JP2007208049A - 光電変換装置、その製造方法および光発電装置 - Google Patents

光電変換装置、その製造方法および光発電装置 Download PDF

Info

Publication number
JP2007208049A
JP2007208049A JP2006025831A JP2006025831A JP2007208049A JP 2007208049 A JP2007208049 A JP 2007208049A JP 2006025831 A JP2006025831 A JP 2006025831A JP 2006025831 A JP2006025831 A JP 2006025831A JP 2007208049 A JP2007208049 A JP 2007208049A
Authority
JP
Japan
Prior art keywords
layer
crystalline silicon
silicon particles
aluminum
conductive substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006025831A
Other languages
English (en)
Inventor
Kenji Tomita
賢時 冨田
Hisao Arimune
久雄 有宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006025831A priority Critical patent/JP2007208049A/ja
Publication of JP2007208049A publication Critical patent/JP2007208049A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】 導電性基板と結晶シリコン粒子とが良好に接合されてなり、充分なBSF効果を得て高い光電変換効率を実現することができる、光電変換装置とその製造方法および該光電変換装置を用いた光発電装置を提供する。
【解決手段】 導電性基板11と結晶シリコン粒子12とを接合するにあたり、接合部に結晶シリコン粒子12よりも高濃度のホウ素を含有したアルミニウム−シリコン合金粒子16からなるペースト層を塗布形成し、ペースト層上に結晶シリコン粒子12を載置した後、ペースト層を加熱焼成することによって、導電性基板11と結晶シリコン粒子12との接合部にアルミニウム−シリコン共晶層17が形成されているとともに、結晶シリコン粒子12とアルミニウム−シリコン共晶層17との間にシリコン層18が形成されており、シリコン層18には結晶シリコン粒子12よりも高濃度のホウ素が含有されている光電変換装置を得る。
【選択図】 図1

Description

本発明は、太陽光発電等に利用される光電変換装置およびその製造方法と、該光電変換装置を用いた光発電装置とに関する。より詳しくは、前記光電変換装置は、導電性基板上に粒状の光電変換体を多数配設してなるものである。
太陽電池等の光電変換装置は、光電変換効率(以下「変換効率」ともいう)等の性能面は勿論のこと、製造コストの低減や資源の有限性への配慮等といった市場ニーズをも踏まえて開発されている。
従来、太陽電池等の光電変換材料としては、単結晶シリコンまたは多結晶シリコンの大きなバルクを300μm程度の薄い平板状に切断、研削して用いるのが一般的であった。しかしながら、この場合、平板状にする際のダイシング工程や研削工程において切屑が発生するなどロスが多く、これが製造コストを上昇させる要因となっており、さらに省資源の点でも問題視されていた。
そこで、近年、光電変換材料として粒状の結晶シリコン粒子を用いた光電変換装置が、製造コストを低減し資源を有効活用するうえで有望であると考えられるようになった。つまり、結晶シリコン粒子を作製するには、原料をサイズあるいは重量によって分別した後、赤外線照射や高周波誘導加熱などにより容器内で溶融させ、溶融物を粒状となるように自由落下させる方法や、同じく高周波プラズマを用いる方法などが採用される。これらの方法によれば、切屑を発生する切断工程や研削工程を要することがないので、製造コストの低減が図れるのである。また、結晶シリコン粒子を得るための原料としては、例えば単結晶シリコンを粉砕した際に発生するシリコン微小粒子や、流動床法で気相合成された高純度シリコン等などを用いることができ、資源の有効活用にもつながる。さらに、結晶シリコン粒子を用いた場合には、表面が凸曲面状を有しているので天頂部以外では結晶シリコン粒子への入射光角度が大きくなって、反射光が斜めとなり、モジュール表面での再反射によって従来の平板状の場合よりも変換効率の向上が期待できるという利点もある。
これまで、アルミニウム等の導電性基板の上に結晶シリコン粒子を接合する方法としては、結晶シリコン粒子と導電性基板との接合部にアルミニウムとシリコンの共晶部が形成されるように、多数配設した結晶シリコン粒子の上から荷重をかけながらアルミニウムとシリコンの共晶点(577℃)以上の温度で還元雰囲気(窒素ガスあるいは窒素水素混合ガス)の加熱炉内を通過させる方法が知られていた(特許文献1参照)。この方法においては、導電性基板と結晶シリコン粒子との接合界面には、アルミニウムとシリコンの共晶からなる接合層が形成される。このとき、アルミニウムとシリコンの共晶融液が固まる際にアルミニウムリッチなシリコン層が固相成長することが知られているが、この固相成長層はp+層としては薄く、BSF効果(バック・サーフィス・フィールド効果)は殆ど見られなかった。
他方、例えばシリコンウエハの裏面電極にアルミニウム電極を用いるにあたり、多結晶シリコン基板の裏面にアルミニウムペーストを塗布し、アルミニウムとシリコンの共晶温度(577℃)よりも高い温度(760℃)で焼成する方法が知られている(特許文献2参照)。この方法においては、アルミニウムとシリコンの共晶温度よりも高い温度で焼成することにより、多結晶シリコン基板とその裏面に形成されるアルミニウム層との間にシリコンリッチな共晶部を形成した後、固相成長によりアルミニウムリッチなシリコン層が析出され、その層厚を厚く形成できるという利点がある。しかしながら、このような利点は、アルミニウム基板上に結晶シリコン粒子を接合する場合には得られないものである。すなわち、アルミニウム基板上に結晶シリコン粒子を接合する場合には、シリコン量よりもアルミニウム量が全体的に多くなるので、たとえ共晶温度より高温で加熱しても、アルミニウム基板から多くのアルミニウムが共晶部に供給されてシリコンリッチな共晶部を形成することが難しく、そればかりか、結晶シリコン粒子の殆ど全てがアルミニウム−シリコン共晶化されてしまう恐れもあるからである。
米国特許第4451968号明細書 特開2004−235267号公報
前述のように、従来の技術において粒状の結晶シリコン粒子を導電性基板に接合して光電変換装置を作製する場合、p+層の形成によってBSF効果を充分に得ることは難しく、BSF効果による光電変換効率の向上は望めないのが実情であった。
また、特許文献1に記載の方法でアルミニウム基板の上に結晶シリコン粒子を接合しようとする場合、アルミニウムとシリコンとの接合が開始されるためには、界面に形成されているそれぞれの酸化膜を破るだけの荷重をかける必要があり、ティアドロップ等の形状をした結晶シリコン粒子が破壊されてしまうといった問題も生じていた。さらに、各々の結晶シリコン粒子とアルミニウム基板との接触点においてそれぞれ酸化膜がわずかに異なることにより、接合の開始時期に違いが生じ、接合の深さにバラツキが発生するといった問題もあった。しかも、酸化膜を破壊するために必要な荷重および温度は大きなものとならざるを得ず、その結果、開始した後は一挙に接合が進行してしまい制御性に欠けたり、大きな荷重のためにアルミニウムとシリコンの間に形成された共晶部が横に流されて移動していきアルミニウム基板全面に共晶が形成されてしまったりすることもあった。また、一般に、アルミニウム−シリコン共晶層の光反射率はアルミニウム金属のそれよりも低く、アルミニウム基板表面に占めるアルミニウム−シリコン共晶層の割合が大きくなるとアルミニウム基板表面からの反射光の利用率が低減してしまうことになるという問題もあった。
そこで、本発明は、このような問題点に鑑みなされたものであり、導電性基板と結晶シリコン粒子とが良好に接合されてなり、充分なBSF効果を得て高い光電変換効率を実現することができる、光電変換装置とその製造方法および該光電変換装置を用いた光発電装置を提供することを目的とする。
本発明者らは、上記課題を解決すべく鋭意研究を重ねた。その結果、アルミニウム基板の上に結晶シリコン粒子を接合するにあたり、従来のように、それぞれの界面状態にばらつきがあるにもかかわらず一挙に接合を行わせるのではなく、結晶シリコン粒子と導電性基板との界面に接合の開始材としてアルミニウム−シリコン合金ペーストを用いることを着想した。そして、このペーストを用いた場合、アルミニウムやシリコンよりも低温でまず該合金ペーストが溶融して共晶の開始材として作用し、これにより、全面にわたって接合が開始されて均一な接合を形成することができること、さらに、従来のように大きな荷重は必要なく、溶融した合金粒子を軽く押さえる程度の少ない荷重で事足りるようになるので、結晶シリコン粒子の破損もなく、制御も可能であり、共晶部が流されて導電性基板全面に共晶が形成されることもないことを見出した。
さらに、本発明者らは、前記合金ペーストに前記結晶シリコン粒子よりも高濃度のホウ素を含有させることにより、良好なBSF効果を得ることができることをも見出した。すなわち、高濃度のホウ素をアルミニウム−シリコン合金中にあらかじめ存在させておくことにより、アルミニウム−シリコン共晶層が形成されたのち降温時に析出するシリコン層中においてアルミニウムだけでなくIII族元素であるホウ素もがドーパント化され、p+層の形成に寄与するのである。つまり、ホウ素含有アルミニウム−シリコン合金ペーストを用いて得られる光電変換装置においては、その接合部にアルミニウム−シリコン共晶層が形成されるとともに、該アルミニウム−シリコン共晶層からは高濃度のホウ素を含むシリコン層が析出することになり、この析出したシリコン層に高濃度のホウ素が含有されることによって、p+層が形成され、有効なBSF効果を得ることができるのである。
本発明は、以上の知見に基づき完成されたものである。
すなわち、本発明は以下の構成からなる。
(1)導電性基板の一主面に第1導電型である結晶シリコン粒子が複数個接合されており、該結晶シリコン粒子間には絶縁物質が介在するとともに、結晶シリコン粒子の上部には第2導電型の半導体層および透光性導体層が設けられた光電変換装置であって、
前記導電性基板と前記結晶シリコン粒子との接合部にはアルミニウム−シリコン共晶層が形成されているとともに、前記結晶シリコン粒子と前記アルミニウム−シリコン共晶層との間にシリコン層が形成されており、前記シリコン層には前記結晶シリコン粒子よりも高濃度のホウ素が含有されている、ことを特徴とする光電変換装置。
(2)導電性基板の一主面に第1導電型である結晶シリコン粒子が複数個接合されており、該結晶シリコン粒子間には絶縁物質が介在するとともに、結晶シリコン粒子の上部には第2導電型の半導体層および透光性導体層が設けられた光電変換装置の製造方法であって、
前記導電性基板と前記結晶シリコン粒子とを接合するにあたり、接合部に前記結晶シリコン粒子よりも高濃度のホウ素を含有したアルミニウム−シリコン合金からなるペースト層を塗布形成し、該ペースト層上に前記結晶シリコン粒子を載置した後、前記ペースト層を加熱焼成する、ことを特徴とする光電変換装置の製造方法。
(3)前記ペースト層は、前記導電性基板の前記結晶シリコン粒子を載置する部分のみに形成する、前記(2)記載の光電変換装置の製造方法。
(4)前記(1)に記載の光電変換装置を発電手段として用い、該発電手段の発電電力を負荷へ供給するようになしたことを特徴とする光発電装置。
本発明の光電変換装置によれば、導電性基板と結晶シリコン粒子との接合部にはアルミニウム−シリコン共晶層が形成されているとともに、前記結晶シリコン粒子と前記アルミニウム−シリコン共晶層との間にシリコン層が形成されており、前記シリコン層には前記結晶シリコン粒子よりも高濃度のホウ素が含有されているので、p+層の形成が促進されて良好なBSF効果を得ることができ、その結果、高い光電変換効率を達成することができる、という効果がある。
本発明の光電変換装置の製造方法によれば、導電性基板と結晶シリコン粒子とを接合するにあたり、接合部に前記結晶シリコン粒子よりも高濃度のホウ素を含有したアルミニウム−シリコン合金からなるペースト層を塗布形成し、該ペースト層上に結晶シリコン粒子を載置した後、前記ペースト層を加熱焼成するので、基板全体においてかかる荷重(圧)および加熱温度は均一となり、しかも要する荷重は小さくてすむこととなり、結果として、結晶シリコン粒子の破損もなく、接合深さ等の制御も可能であり、アルミニウム−シリコン共晶部が流されて導電性基板全面に共晶が形成されることもなく、ひいては、導電性基板表面において光反射率の低い共晶層の比率を抑えることができるので集光にも有利となる、という効果がある。そして、本発明の光電変換装置の製造方法によれば、このような効果を得ながら、前述した本発明の光電変換装置を簡便にして得ることができるのである。
本発明の光発電装置によれば、前述した本発明の光電変換装置を発電手段として用いたものであることから、発電能力が高く、多くの電力を効率よく負荷へ供給することができる、という効果がある。
[光電変換装置]
以下、本発明の光電変換装置の実施形態について図面を用いて詳細に説明する。
図1は、本発明の光電変換装置の実施形態の一例を模式的に表した断面図である。
本発明の光電変換装置は、導電性基板11の一主面(図1では上側の面)に第1導電型である結晶シリコン粒子12が複数個接合されており、該結晶シリコン粒子12間には絶縁物質14が介在するとともに、結晶シリコン粒子12の上部には第2導電型(例えば、第1導電型がp型であればn型であり、第1導電型がn型であればp型である)の半導体層13および透光性導体層15が設けられたものである。
結晶シリコン粒子12としては、例えば、溶融落下法、すなわち容器内でシリコン原料全体を溶融させた後、シリコン融液の上部をアルゴンガスなどで加圧して容器下部のノズル孔から押し出して多数のシリコンの液滴を噴出させ、自由落下中に凝固させることにより単結晶シリコンまたは多結晶シリコンの粒子とする方法によって得られたものを用いることができる。勿論、結晶シリコン粒子12の作製方法はこれに限定されるものではなく、ほかにも、例えば、粉末のシリコン原料を溶融炉に通すことによって単結晶シリコン化させて得られる球状の結晶シリコン粒子を用いることもできる。
結晶シリコン粒子12を作製する際のシリコン原料には、通常、所望の抵抗値を有するとともに第1の導電型の半導体となるように不純物を含有させておく。例えば、p型を示す半導体とするためには、p型ドーパントがドーピングされている。p型ドーパントとしては、具体的には、ホウ素、アルミニウム、ガリウム、インジウム等があるが、シリコンに対する偏析係数が大きい点やシリコン溶融時の蒸発係数が小さい点から、ホウ素が特に好ましい。
なお、第1の導電型はp型であってもn型であってもよいのであるが、後述するように導電性基板11がアルミニウムを含む金属層を導電層とする場合には、p型ドーパントとなるアルミニウムを含んだシリコン層が析出して結晶シリコン粒子12と導電性基板11との界面にp+層が形成され、それによって良好なBSF効果が得られることとなるので、結晶シリコン粒子12にはp型ドーパントを含有させておくことが好ましい。つまり、本発明の好ましい態様は、第1の導電型がp型、第2の導電型がn型の場合である。
導電性基板11は、その少なくとも一主面(結晶シリコン粒子12が接合される側の主面)に導電層が形成されたものであればよく、導電性基板自体が金属基板でも良いし、ガラスやセラミック等からなる絶縁基板の一主面に導電層を形成したものでも良い。導電層としては、例えば、アルミニウム、銀、銅、錫等の1種または2種以上からなる金属層が挙げられるが、中でも、アルミニウムを含む金属層が好ましく、さらに好ましくはアルミニウムのみからなる金属層であるのがよい。導電性基板11がアルミニウムを含む金属層を有するものである場合、結晶シリコン粒子12の接合によって、その接合部にアルミニウムとシリコンの共晶部が形成されて、結晶シリコン粒子12と導電性基板11との間が非常に強い接着強度で接合されるからである。
本発明の光電変換装置においては、導電性基板11と結晶シリコン粒子12との接合部にアルミニウム−シリコン共晶層17が形成されている。このアルミニウム−シリコン共晶層17は、後述する本発明の製造方法によって形成されるものであり、詳しくは、後述するホウ素含有アルミニウム−シリコン合金からなるペースト層を加熱焼成することによって形成される。
本発明の光電変換層装置においては、さらに、前記アルミニウム−シリコン共晶層17と結晶シリコン粒子12との界面にシリコン層18が存在しており、該シリコン層18には結晶シリコン粒子よりも高濃度のホウ素が含有されている。シリコン層18は、前述したアルミニウム−シリコン共晶層17が形成されたのち降温時に該アルミニウム−シリコン共晶層17から析出するものであり、この析出したシリコン層18に高濃度のホウ素が含有されることによって、良好なp+層が形成され、有効なBSF効果を得ることができるのである。つまり、ホウ素含有アルミニウム−シリコン合金ペーストを焼成してなるアルミニウム−シリコン共晶層17には高濃度のホウ素が含まれており、このアルミニウム−シリコン共晶層17から析出したシリコン層18中においては、アルミニウムだけでなくIII族元素のホウ素もがドーパント化され、p+層の形成に寄与することになるのである。なお、結晶シリコン粒子12とシリコン層18との界面は、SIMS装置を用いて結晶シリコン粒子12の深さ方向の不純物濃度を測定することによって、測定、検知することができる。また、SIMS装置以外の精度の良い不純物分布測定装置としては、先端が細い針を用いて試料表面を走査し、針と試料との間の静電容量をもとに不純物分布を画像化する走査型容量顕微鏡(SCM:Scanning Capacitance Microscope)がある。
導電性基板11に接合した複数の結晶シリコン粒子12の間には絶縁物質14が介在する。このとき、絶縁物質14は、少なくとも結晶シリコン粒子12の天頂部は覆わないように介在していなければならない。結晶シリコン粒子12の天頂部が覆われずに露出していることにより、この上に形成される半導体層13や透光性導体層15との有効な接触が可能となるのである。
絶縁物質14としては、正極と負極とを分離して絶縁層を形成しうる材料からなるものであれば、特に制限はないが、ポリイミドを主成分とする材料が、処理温度を低く抑えることが可能で、弾性係数も小さく、導電性基板11と絶縁物質14との熱膨張係数の差を吸収しうる点で、好ましい。他の材料としては、酸化珪素(SiO2)、酸化アルミニウム(Al23)、酸化鉛(PbO)、酸化硼素(B23)、酸化亜鉛(ZnO)等を必須成分あるいは任意成分として含むガラスなども選択可能である。
結晶シリコン粒子12間の絶縁物質14の表面形状は、結晶シリコン粒子12側(結晶シリコン粒子12に接する部分)が高くなっている凹形状をしていることが好ましい。このような凹形状をしていることにより、モジュールの封止樹脂との屈折率の差が生じ、光電変換材料のない非受光領域における光の乱反射を促進して光電変換効率の向上に寄与することができるからである。
結晶シリコン粒子12の上部には、まず第2導電型の半導体層13が設けられている。第2導電型の半導体層13は、第1の導電型とは逆の導電型を持った半導体からなる層であり、該半導体層13を設けることにより、結晶シリコン粒子12で発生した少数キャリアをpn接合に収集して、発電させることができるのである。
第2導電型の半導体層13の形成は、結晶シリコン粒子12と導電性基板11との接合に先立って、工程コストの低い熱拡散法により結晶シリコン粒子12に形成しておくことが好ましく、例えば、石英からなる拡散炉にドーパントを導入しながら結晶シリコン粒子12の表面に第2導電型の半導体層13を形成すればよい。ここで、第2導電型は、前述したように本発明の好ましい態様においてはn型であるのがよく、n型ドーパントとしては、元素周期律表のV族元素のP、As、Sb、III族元素のB、Al、Ga等を用いることができる。なお、第2導電型の半導体層13の形成方法は、前記熱拡散法に限定されるものではなく、例えば、結晶シリコン粒子12を導電性基板11に接合した後、結晶シリコン粒子12上に半導体層13としてn型の非晶質シリコン層を積層するようにしてもよい。
なお、結晶シリコン粒子12と導電性基板11との接合に先立って第2導電型の半導体層13を予め熱拡散法で形成する場合、接合後に、結晶シリコン粒子12に耐エッチング液のレジストを転写法にてその半分以上に塗布し、その後エッチング液に浸漬して露出した結晶シリコン粒子12表面の第2導電型の半導体層13をエッチング液で除去する処理を施すことが望ましい。
第2導電型の半導体層13の上部には、さらに透光性導体層15が設けられている。詳しくは、透光性導体層15は、半導体層13の上に上部電極として形成されるとともに、絶縁物質14の上にも形成されており、この透光性導体層15によって、個々の結晶シリコン粒子12で構成された光電変換素子は並列につなぎ合わされるのである。つまり、透光性導体層15が設けられていることにより、複数の結晶シリコン粒子12のそれぞれで発生した光電流を収電できるようになる。
透光性導体層15としては、例えば、錫ドープ酸化インジウム膜、酸化スズ膜、酸化亜鉛膜等が挙げられる。なお、透光性導体層15を所定の膜厚(例えば85nm程度)に制御すると反射防止効果をも期待できるようになるので好ましい。
透光性導体層15を形成するに際しては、量産に適した信頼性の高い均質な膜質を得るには、スパッタリング法で形成するのが好ましいが、CVD法、ディップ法、スプレイ法、電析法などによって形成することもできる。
本発明の光電変換装置は、透明導体層15の直列抵抗値を低くするために、さらに、透明導体層15上に銀ペースト等をくし状に塗布形成してグリット電極(不図示)を設けて、導電性基板11を一方の電極とし、透明導体層15およびグリット電極をもう一方の電極とすることにより、太陽電池として好適な光電変換装置となる。つまり、このような光電変換装置においては、低コストかつ高変換効率であることに加えて、表面が耐候性フィルムでラミネートされたモジュールとすることによりクラックが入るなどの破壊の危険性を回避できるという利点がある。したがって、軽量かつ高耐候性の光電変換システムを作製できるだけでなく、設置架台やコンバーターなどを用いたトータルシステムにおいても効果を発揮し得るのである。
本発明の光電変換装置は、小さな粒状の結晶半導体粒子が寄り集まって大面積を構成するものであるので、いかなる形状にも容易に対応できるという利点がある。例えば、通常用いられる正方形や長方形以外にも、正三角形、直角三角形、二等辺三角形、ひし形、台形、正五角形、正六角形、正八角形等の形状とすることができる。また、一旦光電変換装置を形成した後に所望の形状に切断することも可能である。このことにより、種々の形状のモジュールの面積利用効率を改善し、変換効率を向上させるとともに、意匠的にも優れたモジュールを提供することができる。
[光電変換装置の製造方法]
本発明の光電変換装置の製造方法は、前述した本発明の光電変換装置を製造する方法である。以下、本発明の光電変換装置の製造方法の実施形態について図面を用いて詳細に説明する。
図2は、本発明の光電変換装置の製造方法において、ペースト層を塗布形成後、結晶シリコン粒子を載置した状態を示す概略断面図である。図3は、本発明の光電変換装置の製造方法において、ペースト層を加熱焼成した後の状態を示す概略断面図である。
本発明の光電変換装置の製造方法においては、導電性基板11と結晶シリコン粒子12とを接合するにあたり、接合部に前記結晶シリコン粒子よりも高濃度のホウ素を含有したアルミニウム−シリコン合金からなるペースト層を塗布形成し、該ペースト層上に前記結晶シリコン粒子12を載置した後、前記ペースト層を加熱焼成することが重要である。
本発明の製造方法において前記ペースト層の形成に用いられる組成物(合金ペースト)の組成は、例えば、シリコン12.6%−アルミニウム87.4%の比率であれば、溶融温度が577℃で安定しているので好ましい。ただし、合金ペーストの組成はこれに限定されるものではなく、その溶融温度がアルミニウムの溶融温度よりも低くなるような組成(比率)であれば良い。
本発明の製造方法において前記ペースト層の形成に用いられる組成物(合金ペースト)は、ホウ素を含有するものでなければならず、かつ、その含有量(前記合金ペーストに含まれるホウ素の含有量)は、その濃度が結晶シリコン粒子12中のホウ素濃度(通常、1×1016atom/cm3程度)よりも大きいことが重要である。具体的には、シリコン量に対して3×1016atom/cm3以上であることが好ましい。ただし、ホウ素の量があまりに多すぎると金属シリコンになってしまうので、その上限は、シリコン量に対して1×1021atom/cm3以下であることが好ましい。より好ましくは、1×1017〜5×1020atom/cm3の範囲である。
結晶シリコン粒子12の導電性基板11への接合に際しては、まず、導電性基板11に前記合金ペーストを塗布してペースト層を形成する。具体的には、ペースト層は、導電性基板11の結晶シリコン粒子12を載置する部分のみに形成するのが好ましい。つまり、ペースト層は、導電性基板11の全面にわたって形成するのではなく、結晶シリコン粒子12の下部に当たる位置のみに形成する方が好ましいのである。これにより、材料を節約することができるとともに、不要な場所に共晶が形成されないようにすることができる。
導電性基板11の結晶シリコン粒子12を載置する部分のみにペースト層を形成するには、例えば円形や正方形などのドットを結晶シリコン粒子12と導電性基板11との間に配置されるようなパターンで、前記合金ペーストを導電性基板11上に印刷し、結晶シリコン粒子12をその上に配置させるようにすればよい。前記合金ペーストを導電性基板11上に印刷してパターニングすることによって、例えば、結晶シリコン粒子12の下部のみに塗布して導電性基板11表面の一部をアルミニウム金属状態にしておくようにアルミニウム−シリコン共晶部の形成領域を限定することにより、導電性基板11表面での反射を増加させて光の利用効率を改善することができる。
次に、導電性基板11上に形成した前記ペースト層の上に複数個の結晶シリコン粒子12を配置する。結晶シリコン粒子12の配置は特に制限されないが、6個の結晶シリコン粒子12が平面視で最密六方状をなすようにして多数個配置されていることが好ましい。
ここまでの状態、すなわち、前記ペースト層を塗布形成して結晶シリコン粒子12を載置した状態を概略的に示したのが図2である。図2において、16は、前記合金ペースト中のホウ素含有アルミニウム−シリコン合金粒子である。
次に、複数個の結晶シリコン粒子12を載置した導電性基板11上のペースト層を加熱焼成する。具体的には、結晶シリコン粒子12を載置した導電性基板11を還元性雰囲気の加熱炉内に入れ、昇温を開始するようにすればよい。このとき、昇温は、合金ペーストに用いた有機組成物を揮散させるために初期段階ではゆっくりと行い、アルミニウムとシリコンの共晶温度に近い温度まで加熱した後、共晶温度を若干上回る温度(具体的には、共晶点よりも+5℃〜+40℃高い温度が好ましい)の熱板をわずかに荷重をかけながら導電性基板11上の結晶シリコン粒子12に押し付けることで急速に昇温させるようにするのが良い。つまり、ホウ素含有アルミニウム−シリコン合金粒子16を溶融させると同時に押しつぶして、アルミニウムとシリコンの共晶接合を開始させるのである。加える荷重は、通常0.001〜0.05MPa程度であり、これは溶融したホウ素含有アルミニウム−シリコン合金粒子16をつぶすだけのものであるので、従来の荷重(通常、0.1〜0.2MPa程度)ように結晶シリコン粒子12が破損してしまうことはない。このようにして、結晶シリコン粒子12と導電性基板11との接合部にアルミニウム−シリコン共晶部17を形成し、結晶シリコン粒子12を導電性基板11上面に接合させる。
次いで、熱板を導電性基板11から離すことにより導電性基板11を降温させる。ここで、共晶温度よりも低い温度まで低下したときに、接合部の共晶は硬化を始めて、結晶シリコン粒子12との界面にホウ素とアルミニウムを固溶した薄い(通常、厚み3〜7μm程度)シリコン層18が析出するのである。
ここまでの状態、すなわち、ペースト層を加熱焼成したのちに降温したときの状態を概略的に示したのが図3である。図3は結晶シリコン粒子12と導電性基板11との接合界面を示したものであり、17はアルミニウム−シリコン共晶層、18はシリコン層である。このシリコン層18は、詳しくは、シリコン層18中にアルミニウムだけでなくホウ素もがドーパント化されたものであり、光電変換装置のBSF効果を充分に発現するp+層となる。なお、シリコン層18中のアルミニウムやホウ素の濃度は、SIMS装置を用いて測定することができる。
本発明の製造方法においては、結晶シリコン粒子12と導電性基板11との接合を前述のように行うこと以外は、特に制限はなく、例えば、[光電変換装置]の項で述べたような公知の手法を適宜採用して、第2の半導体層13、絶縁物質14、透光性導電層15を形成すればよい。さらに、その後、透光性導体層15上にグリット電極等を形成するようにしてもよい。
[光発電装置]
本発明の光発電装置は、前述した本発明の光電変換装置を発電手段として用い、この発電手段の発電電力を、例えば発光装置、照明装置、モーター等の各種の負荷へ供給するようになしたものである。このように、本発明の光発電装置は、変換効率に優れた本発明の光電変換装置を用いたものであることから、発電能力が高く、長期間にわたって高い発電効率を得ることができるのである。
以下、実施例および比較例を挙げて本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
まず、シリコン融液の液滴を容器のノズルから噴出させ自由落下させて固化させる、いわゆる溶融落下法によって、結晶シリコン粒子を製造した。詳しくは、坩堝へ充填したシリコン原料を昇温して溶解させシリコン融液とし、該シリコン融液を不活性ガス(ArまたはHe)雰囲気中で坩堝下端に形成されたノズルより噴出させて自由落下させ、固化させることにより、球状の結晶シリコン粒子を得た。次いで、得られた結晶シリコン粒子を石英ボート上に載置して熱処理することにより、結晶シリコン粒子の表面にリン不純物を熱拡散させて、結晶シリコン粒子表面に厚さ約1μmのn型の半導体層を形成した。
他方、シリコン12.6重量%、アルミニウム87.4重量%の比率であり、シリコン量に対して1×1020atom/cm3の濃度でホウ素を含有する合金ペーストを準備した。該合金ペーストは、平均粒径20μmの球状粒を、酢酸ブチルにエチルセルロースを溶解させた溶液に混練させたものである。
上記合金ペーストを、厚み500μmの高純度アルミニウムからなる導電性基板に、150μmφ(直径)の円形パターンが300μmピッチの最密充填配置になるようパターン形成されたスクリーンメッシュを用いてスクリーン印刷し、乾燥した。次いで、この合金ペーストパターンの各々の上に位置するように、上記で作製したn型の半導体層を形成した結晶シリコン粒子(直径約300μm)を最密六方状に多数配設した。
次に、5体積%水素を含む窒素ガスの還元雰囲気の加熱炉に導入し、まず、加熱炉で有機分を飛ばすためにゆっくりと昇温した後、急速に540℃まで上げた。そして、共晶点よりも2℃高い579℃の熱板を導電性基板上の結晶シリコン粒子に軽く押し付けることで、合金ペースト中のホウ素含有アルミニウム−シリコン合金粒子を溶融させるとともに変形させ、結晶シリコン粒子とアルミニウムとの共晶を開始させるトリガーとして作用させた。およそ2〜5割の結晶シリコン粒子がアルミニウムと接合した後、熱板を導電性基板から離して降温させることによって、導電性基板に結晶シリコン粒子を接合した。このとき、アルミニウムと高濃度ホウ素を含んだシリコン層が、共晶中に取り込まれていたシリコンリッチ共晶部から析出して共晶部と結晶シリコン粒子との界面に4μmの厚みで形成された。このシリコン層は、通常のアルミニウムのみを含んだシリコン層によって形成されるp+層に比べてはるかに高いホウ素濃度(SIMS装置による測定により、ホウ素濃度は1×1018atom/cm3であった)のp+層となっており、優れたBSF効果を発現するものであった。また、結晶シリコン粒子と導電性基板の接合部は充分な接着強度を有しており、電気的にオーミックな接合部であった。
次に、導電性基板の上に接合された結晶シリコン粒子同士の間に、ポリイミドからなる絶縁物質を約100μmの厚みになるように充填塗布して乾燥させた。その後、多数の結晶シリコン粒子の上の全面に、透光性導体層として透明導電膜(ITO膜)をスパッタリング法によって85nmの厚みで形成し、上部電極膜とした。最後に、透明導電膜上に銀ペーストをディスペンサーでグリッド状にパターン形成したのち焼成を行うことにより、フィンガー電極およびバスバー電極を形成し、光電変換装置とした。
得られた光電変換装置の電気特性について、AM1.5のソーラーシミュレーターで評価した結果、開放電圧は600mV、短絡電流密度は32mA/cm2、変換効率は14.8%であった。
[比較例]
厚み500μmの高純度アルミニウムからなる導電性基板の上に、実施例と同様にして作製したn型の半導体層を形成した結晶シリコン粒子(直径約300μm)を最密六方状に多数配設して、高圧(0.15MPa)ではさみ合わせた。
次に、5%水素を含む窒素ガスの還元雰囲気の加熱炉で昇温させて、およそ2〜5割の結晶シリコン粒子がアルミニウムと接合した後、熱板を導電性基板から離して降温させることによって、導電性基板に結晶シリコン粒子を接合した。このとき、アルミニウムを含んだシリコン層が、共晶中に取り込まれていたシリコンリッチ共晶部から析出して共晶部と結晶シリコン粒子との界面に形成された。なお、この場合のシリコン層中のホウ素濃度は、SIMS装置によって測定したところ、1×1016atom/cm3であった。
次に、実施例と同様にして、導電性基板の上に接合された結晶シリコン粒子同士の間に絶縁物質を塗布して乾燥させ、その後、透光性導体層として透明導電膜(ITO膜)を形成して上部電極膜とし、最後に、フィンガー電極およびバスバー電極を形成して、光電変換装置とした。
得られた光電変換装置の電気特性について、実施例と同様に、AM1.5のソーラーシミュレーターで評価した結果、開放電圧は580mV、短絡電流密度は30mA/cm2、変換効率は13.6%であった。
上記実施例と上記比較例とを比べると、実施例の方が開放電圧の値が高くなっている。このことから、実施例においてはホウ素が高濃度で含有されていることにより良好なp+層が形成されていることがわかる。
また、上記実施例と上記比較例とを比べると、実施例の方が短絡電流密度の値も高くなっている。このことから、実施例においてはBSF効果により収集される少数キャリアが増加していること、導電性基板表面のアルミニウム−シリコン共晶部が限定されることで導電性基板からの反射が増え光の利用効率が向上していることがわかる。
本発明の光電変換装置の実施形態の一例を示す概略的な断面図である。 本発明の光電変換装置の製造方法において、ペースト層を塗布形成後、結晶シリコン粒子を載置した状態を示す概略的な断面図である。 本発明の光電変換装置の製造方法において、ペースト層を加熱焼成した後の状態を示す概略的な断面図である。
符号の説明
11 導電性基板
12 結晶シリコン粒子
13 第2導電型の半導体層
14 絶縁物質
15 透光性導体層
16 ホウ素含有アルミニウム−シリコン合金粒子
17 アルミニウム−シリコン共晶層
18 シリコン層(p+層)

Claims (4)

  1. 導電性基板の一主面に第1導電型である結晶シリコン粒子が複数個接合されており、該結晶シリコン粒子間には絶縁物質が介在するとともに、前記結晶シリコン粒子の上部には第2導電型の半導体層および透光性導体層が設けられた光電変換装置であって、
    前記導電性基板と前記結晶シリコン粒子との接合部にはアルミニウム−シリコン共晶層が形成されているとともに、前記結晶シリコン粒子と前記アルミニウム−シリコン共晶層との間にシリコン層が形成されており、前記シリコン層には前記結晶シリコン粒子よりも高濃度のホウ素が含有されている、ことを特徴とする光電変換装置。
  2. 導電性基板の一主面に第1導電型である結晶シリコン粒子が複数個接合されており、該結晶シリコン粒子間には絶縁物質が介在するとともに、前記結晶シリコン粒子の上部には第2導電型の半導体層および透光性導体層が設けられた光電変換装置の製造方法であって、
    前記導電性基板と前記結晶シリコン粒子とを接合するにあたり、接合部に前記結晶シリコン粒子よりも高濃度のホウ素を含有したアルミニウム−シリコン合金からなるペースト層を塗布形成し、該ペースト層上に前記結晶シリコン粒子を載置した後、前記ペースト層を加熱焼成する、ことを特徴とする光電変換装置の製造方法。
  3. 前記ペースト層は、前記導電性基板の前記結晶シリコン粒子を載置する部分のみに形成する、請求項2記載の光電変換装置の製造方法。
  4. 請求項1に記載の光電変換装置を発電手段として用い、該発電手段の発電電力を負荷へ供給するようになしたことを特徴とする光発電装置。

JP2006025831A 2006-02-02 2006-02-02 光電変換装置、その製造方法および光発電装置 Withdrawn JP2007208049A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006025831A JP2007208049A (ja) 2006-02-02 2006-02-02 光電変換装置、その製造方法および光発電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006025831A JP2007208049A (ja) 2006-02-02 2006-02-02 光電変換装置、その製造方法および光発電装置

Publications (1)

Publication Number Publication Date
JP2007208049A true JP2007208049A (ja) 2007-08-16

Family

ID=38487234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006025831A Withdrawn JP2007208049A (ja) 2006-02-02 2006-02-02 光電変換装置、その製造方法および光発電装置

Country Status (1)

Country Link
JP (1) JP2007208049A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016508286A (ja) * 2012-12-06 2016-03-17 サンパワー コーポレイション 太陽電池導電性コンタクトのシード層
KR20200038402A (ko) * 2018-10-03 2020-04-13 (주)소프트피브이 전기적 특성이 향상된 태양 전지 및 태양 전지의 제조 방법
KR20200105273A (ko) * 2019-02-28 2020-09-07 (주)소프트피브이 직렬 연결이 용이한 태양 전지 모듈

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016508286A (ja) * 2012-12-06 2016-03-17 サンパワー コーポレイション 太陽電池導電性コンタクトのシード層
KR20200038402A (ko) * 2018-10-03 2020-04-13 (주)소프트피브이 전기적 특성이 향상된 태양 전지 및 태양 전지의 제조 방법
KR102122353B1 (ko) * 2018-10-03 2020-06-12 (주)소프트피브이 전기적 특성이 향상된 태양 전지 및 태양 전지의 제조 방법
KR20200105273A (ko) * 2019-02-28 2020-09-07 (주)소프트피브이 직렬 연결이 용이한 태양 전지 모듈
KR102177476B1 (ko) 2019-02-28 2020-11-11 (주)소프트피브이 직렬 연결이 용이한 태양 전지 모듈

Similar Documents

Publication Publication Date Title
JP5328363B2 (ja) 太陽電池素子の製造方法および太陽電池素子
CN102396073B (zh) 光电动势装置及其制造方法
US20120017988A1 (en) Pyramidal three-dimensional thin-film solar cells
US20120037224A1 (en) Solar battery cell and method of manufacturing the same
US8975109B2 (en) Solar battery cell and production method thereof
US9252300B2 (en) Method for backside-contacting a silicon solar cell, silicon solar cell and silicon solar module
JP2007134387A (ja) 光電変換素子およびその電極形成方法
JP4518806B2 (ja) 光電変換装置およびその製造方法
JP2007208049A (ja) 光電変換装置、その製造方法および光発電装置
JP4693492B2 (ja) 光電変換装置およびそれを用いた光発電装置
JP2006041309A (ja) 太陽電池素子の接続構造及びこれを含む太陽電池モジュール
JP2007149796A (ja) 光電変換装置、光発電装置、及び光電変換装置の製造方法
JP4693505B2 (ja) 光電変換装置およびそれを用いた光発電装置
JP4956023B2 (ja) 光電変換装置の製造方法
JP2006156584A (ja) 結晶シリコン粒子への不純物の拡散方法および光電変換装置ならびに光発電装置
JP2006156582A (ja) 半導体部品および光電変換装置
KR20120081416A (ko) 태양전지 및 그 제조방법
TWM422758U (en) Solar cell and back electrode structure thereof
JP2007158162A (ja) 光電変換装置およびその製造方法
JP2007027464A (ja) 光電変換装置の製造方法及び光電変換装置並びに光発電装置
WO2015083259A1 (ja) 太陽電池セルの製造方法
Rubin Crystalline silicon solar cells and modules
JP2007142201A (ja) 光電変換装置
JP5057745B2 (ja) 光電変換装置の製造方法
JP2008034540A (ja) 光電変換装置およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080818

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090909