JP2007228491A - ネットワーク中継装置 - Google Patents

ネットワーク中継装置 Download PDF

Info

Publication number
JP2007228491A
JP2007228491A JP2006049960A JP2006049960A JP2007228491A JP 2007228491 A JP2007228491 A JP 2007228491A JP 2006049960 A JP2006049960 A JP 2006049960A JP 2006049960 A JP2006049960 A JP 2006049960A JP 2007228491 A JP2007228491 A JP 2007228491A
Authority
JP
Japan
Prior art keywords
packet
relay device
network relay
clock signal
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006049960A
Other languages
English (en)
Other versions
JP4786371B2 (ja
Inventor
Masayuki Shinohara
誠之 篠原
Nobuhito Matsuyama
信仁 松山
Takayuki Muranaka
孝行 村中
Isao Kimura
功 木村
Shinichi Akaha
真一 赤羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alaxala Networks Corp
Original Assignee
Alaxala Networks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alaxala Networks Corp filed Critical Alaxala Networks Corp
Priority to JP2006049960A priority Critical patent/JP4786371B2/ja
Priority to CN2006101056160A priority patent/CN101030930B/zh
Priority to CN201610214909.6A priority patent/CN105791138B/zh
Priority to CN201110209505.5A priority patent/CN102231713B/zh
Priority to CN201210169392.5A priority patent/CN102655479B/zh
Priority to US11/487,990 priority patent/US7804794B2/en
Publication of JP2007228491A publication Critical patent/JP2007228491A/ja
Application granted granted Critical
Publication of JP4786371B2 publication Critical patent/JP4786371B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/60Router architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/25Routing or path finding in a switch fabric
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/30Peripheral units, e.g. input or output ports
    • H04L49/3009Header conversion, routing tables or routing tags

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Small-Scale Networks (AREA)

Abstract

【課題】ネットワーク中継装置の消費電力を、必要な性能を犠牲とすることなく、抑制する。
【解決手段】ネットワーク中継装置は、パケット中継手段と、クロック信号供給手段と、を備える。パケット中継手段は、複数の回線のいずれかから送信されてくるパケットを受信すると共に、受信されたパケットの転送先を決定し、受信されたパケットを転送する。さらに、パケット中継手段は、供給されるクロック信号に同期して動作する。クロック信号供給手段は、パケット中継手段に対して、クロック信号を供給する。さらに、クロック信号供給手段は、パケット中継手段に対して供給されるクロック信号のうちの少なくとも一部の信号の周波数を、複数の異なる値に切り換え可能である。
【選択図】図3

Description

本発明は、ネットワーク中継装置に関し、特に、ネットワーク中継装置の消費電力の低減に関する。
スイッチや、ルータを始めとするネットワーク中継装置は、ネットワークの構築において、重要なデバイスとなっている。近年、ネットワークの大規模化およびネットワークを介して伝送されるデータ量の増加に伴い、ネットワーク中継装置の高性能化、大容量化が著しい。一方で、高性能化、大容量化に伴って、ネットワーク中継装置の消費電力は、上昇する傾向にあり、システム維持コストや、環境保護の観点から、ネットワーク中継装置の消費電力の抑制が課題となっている。
ここで、ケーブルを用いて互いに接続される装置において、通常モードと省電力モードを備える技術が知られている(例えば、特許文献1)。
特開2000−201166号公報
しかしながら、上記従来技術では、ネットワーク中継装置の省電力化については、何ら考慮されていない。一般的に、ネットワーク中継装置の性能(例えば、スイッチング容量)を上げるためには、デバイスを構成する半導体集積回路の集積度/動作クロック周波数を上げて単位時間当たりのパケット処理能力を向上する手段が一般的であるが、集積度/動作クロック周波数の上昇に伴い、半導体集積回路の消費電力も上昇する。従来のネットワーク中継装置では、性能や機能の縮退させた半導体集積回路を設計することで、低消費電力を達成していたが、このアプローチでは必要な性能を満足しつつ省電力を実現することはできないおそれがあった。
本発明は、上記課題を解決するためになされたものであり、ネットワーク中継装置において、必要な時に必要な性能を維持しつつ、消費電力量を抑制することを目的とする。
上記課題の少なくとも一部を解決するため、本発明の第1の態様は、ネットワーク中継装置を提供する。本発明の第1の態様に係るネットワーク中継装置は、1または複数のインターフェース部と、1または複数の中継処理部と、動作モード変更部と、を備える。前記インターフェース部は、1または複数の回線とそれぞれ接続され、宛先情報が関連付けられているパケットを受信すると共に、パケットを転送先に対して送信する。前記インターフェース部は、さらに、1または複数の消費電力レベルの異なる動作モードに動作を切換可能である。前記中継処理部は、前記パケットに関連付けられた宛先情報に基づいて、前記受信されたパケットの前記転送先を決定する。前記中継処理部は、さらに、1または複数の消費電力レベルの異なる動作モードに動作を切換可能である。前記動作モード変更部は、前記インターフェース部の動作モードと、前記中継処理部の動作モードとを、独立して変更することが可能である。
本発明の第1の態様に係るネットワーク中継装置によれば、中継処理部と、インターフェース部とは、それぞれに、消費電力レベルの異なる動作モードに切換可能であり、それぞれ独立して動作モードを変更できる。これにより、消費電力レベルを高くしてネットワーク中継装置の性能を向上させることと、消費電力レベルを低くしてネットワーク中継装置の消費電力を低減することとを、柔軟に変更することができる。この結果、ネットワーク中継装置において、必要な時に必要な性能を維持しつつ、消費電力量を抑制することができる。
本発明の第2の態様は、複数の回線と接続されるネットワーク中継装置を提供する。本発明の第2の態様に係るネットワーク中継装置は、パケット中継手段と、クロック信号供給手段と、を備える。前記パケット中継手段は、前記複数の回線のいずれかから送信されてくるパケットを受信すると共に、前記受信されたパケットの転送先を決定し、前記受信されたパケットを転送する。さらに、前記パケット中継手段は、供給されるクロック信号に同期して動作する。前記クロック信号供給手段は、前記パケット中継手段に対して、クロック信号を供給する。さらに、前記クロック信号供給手段は、前記パケット中継手段に対して供給されるクロック信号のうちの少なくとも一部の信号の周波数を、複数の異なる値に切り換え可能である。
本発明の第2の態様に係るネットワーク中継装置によれば、パケット中継手段に供給されるクロック信号のうちの少なくとも一部の周波数を異なる値に変更することができる。これにより、周波数を大きくすれば、そのクロック信号に同期して動作するパケット中継手段の動作速度を高速にし、ネットワーク中継装置の性能を向上させることができる。そして、周波数を小さくすれば、パケット中継手段の動作速度を低下させ、ネットワーク中継装置の消費電力を低減することができる。この結果、ネットワーク中継装置において、必要な時に必要な性能を維持しつつ、消費電力量を抑制することができる。
以下、本発明の実施の形態について、図面を参照しつつ、実施例に基づいて説明する。
A.実施例:
・ネットワーク中継装置の構成:
図1〜図3を参照して、実施例に係るネットワーク中継装置の構成について説明する。図1は、実施例に係るネットワーク装置の基本構成を示すブロック図である。図2は、装置制御部の内部構成を示すブロック図である。図3は、インターフェースボードと、中継処理ボードを中心とした構成を示すブロック図である。
図1に示すように、本実施例に係るネットワーク中継装置1000は、主として、制御ボード10と、中継処理ボード100と、インターフェースボード300とを備える。制御ボード10には、装置制御部11が搭載されている。制御ボード10と、中継処理ボード100と、インターフェースボード300とは、制御バス400によって通信可能に接続されている。制御バス400を介して、制御ボード10の装置制御部11は、インターフェースボード300および中継処理ボード100の各構成要素に制御信号を送信したり、各構成要素から各種情報を取得することができる。図1において、制御ボード10は、冗長化により信頼性を向上するため2つ備えられ、1つは、通常時に用いられる運用系の制御ボードであり、もう一つは、運用系の制御ボード10に障害が発生した場合に用いられる待機系の制御ボードである。
装置制御部11は、ネットワーク中継装置1000全体を管理する制御部であり、図2に示すように、中央演算装置(CPU)12およびメモリ13を備えている。メモリ13には、制御プログラム14および設定ファイル17が格納されている。CPU12は、制御プログラム14を実行することにより、装置制御部としての機能を実現する。制御プログラム14は、RIP(Routing Information Protocol)や、OSPF(Open Shortest Path First)などのルーティングプロトコルの処理を行うモジュールなど、各種モジュールを含んでいるが、図2においては、本実施例の説明に必要な構成を選択的に図示し、本明細書においては、図示された構成について説明する。制御プログラム14は、流量管理モジュール15と、周波数変更モジュール16と、通信速度管理モジュール18とを備えている。流量管理モジュール15は、中継処理ボード100と通信することにより、中継処理ボード100により処理されたパケットの流量を取得する。周波数変更モジュール16は、中継処理ボード100およびインターフェースボード300に搭載された回路や、各種バス(後述)の動作周波数(クロック信号の周波数)の設定・変更を制御する。例えば、後述する起動処理において、動作モードに応じた動作周波数を設定する。通信速度管理モジュール18は、各物理インターフェース部320に接続された各回線600の通信速度を管理する。これらのモジュールが行う処理については、さらに、後述する。
本実施例では、ネットワーク中継装置1000は、2つの中継処理ボード100を備えている。2つの中継処理ボード100は、それぞれ、同一の構成を有しているので、図1においては、同一の構成要素については同一の符号を付している。中継処理ボード100は、パケット処理回路120と、転送先決定回路130とを備えている。パケット処理回路120と、転送先決定回路130との間は、内部バス140によって通信可能に接続されている。パケット処理回路120および転送先決定回路130は、後述するこれらの回路の機能を実現するために設計されたASIC(Application Specific Integrated Circuit:特定用途向け集積回路)である。
本実施例では、ネットワーク中継装置1000は、3つのインターフェースボード300を備えている。3つのインターフェースボード300は、それぞれ、同一の構成を有しているので、図1においては、1つのインターフェースボード300について、その内部構成を図示し、残りのインターフェースボード300については、内部構成の図示を省略している。各インターフェースボード300は、送受信処理回路310と、複数の物理インターフェース部320とを備えている。送受信処理回路310は、パケット処理回路120および転送先決定回路130と同様に、専用に設計されたASICである。物理インターフェース部320は、回線600を介してネットワークに接続され、回線600上を流れるパケットに対して光/電気変換、電気レベル変換などの物理インタフェース変換を行い、インタ フェースボード内で処理できる情報に変換する。回線600には、同軸ケーブルや、光ファイバなどが用いられる。
ここで、上述した中継処理ボード100のパケット処理回路120と、インターフェースボード300の送受信処理回路310とは、外部バス500によって通信可能に接続されている。各パケット処理回路120は、3つのインターフェースボード300全ての送受信処理回路310と通信可能とされている。
図3を参照して、中継処理ボード100およびインターフェースボード300を中心にネットワーク中継装置1000の構成について、さらに、詳しく説明する。中継処理ボード100は、上述したパケット処理回路120、転送先決定回路130、内部バス140に加えて、オンボード電源(OBP)160と、クロック生成部CL1〜CL5を備えている。また、インターフェースボード300は、上述した送受信処理回路310、物理インターフェース部320に加えて、オンボード電源(OBP)360と、クロック生成部CL6、CL7を備えている。
オンボード電源160は、中継処理ボード100に備えられた各構成要素に対して、オンボード電源360は、インターフェースボード300に備えられた各構成要素に対して、それぞれ、電力を供給する装置であり、主電源部700と接続されている。
各クロック生成部CL1〜CL7は、図3においてクロック生成部CL1について代表して図示するように、高周波数発振器22と、低周波数発振器23と、セレクタ21とを備えている。高周波数発振器22および低周波数発振器23は、例えば、水晶振動子などを用いて、所定の周波数のクロック信号を生成する。高周波数発振器22により生成されるクロック信号の周波数は、低周波数発振器23により生成されるクロック信号の周波数より高い。以下、高周波数発振器22により生成されるクロック信号を高クロック信号HH、低周波数発振器23により生成されるクロック信号を低クロック信号HLと呼ぶ。例えば、高クロック信号HHの周波数は、低クロック信号HLの周波数の1.5倍から3倍程度に設定される。セレクタ21は、装置制御部11の制御に従い、高周波数発振器22および低周波数発振器23のいずれかにクロック信号を生成させ、そのクロック信号を出力する。以上の説明から解るように、各クロック生成部CL1〜CL7は、装置制御部11の制御に従って、高クロック信号HHまたは低クロック信号HLのうちのいずれかのクロック信号を選択的に出力することができる。
クロック生成部CL1は、上述した中継処理ボード100の転送先決定回路130にクロック信号を供給し、転送先決定回路130は、供給されたクロック信号に同期して動作する。クロック生成部CL2と、クロック生成部CL3は、上述した転送先決定回路130とパケット処理回路120とを接続する内部バス140にクロック信号を供給し、内部バス140は、供給されたクロック信号に同期して動作する。クロック生成部CL4は、上述した中継処理ボード100のパケット処理回路120にクロック信号を供給し、パケット処理回路120は、供給されたクロック信号に同期して動作する。クロック生成部CL5と、クロック生成部CL6は、上述した中継処理ボード100のパケット処理回路120とインターフェースボード300の送受信処理回路310とを接続する外部バス500にクロック信号を供給し、外部バス500は、供給されたクロック信号に同期して動作する。クロック生成部CL7は、インターフェースボード300の送受信処理回路310にクロック信号を供給し、送受信処理回路310は、供給されたクロック信号に同期して動作する。
送受信処理回路310、パケット処理回路120、転送先決定回路130の構成について、さらに説明する。図3に示すように、送受信処理回路310は、送受信エンジン311と、メモリ312とを備えている。パケット処理回路120は、転送エンジン121と、メモリ122とを備えている。転送先決定回路130は、転送先検索エンジン131と、メモリ132と、高速検索メモリ133とを備えている。高速検索メモリ133には、例えば、CAM(Content Addressable Memory)を適用することができる。メモリ132には、フォワーディングテーブル134が格納されている。高速検索メモリ133には、IPアドレステーブル135が格納されている。高速検索メモリ133は、検索機能を備えたメモリであり、IPアドレステーブル135に登録されたIPアドレスを高速に検索することができる。なお、フォワーディングテーブル134や、IPアドレステーブル135は、装置制御部11によって、配布される。
次に、以上説明したネットワーク中継装置1000によるパケット中継処理について簡単に説明する。回線600を介して、送信されてきたデータの電気信号は、物理インターフェース部320によって、ビットデータに変換される(OSI(Open System Interconnection)参照モデルにおける物理層に相当する処理である)。送受信処理回路310の送受信エンジン311は、ビットデータを解釈して、OSI参照モデルにおけるデータリンク層において用いられるデータの固まり(以下、フレームと呼ぶ。イーサネット(登録商標)・フレームなどがある。)単位で認識する。送受信処理回路310の送受信エンジン311は、さらに、認識されたフレームから、ネットワーク層において用いられるデータの固まり(以下、パケットと呼ぶ。IPパケットなどがある。)を抽出し、抽出されたパケットを外部バス500を介してパケット処理回路120に送信する。あるいは、送受信エンジン311は、パケットを抽出せずにフレームを送信し、パケット処理回路120においてフレームからパケットを抽出する構成としても良い。メモリ312は、送受信エンジン311がこれらの処理を行う際に、フレームなどのデータを一時的に格納するためのバッファ領域として用いられる。送受信処理回路310の送受信エンジン311が、複数あるパケット処理回路120のうち、どのパケット処理回路120にパケットを送信するかは、予め装置制御部11により送受信処理回路310に設定されていたり、あるいは、フレームのヘッダ情報に基づいて決定される。
パケット処理回路120の転送エンジン121は、送受信エンジン311から送信されてきたパケットを、メモリ122に一時的に格納する。転送エンジン121は、送られてきたパケットに関連付けられている宛先情報を抽出する。宛先情報は、例えば、IPアドレスを含むヘッダ情報である。転送エンジン121は、抽出された宛先情報を、内部バス140を介して、同じ中継処理ボード100内の転送先決定回路130に送信する。
転送先決定回路130は、送信されてきた宛先情報としてのIPアドレスを検索キーとして、高速検索メモリ133に格納されたIPアドレステーブル135を検索する。IPアドレステーブル135には、登録されたIPアドレスごとに、ポインタが関連付けられているので、転送先決定回路130は、検索によって、検索キーとしてのIPアドレスに対応するポインタを取得することができる。転送先決定回路130は、メモリ132に格納されたフォワーディングテーブル134を参照して、ポインタに対応付けられたパケット処理情報を取得する。パケット処理情報には、パケットの転送先を特定する情報、すなわち、パケットを送出すべき回線を特定する情報が記述されている。回線を特定する情報は、例えば、対象の回線に接続されている物理インターフェース部320の番号と送受信処理回路310の番号である。
転送先決定回路130は、取得されたパケット処理情報を内部バス140を介して、パケット処理回路120に送信する。パケット処理回路120の転送エンジン121は、パケット処理情報を取得すると、パケット処理情報に基づいて、ネットワーク中継装置1000に備えられた複数の送受信処理回路310の中からパケットを転送すべき送受信処理回路310を特定する。転送エンジン121は、特定された送受信処理回路310に対して、外部バス500を介して、対応するパケット処理情報と共にパケットを転送する。送受信処理回路310は、パケットとパケット処理情報とを受信すると、パケット処理情報に基づいて特定される物理インターフェース部320からパケットを送出する。以上説明した一連のパケット中継処理が、回線600を介して、ネットワーク中継装置1000に送信されてきた各パケットに対して実行される。
次に、図4および図5を参照して、ネットワーク中継装置1000の起動処理について説明する。図4は、設定ファイルの内容の一部を示す説明図である。図5は、起動処理の処理ルーチンを示すフローチャートである。起動処理は、電源ON時や、障害時に再起動されるときに、実行される。起動処理が開始されると、まず、制御ボード10が起動される(ステップS110)。
制御ボード10が起動されると、制御ボード10の装置制御部11は、メモリ13に格納された設定ファイル17を読み込む(ステップS120)。設定ファイル17は、ユーザがネットワーク中継装置1000の設定を行うために、各種設定情報を記録するファイルである。設定ファイル17は、図4に示す以外にも、回線の種別やリンクアグリゲーション機能の定義などの回線情報や、ルーティングプロトコルに関する定義などのルーティングプロトコル情報など、各種情報を含んでいる。図4には、本実施例の説明に必要な部分を選択的に図示している。設定ファイル17は、図4に示すように、ネットワーク中継装置1000の運転モードを指定する運転モード指定情報を含んでいる。本実施例に係るネットワーク中継装置1000は、以下の5つの運転モードにて運転可能である。
1.通常電力固定運転モード
2.低電力固定運転モード
3.流量切換運転モード
4.定期切換運転モード
5.通信速度切換運転モード
さらに、設定ファイル17は、流量切換運転モードでの運転に関する設定値として、流量範囲の指定と、流量範囲に対応する動作モードの指定を含むことができる。設定ファイル17は、定期切換運転モードでの運転に関する設定値として、時間帯の指定と、時間帯に対応する動作モードの指定を含むことができる。さらに、設定ファイル17は、通信速度切換運転モードでの運転に関する設定値として、通信速度範囲の指定と、通信速度範囲に対応する動作モードの指定を含むことができる。これらの運転モードについては、後述する。
設定ファイル17は、さらに、不使用登録情報を含むことができる。不使用登録情報は、不使用インターフェースおよび情報と、不使用ポート情報を含むことができる。不使用登録情報は、不使用インターフェースボードと、不使用物理インターフェース部を予め登録しておくための情報である。不使用登録情報は、例えば、複数のインターフェースボード300のうち、使用されないインターフェースボード(不使用インターフェースボード)がある場合に、その不使用インターフェースボードを特定するための情報であり、例えば、インターフェースボード300の識別番号(図4に示す例では、#3)が用いられる。また、不使用登録情報は、例えば、複数のインターフェースボード300がそれぞれ有する複数の物理インターフェース部320のうち、使用されないもの(不使用物理インターフェース部)がある場合に、その不使用物理インターフェース部を特定するための情報であり、例えば、不使用物理インターフェース部の属するインターフェースボード300の識別番号と、不使用物理インターフェース部の識別番号の組み合わせ(図4に示す例では、#4−2および#2−3)が用いられる。
設定ファイル17が読み込まれると、装置制御部11は、設定ファイル17に記録された情報に基づいて、ネットワーク中継装置1000の各構成要素の起動・設定を実行する(ステップS130)。ここで、起動・設定を実行される各構成要素は、装置制御部11以外の全ての構成要素、例えば、中継処理ボード100のパケット処理回路120、転送先決定回路130、内部バス140およびインターフェースボード300の送受信処理回路310および外部バス500が含まれる。
具体的に説明すると、装置制御部11は、中継処理ボード100のオンボード電源160を制御して、パケット処理回路120、転送先決定回路130、内部バス140に対して、電力を供給する。同様にして、装置制御部11は、インターフェースボード300のオンボード電源360を制御して、送受信処理回路310および物理インターフェース部320に対して、電力を供給する。同様にして、外部バス500にもオンボード電源360を介して、電力が供給される。ただし、装置制御部11は、設定ファイル17に不使用登録情報として、不使用インターフェースボードが登録されている場合には、登録されているインターフェースボード300のオンボード電源360からの出力をオフにする。その結果、当該インターフェースボード300に含まれる各要素(送受信処理回路310、物理インターフェース部320、クロック生成部CL6、CL7を含む)は、電力の供給が停止されたた状態になる。同様に、装置制御部11は、設定ファイル17に不使用登録情報として、不使用物理インターフェース部が登録されている場合には、登録されている物理インターフェース部320に、オンボード電源360から電力を供給しない、もしくは既知の技術を用いて消費電力を抑制した状態に設定する。
さらに、設定ファイル17において、通常電力固定運転モードが設定されている場合は、装置制御部11は、各クロック生成部CL1〜CL7を制御して、高クロック信号HHを生成・出力させる。これにより、上述したパケット処理回路120、転送先決定回路130、内部バス140、外部バス500、送受信処理回路310は、それぞれ、高クロック信号HHに同期して起動される。同様にして、設定ファイル17において、3種類の切換運転モード(流量切換、定期切換、通信速度切換)のいずれかが設定されている場合は、初期状態として、上述したパケット処理回路120、転送先決定回路130、内部バス140、外部バス500、送受信処理回路310は、それぞれ、高クロック信号HHに同期して起動される。
一方で、設定ファイル17において、低電力固定運転モードが設定されている場合は、装置制御部11は、各クロック生成部CL1〜CL7を制御して、低クロック信号HLを生成・出力させる。これにより、上述したパケット処理回路120、転送先決定回路130、内部バス140、外部バス500、送受信処理回路310は、それぞれ、低クロック信号HLに同期して起動される。以下、ネットワーク中継装置1000の動作のうち、各構成要素120、130、140、500、310が、高クロック信号HHに同期した動作モードを、高クロック動作と呼び、各構成要素120、130、140、500、310が、低クロック信号HLに同期した動作モードを、低クロック動作と呼ぶ。一般的な概念として、高速なパケット処理を可能とするには、各構成要素の動作速度を決定する主要因の一つであるクロック信号を高速にすることが一つの手段であるが、内部の半導体集積回路の動作高速化のために消費電力も上昇する。このような設計手法を用いた各構成要素を適用したネットワーク中継装置1000では、各構成要素に供給する動作クロック信号を高速化させれば、スイッチング容量は増大するが消費電力も上昇する。逆に、クロック信号が低速であれば、消費電力を抑止できるがスイッチング容量が減少する。
装置制御部11により、ネットワーク中継装置1000の各構成要素が起動・設定されて、上述したパケット中継処理を運用できる状態になると、パケット中継処理の運用が開始され(ステップS140)、起動処理は、終了される。
ここで、上述したように、設定ファイル17において、2種類の固定運転モード(通常電力、低電力)と3種類の切換運転モード(流量切換、定期切換、通信速度切換)のうち、いずれかが設定可能になっている。通常電力固定運転モードは、運用開始後、常に、高クロック動作で運転される運転モードであり、低電力固定運転モードは、運用開始後、常に、低クロック動作で運転される運転モードである。一方、切換運転モードは、運用開始後、パケット中継処理の実際の処理負荷、および、予想される処理負荷に応じて、高クロック動作と、低クロック動作とを自動的に変更する運転モードである。
図6〜図8を参照して、流量切換運転モードと、定期切換運転モードについて説明する。図6は、流量切換モードと、定期切換モードについて説明する説明図である。図7は、流量切換モードにおける周波数切換処理の処理ルーチンを示すフローチャートである。図8は、定期切換モードにおける周波数切換処理の処理ルーチンを示すフローチャートである。図6において、横軸は、一日の時間経過を示し、縦軸は、単位時間辺りの通信量(パケットの流量)を示している。ネットワーク中継装置に要求されるスイッチング容量は、必ずしも常に高い値が要求されるとは限らず、ネットワークの運用環境によって比較的に規則正しく変化することも多い。例えば、図6に示す例では、7時頃から急速に通信量が増加し、8時頃から18時頃まで平均して通信量が大きくなっている。一方、18時頃から20時頃にかけて急速に通信量が減少し、20時頃から翌日の7時頃までは、平均して通信量が少なく、8時頃から18時頃までの通信量の約1/3程度になっている。
このような通信量の変化が定期的に繰り返されることが解っている場合、ユーザは、例えば、流量切換運転モードを選択する。流量切換設定において、図4に示すように、パケットの単位時間当たりの流量(パケット流量:packets/sec)が0以上M未満である場合に対応する動作を低クロック動作に設定し、M以上である場合に対応する動作を高クロック動作に設定しておく。Mの値は、例えば、8時頃から18時頃までの平均通信量と、20時頃から翌日の7時頃までの平均通信量との中間値に設定される。図7を参照して、ネットワーク中継装置1000を流量切換運転モードにて運用する場合における周波数切換処理について説明する。運用が開始されると、装置制御部11の流量管理モジュール15は、現在のパケット流量を検出する(ステップS202)。現在のパケット流量として用いられる値は、例えば、所定時間(例えば、5分)前から現在までの平均パケット流量が用いられる。現在のパケット流量が検出されると、装置制御部11の周波数変更モジュール16は、図4に示す設定ファイル17に記述された流量切換設定を参照して、検出された現在のパケット流量に対応する動作モード(図4に示す例では、低クロック動作、または、高クロック動作)を選択する(ステップS204)。周波数変更モジュール16は、続いて、ネットワーク中継装置1000の現在の動作モードが、ステップS204において選択された動作モードと同じか否かを判断する(ステップS206)。周波数変更モジュール16は、現在の動作モードが、ステップS204において選択された動作モードと同じであると判断すると(ステップS206:YES)、ステップS202に処理をリターンして、上述の処理を繰り返す。
一方、周波数変更モジュール16は、現在の動作モードが、ステップS204において選択された動作モードと同じでないと判断すると(ステップS206:NO)、ネットワーク中継装置1000の動作モードを、ステップS204において選択された動作モードに変更する(ステップS208)。具体例として、図4に示す流量切換設定がなされており、ステップS202において現在のパケット流量がM未満であり、ステップS204において低クロック動作が、対応する動作モードとして選択された場合を説明する。係る場合において、ネットワーク中継装置1000が既に低クロック動作で運転されている場合には、ステップS202にリターンされ、ネットワーク中継装置1000が高クロック動作で運転されている場合には、高クロック動作から低クロック動作に動作モードが変更される。高クロック動作から低クロック動作への動作モードの変更は、上述したクロック生成部CL1〜CL7からクロック信号が供給される各構成要素120、130、140、500、310を再起動し、これらのクロック生成部CL1〜CL7から生成されるクロック信号を高クロック信号HHから低クロック信号HLに変更することにより行われる。
以上のような周波数切換処理を実行すると、図6に示すように、通信量が大きく、大きなスイッチング容量が要求される時間帯(図6の例では、8時頃から18時頃)においては、ネットワーク中継装置1000は高クロック動作で運用される。一方で、通信量が小さく、あまりスイッチング容量が要求されない時間帯(図6の例では、20時頃から翌7時頃)においては、ネットワーク中継装置1000は、低クロック動作で運用される。
また、図6に示すような通信環境である場合、ユーザは、定期切換運転モードを選択することもできる。図8を参照して、ネットワーク中継装置1000を定期切換運転モードにて運用する場合における周波数切換処理について説明する。運用が開始されると、装置制御部11の周波数変更モジュール16は、現在の時刻が設定ファイル17に記述された時刻T1になったか否かを判断する(ステップS302)。周波数変更モジュール16は、現在の時刻が、T1であると判断すると(ステップS302:YES)、設定ファイル17を参照して、ネットワーク中継装置1000の動作を、時刻T1〜T2の時間範囲に指定された動作モードに変更し(ステップS304)、ステップS302にリターンする。図4に示す例では、時刻T1〜T2の時間範囲に指定された動作モードは、低クロック動作であるので、ステップS304において、ネットワーク中継装置1000の動作は、高クロック動作から低クロック動作に変更される。
周波数変更モジュール16は、現在の時刻が、T1でないと判断すると(ステップS302:NO)、現在の時刻が設定ファイル17に記述された時刻T2になったか否か判断する(ステップS306)。周波数変更モジュール16は、現在の時刻が、T2であると判断すると(ステップS306:YES)、設定ファイル17を参照して、ネットワーク中継装置1000の動作を、時刻T2〜T1の時間範囲に指定された動作モードに変更し(ステップS308)、ステップS302にリターンする。図4に示す例では、時刻T2〜T1の時間範囲に指定された動作モードは、高クロック動作であるので、ステップS308において、ネットワーク中継装置1000の動作は、低クロック動作から高クロック動作に変更される。周波数変更モジュール16は、現在の時刻が、T2でないと判断すると(ステップS306:NO)、ステップS302にリターンする。
以上のような周波数切換処理を実行すると、図6に示すように、ネットワーク中継装置1000は、流量切換運転モードが選択された場合と同様に、大きなスイッチング容量が要求される時間帯では、高クロック動作で、あまりスイッチング容量が要求されない時間帯では、低クロック動作で運用される。
続いて、図9〜図10を参照して、通信速度切換運転モードについて説明する。図9は、対向装置との間で、回線の通信速度/通信モードを自動的に調整するオートネゴシエーション機能を説明する図である。図10は、通信速度切換運転モードにおける周波数切換処理の処理ルーチンを示すフローチャートである。オートネゴシエーション機能は、対向装置との間で、回線の通信速度/通信モードを自動的に調整する機能である。IEEE(米国電気電子学会)により策定されている通信方式の中に、オートネゴシエーション機能を有するインターフェースがある。オートネゴシエーション機能を有する代表的な通信方式には、10BASE-T/100BASE-TX(IEEE802.3uにて規定)、1000BASE-T(IEEE802.3abにて規定)、1000BASE-X(IEEE802.3zにて規定)が知られている。ネットワーク中継装置1000の物理インターフェース部320がこれらの通信方式をサポートしている場合、図9に示すように、回線600により対向装置2000の物理インターフェース部2020と相互に接続すると、物理インターフェース部320は、回線600を介して接続する対向装置2000の物理インターフェース部2020との間で、互いの伝送能力を確認し、通信速度/通信モードを自動的に調整することができる。具体的には、両装置間で伝送の能力の情報を伝えるための制御信号SGをやり取りすることにより、互いの伝送能力を確認する。そして、両装置で共通してサポートできるもののうち最も優先度の高い通信速度/通信モードを自動的に設定する。また、通信速度/通信モードは手動設定することも可能である。このような物理インターフェース部320がオートネゴシエーション機能を備えている場合、ネットワーク中継装置1000に流入するパケット量は、各物理インターフェース部320において調整された通信速度によって決まる。例えば、10本の回線600が接続されたネットワーク中継装置1000において、全ての回線600の通信速度が10Mbpsで調整された場合、ネットワーク中継装置1000は、10Mbps×10本=100Mbpsのスイッチング容量があれば全てのパケットを処理することが可能となる。また、全ての回線600の通信速度が1000Mbpsで調整された場合、ネットワーク中継装置1000は、1000Mbps×10本=10Gbpsのスイッチング容量が必要となる。
このように、物理インターフェース部320による通信速度の調整結果によって、ネットワーク中継装置1000に要求されるスイッチング容量は、必ずしも高い値になるとは限らない。ユーザは、通信速度切換運転モードを選択する場合、設定ファイル17において、通信速度範囲とこれに対応する動作モードを、動作モードが提供可能なスイッチング容量を考慮して設定しておく。図4に示す例では、全ての回線600の通信速度の合計値(以下、合計通信速度と呼ぶ)が0以上N未満である場合に対応する動作モードを、低クロック動作に設定し、合計通信速度がN以上である場合に対応する動作モードを、高クロック動作に設定している。
図10を参照して、ネットワーク中継装置1000を通信速度切換運転モードにて運用する場合における周波数切換処理について説明する。運用が開始されると、装置制御部11の通信速度管理モジュール18は、現在の各回線600の通信速度を取得し、合計の通信速度の変更が発生したか否かを判断する(ステップ402)。例えば、回線600が新規に接続された場合に、通信速度の変更が発生する。通信速度管理モジュール18は、通信速度の変更が発生していないと判断すると(ステップS402:NO)、通信速度の変更の発生の監視を続ける。通信速度管理モジュール18は、通信速度の変更が発生したと判断すると(ステップS402:YES)、全ての回線600の通信速度の合計値(合計通信速度)を計算・検出する(ステップS404)。装置制御部11の周波数変更モジュール16は、設定ファイル17を参照して、検出された合計通信速度に対応する動作モードを選択する(ステップ406)。周波数変更モジュール16は、ネットワーク中継装置1000の現在の動作モードが、ステップS406において選択された動作モードと同じか否かを判断する(ステップS408)。
周波数変更モジュール16は、現在の動作モードが、ステップS406において選択された動作モードと同じであると判断すると(ステップS408:YES)、ステップS402にリターンして、上述の処理を繰り返す。一方、周波数変更モジュール16は、現在の動作モードが、ステップS406において選択された動作モードと同じでないと判断すると(ステップS408:NO)、ネットワーク中継装置1000の動作モードを、ステップS406において選択された動作モードに変更する(ステップS410)。具体例として、図4に示す通信速度切換設定がなされており、ステップS404において現在の合計通信速度がN未満であり、ステップS406において低クロック動作が、対応する動作モードとして選択された場合を説明する。係る場合において、ネットワーク中継装置1000が既に低クロック動作で運転されている場合には、ステップS402にリターンされ、ネットワーク中継装置1000が高クロック動作で運転されている場合には、高クロック動作から低クロック動作に動作モードが変更される。動作モードの変更は、上述した流量切換運転モードにおける動作モードの変更と同様に行われる。
以上のような周波数切換処理を実行すると、通信速度の合計が大きく、大量のパケット流入が予想される状態においては、ネットワーク中継装置は高クロック動作で運用される。一方で、通信速度の合計が小さく、あまりスイッチング容量が要求されない状態においては、ネットワーク中継装置は低クロック動作で運用される。
以上の説明から解るように、本実施例では、周波数変更モジュール16が、生成されるクロック信号の周波数を変更することにより、ネットワーク中継装置1000の動作モードを変更している。すなわち、本実施例における周波数変更モジュール16が、請求項における動作モード変更部に相当する。
以上説明した本実施例のネットワーク中継装置1000によれば、ユーザの設定により、各構成要素に供給されるクロック信号の周波数を変更する。これにより、周波数を高速化すれば、半導体集積回路(例えば、パケット処理回路120、転送先決定回路130)の処理速度を向上してネットワーク中継装置1000の性能を向上させることができ、また周波数を低速化すれば、半導体集積回路の処理速度を落としてネットワーク中継装置1000の消費電力を低減することができる。この結果、ネットワーク中継装置1000において、必要な時に必要な性能を維持しつつ、消費電力量を抑制することができる。
さらに、定期切換運転モード、流量切換運転モードおよび通信速度切換運転モードのように、処理負荷に応じて自動的に高クロック動作と、低クロック動作とを切り換えるので、スイッチング容量が必要なときには、大きいスイッチング容量を確保すると共に、スイッチング容量が必要ないときには、消費電力を低減させることができる。この結果、スイッチング性能を犠牲にすることなく、全体の消費電力量を抑制することができる。
さらに、ユーザは、使用されないインターフェースボード300を予め設定ファイル17に登録しておくことができる。装置制御部11は、登録されている不使用のインターフェースボード300については、起動時に、設定ファイル17を参照して、選択的に電力の供給を停止する。この結果、さらに消費電力量を抑制することができる。
さらに、ユーザは、使用されない物理インターフェース部320を予め設定ファイル17に登録しておくことができる。装置制御部11は、設定ファイル17に不使用の物理インターフェース部320が登録されている場合には、登録されている物理インターフェース部320に、オンボード電源360から電力を供給しない、もしくは既知の技術を用いて消費電力を抑止した状態に設定する。この結果、さらに、消費電力量を抑制することができる。
B.変形例:
上記実施例におけるネットワーク中継装置1000のハードウエア構成は、一例であり、これに限られるわけではない。以下に、他のハードウエア構成の例を、第1変形例および第2変形例として示す。
・第1変形例:
図11は、第1変形例に係るネットワーク中継装置1000aの基本構成を示すブロック図である。上記実施例に係るネットワーク中継装置1000においては、制御ボード10と、中継処理ボード100とが分離していたが、第1変形例に係るネットワーク中継装置1000aにおいては、制御ボード10が無く、装置制御部11は中継処理ボード100に搭載されている。それ以外の構成および各部の機能は、実施例と同一であるので、図11において、図1と同一の符号を付し、その説明を省略する。変形例に係るネットワーク中継装置1000aにおいても、実施例と同様の作用・効果を得ることができる。また、図示は、省略するが、1つのボードに、図11における中継処理ボード100の構成要素と、インターフェースボード300の構成要素を搭載することもできる。
・第2変形例:
図12は、第2変形例に係るネットワーク中継装置1000bの基本構成を示すブロック図である。上記実施例に係るネットワーク中継装置1000においては、中継処理ボード100が2つであったが、第2変形例に係るネットワーク中継装置1000bにおいては、中継処理ボード100が3つ備えられている。3つの中継処理ボード100のうちの2つは、通常時にパケット中継処理を行う運用系のボードであり、残りの1つは、運用系の中継処理ボード100に異常が発生した場合に、異常が発生した中継処理ボード100の代わりに中継パケット処理を行う待機系のボードである。すなわち、中継処理ボード100の1つは、冗長な中継処理ボード100である。
ここで、通常の運転時、すなわち、待機系の中継処理ボード100がパケット中継処理に用いられない期間には、装置制御部11は、待機系の中継処理ボード100の各構成要素(パケット処理回路120、転送先決定回路130、内部バス140など)に対するクロック信号の供給を停止する。こうすることによって、ネットワーク中継装置1000全体の消費電力が抑制される。なお、運用系の中継処理ボード100の1つに異常が発生した場合には、待機系の中継処理ボード100の各構成要素に対するクロックの供給を再開して起動し、異常が発生していない運用系の中継処理ボード100の設定(フォワーディングテーブル134や、IPアドレステーブル135の内容など)を、制御バス400を介して、待機系の中継処理ボード100にコピーする。これにより、異常発生時には、速やかに、待機系の中継処理ボード100を、運用系に交替させることができる。なお、この系交替を問題なく行うために、通常の運転時に、待機系の中継処理ボード100において、制御ボード10が待機系の中継処理ボード100と通信するための制御バス400の制御回路だけは、クロック信号を供給され動作できる状態にされていることが好ましい。そして、制御バス400を介した通信については、通常の運転時において、正常であることを確認する処理を、定期的に行っておくことが好ましい。
上記実施例におけるネットワーク中継装置1000は、中継処理ボード100を2つ搭載しているが、第2変形例におけるネットワーク中継装置1000bは、図12に示すように、3つの中継処理ボード100を搭載している。3つの中継処理ボード100のうちの2つが運用系として並行してパケット中継処理を行うことにより、スイッチング容量を増大させることができる。3つの中継処理ボード100のうちの1つは、運用系の2つの中継処理ボード100のいずれかに障害が発生した場合に、障害が発生した中継処理ボード100に代替して用いられる待機系の中継処理ボード100である。
第2変形例におけるネットワーク中継装置1000bにおいて、スイッチング容量があまり必要でない場合(例えば、図6における20時頃から翌日7時頃まで)には、装置制御部11は、運用系の中継処理ボード100を1つにして、残りの2つを待機系の中継処理ボード100とする。かかる場合において、待機系の中継処理ボードの各構成要素に対するクロック信号の供給を停止しても良い。こうすれば、1つの運用系の中継処理ボード100が、単独で、パケット中継処理を行うため、ネットワーク中継装置1000b全体のスイッチング容量は小さくなるが、消費電力を抑制することができる。このような運用系と待機系との切換は、ネットワーク中継装置1000b全体のパケット流量の監視に基づいて、動的に実行されても良い。例えば、パケット流量が所定の閾値以上である場合には、2つの中継処理ボード100を運用系として動作させ、パケット流量が所定の閾値未満である場合には、1つの中継処理ボード100を運用系として動作させる。こうすれば、スイッチング容量が必要なときには、大きいスイッチング容量を確保すると共に、スイッチング容量が必要ないときには、消費電力を低減させることができる。
上記実施例における中継処理ボード100は、パケット処理回路120と転送先決定回路130と内部バス140のセット(以下、中継処理セットと呼ぶ)を1つ搭載しているが、第2変形例における中継処理ボード100は、図12に示すように、2つの中継処理セットを搭載している。2つの中継処理セットが並行してパケット中継処理を行うことにより、スイッチング容量を増大させることができる。
第2変形例に係るネットワーク中継装置1000において、スイッチング容量があまり必要でない場合(例えば、図6における20時頃から翌日7時頃まで)には、装置制御部11は、1つの中継処理セットに対するクロック信号の供給を停止しても良い。こうすれば、残りの1つの中継処理セットが、単独で、パケット中継処理を行うため、装置全体のスイッチング容量は小さくなるが、消費電力を抑制することができる。このようなクロック信号の停止・供給の切換は、ネットワーク中継装置1000全体のパケット流量の監視に基づいて、動的に実行されても良い。例えば、パケット流量が閾値以上である場合には、2つの中継処理セットにそれぞれクロック信号を供給して動作させ、パケット流量が閾値以下である場合には、1つの中継セットに対するクロック信号の共有を停止する。こうすれば、スイッチング容量が必要なときには、大きいスイッチング容量を確保すると共に、スイッチング容量が必要ないときには、消費電力を低減させることができる。
・第3変形例:
上記実施例では、クロック生成部CL1〜CL7に、2つの周波数発振器22、23を備えることにより、2種類の周波数のクロック信号を生成しているが、クロック信号の生成方法は、これに限られない。例えば、クロック生成部は、1つの周波数発振器と、クロック信号を所定の逓倍率で逓倍する逓倍回路を備えても良い。逓倍回路は、装置制御部11の制御に応じて、逓倍率を変更することにより、2種類の周波数のクロック信号を生成することができる。なお、逓倍回路は、クロック信号の供給対象である要素(例えば、パケット処理回路120)の内部に備えられても良い。なお、装置制御部11による逓倍回路の制御は、信号線を介して、ハイまたはローの制御信号を逓倍回路に対して送信することによって行われても良いし、逓倍回路に対するコントロールレジスタにフラグを書き込むことによって行われても良い。
・第4変形例:
上記実施例では、ネットワーク中継装置1000の動作モードを、高クロック動作と低クロック動作の2段階に制御しているが、さらに、多段階の動作モードに制御しても良い。具体的には、クロック生成部CL1〜CL7の全部または一部を、3種類以上の異なる周波数が生成できるように構成し、処理負荷あるいはユーザの設定に応じて、ネットワーク中継装置1000を動作させるクロック信号の周波数を多段階に変更しても良い。あるいは、クロック生成部CL1〜CL7を同時に変更せず、一部ずつ段階的に変更することによって、多段階の動作モードに制御しても良い。具体的には、クロック生成部CL1〜CL7の全てに高クロック信号HHを生成させて動作させる状態を第1の動作モードとする。パケット処理回路120と転送先決定回路130と内部バス140にクロック信号を供給するクロック生成部CL1〜CL4に低クロック信号HLを生成させ、外部バス500および送受信処理回路310にクロック信号を供給するクロック生成部CL5〜CL7に高クロック信号HHを生成させて動作させる状態を第2の動作モードとする。クロック生成部CL1〜CL7の全てに低クロック信号HLを生成させて動作させる状態を第3の動作モードとする。そして、処理負荷またはユーザの設定に応じて、ネットワーク中継装置1000を、第1〜第3の動作モードのいずれかで、選択的に運用することとしても良い。このように、中継処理ボード100の動作、インターフェースボード300の動作、さらには、外部バス500の動作を、それぞれに供給されるクロック信号を独立して変更することができることにより、ネットワーク中継装置1000の処理性能と、消費電力とのバランスを柔軟に変更することができる。
・その他の変形例:
上記実施例において、ハードウェアによって実現されていた構成の一部をソフトウェアに置き換えてもよく、逆に、ソフトウェアによって実現されていた構成の一部をハードウェアに置き換えてもよい。例えば、上記実施例において、パケット処理回路120や転送先決定回路130は、ASICにより構成されているが、汎用プロセッサとプログラムにより構成されていても良い。
以上、実施例、変形例に基づき本発明について説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれる。
実施例に係るネットワーク装置の基本構成を示すブロック図である。 装置制御部の内部構成を示すブロック図である。 インターフェースボードと中継処理ボードを中心とした構成を示すブロック図である。 設定ファイルの内容の一部を示す説明図である。 起動処理の処理ルーチンを示すフローチャートである。 流量切換モードと定期切換モードについて説明する説明図である。 流量切換モードにおける周波数切換処理の処理ルーチンを示すフローチャートである。 定期切換モードにおける周波数切換処理の処理ルーチンを示すフローチャートである。 対向装置との間で回線の通信速度/通信モードを自動的に調整するオートネゴシエーション機能を説明する図である。 通信速度切換運転モードにおける周波数切換処理の処理ルーチンを示すフローチャートである。 第1変形例に係るネットワーク中継装置1000aの基本構成を示すブロック図である。 第2変形例に係るネットワーク中継装置1000bの基本構成を示すブロック図である。
符号の説明
10…制御ボード
11…装置制御部
12…CPU
13…メモリ
14…制御プログラム
15…流量管理モジュール
16…周波数変更モジュール
17…設定ファイル
21…セレクタ
22…高周波数発振器
23…低周波数発振器
100…中継処理ボード
120…パケット処理回路
121…転送エンジン
122…メモリ
130…転送先決定回路
131…転送先検索エンジン
132…メモリ
133…高速検索メモリ
134…フォワーディングテーブル
135…IPアドレステーブル
140…内部バス
160…オンボード電源
300…インターフェースボード
310…送受信処理回路
311…送受信エンジン
312…メモリ
320…物理インターフェース部
360…オンボード電源
400…制御バス
500…外部バス
600…回線
700…主電源部
1000、1000a、1000b…ネットワーク中継装置
CL1〜CL7…クロック生成部

Claims (20)

  1. ネットワーク中継装置であって、
    1または複数の回線とそれぞれ接続され、宛先情報が関連付けられているパケットを受信すると共に、パケットを転送先に対して送信する、1または複数のインターフェース部であって、1または複数の消費電力レベルの異なる動作モードに動作を切換可能である、前記1または複数のインターフェース部と、
    前記パケットに関連付けられた宛先情報に基づいて、前記受信されたパケットの前記転送先を決定する、1または複数の中継処理部であって、1または複数の消費電力レベルの異なる動作モードに動作を切換可能である、前記1または複数の中継処理部と、
    前記インターフェース部の動作モードと、前記中継処理部の動作モードとを、独立して変更することが可能である、動作モード変更部と、
    を備えるネットワーク中継装置。
  2. 請求項1に記載のネットワーク中継装置において、
    前記中継処理部は、
    周波数の異なる複数種類の第1のクロック信号を選択的に生成する1または複数の第1のクロック生成部と、
    前記生成された第1のクロック信号に同期して動作する1または複数の構成回路と、
    を備え、
    前記動作モード変更部は、前記1または複数の第1のクロック生成部を制御し、生成される前記第1のクロック信号の周波数を変更することにより、前記中継処理装置の動作モードを変更する、ネットワーク中継装置
  3. 請求項2に記載のネットワーク中継装置において、
    前記中継処理部は、
    周波数の異なる複数種類の第2のクロック信号を選択的に生成する1または複数の第2のクロック生成部と、
    複数の前記構成回路と、
    各構成回路間においてデータを伝送するための第1のバスであって、前記生成された第2のクロック信号に同期して動作する、前記第1のバスと、
    を備え、
    前記動作モード変更部は、さらに、前記第2のクロック生成部を制御し、生成される前記第2のクロック信号の周波数を変更することにより、前記中継処理装置の動作モードを変更する、ネットワーク中継装置。
  4. 請求項3に記載のネットワーク中継装置において、
    複数の前記構成回路は、前記1または複数のインターフェース部に対して、前記パケットを含むデータの送受信を実行するパケット処理回路と、前記パケット処理回路により受信されたパケットについて前記転送先を決定する転送先決定回路と、を含み、
    前記第1のバスは、前記パケット処理回路と前記転送先決定回路との間においてデータを伝送するためのバスであり、
    前記動作モード変更部は、前記パケット処理回路のために生成される前記第1のクロック信号と、前記転送先決定回路のために生成される前記第1のクロック信号と、前記パケット処理回路と前記転送先決定回路との間においてデータを伝送するためのバスのために生成される前記第2のクロック信号と、の各周波数をセットで変更する、ネットワーク中継装置。
  5. 請求項1に記載のネットワーク中継装置は、さらに、
    周波数の異なる複数種類の第3のクロック信号を選択的に生成する1または複数の第3のクロック生成部と、
    前記1または複数のインターフェース部と前記1または複数の中継処理部との間においてデータを伝送するための第2のバスであって、前記生成された第3のクロック信号に同期して動作する、前記第2のバスと、
    を備え、
    前記動作モード変更部は、さらに、
    前記第3のクロック生成部を制御し、生成される前記第3のクロック信号の周波数を変更することにより、前記第2のバスの動作モードを変更する、ネットワーク中継装置。
  6. 請求項1に記載のネットワーク中継装置において、
    前記インターフェース部は、
    周波数の異なる複数種類の第4のクロック信号を選択的に生成する1または複数の第4のクロック生成部と、
    前記生成された第4のクロック信号に同期して動作する1または複数の送受信処理回路であって、前記1または複数の回線から受信した前記パケットを前記1または複数の中継処理部に転送し、前記中継処理部から折り返された前記パケットを前記1または複数の回線に振り分ける、前記1または複数の送受信処理回路と、
    を備え、
    前記動作モード変更部は、さらに、
    前記第4のクロック生成部を制御し、生成される前記第4のクロック信号の周波数を変更することにより、前記インターフェース部の動作モードを変更する、ネットワーク中継装置。
  7. 請求項1に記載のネットワーク中継装置において、
    前記ネットワーク中継装置は、前記インターフェース部と前記中継処理部の一部または全部の動作モードを切り換ることにより、複数種類の運転モードに切り換え可能であり、
    前記複数種類の運転モードは、前記ネットワーク中継装置の処理負荷に応じて切り換えられる、ネットワーク中継装置。
  8. 請求項7に記載のネットワーク中継装置は、さらに、
    前記ネットワーク中継装置により受信または送信される前記パケットの量を検出するパケット量検出部を備え、
    前記複数種類の運転モードの切り換えは、前記検出されたパケットの量に応じて実行される、ネットワーク中継装置。
  9. 請求項7に記載のネットワーク中継装置は、さらに、
    前記処理負荷の高い時間帯と、前記処理負荷の低い時間帯に関する時間情報を記憶した記憶部を備え、
    前記複数種類の運転モードの切り換えは、前記時間情報を参照して実行される、ネットワーク中継装置。
  10. 請求項7に記載のネットワーク中継装置は、さらに、
    前記接続された前記1または複数の回線の通信速度を検出する通信速度検出部を備え、
    前記複数種類の運転モードの切り替えは、前記通信速度に応じて実行される、ネットワーク中継装置。
  11. 請求項1に記載のネットワーク中継装置において、
    前記インターフェース部は、複数備えられ、
    複数の前記インターフェース部のうち、動作させないインターフェース部を予め登録しておき、前記登録されたインターフェース部に供給される電力を低下または停止する、ネットワーク中継装置。
  12. 請求項1に記載のネットワーク中継装置において、
    前記1または複数のインターフェース部は、前記回線と接続するための複数の物理インターフェース部を有し、
    動作させない前記回線を予め登録しておき、前記複数の物理インターフェース部のうち、前記登録された回線に対応する物理インターフェース部に供給される電力を低下または停止する、ネットワーク中継装置。
  13. 請求項1に記載のネットワーク中継装置において、
    前記中継処理部は、複数備えられ、
    前記複数の中継処理部のうちの少なくとも1つは、他の中継処理部に異常が発生した場合に用いられる冗長中継処理部であり、
    前記冗長中継処理部が用いられない期間において、前記冗長中継処理部に対するクロック信号の供給の少なくとも一部が停止される、ネットワーク中継装置。
  14. 請求項1に記載のネットワーク中継装置において、
    前記中継処理部は、同一の機能を有する複数の構成回路を有し、
    前記ネットワーク中継装置の処理負荷に応じて、前記同一の機能を有する複数の構成回路のうち、少なくとも一部の回路に対するクロック信号の供給が停止される、ネットワーク中継装置。
  15. 請求項1に記載のネットワーク中継装置において、
    前記中継処理部は、複数備えられ、
    前記複数の中継処理部は、並行して前記パケットに対する処理を実行可能であり、
    前記ネットワーク中継装置の処理負荷に応じて、前記複数の中継処理部のうちの一部に対するクロック信号の供給の少なくとも一部が停止される、ネットワーク中継装置。
  16. 複数の回線と接続されるネットワーク中継装置であって、
    前記複数の回線のいずれかから送信されてくるパケットを受信すると共に、前記受信されたパケットの転送先を決定し、前記受信されたパケットを転送するパケット中継手段であって、供給されるクロック信号に同期して動作する、前記パケット中継手段と、
    前記パケット中継手段に対して、クロック信号を供給するクロック信号供給手段であって、前記パケット中継手段に対して供給されるクロック信号のうちの少なくとも一部の信号の周波数を、複数の異なる値に切り換え可能な前記クロック信号供給手段と、
    を備える、ネットワーク中継装置。
  17. 請求項16に記載のネットワーク中継装置において、
    前記パケット中継手段は、前記パケット中継手段の機能の少なくとも一部を実現する第1の回路および第2の回路と、前記第1の回路と第2の回路との間においてデータを伝送するための伝送手段と、を含み、
    前記クロック信号供給手段は、前記第1の回路に対して供給されるクロック信号の周波数と、前記第2の回路に対して供給されるクロック信号の周波数と、前記伝送手段に対して供給されるクロック信号の周波数と、をセットで切り換える、ネットワーク中継装置。
  18. 請求項17に記載のネットワーク中継装置は、さらに、
    前記パケット中継手段により受信または転送される前記パケットの量を検出するパケット量検出手段を備え、
    前記クロック信号供給手段は、前記検出されたパケットの量に応じて、前記パケット中継手段に対して供給されるクロック信号のうちの少なくとも一部の信号の周波数を切り換える、ネットワーク中継装置。
  19. 請求項17に記載のネットワーク中継装置は、さらに、
    前記処理負荷の高い時間帯と、前記処理負荷の低い時間帯に関する時間情報を記憶した記憶手段を備え、
    前記クロック信号供給手段は、前記時間情報を参照して、前記パケット中継手段に対して供給されるクロック信号のうちの少なくとも一部の信号の周波数を切り換える、ネットワーク中継装置。
  20. 請求項17に記載のネットワーク中継装置は、さらに、
    前記接続された回線の通信速度を検出する通信速度検出手段を備え、
    前記クロック信号供給手段は、前記通信速度に応じて、前記パケット中継手段に対して供給されるクロック信号のうちの少なくとも一部の信号の周波数を切り換える、ネットワーク中継装置。
JP2006049960A 2006-02-27 2006-02-27 ネットワーク中継装置 Active JP4786371B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006049960A JP4786371B2 (ja) 2006-02-27 2006-02-27 ネットワーク中継装置
CN2006101056160A CN101030930B (zh) 2006-02-27 2006-07-17 网络中继装置
CN201610214909.6A CN105791138B (zh) 2006-02-27 2006-07-17 网络中继装置以及切换装置
CN201110209505.5A CN102231713B (zh) 2006-02-27 2006-07-17 网络中继装置
CN201210169392.5A CN102655479B (zh) 2006-02-27 2006-07-17 网络中继装置、网络装置以及切换装置
US11/487,990 US7804794B2 (en) 2006-02-27 2006-07-18 Power-saving network switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006049960A JP4786371B2 (ja) 2006-02-27 2006-02-27 ネットワーク中継装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011090829A Division JP5060633B2 (ja) 2011-04-15 2011-04-15 ネットワーク中継装置

Publications (2)

Publication Number Publication Date
JP2007228491A true JP2007228491A (ja) 2007-09-06
JP4786371B2 JP4786371B2 (ja) 2011-10-05

Family

ID=38443903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006049960A Active JP4786371B2 (ja) 2006-02-27 2006-02-27 ネットワーク中継装置

Country Status (3)

Country Link
US (1) US7804794B2 (ja)
JP (1) JP4786371B2 (ja)
CN (4) CN101030930B (ja)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088735A (ja) * 2007-09-28 2009-04-23 Alaxala Networks Corp ネットワーク間接続装置
JP2009111707A (ja) * 2007-10-30 2009-05-21 Alaxala Networks Corp パケット転送装置
JP2009147615A (ja) * 2007-12-13 2009-07-02 Alaxala Networks Corp パケット転送装置
JP2009165047A (ja) * 2008-01-10 2009-07-23 Alaxala Networks Corp 中継装置とその制御方法
JP2009177571A (ja) * 2008-01-25 2009-08-06 Alaxala Networks Corp 中継装置と、ネットワークシステムと、ネットワークシステムの制御方法
JP2009284008A (ja) * 2008-05-19 2009-12-03 Nec Corp パケット処理装置、パケット制御方法及びパケット制御プログラム
JP2009290271A (ja) * 2008-05-27 2009-12-10 Alaxala Networks Corp ネットワーク中継装置およびネットワーク中継システム
JP2010093410A (ja) * 2008-10-06 2010-04-22 Alaxala Networks Corp パケット中継装置
JP2010102477A (ja) * 2008-10-23 2010-05-06 Nec Corp ノード装置、冗長システム、電力制御方法およびプログラム
JP2010103655A (ja) * 2008-10-22 2010-05-06 Hitachi Ltd ネットワーク接続装置
JP2010141426A (ja) * 2008-12-09 2010-06-24 Hitachi Ltd 中継装置
JP2010148023A (ja) * 2008-12-22 2010-07-01 Alaxala Networks Corp パケット転送方法、パケット転送装置及びパケット転送システム
JP2010263602A (ja) * 2009-04-08 2010-11-18 Fujitsu Ltd パケット処理装置および電源制御方法
JP2011040895A (ja) * 2009-08-07 2011-02-24 Canon Inc 情報処理装置、その制御方法及びプログラム
US7904582B2 (en) 2007-08-27 2011-03-08 Alaxala Networks Corporation Network relay apparatus
JP2011055370A (ja) * 2009-09-03 2011-03-17 Nippon Telegr & Teleph Corp <Ntt> 通信処理回路及び通信処理方法
JP2011097587A (ja) * 2009-10-28 2011-05-12 Internatl Business Mach Corp <Ibm> 高速フェイルオーバを用いた、パケット・ロスを防ぐエネルギー効率のよいethernet(r)のリンク移行のための方法、コンピュータ・プログラム、および装置
JP2012004938A (ja) * 2010-06-18 2012-01-05 Oki Electric Ind Co Ltd リンクアグリゲーション通信装置
JP2012090353A (ja) * 2012-02-09 2012-05-10 Alaxala Networks Corp ネットワーク中継装置
US8225323B2 (en) 2007-06-25 2012-07-17 Alaxala Networks Corporation Control device and control method for reduced power consumption in network device
JP2012186788A (ja) * 2011-02-18 2012-09-27 Alaxala Networks Corp パケット転送装置及びQoS制御回路の電力供給制御方法
JP2012195809A (ja) * 2011-03-17 2012-10-11 Hitachi Ltd ネットワークノード
JP2013038823A (ja) * 2012-10-19 2013-02-21 Alaxala Networks Corp パケット転送装置
US8392733B2 (en) 2008-12-26 2013-03-05 Fujitsu Limited Network apparatus
EP2618520A2 (en) 2012-01-17 2013-07-24 ALAXALA Networks Corporation Network relay apparatus and control method thereof
US8514741B2 (en) 2008-04-03 2013-08-20 Alaxala Networks Corporation Packet forwarding device
JP2013207480A (ja) * 2012-03-28 2013-10-07 Kddi Corp 光伝送装置制御装置および制御方法
US8971337B2 (en) 2010-02-26 2015-03-03 Alaxala Networks Corporation Packet relay device
JP2015043520A (ja) * 2013-08-26 2015-03-05 富士通株式会社 通信方法、通信システム、及び通信装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2463889A (en) * 2008-09-26 2010-03-31 Univ Dublin City Adaptive clocking system for a packet classifier
US9154349B2 (en) * 2009-10-26 2015-10-06 Electronics And Telecommunications Research Institute Wireless transmitter for high mobility and high throughput and mode control method thereof
JP5488183B2 (ja) * 2010-05-06 2014-05-14 セイコーエプソン株式会社 通信装置及び通信制御方法
US8897134B2 (en) * 2010-06-25 2014-11-25 Telefonaktiebolaget L M Ericsson (Publ) Notifying a controller of a change to a packet forwarding configuration of a network element over a communication channel
EP2421194A4 (en) * 2010-06-28 2012-07-04 Zte Corp COMPLETELY CLOSED INTEGRATED ACCESS SYSTEM AND METHOD FOR REDUCING SYSTEM ENERGY CONSUMPTION
US8713169B2 (en) * 2011-10-11 2014-04-29 Cisco Technology, Inc. Distributed IPv6 neighbor discovery for large datacenter switching systems
JP6413787B2 (ja) * 2015-01-21 2018-10-31 沖電気工業株式会社 通信装置、プログラム及び方法
CN111030937A (zh) * 2019-12-16 2020-04-17 迈普通信技术股份有限公司 一种报文的转发方法、装置及存储介质
DE102020200803A1 (de) * 2020-01-23 2021-07-29 Robert Bosch Gesellschaft mit beschränkter Haftung Sende-/Empfangseinrichtung und Kommunikationssteuereinrichtung für eine Teilnehmerstation eines seriellen Bussystems und Verfahren zur Kommunikation in einem seriellen Bussystem
CN114051224B (zh) * 2021-08-09 2023-12-05 吴钟博 一种无人机密集编队支撑网络的协同中继选择方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001320415A (ja) * 2000-05-11 2001-11-16 Nec Shizuoka Ltd ルータ装置
JP2002335262A (ja) * 2001-05-09 2002-11-22 Nec Corp スイッチングハブ及びその省電力方法
JP2003069607A (ja) * 2001-08-23 2003-03-07 Nec Corp Atm交換機およびその省電力方法
JP2003248524A (ja) * 2002-02-25 2003-09-05 Oki Electric Ind Co Ltd システムlsi
JP2005277694A (ja) * 2004-03-24 2005-10-06 Sanyo Electric Co Ltd Ip電話システム、ネットワーク管理サーバおよびip電話機

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3131204B2 (ja) 1998-10-28 2001-01-31 松下電器産業株式会社 省電力ネットワーク装置
JP3566663B2 (ja) * 2001-03-23 2004-09-15 株式会社東芝 情報処理装置、クロック制御方法
US7408961B2 (en) * 2001-09-13 2008-08-05 General Instrument Corporation High speed serial data transport between communications hardware modules
CN1245817C (zh) * 2002-05-23 2006-03-15 威盛电子股份有限公司 网络传输速率的控制方法及使用该方法的以太网交换机
JP3895691B2 (ja) * 2002-09-13 2007-03-22 富士通株式会社 ゲートウェイカード、ゲートウェイ制御プログラムおよびゲートウェイ装置
JP4157347B2 (ja) * 2002-09-13 2008-10-01 富士通株式会社 ゲートウェイカード、ゲートウェイ装置、ゲートウェイ制御方法およびゲートウェイ制御プログラム
US7477662B2 (en) * 2003-02-14 2009-01-13 Infineon Technologies Ag Reducing power consumption in data switches
TWI221369B (en) 2003-04-29 2004-09-21 Via Tech Inc Device and method for adjusting the frequency of the timing signal
JP2005123715A (ja) 2003-10-14 2005-05-12 Fujitsu Ltd ネットワーク中継装置
JP3832665B2 (ja) * 2004-01-23 2006-10-11 シャープ株式会社 受信装置、通信装置、端末装置、通信端末装置、受信方法、受信プログラムおよびそれを記録したコンピュータ読み取り可能な記録媒体
US20050182978A1 (en) * 2004-02-17 2005-08-18 Anderson Jason M. Always ready computing device
CN100527725C (zh) * 2004-03-05 2009-08-12 威盛电子股份有限公司 调整网络接口的电源消耗的方法
CN101167373A (zh) 2005-04-21 2008-04-23 英特尔公司 交换机体系结构中的功率降低

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001320415A (ja) * 2000-05-11 2001-11-16 Nec Shizuoka Ltd ルータ装置
JP2002335262A (ja) * 2001-05-09 2002-11-22 Nec Corp スイッチングハブ及びその省電力方法
JP2003069607A (ja) * 2001-08-23 2003-03-07 Nec Corp Atm交換機およびその省電力方法
JP2003248524A (ja) * 2002-02-25 2003-09-05 Oki Electric Ind Co Ltd システムlsi
JP2005277694A (ja) * 2004-03-24 2005-10-06 Sanyo Electric Co Ltd Ip電話システム、ネットワーク管理サーバおよびip電話機

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8850444B2 (en) 2007-06-25 2014-09-30 Alaxala Networks Corporation System for setting each transfer module in a network device into one of a plurality of standby states based upon the level of traffic
US8225323B2 (en) 2007-06-25 2012-07-17 Alaxala Networks Corporation Control device and control method for reduced power consumption in network device
US8412843B2 (en) 2007-08-27 2013-04-02 Alaxala Networks Corporation Network relay apparatus
US7904582B2 (en) 2007-08-27 2011-03-08 Alaxala Networks Corporation Network relay apparatus
US9009342B2 (en) 2007-08-27 2015-04-14 Alaxala Networks Corporation Network relay apparatus
JP2009088735A (ja) * 2007-09-28 2009-04-23 Alaxala Networks Corp ネットワーク間接続装置
US8040889B2 (en) 2007-10-30 2011-10-18 Alaxala Networks Corporation Packet forwarding device
JP2009111707A (ja) * 2007-10-30 2009-05-21 Alaxala Networks Corp パケット転送装置
JP2009147615A (ja) * 2007-12-13 2009-07-02 Alaxala Networks Corp パケット転送装置
US7965715B2 (en) 2008-01-10 2011-06-21 Alaxala Networks Corporation Relay device and relay device controlling method
JP2009165047A (ja) * 2008-01-10 2009-07-23 Alaxala Networks Corp 中継装置とその制御方法
US7916737B2 (en) 2008-01-25 2011-03-29 Alaxala Networks Corporation Relaying device, network system, and network system controlling method
JP2009177571A (ja) * 2008-01-25 2009-08-06 Alaxala Networks Corp 中継装置と、ネットワークシステムと、ネットワークシステムの制御方法
US8514741B2 (en) 2008-04-03 2013-08-20 Alaxala Networks Corporation Packet forwarding device
JP2009284008A (ja) * 2008-05-19 2009-12-03 Nec Corp パケット処理装置、パケット制御方法及びパケット制御プログラム
JP2009290271A (ja) * 2008-05-27 2009-12-10 Alaxala Networks Corp ネットワーク中継装置およびネットワーク中継システム
JP2010093410A (ja) * 2008-10-06 2010-04-22 Alaxala Networks Corp パケット中継装置
US8355329B2 (en) 2008-10-06 2013-01-15 Alaxala Networks Corporation Packet relay device
JP2010103655A (ja) * 2008-10-22 2010-05-06 Hitachi Ltd ネットワーク接続装置
JP2010102477A (ja) * 2008-10-23 2010-05-06 Nec Corp ノード装置、冗長システム、電力制御方法およびプログラム
JP2010141426A (ja) * 2008-12-09 2010-06-24 Hitachi Ltd 中継装置
JP2010148023A (ja) * 2008-12-22 2010-07-01 Alaxala Networks Corp パケット転送方法、パケット転送装置及びパケット転送システム
US8392733B2 (en) 2008-12-26 2013-03-05 Fujitsu Limited Network apparatus
JP2010263602A (ja) * 2009-04-08 2010-11-18 Fujitsu Ltd パケット処理装置および電源制御方法
JP2011040895A (ja) * 2009-08-07 2011-02-24 Canon Inc 情報処理装置、その制御方法及びプログラム
JP2011055370A (ja) * 2009-09-03 2011-03-17 Nippon Telegr & Teleph Corp <Ntt> 通信処理回路及び通信処理方法
JP2011097587A (ja) * 2009-10-28 2011-05-12 Internatl Business Mach Corp <Ibm> 高速フェイルオーバを用いた、パケット・ロスを防ぐエネルギー効率のよいethernet(r)のリンク移行のための方法、コンピュータ・プログラム、および装置
US8971337B2 (en) 2010-02-26 2015-03-03 Alaxala Networks Corporation Packet relay device
JP2012004938A (ja) * 2010-06-18 2012-01-05 Oki Electric Ind Co Ltd リンクアグリゲーション通信装置
JP2012186788A (ja) * 2011-02-18 2012-09-27 Alaxala Networks Corp パケット転送装置及びQoS制御回路の電力供給制御方法
JP2012195809A (ja) * 2011-03-17 2012-10-11 Hitachi Ltd ネットワークノード
EP2618520A2 (en) 2012-01-17 2013-07-24 ALAXALA Networks Corporation Network relay apparatus and control method thereof
US9154313B2 (en) 2012-01-17 2015-10-06 Alaxala Networks Corporation Network relay apparatus and control method thereof
JP2012090353A (ja) * 2012-02-09 2012-05-10 Alaxala Networks Corp ネットワーク中継装置
JP2013207480A (ja) * 2012-03-28 2013-10-07 Kddi Corp 光伝送装置制御装置および制御方法
JP2013038823A (ja) * 2012-10-19 2013-02-21 Alaxala Networks Corp パケット転送装置
JP2015043520A (ja) * 2013-08-26 2015-03-05 富士通株式会社 通信方法、通信システム、及び通信装置
US9699098B2 (en) 2013-08-26 2017-07-04 Fujitsu Limited Communication method, communication system, and communication device

Also Published As

Publication number Publication date
CN102655479A (zh) 2012-09-05
CN102231713A (zh) 2011-11-02
CN101030930A (zh) 2007-09-05
CN105791138B (zh) 2019-01-11
CN102655479B (zh) 2016-05-04
CN102231713B (zh) 2015-05-06
CN105791138A (zh) 2016-07-20
US7804794B2 (en) 2010-09-28
CN101030930B (zh) 2012-07-18
JP4786371B2 (ja) 2011-10-05
US20070201461A1 (en) 2007-08-30

Similar Documents

Publication Publication Date Title
JP4786371B2 (ja) ネットワーク中継装置
JP4532421B2 (ja) ネットワーク中継装置
RU2583745C2 (ru) Сетевая система, коммутатор и способ обнаружения подсоединенного терминала
JP4908969B2 (ja) パケットを中継する装置および方法
US20170111231A1 (en) System and method for communication
CN105340230A (zh) 虚拟机架拓扑管理
EP3025463A1 (en) Packetmirror processing in a stacking system
EP2211509A2 (en) Network communication node
KR102293037B1 (ko) 네트워크에서 통신 노드의 동작 방법
JP5060633B2 (ja) ネットワーク中継装置
JP2008283492A (ja) ゲートウェイ装置、車載通信システム
US9154313B2 (en) Network relay apparatus and control method thereof
JP6600594B2 (ja) 中継システムおよび中継装置
JP4890427B2 (ja) ネットワークシステム及びノード
US9450835B2 (en) Method for turning off routers in a communications network and router implementing this method
GB2464889A (en) Routing line controller
JP5059892B2 (ja) ネットワーク装置、及び、転送方法
KR100613178B1 (ko) 상호 연결 시스템과 그의 제어 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110713

R150 Certificate of patent or registration of utility model

Ref document number: 4786371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250