技術では、フォトダイオードを構成するN型拡散層とPウェル間のPN接合近傍での不純物濃度が高くなり、このためにこのPN接合近傍での電界強度が大きくなる。このことによって、従来の固体撮像装置においては、白キズ・暗電流等が発生するという問題が有った。
それ故に、本発明の目的は、フォトダイオードとウェル間に発生する電界の強度を緩和させ、白キズ・暗電流等を低減させるとともに、残像等のフォトダイオード特性を向上させた固体撮像装置の製造方法を提供することである。
本発明は、MOS固体撮像装置の製造方法に向けられている。そして、上記目的を達成させるために、本発明の製造方法は、入射光を電気信号に変換するN型フォトダイオードが形成される領域を開口したレジストをシリコン基板上に形成するステップと、N型フォトダイオードを形成するためのイオン注入を、シリコン基板の主面の法線方向に対して注入角度をつけて、かつ、互いに異なる注入方向から複数回行うステップとを備える。
また、好ましくは、イオン注入は、シリコン基板に対してチャネリングが起こらない注入角度および注入方向で、4つの注入方向から少なくとも各注入方向について1回行う。
または、イオン注入は、N型フォトダイオードから信号を読み出すゲート電極を含むMOSトランジスタのチャネル幅方向と平行である注入方向を含み、かつ、4つの注入方向から少なくとも各注入方向について1回行う。
または、イオン注入は、N型フォトダイオードから信号を読み出すゲート電極を含むMOSトランジスタのチャネル幅方向と平行である2つの注入方向から少なくとも各注入方向について1回行う。
または、イオン注入は、N型フォトダイオードから信号を読み出すゲート電極とN型フォトダイオードとをオーバーラップして形成する注入方向を含んで行われ、オーバーラップして形成する注入方向から行われるイオン注入の注入角度は、他のイオン注入の注入角度よりも大きい。
または、MOS固体撮像装置を構成する素子分離領域がSTI(Shallow Trench Isolation)で形成され、また、MOS固体撮像装置を構成するMOSトランジスタのゲート酸化膜が10nm以下である。
上記のように、本発明の固体撮像装置の製造方法によると、フォトダイオードのN型とPウェル間のPN接合近傍の電界強度を緩和させ、白キズ・暗電流等を低減することが可能となる。さらに、読み出しトランジスタの読み出し特性を向上させ、残像等の固体撮像装置の特性不良を抑制することができる。
以下に本発明の実施の形態について、図面を用いて説明する。
(第1の実施形態)
図1は、第1の実施形態の固体撮像装置の製造方法を示す。そして、フォトダイオードをイオン注入によって形成する前の状態である固体撮像装置の3×3の画素平面パターンレイアウトを表わしている。Si基板上にPウェル2と素子分離10とが形成された後にN型注入領域11を開口したレジスト12が形成される。次に、N型注入領域11に各矢印の方向からN型イオン注入14〜17が、例えばN型イオン注入14→15→16→17の順で行われる(4step)。このことによってN型拡散層(=N型フォトダイオード)が形成される。なお、図1には後に形成される代表的なゲート電極4を示している。
図2A〜Cは、第1の実施形態の固体撮像装置に対するイオン注入方法を示す。図2Aは、図1において、N型注入領域11にN型イオン注入14〜17が行われることによってN型拡散層(=N型フォトダイオード)が形成されるところを示している。図2Bは、図2Aのd−d’断面である。図2Cは、図2AのN型イオン注入14の注入方向(θ2 )を示す矢印と平行であるe−e’断面である。
図2Bに示すように、Si基板1の上部にPウェル2と素子分離10とが形成される。また、N型フォトダイオード3が形成されるN型注入領域11を開口したレジスト12が形成される。そして、このレジスト12を用いてSi基板1の上面にN型イオン注入14〜17が順次行われる(図2A参照)ことによって、N型フォトダイオード3が形成される。このとき、図2Cに示すように、N型イオン注入14〜17は、Si基板1の主面の法線方向に対して注入角度θ1 をつけて注入される(一般的には、θ1 =7°である)。なお、図2Cにおいて、N型イオン注入15及び17の注入角度θ1 は、図面の奥行き及び手前方向に関するものなので、図面上には記載していない。そして、図2Aに示すように、N型イオン注入14〜17は、4方向から注入される。例えば、d−d’断面に対して24°傾けた方向(注入方向θ2 =24°)を起点として90°づつ注入方向を回転させて、N型イオン注入14→15→16→17というように4回に分けて順次注入される。このことによって、背景技術で説明した通り、イオン注入の際のチャネリングの影響を抑制することが可能である。なお、図2Aのd−d’方向は後に形成されるゲート電極4を含むMOSトランジスタのチャネル長方向である。そして、このチャネル長方向と直角方向であるMOSトランジスタのチャネル部の幅方向をチャネル幅方向という。
このイオン注入によって、例えば、N型フォトダイオード3は、Si基板1の表面から300nm〜400nmの深さにN型不純物濃度ピーク領域がくるように形成される。注入不純物は、砒素やリンである。N型領域を形成している注入不純物は、その種類によっては製造工程中の熱処理によって若干拡散する。しかし、N型フォトダイオード3の不純物プロファイルはイオン注入直後から大きく変わらないようにすることもできるし、Si基板1の深さ方向に概ね一様にすることもできる。
図3Aは、以上で説明した4方向から4回に分けて順次イオンを注入(4step注入)したときの各段階のN型注入領域11(図1参照)を示す。図3Bは、この4step注入後のN型注入領域11を示す。図3Cは、図3Bのf−f’断面の不純物プロファイルの例を示す。まず、図3Aに示す通り、N型注入領域11にN型イオン注入14〜17(1〜4step)が行われる。このとき、イオンが注入される位置は、各step同士、少しづつずれる。これは、上記した通り、N型イオン注入14〜17はSi基板1の主面の法線方向に対して注入角度θ1 をつけて注入されるので、イオン注入の際にN型注入領域11を開口した厚みのあるレジスト12が陰として作用するからである。そして、1つのstep注入ごとに、イオン注入された部分同士が重なる部分のイオン濃度が濃くなっていくことがわかる。最終的に、図3Bに示すように、N型注入領域11には、1つのstep分のドーズ量が注入される領域28、2つのstep分のドーズ量が注入される領域29、3つのstep分のドーズ量が注入される領域30、4つのstep分のドーズ量が注入される領域31が形成される。このときのN型不純物濃度の関係は、高い方から領域31>領域30>領域29>領域28である。また、f−f’方向での不純物濃度が、N型注入領域11の両端において段階的に薄くなっていることがわかる。
次に、図3Cに、図3Bのf−f’断面における不純物プロファイルを示す。図3Cは、最もN型不純物濃度が高いN型不純物濃度ピーク領域32が図面の中心部分にあり、外側へ行くに従って、N型不純物濃度が薄くなっていくことを示している。そして、図3Cの白線はPN接合100を示している。ここで注目すべきは、PN接合100が、N型不純物濃度ピーク領域32にまで及んでいないことである(図3CのG部分参照)。
一方、従来の固体撮像装置の製造方法では、既に説明した通り、1回で所望のドーズ量をN型注入領域11の全体に注入してフォトダイオードを形成する。このことによって、図13が示す通り、N型不純物濃度ピーク領域32が、N型注入領域11の両端近くにまで広がりPN接合100にまで及んでいる(図11のG部分参照)。
つまり、第1の実施形態で形成されるフォトダイオードのPN接合は、従来のフォトダイオードのPN接合よりも不純物濃度の低い部分に形成される。このことによって、第1の実施形態で形成されるフォトダイオードのPN接合近傍の電界強度は、従来のフォトダイオードのPN接合近傍の電界強度よりも低くなる。なお、図3C及び図11の不純物プロファイルにおける不純物濃度とコントラストとの関係は全く同じである。このことは、従来の1step注入の方が第1の実施形態の4step注入よりも電界強度が高くなり、白キズ・暗電流等が増加することを意味している。
図4に、ドーズ量を1.9E12/cm2 に固定して、従来の1step注入と第1の実施形態の4step注入とで白キズの発生個数を比較した実験結果を示す。第1の実施形態の4step注入を行うことによって、白キズの発生個数が約1/100に低減する結果が得られた。
以上で説明した通り、第1の実施形態によれば、PN接合近傍の電界強度を緩和させることができるので、従来技術と比べて白キズ・暗電流等を低減することが可能となる。更に、従来技術と同様にイオン注入の角度及び方向を考慮しているのでチャネリングの影響を抑制することが可能である。
ここで、N型イオン注入14の注入角度をN型イオン注入15〜17の注入角度よりも大きくする(例えば、N型イオン注入14の注入角度を25°〜45°としてN型イオン注入15〜17の注入角度を7°とする)場合を考える。この場合には、読み出しゲート電極4とN型フォトダイオード3とがオーバーラップして形成される量が大きくなり、ゲート電圧をより効率的にフォトダイオードに印加することが可能となる。加えて、信号の伝達経路が大きくなるため、信号の読み出し特性が向上し、残像を改善することが可能となる。
(第2の実施形態)
図5は、第2の実施形態の固体撮像装置の製造方法を示す。そして、フォトダイオードをイオン注入によって形成する前の状態である固体撮像装置の3×3の画素平面パターンレイアウトを表わしている。Si基板上にPウェル2と素子分離10とが形成された後にN型注入領域11を開口したレジスト12が形成される。次に、N型注入領域11に、N型イオン注入18→19の順(2step)で各矢印の方向からイオン注入が行われることによってN型拡散層(=フォトダイオード)が形成される。なお、図5には後に形成される代表的なゲート電極4を示している。
図6A〜Cは、第2の実施形態の固体撮像装置に対するイオン注入方法を示す。図6Aは、図5において、N型注入領域11にN型イオン注入18及び19が行われることによってN型拡散層(=N型フォトダイオード3)が形成されるところを示している。図6Bは、図6Aのg−g’断面である。図6Cは、のh−h’断面図である。
図6Bに示すように、Si基板1上にPウェル2と素子分離10とが形成される。また、N型フォトダイオード3が形成されるN型注入領域11を開口したレジスト12が形成される。そして、レジスト12を用いてSi基板1の上面からN型イオン注入18及び19が順次行われることによって、N型フォトダイオード3が形成される。ここで、図6のAに示すように、N型イオン注入18及び19を、後に形成されるゲート電極4を含むMOSトランジスタのチャネル長方向と直角方向であるチャネル幅方向(h−h’方向)に2方向から2回に分けて注入(2step注入)する。この製造方法では、図6Aのh−h’方向についてのPN接合近傍の電界強度が緩和される。
ここで、図6Aにおいて、g−g’方向のN型イオン注入110が行われた場合には、レジスト12が影となる(図6B参照)。このために後に形成されるゲート電極4の直下へ拡散するN型拡散層の不純物濃度にバラツキが生じる。このことによって、読み出しゲートの閾値バラツキや、飽和(フォトダイオードに蓄積できる最大の電子数になった状態)特性のバラツキ、残像等のフォトダイオード特性のバラツキが発生する可能性が生じる。これは注入角度θ1 をつけてN型イオン注入110を行うとレジスト12の上部コーナ部分では、レジスト12を通過してSi基板1に到達する不純物とレジスト12を通過せずにSi基板1に直接到達する不純物とが存在してしまうため、N型拡散層の不純物濃度にバラツキが生じるためと考えられる。従って、図6A〜Cに示す通りに、後に形成されるゲート電極4を含むMOSトランジスタのチャネル長方向と直角方向であるチャネル幅方向(図5参照)にN型イオン注入18及び19を行う方法が有効である。
以上で説明した通り、第2の実施形態によれば、フォトダイオードを形成するN型拡散層へのイオン注入方法をゲート電極の長手方向にのみ2stepで行う。このことにより、この長手方向のPN接合付近の電界強度を緩和させることができるので、従来技術と比べて白キズ・暗電流等を低減させることができる。そして、第2の実施形態によれば、読み出しゲート電極の直下へ拡散するN型拡散層の不純物濃度にバラツキが生じないので、読み出しゲート閾値のバラツキや、飽和特性のバラツキ、残像等のフォトダイオード特性のバラツキを低減することが可能となる。なお、第2の実施形態では、チャネリングの影響を抑制するためのイオン注入方向は考慮していない。
(第3の実施形態)
図7A〜Cは、第3の実施形態の固体撮像装置に対するイオン注入方法を示す。図7Bは、図7Aのi−i’断面である。図7Cは、図7Aのj−j’断面である。第3の実施形態は第1の実施形態に対してN型不純物を注入する方向のみ異なるので、以下では、この方向に関して説明する。
図7Aに示すように、レジスト12を用いてSi基板の上面にN型イオン注入20〜23が順次行われる。このとき、N型イオン注入20〜23が注入される方向は、N型イオン注入20及び22についてはi−i’と平行方向であり、N型イオン注入21及び23についてはj−j’と平行方向である。なお、図7B及び図7Cに示す通り、N型イオン注入20〜23は注入角度θ1 をつけて行われる。
このようにN型イオン注入20〜23を行うことによって、N型フォトダイオード3の図7Aにおける不純物濃度の上下左右方向の対称性を向上することができる。このことによって、後に形成される読み出しゲート電極の直下へ拡散するN型拡散層の不純物濃度の、対称性も向上することができる。この結果として、この対称性が低下することによって発生する読み出しゲートの閾値バラツキ等の特性バラツキを抑制できる。なお、イオン注入の対称性を確保するためには図7A〜Cに示した方法の代わりに連続的に回転注入を行っても同等の効果が得られる。
以上で説明した通り、第3の実施形態によれば、PN接合近傍の電界強度を緩和させることができるので、従来技術と比べて白キズ・暗電流等を低減することが可能となる。そして、読み出しゲート電極の直下へ拡散するN型拡散層の不純物濃度の対称性が低下することによって発生する読み出しゲート閾値バラツキ等の特性バラツキを抑制できる。この一方で、第3の実施形態では、第2の実施形態で説明した、読み出しゲート電極の直下へ拡散するN型拡散層の不純物濃度のバラツキによって発生する、読み出しゲート閾値バラツキ等の特性バラツキは抑制できない。また、第3の実施形態では、チャネリングの影響を抑制するためのイオン注入方向は考慮していない。
なお、以上で説明した各実施形態の固体撮像装置は、素子分離領域がSTI(Shallow Trench Isolation)で形成されてもよく、また、MOSトランジスタのゲート酸化膜が10nm以下であってもよい。
従来、フォトダイオードを形成するN型イオンの注入は、1回の注入で行われるのが一般的であった。これに対して本発明は、フォトダイオードを形成するN型イオンの注入を複数回(2回、4回等)に分けて行うものである。このことによって、フォトダイオードのN型と周辺ウェルのP型で形成されるPN接合近傍の不純物濃度及び電界強度を低くさせることができる。この結果として、固体撮像装置の白キズ・暗電流等を低減することが可能となる。更に言えば、白キズ等の発生率を維持したままN型不純物濃度を従来よりも高くして、フォトダイオードの単位面積あたりの蓄積電子数を増やすことも可能となる。例えば不純物(イオン)のドーズ量を1.1倍にしても白キズは増加しないという結果が得られた。更に、第2の実施形態のように、不純物の注入方向をゲート電極に対して平行に行うことにより、フォトダイオードの諸特性(読み出しゲートの閾値、飽和、残像等)を低減することも可能となる。
なお、N型イオンの注入回数・注入順序、注入角度θ1 及び注入方向は、上記した実施形態に記載した効果を奏するもので有れば、上記したものには限られない。
本発明は、白キズ・暗電流等を低減させ、また、残像等の特性が良好な固体撮像装置の製造方法等に有用である。
第1の実施形態の固体撮像装置の製造方法(平面図) 第1の実施形態の固体撮像装置に対するイオン注入方法を示す図 第1の実施形態の固体撮像装置に対するイオン注入方法を示す図 第1の実施形態の固体撮像装置に対するイオン注入方法を示す図 4step注入の説明図 4step注入の説明図 4step注入の説明図 注入方法に対する白キズ個数を示す実験結果 第2の実施形態の固体撮像装置の製造方法(平面図) 第2の実施形態の固体撮像装置に対するイオン注入方法を示す図 第2の実施形態の固体撮像装置に対するイオン注入方法を示す図 第2の実施形態の固体撮像装置に対するイオン注入方法を示す図 第3の実施形態の固体撮像装置に対するイオン注入方法を示す図 第3の実施形態の固体撮像装置に対するイオン注入方法を示す図 第3の実施形態の固体撮像装置に対するイオン注入方法を示す図 従来の固体撮像装置 従来の固体撮像装置の製造方法(平面図) 従来の固体撮像装置に対するイオン注入方法を示す図 従来の固体撮像装置に対するイオン注入方法を示す図 従来の固体撮像装置に対するイオン注入方法を示す図 従来の1step注入の説明図
符号の説明
1 Si基板
2 Pウェル
3 N型フォトダイオード
4 ゲート電極
5 ゲート酸化膜
6 閾値注入領域
7 N型ドレイン領域
8、9 P型拡散層
10 素子分離
11、28、29、30、31N型注入領域
12 レジスト
13、14、15、16、17、18、19、20、21、22、23、110 N型イオン注入
32 N型不純物濃度ピーク領域
100 PN接合

Claims (6)

  1. MOS固体撮像装置の製造方法であって、
    入射光を電気信号に変換するN型フォトダイオードが形成される領域を開口したレジストをシリコン基板上に形成するステップと、
    前記N型フォトダイオードを形成するためのイオン注入を、前記シリコン基板の主面の法線方向に対して注入角度をつけて、かつ、互いに異なる注入方向から複数回行うステップを含むことを特徴とする、MOS固体撮像装置の製造方法。
  2. 前記イオン注入は、前記シリコン基板に対してチャネリングが起こらない注入角度および注入方向で、4つの注入方向から少なくとも各注入方向について1回行うことを特徴とする、請求項1に記載のMOS固体撮像装置の製造方法。
  3. 前記イオン注入は、前記N型フォトダイオードから信号を読み出すゲート電極を含むMOSトランジスタのチャネル幅方向と平行である注入方向を含み、かつ、4つの注入方向から少なくとも各注入方向について1回行うことを特徴とする、請求項1に記載のMOS固体撮像装置の製造方法。
  4. 前記イオン注入は、前記N型フォトダイオードから信号を読み出すゲート電極を含むMOSトランジスタのチャネル幅方向と平行である2つの注入方向から少なくとも各注入方向について1回行うことを特徴とする、請求項1に記載のMOS固体撮像装置の製造方法。
  5. 前記イオン注入は、前記N型フォトダイオードから信号を読み出すゲート電極と前記N型フォトダイオードとをオーバーラップして形成する注入方向を含んで行われ、
    前記オーバーラップして形成する前記注入方向から行われるイオン注入の注入角度は、他のイオン注入の注入角度よりも大きいことを特徴とする、請求項1に記載のMOS固体撮像装置の製造方法。
  6. 前記MOS固体撮像装置を構成する素子分離領域がSTI(Shallow Trench Isolation)で形成され、また、前記MOS固体撮像装置を構成するMOSトランジスタのゲート酸化膜が10nm以下であることを特徴とする、請求項1に記載のMOS固体撮像装置の製造方法。

JP2006055002A 2006-03-01 2006-03-01 固体撮像装置の製造方法 Ceased JP2007234874A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006055002A JP2007234874A (ja) 2006-03-01 2006-03-01 固体撮像装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006055002A JP2007234874A (ja) 2006-03-01 2006-03-01 固体撮像装置の製造方法

Publications (1)

Publication Number Publication Date
JP2007234874A true JP2007234874A (ja) 2007-09-13

Family

ID=38555150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006055002A Ceased JP2007234874A (ja) 2006-03-01 2006-03-01 固体撮像装置の製造方法

Country Status (1)

Country Link
JP (1) JP2007234874A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102222680A (zh) * 2011-07-05 2011-10-19 上海宏力半导体制造有限公司 Cmos图像传感器制作方法
KR20180000933A (ko) * 2016-06-24 2018-01-04 에스케이하이닉스 주식회사 딥 트렌치들 내의 전달 게이트들을 갖는 이미지 센서

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05315591A (ja) * 1992-05-11 1993-11-26 Sony Corp Ccd撮像素子の光電子読み出し部の形成方法
JPH07240388A (ja) * 1994-02-28 1995-09-12 Nec Corp 半導体装置のイオン注入方法
JPH10209423A (ja) * 1997-01-16 1998-08-07 Sony Corp 固体撮像素子及びその製造方法
JPH11274454A (ja) * 1998-03-19 1999-10-08 Canon Inc 固体撮像装置及びその形成方法
WO2005013370A1 (en) * 2003-07-30 2005-02-10 Micron Technology, Inc. Angled pinned photodiode for high quantum efficiency and method of formation
JP2005072178A (ja) * 2003-08-22 2005-03-17 Renesas Technology Corp 固体撮像素子およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05315591A (ja) * 1992-05-11 1993-11-26 Sony Corp Ccd撮像素子の光電子読み出し部の形成方法
JPH07240388A (ja) * 1994-02-28 1995-09-12 Nec Corp 半導体装置のイオン注入方法
JPH10209423A (ja) * 1997-01-16 1998-08-07 Sony Corp 固体撮像素子及びその製造方法
JPH11274454A (ja) * 1998-03-19 1999-10-08 Canon Inc 固体撮像装置及びその形成方法
WO2005013370A1 (en) * 2003-07-30 2005-02-10 Micron Technology, Inc. Angled pinned photodiode for high quantum efficiency and method of formation
JP2005072178A (ja) * 2003-08-22 2005-03-17 Renesas Technology Corp 固体撮像素子およびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102222680A (zh) * 2011-07-05 2011-10-19 上海宏力半导体制造有限公司 Cmos图像传感器制作方法
KR20180000933A (ko) * 2016-06-24 2018-01-04 에스케이하이닉스 주식회사 딥 트렌치들 내의 전달 게이트들을 갖는 이미지 센서
KR102546550B1 (ko) * 2016-06-24 2023-06-23 에스케이하이닉스 주식회사 딥 트렌치들 내의 전달 게이트들을 갖는 이미지 센서

Similar Documents

Publication Publication Date Title
US7329557B2 (en) Method of manufacturing solid-state imaging device with P-type diffusion layers
US6885047B2 (en) Solid-state image sensing device having pixels with barrier layer underneath transistor regions and camera using said device
JP5100988B2 (ja) イメージセンサー及びその製造方法
JP4211696B2 (ja) 固体撮像装置の製造方法
JP5111157B2 (ja) 光電変換装置及び光電変換装置を用いた撮像システム
CN102097305B (zh) 半导体器件及其制造方法、固体摄像器件和固体摄像装置
JP5489570B2 (ja) 光電変換装置及び撮像システム
US20090166516A1 (en) Photoelectric conversion device manufacturing method, semiconductor device manufacturing method, photoelectric conversion device, and image sensing system
JP2010206181A (ja) 光電変換装置及び撮像システム
JP2010206178A (ja) 光電変換装置、及び光電変換装置の製造方法
JP2006294871A (ja) 固体撮像装置
JP2007329179A (ja) Mos型固体撮像装置及びmos型固体撮像装置の製造方法
JP2006120711A (ja) 固体撮像装置
JP2007234874A (ja) 固体撮像装置の製造方法
JP4763242B2 (ja) 固体撮像素子およびその製造方法
JP2008294479A (ja) 固体撮像装置
JP2007201088A (ja) 固体撮像素子
JP2011258613A (ja) 固体撮像装置及びその製造方法
JP2010027750A (ja) 固体撮像装置
JP2007201087A (ja) 固体撮像素子の製造方法及び固体撮像素子
KR100670510B1 (ko) 씨모스 이미지 센서의 제조 방법
KR100872989B1 (ko) 이미지 센서 및 그 제조방법
JP2007123655A (ja) 固体撮像素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110506

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20110926