JP2007234654A - セラミック電子部品及びその製造方法 - Google Patents

セラミック電子部品及びその製造方法 Download PDF

Info

Publication number
JP2007234654A
JP2007234654A JP2006050864A JP2006050864A JP2007234654A JP 2007234654 A JP2007234654 A JP 2007234654A JP 2006050864 A JP2006050864 A JP 2006050864A JP 2006050864 A JP2006050864 A JP 2006050864A JP 2007234654 A JP2007234654 A JP 2007234654A
Authority
JP
Japan
Prior art keywords
ceramic
ceramic body
terminal electrode
electronic component
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006050864A
Other languages
English (en)
Inventor
Takashi Komatsu
敬 小松
Koji Tanabe
孝司 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006050864A priority Critical patent/JP2007234654A/ja
Publication of JP2007234654A publication Critical patent/JP2007234654A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】 基板に半田付けされた状態で熱衝撃を受けても半田にクラックを発生させにくいセラミック電子部品を提供する。
【解決手段】 セラミック電子部品10aのセラミック素体12の各端面12a上には、端子電極15が形成されている。これらの端面は、側面12b〜12eによって連結されている。各端子電極は、セラミック素体の側面の上方に延在する側方部15b〜15eを有している。これらの側方部とセラミック素体の側面との間には、空間18が形成されている。
【選択図】 図2

Description

この発明は、セラミック素体を有する電子部品と、その製造方法に関する。
セラミック素体の両端部に端子電極が設けられたセラミック電子部品が知られている。セラミック電子部品の典型的な例は、積層セラミックコンデンサである。セラミック電子部品は、しばしば半田付けによって基板上に実装される。通常、基板とセラミック素体とは熱膨張係数に差があるため、温度の上昇及び下降を繰り返す熱衝撃においてセラミック電子部品に応力が加わり、セラミック電子部品の破壊を生じやすい。
この問題を解決するため、下記の特許文献1〜3には、セラミック素体の両端部に付着した端子電極上に導電性樹脂層が形成された積層セラミックコンデンサが開示されている。このコンデンサを基板に実装する場合、基板とセラミック素体との間に導電性樹脂層が介在することになる。樹脂層は柔軟性が高いので、熱衝撃によって基板からセラミック素体に加わる応力を緩和し、セラミック素体のクラック(割れ)を起こりにくくする。
特開平11−219849号公報 特開平5−144665号公報 特開2003−318059号公報
近年では、環境問題を考慮して、鉛フリーの半田がセラミック電子部品の製造や実装に使用されることが多い。ところが、本発明者の研究によれば、鉛フリー半田を用いてセラミック電子部品を基板上に半田付けし、熱衝撃を与えると、セラミック素体よりも、むしろ半田にクラックが生じやすいことが分かった。半田はセラミック素体よりも脆いので、従来技術の導電性樹脂層では、熱衝撃による半田のクラックを防止することは困難である。
そこで、本発明は、基板に半田付けされた状態で熱衝撃を受けても半田にクラックを発生させにくいセラミック電子部品を提供することを課題とする。
本発明の一つの側面は、セラミック電子部品に関する。このセラミック電子部品は、相対向する二つの端面、並びに当該二つの端面を連結する側面を有するセラミック素体と、セラミック素体の各端面上に形成された端子電極とを備えている。各端子電極は、セラミック素体の各端面に付着した中央部と、この中央部からセラミック素体の側面の上方に延在する側方部とを有している。各端子電極の側方部は、セラミック素体の側面から離間している。
このセラミック電子部品では、端子電極の側方部とセラミック素体の側面との間に空間が形成されている。端子電極を基板に半田付けすれば、熱衝撃によって基板が湾曲したときに半田に加わる応力が上記の空間によって緩和される。したがって、本発明のセラミック電子部品は、基板に半田付けされた状態で熱衝撃を受けても、半田にクラックを発生させにくい。
このセラミック電子部品は、各端子電極を覆うメッキ膜を更に備えていてもよい。このメッキ膜によって、端子電極を湿気から保護することができる。
本発明の別の側面は、セラミック電子部品の製造方法に関する。この方法は、相対向する二つの端面、並びに当該二つの端面を連結する側面を有するセラミック素体を用意し、当該側面のうち各端面に隣接する部分に樹脂膜を形成する工程と、セラミック素体の各端面及び樹脂膜上に導電性ペーストを塗布する工程と、樹脂膜を熱分解すると共に導電性ペーストを焼成して、セラミック素体の側面との間に空間を有する端子電極を形成する工程とを備えている。
樹脂膜の上に導電性ペーストを塗布した後、樹脂膜を熱分解することにより、セラミック素体の側面との間に空間を有する端子電極を効率良く形成できる。この端子電極を基板に半田付けすれば、熱衝撃によって基板が湾曲したときに半田に加わる応力が上記の空間によって緩和される。したがって、本発明の方法によれば、基板に半田付けされた状態で熱衝撃を受けても半田にクラックを発生させにくいセラミック電子部品を製造することができる。
この方法は、各端子電極をメッキする工程を更に備えていてもよい。メッキによって端子電極の表面に形成される金属膜により、端子電極を湿気から保護することができる。端子電極の表面のうちセラミック素体の側面と対向する部分は、端子電極の外側から見たときに端子電極に隠れているが、メッキ法は金属原子を端子電極に吸引するので、このような隠れた部分にも金属膜を形成することができる。
本発明によれば、基板に半田付けされた状態で熱衝撃を受けても半田にクラックを発生させにくいセラミック電子部品を提供することができる。
以下、添付図面を参照しながら本発明の実施形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
第1実施形態
図1は、第1の実施形態に係るセラミック電子部品を示す斜視図であり、図2は、図1の2−−2線に沿った断面図であり、図3は、図1の3−3線に沿った断面図である。本実施形態のセラミック電子部品は、積層セラミックコンデンサである。この積層セラミックコンデンサ10aは、直方体状のセラミック素体12と、セラミック素体12の両端部に形成された一対の端子電極15を有している。
図2及び図3に示されるように、セラミック素体12の両端面12aは、セラミック素体12の長手方向に沿って相対向している。これら二つの端面12aは、第1側面12b、第2側面12c、第3側面12d及び第4側面12eによって連結されている。第1側面12bと第2側面12c、第3側面12dと第4側面12eは、それぞれ相対向している。
セラミック素体12は、セラミック誘電体22中に第1内部電極23と第2内部電極24が埋設された構造を有している。これらの内部電極23、24は、共に方形平板状であり、誘電体22を介して交互に重ね合わされている。内部電極23の一端は、セラミック素体12の一方の端面12aに露出し、その端面12a上に形成された端子電極15に接続されている。また、内部電極24の一端は、セラミック素体12の他方の端面12aに露出し、その端面12a上に形成された端子電極15に接続されている。
各端子電極15は、セラミック素体12の各端面12aを全面的に覆い、更にその一部がセラミック素体12の第1〜第4側面12b〜12eの上方に延びている。以下では、端子電極15のうちセラミック素体12の端面12a上に形成された部分15aを「中央部」、第1側面12b上に形成された部分15bを「第1側方部」、第2側面12c上に形成された部分15cを「第2側方部」、第3側面12d上に形成された部分15dを「第3側方部」、第4側面12e上に形成された部分15eを「第4側方部」と呼ぶ。セラミック素体12中の内部電極23、24は、中央部15aと接触している。
第1側方部15bは、セラミック素体12の第1側面12bのうち端面12aに隣接する部分を覆っている。同様に、側方部15c、15d及び15eは、それぞれ側面12c、12d及び12eのうち端面12aに隣接する部分を覆っている。これらの側方部15b、15c、15d及び15eは、それぞれ側面12b、12c、12d及び12eから離間している。したがって、これらの側方部とこれらの側面との間には空間18が生じている。
図2及び図3に示されるように、各端子電極15の表面は内側メッキ膜16によって覆われており、内側メッキ膜16の表面は外側メッキ膜17によって覆われている。これらのメッキ膜は、端子電極15を湿気から保護する。これらのメッキ膜は、異なる金属から構成されており、各金属は合金であってもよい。内側メッキ膜16は、側方部15b〜15eの表面のうちセラミック素体12の側面12b〜12eに対向する部分(空間18に隣接する部分)までも覆っている。これにより、端子電極15を湿気から良好に保護することができる。
以下では、図4〜図6を参照しながら、積層セラミックコンデンサ10aの製造方法を説明する。ここで、図4〜図6は、積層セラミックコンデンサ10aの製造工程を示す断面図である。
まず、セラミックグリーンシートの表面に、内部電極となるべき電極パターンを形成し、その上に別のセラミックグリーンシートを重ね合わせ、その表面に別の内部電極となるべき電極パターンを形成するという工程を繰り返す。こうして得られたセラミックグリーンシートの積層体を焼成し、セラミック素体12を形成する。
次に、図4に示されるように、セラミック素体12の側面12b〜12e上のうち少なくとも各端面12aに隣接する部分に樹脂ペーストを塗布し、これを乾燥させて樹脂膜25を形成する。本実施形態では、各樹脂膜25は方形環状である。
この後、図5に示されるように、セラミック素体12の両端部に、端子電極15の原料となる導電性ペースト21を塗布する。この導電性ペースト21は、例えば、ガラスを含有する金属ペーストである。導電性ペーストは、端面12aの全面に塗布されると共に、樹脂膜25上にも塗布される。ただし、セラミック素体12の側面12b〜12eに導電性ペーストが付着しないようにすることが好ましい。導電性ペーストの塗布は、セラミック素体12の両端部を導電性ペーストに浸漬することにより行ってもよい。
続いて、導電性ペースト21を乾燥させた後、第1の温度でセラミック素体12を加熱し、樹脂膜25を熱分解した後、より高い第2の温度でセラミック素体12を加熱して導電性ペースト21を焼成し、端子電極15を得る(図6を参照)。樹脂膜25の熱分解により、樹脂膜25が存在していた箇所に空間18が形成される。
次に、電解メッキ等の湿式メッキ法を用いて、端子電極15の表面に内側メッキ膜16を形成し、続いて、同様のメッキ法を用いて、内側メッキ膜16の表面上に外側メッキ膜17を形成する。こうして、本実施形態の積層セラミックコンデンサ10aが得られる。
図6に示されるように、端子電極15の表面のうちセラミック素体12の側面12b〜12eと対向する部分は、端子電極15の外側から見たときに側方部15b〜15eに隠れている。しかし、メッキ法は金属原子を端子電極15の表面に吸引するので、図2及び図3に示されるように、このような隠れた部分にも金属膜を形成することができる。これにより、端子電極15を湿気から適切に保護することができる。
以下では、図7を参照しながら、本実施形態の効果を説明する。ここで、図7は、積層セラミックコンデンサ10aを基板26上に実装した様子を示す概略断面図である。実装の際、端子電極15は、基板26上の導電ランド(図示せず)に半田28を用いて半田付けされる。
近年では、環境問題を考慮して、半田28として鉛フリーの半田がしばしば使用される。ところが、本発明者の研究によれば、鉛フリー半田を用いてセラミック電子部品を基板上に半田付けし、熱衝撃を与えると、セラミック電子部品のセラミック素体よりも、むしろ半田にクラックが生じやすいことが分かった。
本実施形態の積層セラミックコンデンサ10aは、鉛フリーの半田28によって基板26に半田付けされても、熱衝撃によるクラックを半田28に生じさせにくい。これは、セラミック素体12の側面12b〜12eと端子電極15との間に空間18が形成されているためである。基板26及び積層セラミックコンデンサ10aが熱衝撃を受けると、基板26とセラミック素体12との熱膨張係数の違いから、基板26が湾曲する可能性がある。このとき、空間18は、半田28に加わる応力を緩和するクッションとして働く。これにより、半田28にクラックが起こりにくくなる。
例えば、空間18が存在せず、端子電極15の側方部15b〜15eがセラミック素体12の側面12b〜12eに直接接合されている場合を考える。この場合、基板26が湾曲すると、側方部15b〜15eはセラミック素体12に圧縮応力または引張応力を加える。この応力の反作用として、半田28にも応力が加わる。これが半田28にクラックを生じさせる原因となる。
これに対し、本実施形態では、端子電極15の側方部15b〜15eとセラミック素体12の側面12b〜12eとの間に空間18が形成されているので、熱衝撃によって基板26が湾曲したときに、側方部15b〜15eからセラミック素体12に応力が加わりにくい。この結果、半田28に加わる応力が緩和され、半田28にクラックが起こりにくくなる。
更に、図7では、端子電極15の第2側方部15cが基板26に半田付けされているが、他の側方部15b、15dまたは15eを基板26に半田付けしても、同じようにクラック抑制効果が得られる。空間18がセラミック素体12の四つの側面12b〜12e上に配置されているので、積層セラミックコンデンサ10aを基板26上に実装する際、どの側面を基板26に向けてもよい。このように、積層セラミックコンデンサ10aは、実装方向の自由度が高く、したがって、基板26への実装が容易である。
第2実施形態
図8は、第2の実施形態に係るセラミック電子部品を示す断面図である。本実施形態のセラミック電子部品も、積層セラミックコンデンサである。この積層セラミックコンデンサ10bは、第1実施形態の積層セラミックコンデンサ10aにおいて端子電極15と内側メッキ膜16の間に導電性樹脂層20を追加した構成を有する。他の構成は、積層セラミックコンデンサ10aと同様である。
以下では、積層セラミックコンデンサ10bの製造方法を説明する。積層セラミックコンデンサ10bは、第1実施形態と同様の手順でセラミック素体12上に端子電極15を形成した後、導電性樹脂ペーストを端子電極15に塗布する。この導電性樹脂ペーストは、金属と熱硬化性樹脂を含んでいる。続いて、導電性樹脂ペーストを乾燥させた後、加熱して硬化させ、導電性樹脂層20を形成する。
なお、通常の塗布では、導電性樹脂ペーストは側方部15b〜15eの内面に付着しにくいので、図8に示されるように、導電性樹脂層20は側方部15b〜15eの内面上に及んでいない。ただし、この内面が導電性樹脂層20によって覆われていても構わない。
この後、湿式メッキ法を用いて、導電性樹脂層20及び側方部15b〜15eの内面上に内側メッキ膜16及び外側メッキ膜17を順次に形成する。こうして、積層セラミックコンデンサ10bが得られる。
積層セラミックコンデンサ10bは、第1実施形態と同じ効果に加えて、次のような効果を奏する。すなわち、端子電極15と内側メッキ膜16の間に介在する導電性樹脂層16は柔軟なので、積層セラミックコンデンサ10bを基板26に半田付けしたときに、この導電性樹脂層16は半田に加わる応力を緩和する。これにより、半田のクラックがいっそう起こりにくくなる。
本発明者は、実施例として、第2実施形態の製造方法により積層セラミックコンデンサ10bを実際に製造すると共に、比較例として、空間18を有さない積層セラミックコンデンサを製造し、両者に熱衝撃を加えてクラックの発生の有無を調べた。
実施例を製造する際は、樹脂膜25用の樹脂ペーストとして、樹脂材料であるエチルセルロースを溶剤であるテルピネオールと混合し、溶解したものを使用した。また、端子電極15用の導電性ペースト21としては、Agとガラスフリットを主成分とするものを使用した。樹脂膜25を形成したセラミック素体12の両端部に、この導電性ペースト21を塗布して、乾燥させた。続いて、セラミック素体12を500℃の温度下で2時間保持して樹脂膜25を熱分解し、その後、温度を800℃まで上昇させ、その温度下でセラミック素体12を更に1時間保持した。この2段階の加熱処理により導電性ペースト21を焼成し、端子電極15を形成した。
次いで、端子電極15に導電性樹脂ペーストを塗布する。本実施例で使用する導電性樹脂ペーストは、平均粒径1μmの粒状Ag粉末を35wt%、平均粒径10μmのフレーク状Ag粉末を35wt%、エポキシ樹脂を12wt%、溶剤を18wt%の濃度でそれぞれ含んでいる。この導電性樹脂ペーストを端子電極15の表面に塗布し、乾燥させた後、200℃の温度下で60分間加熱して硬化させ、導電性樹脂層20を形成した。この後、電解メッキ法により、内側メッキ膜16としてNi膜を、外側メッキ膜17としてSn膜を順次に形成し、実施例の積層セラミックコンデンサを得た。
一方、比較例は、樹脂膜25の形成工程を省くほかは実施例と同様の方法で製造した。この比較例では、端子電極の側方部がセラミック素体の側面に直接接合されている。
本発明者は、実施例及び比較例の積層セラミックコンデンサを50個ずつ製造し、その各々について熱衝撃特性を調べた。具体的には、各コンデンサをガラスエポキシ基板に鉛フリー半田を用いてリフロー半田付けしたサンプルを用意し、各サンプルの熱衝撃特性を調べた。熱衝撃の一つのサイクルでは、−55℃の温度下にサンプルを30分間置いた後、温度を125℃まで上昇させ、サンプルを更に30分間置く。次のサイクルでは、温度を125℃から−55℃まで下降させ、サンプルを30分間置き、その後、温度を125℃まで上昇させて更に30分間置く。本発明者は、1000サイクル、2000サイクル及び3000サイクル後の各サンプルの断面を観察し、半田クラックの発生の有無を調べた。この結果を以下の表に示す。
Figure 2007234654
この表において、「n/50」は50個のサンプルのうちn個に半田クラックが生じたことを表す。表1に示されるように、2000サイクル及び3000サイクルの熱衝撃を加えたときに、比較例を使用したサンプルの一部に半田クラックが発生するが、実施例を使用したサンプルでは、3000サイクルの熱衝撃を加えても半田クラックが一切発生しなかった。これは、端子電極15の側方部とセラミック素体12の側面との間に形成された空間18が半田クラックを防ぐ効果を示している。
以上、本発明をその実施形態に基づいて詳細に説明した。しかし、本発明は上記実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。
本発明のセラミック電子部品は、上記実施形態の積層セラミックコンデンサに限られず、他の任意の電子部品であってもよい。例えば、本発明のセラミック電子部品は、セラミック素体を有するインダクタであってもよい。このセラミック素体は、セラミック磁性体と、そのセラミック磁性体中に埋設されたコイル状の内部電極を有する。
上記実施形態では、端子電極15の四つの側方部15b〜15eがすべてセラミック素体12の側面12b〜12eから離間しており、これらの間に空間18が形成されている。しかしながら、端子電極の少なくとも一つの側方部とセラミック素体の側面との間に空間が形成されていれば、セラミック電子部品を基板に半田付けしたときに、熱衝撃による半田のクラックを抑えることができる。なお、端子電極の一つの側方部とセラミック素体の側面との間に空間が形成されている場合は、その側方部またはその側方部と相対向する側方部を基板に半田付けすることが、半田のクラックを防ぐうえで好ましい。
第1実施形態を示す斜視図である。 図1の2−2線に沿った断面図である。 図1の3−3線に沿った断面図である。 第1実施形態の製造工程を示す断面図である。 第1実施形態の製造工程を示す断面図である。 第1実施形態の製造工程を示す断面図である。 基板上に実装された積層セラミックコンデンサを示す断面図である。 第2実施形態を示す断面図である。
符号の説明
10a、10b…積層セラミックコンデンサ、12…セラミック素体、15…端子電極、16…内側メッキ膜、17…外側メッキ膜、18…空間、20…導電性樹脂層、21…導電性ペースト、22…誘電体、23…第1内部電極、24…第2内部電極、25…樹脂膜、26…基板、28…半田

Claims (4)

  1. 相対向する二つの端面、並びに当該二つの端面を連結する側面を有するセラミック素体と、
    前記セラミック素体の各前記端面上に形成された端子電極と、
    を備えるセラミック電子部品であって、
    各前記端子電極は、前記セラミック素体の各前記端面上に付着した中央部と、この中央部から前記セラミック素体の側面の上方に延在する側方部とを有しており、
    各前記端子電極の側方部は、前記セラミック素体の側面から離間している、
    セラミック電子部品。
  2. 各前記端子電極は、前記中央部及び前記側方部を覆うメッキ膜を更に有している、請求項1に記載のセラミック電子部品。
  3. 相対向する二つの端面、並びに当該二つの端面を連結する側面を有するセラミック素体を用意し、当該側面上において各前記端面の付近に樹脂膜を形成する工程と、
    前記セラミック素体の各前記端面及び前記樹脂膜上に導電性ペーストを塗布する工程と、
    前記樹脂膜を熱分解すると共に前記導電性ペーストを焼成して、前記セラミック素体の側面との間に空間を有する端子電極を形成する工程と、
    を備えるセラミック電子部品の製造方法。
  4. 各前記端子電極をメッキする工程を更に備える請求項3に記載のセラミック電子部品の製造方法。
JP2006050864A 2006-02-27 2006-02-27 セラミック電子部品及びその製造方法 Withdrawn JP2007234654A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006050864A JP2007234654A (ja) 2006-02-27 2006-02-27 セラミック電子部品及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006050864A JP2007234654A (ja) 2006-02-27 2006-02-27 セラミック電子部品及びその製造方法

Publications (1)

Publication Number Publication Date
JP2007234654A true JP2007234654A (ja) 2007-09-13

Family

ID=38554976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006050864A Withdrawn JP2007234654A (ja) 2006-02-27 2006-02-27 セラミック電子部品及びその製造方法

Country Status (1)

Country Link
JP (1) JP2007234654A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200421A (ja) * 2008-02-25 2009-09-03 Tdk Corp 電子部品の実装構造
JP2011049351A (ja) * 2009-08-27 2011-03-10 Kyocera Corp 積層セラミックコンデンサ
WO2022163193A1 (ja) * 2021-01-29 2022-08-04 株式会社村田製作所 セラミック電子部品

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200421A (ja) * 2008-02-25 2009-09-03 Tdk Corp 電子部品の実装構造
JP2011049351A (ja) * 2009-08-27 2011-03-10 Kyocera Corp 積層セラミックコンデンサ
WO2022163193A1 (ja) * 2021-01-29 2022-08-04 株式会社村田製作所 セラミック電子部品

Similar Documents

Publication Publication Date Title
JP4747604B2 (ja) セラミック電子部品
JP5172818B2 (ja) セラミックス電子部品
JP5870894B2 (ja) セラミック電子部品及びその製造方法
JP2008181956A (ja) セラミック電子部品
JP6106009B2 (ja) セラミック電子部品
JP5301524B2 (ja) 積層セラミックキャパシタ及びその製造方法
JP2009200421A (ja) 電子部品の実装構造
JP5239236B2 (ja) 電子部品およびその製造方法
JP2013118357A (ja) セラミック電子部品及びその製造方法
JP5852321B2 (ja) 積層セラミックコンデンサ
JP2007234774A (ja) セラミック電子部品及びその製造方法
JP2019220602A (ja) 電子部品および電子部品の製造方法
US20160042865A1 (en) Multi-layer ceramic capacitor
JP2011135082A (ja) 積層セラミックキャパシタ及びその製造方法
JP2012151175A (ja) セラミック電子部品、セラミック電子部品の実装構造、およびセラミック電子部品の製造方法
JP2009170706A (ja) 積層電子部品
JP6610086B2 (ja) 積層セラミック電子部品
JP2007234654A (ja) セラミック電子部品及びその製造方法
JP2016076582A (ja) セラミック電子部品
JP5724262B2 (ja) 電子部品
JP5071118B2 (ja) セラミック電子部品
JP5338354B2 (ja) セラミック電子部品
JP2019016781A (ja) 積層セラミックキャパシタ及びその製造方法
JP2007234820A (ja) セラミック電子部品
JPH08107039A (ja) セラミック電子部品

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512