JP2007206439A - 波長変換装置 - Google Patents
波長変換装置 Download PDFInfo
- Publication number
- JP2007206439A JP2007206439A JP2006026001A JP2006026001A JP2007206439A JP 2007206439 A JP2007206439 A JP 2007206439A JP 2006026001 A JP2006026001 A JP 2006026001A JP 2006026001 A JP2006026001 A JP 2006026001A JP 2007206439 A JP2007206439 A JP 2007206439A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- wavelength
- refractive index
- band gap
- photonic band
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
【課題】非線形光学材料を用いずに、弱い光の波長変換を実現すること。
【解決手段】波長変換装置100は、フォトニックバンドギャップを有する第1の層10と、第1の層10のフォトニックバンドギャップと一部重なり、低周波数(長波長)側にずれたフォトニックバンドギャップを有する第2の層20と、それらの間に形成された、時間と共に実効屈折率を変化可能な第3の層とから成る。第1の層10のフォトニックバンドギャップの低周波数端(長波長端)近くの周波数の電磁波を入射すると、第3の層30から第2の層20には透過できず、即ち反射され、第2の層から出射されない。しかし、この状態で第3の層30の屈折率を小さくなるように変化させると、入射波は第3の層付近にトラップされたまま、周波数が上昇し、第2の層20の高周波数端の周波数(短波長端の波長)に達した段階で、透過波として出ていく。
【選択図】図3
【解決手段】波長変換装置100は、フォトニックバンドギャップを有する第1の層10と、第1の層10のフォトニックバンドギャップと一部重なり、低周波数(長波長)側にずれたフォトニックバンドギャップを有する第2の層20と、それらの間に形成された、時間と共に実効屈折率を変化可能な第3の層とから成る。第1の層10のフォトニックバンドギャップの低周波数端(長波長端)近くの周波数の電磁波を入射すると、第3の層30から第2の層20には透過できず、即ち反射され、第2の層から出射されない。しかし、この状態で第3の層30の屈折率を小さくなるように変化させると、入射波は第3の層付近にトラップされたまま、周波数が上昇し、第2の層20の高周波数端の周波数(短波長端の波長)に達した段階で、透過波として出ていく。
【選択図】図3
Description
本発明は、半導体デバイスでは制御することができないミリ波以上の電磁波を対象に、入射波よりも周波数の高い、即ち波長が短い透過波を作り出す波長変換装置に関する。
良く知られているように、赤外乃至紫外領域において、周波数が高くなる方向への波長変換は、通常、非線形光学材料を用いて行われる。例えば下記特許文献1乃至4である。
一方、非特許文献1のように、近年、多層膜に衝撃波などを作用させて、高速に各層の厚みを半分程度に大変形させることにより、高い周波数への変換が実現できることがシミュレーションにより調べられ、米マサチューセッツ工科大学から報告されている。
特開2004−214674
特開2004−212575
特開2004−279604
特開平9−321700
E. J. Reed, M. Soljacic and J. D. Joannopoulos, Phys. Rev. Lett., 90, 203904 (2003)
非線形光学材料を用いる場合、非常に強度が高い入射波が必要となり、入射波としてレーザー光などしか対象にならず、弱い電磁波の波長変換は困難である。
また、非特許文献1の技術は、衝撃波などを用いて高速に層の厚みを大変形させることから、その実現は難しく、一般的な工業製品への応用へは多くの課題があると考えられる。
そこで、非線形光学材料を用いずに、更には、多層膜の高速での大変形を用いずに波長変換を実現することの可能性を探索し、本発明を完成するに至った。
請求項1に係る発明は、フォトニックバンドギャップを有する第1の層と、前記第1の層のフォトニックバンドギャップと一部重なり、且つより長い波長帯域に渡ってフォトニックバンドギャップを有する第2の層と、前記第1の層と前記第2の層との間に形成された、実効屈折率を時間的に変化可能な第3の層とから成り、前記第1の層に、そのフォトニックバンドギャップの長波長端の光を入射させながら、前記第3の層の実効屈折率を減少させることで前記第2の層からそのフォトニックバンドギャップの短波長端の光を出射させることを特徴とする波長変換装置である。
また、請求項2に係る発明は、請求項1に記載の波長変換装置において、前記第3の層は、第1の屈折率から成る第1の構成材料が膜厚方向全体に充填された第1の部分と、前記第1の屈折率より小さい第2の屈折率から成る第2の構成材料が膜厚方向全体に充填された第2の部分と、それらの間に形成され、前記第1の部分から前記第2の部分にかけて、前記第1の構成材料の膜厚が減り且つ前記第2の構成材料の膜厚が増えるように形成された、構成材料膜厚比変化部分とから成り、前記第1の層に入射された長波長端の光が、時間と共に前記第1の部分、前記構成材料膜厚比変化部分、前記第2の部分に入射するように前記第3の層を膜厚方向と垂直方向に移動又は回転させるようにしたことを特徴とする。
請求項3及び請求項4に係る発明は、各々請求項1及び請求項2に係る発明の構成を逆転させて、第1の層に、そのフォトニックバンドギャップの短波長端の光を入射させながら、第2の層からそのフォトニックバンドギャップの長波長端の光を出射させることを特徴とする波長変換装置である。
また、請求項5に係る発明は、請求項1に記載の波長変換装置において、前記第1の層と前記第2の層とは、各々多重層からなるブラッグ反射層を形成していることを特徴とする。
請求項3及び請求項4に係る発明は、各々請求項1及び請求項2に係る発明の構成を逆転させて、第1の層に、そのフォトニックバンドギャップの短波長端の光を入射させながら、第2の層からそのフォトニックバンドギャップの長波長端の光を出射させることを特徴とする波長変換装置である。
また、請求項5に係る発明は、請求項1に記載の波長変換装置において、前記第1の層と前記第2の層とは、各々多重層からなるブラッグ反射層を形成していることを特徴とする。
第1の層に入射した、第1の層のフォトニックバンドギャップの長波長端の光は第1の層を透過して第3の層に達するが、第2の層のフォトニックバンドギャップにより第2の層を透過することができない。この時、第3の層の実効屈折率が減少すると、第3の層の光は下記シミュレーションに示される通り周波数が高く、波長が短くなる。こうして、第3の層の光の波長が短くなって第2の層のフォトニックバンドギャップの短波長端に達すると、当該光は第2の層を透過して出射されることとなる。
第1の層と第2の層はブラッグ反射膜の設計思想により任意に構成可能すると良い。また、実効屈折率を変化可能な第3の層は、2つの材料からなり、それらの何れかのみが膜厚方向に充填された部分と、その間に形成された、屈折率の変化する部分により構成し、第1の層に入射された長波長端の光が、第3の層にトラップされた状態で、時間と共に屈折率の高い部分を通過し、徐々に屈折率が低くなる部分を通過し、最終的に最も屈折率の低い部分を通過するようにすれば良い。例えば空気を屈折率の低い部分とする場合は、高屈折率材料の膜厚が、膜厚方向と垂直な方向に徐々に減る様な構成の第3の層を用意して、当該第3の層を膜厚方向と垂直な方向に移動又は回転させることで実現可能である。
以上の構成を逆転させた、第1の層に、そのフォトニックバンドギャップの短波長端の光を入射させながら、第2の層からそのフォトニックバンドギャップの長波長端の光を出射させることを特徴とする波長変換装置についても原理は全く同様である。
以上の構成を逆転させた、第1の層に、そのフォトニックバンドギャップの短波長端の光を入射させながら、第2の層からそのフォトニックバンドギャップの長波長端の光を出射させることを特徴とする波長変換装置についても原理は全く同様である。
以下、図を用いて本発明について説明する。
まず、次のような構成を想定し、シミュレーションを行った。図1は本発明に係る波長変換装置100の構成を示す断面図である。波長変換装置100は、ケイ素とアルミナの多重層から成る第1の層10と第2の層20、及び、その間に形成される屈折率が時間と共に変化する第3の層30から成る。波長変換装置100の図1左側の第1の層10に所定の光を入射させ、波長が変化した光を図1右側の第2の層20から出力させるものである。各層の膜厚を次のとおりとした。
第1の層10:いずれも370nm厚の21層のアルミナの層11−1〜11−21と20層のケイ素の層12−1〜12−20とを合計41層交互に形成する。
第2の層20:いずれも380nm厚の21層のアルミナの層21−1〜21−21と20層のケイ素の層22−1〜22−20とを合計41層交互に形成する。
第3の層30:アルミナの層11−21と21−1との間であって、厚さは740nmで一定。
第1の層10:いずれも370nm厚の21層のアルミナの層11−1〜11−21と20層のケイ素の層12−1〜12−20とを合計41層交互に形成する。
第2の層20:いずれも380nm厚の21層のアルミナの層21−1〜21−21と20層のケイ素の層22−1〜22−20とを合計41層交互に形成する。
第3の層30:アルミナの層11−21と21−1との間であって、厚さは740nmで一定。
まず、屈折率を、ケイ素が3.3、アルミナが1.7として、第1の層10と第2の層20のフォトニックバンドギャップを計算した。これを図2に示す。第1の層10と第2の層20とはそれぞれを構成する層の厚みがわずかに異なっていることから、フォトニックバンドギャップもわずかにずれている。出射側である第2の層20のフォトニックバンドギャップが入射側である第1の層10のフォトニックバンドギャップよりも低周波数側(長波長側)にずれている。これを模式図的に描くと図3のようになる。このような波長変換装置100に第1の層10のフォトニックバンドギャップの低周波数端(長波長端)近くの周波数の電磁波を入射すると、第3の層30から第2の層20には透過できず、即ち反射され、第2の層20から出射されない。しかし、この状態で第3の層30の屈折率を小さくなるように変化させると、入射波は第3の層30付近にトラップされたまま、周波数が上昇し、第2の層20の高周波数端の周波数(短波長端の波長)に達した段階で、透過波として出ていく。尚、今回は第1の層10において、アルミナの層11−1〜11−21と20層のケイ素の層12−1〜12−20との厚さを等しくし、第2の層20において、アルミナの層21−1〜21−21と20層のケイ素の層22−1〜22−20との厚さを等しくしたが、図2のようなバンド構造を実現することは、各層の厚さを異なるものとしても可能である。
尚、シミュレーションにおいては、屈折率を、第1の層と第2の層におけるケイ素が3.3、アルミナが1.7とし、第3の層30では屈折率は3.3から1へ6.1nsで変化するとした。原点を第3の層と第1の層の界面上にとり、膜厚方向(光の伝搬方向)にx軸をとる。第1の層10はxの負側、第2の層20はxの正側とした。また、電場をy軸方向、磁場をz軸方向とし、x軸方向に約10nm幅で要素分割を行い、時刻t=0で全領域でE=0とおいて、次の式(1)を差分法により離散化して逐次的に電界Eを計算した。尚、波長変換装置100の外側は屈折率1として、適当な距離の位置に、電磁波を吸収する境界を置いた。こうして、周波数150THz(波長2μm)の電磁波を第1の層10の表面(アルミナの層11−1の表面)に励起させるシミュレーションを行った。
図4.A乃至図4.Dに、その結果を示す。図4.Aはt=1.2ns、図4.Bはt=2.5ns、図4.Cはt=3.7ns、図4.Dはt=5.1nsにおける、膜厚方向(x軸方向)の位置と、周波数と、電場の強さを3次元的に示したグラフ図である。図4.Aのように、t=1.2nsでは入射光は中央(x=0)に達するが、第2の層20(xが正の側)には達しない。図4.Bのように、t=2.5nsでは入射光は第3の層30の屈折率が低下したことにより第3の層30付近(x=0付近)にトラップされる。範囲は第3の層30の前後5周期ずつぐらいである。図4.Cのように、t=3.7nsでは第3の層30の屈折率の低下と共に、第3の層30付近(x=0付近)にトラップされた光は、その周波数が徐々に高くなっていく。そして図4.Dのように、t=5.1nsでは、第3の層30付近(x=0付近)にトラップされた光は、その周波数が170THz(波長1.76μm)に達し、図3の第2の層20のフォトニックバンドギャップの高周波数端(短波長端)に一致した段階で第2の層20を透過し、波長変換装置100から出射される。
上記の周波数の上昇は第3の層30近傍にトラップされた状態でおこることから、このトラップ状態が長いと、用いる材料によっては損失が問題になる場合がある。本例における入射光に対する透過光の電界Eの比は、約260/20000=1.3×10-2である。一方、非線形光学材料を用いて第2高調波発生により波長変換を行う場合は、2次の電気感受率χ(2)が大きく見積もっても1000pm/V程度であることから、上記の電界の比に対応するχ(2)*Eの値は2×10-5となり、波長変換装置100の約650分の1である。そして、入射光の強度が小さいほどこの差は広がる。即ち本発明は微弱な光に対する波長変換として非常に有効である。
〔第3の層の具体例〕
上記の波長変換装置100のうち、いずれも多層膜である第1の層10及び第2の層20は、既に述べた通り、ケイ素とアルミナの多層膜で当然構成可能である。屈折率が変化する第3の層は次のように実現することができる。図5.Aは、本発明による波長変換装置200の側面図、図5.Bはその断面図、図5.Cは多層膜部分の拡大図である。
上記の波長変換装置100のうち、いずれも多層膜である第1の層10及び第2の層20は、既に述べた通り、ケイ素とアルミナの多層膜で当然構成可能である。屈折率が変化する第3の層は次のように実現することができる。図5.Aは、本発明による波長変換装置200の側面図、図5.Bはその断面図、図5.Cは多層膜部分の拡大図である。
波長変換装置200は、回転軸250に固定された、半径rの円盤状の2つの透光性ガラス201及び202に挟持された多層膜280とから成る。波長変換装置200は2つの透光性ガラス201及び202に挟持された多層膜280を所定の速度で回転させることにより、実施例1の第3の層30を有する波長変換装置100を実現するものである。また、光の入射及び出射は、半径rの円盤状の2つの透光性ガラス201及び202に挟持された多層膜280の円周付近で行われる。
多層膜280は、図1の波長変換装置100とほぼ同様の構成である。第1の層210は、いずれも370nm厚の21層のアルミナの層211−1〜211−21と20層のケイ素の層212−1〜212−20とを合計41層交互に形成する。第2の層220は、いずれも380nm厚の21層のアルミナの層221−1〜221−21と20層のケイ素の層222−1〜222−20とを合計41層交互に形成する。第3の層230は、アルミナの層211−21と221−1との間で厚さは740nmのケイ素で形成され、円盤状の円周部分において、次のように「空隙部分」を有する。当該空隙部分の屈折率は1である。
第3の層230の円周部分は、円周方向4μmのケイ素部分と、円周方向4μmのケイ素の無い空隙部分とから成る。電磁波では波長程度以下の構造は識別できないことから、ケイ素部分と空隙部分との境界は鮮明には識別されずに、それぞれの屈折率が徐々に変化する境界として認識される。
また、実施例1のように、740nm厚のケイ素部分から740nm厚の空隙部分への4μmの距離を6.1nsで通過するためには、その部分での接線速度が約660m/sであればよい。これは円板の半径rを6.3cmとして、毎分10万回転で実現可能である。この回転数は例えば工業用の高速モーターなどで実現可能である。本方法は高速な回転体は用いるものの、高速・大変形は不要であり、実現性は大きい。
〔本発明の効果の考察〕
各層における、光の各周波数をω、波数をk、屈折率をnとし、真空中の光の速さをcとおけば、ω/k=c/nである。第3の層の実効屈折率nが変化し、第3の層近傍で光が定在波となり、kが一定又は変化が狭い範囲で拘束されることで、ωが変化するものと理解することができる。この原理によれば、第3の層の屈折率を減少させ図3で光を逆向きに入射させれば、長波長化も可能である。
各層における、光の各周波数をω、波数をk、屈折率をnとし、真空中の光の速さをcとおけば、ω/k=c/nである。第3の層の実効屈折率nが変化し、第3の層近傍で光が定在波となり、kが一定又は変化が狭い範囲で拘束されることで、ωが変化するものと理解することができる。この原理によれば、第3の層の屈折率を減少させ図3で光を逆向きに入射させれば、長波長化も可能である。
以下のような構成で、別のシミュレーションを行った。図6は本発明に係る波長変換装置300の構成を示す断面図である。波長変換装置300は、チタニアとシリカの多重層から成る第1の層310と第2の層320、及び、その間に形成される屈折率が時間と共に変化する第3の層330から成る。波長変換装置300の図6左側の第1の層310に所定の光を入射させ、波長が変化した光を図6右側の第2の層320から出力させるものである。各層の膜厚を次のとおりとした。
第1の層310:いずれも97nm厚の41層のシリカの層311−1〜311−41と40層のチタニアの層312−1〜312−40とを合計81層交互に形成する。
第2の層320:いずれも100nm厚の41層のシリカの層321−1〜321−41と40層のチタニアの層322−1〜322−40とを合計81層交互に形成する。
第3の層330:シリカの層311−41と321−1との間であって、厚さは1850nmで一定。
第1の層310:いずれも97nm厚の41層のシリカの層311−1〜311−41と40層のチタニアの層312−1〜312−40とを合計81層交互に形成する。
第2の層320:いずれも100nm厚の41層のシリカの層321−1〜321−41と40層のチタニアの層322−1〜322−40とを合計81層交互に形成する。
第3の層330:シリカの層311−41と321−1との間であって、厚さは1850nmで一定。
まず、屈折率を、チタニアが2.5、シリカが1.45として、第1の層310と第2の層320のフォトニックバンドギャップを計算した。これを図7に示す。第1の層310と第2の層320とはそれぞれを構成する層の厚みがわずかに異なっていることから、フォトニックバンドギャップもわずかにずれている。出射側である第2の層320のフォトニックバンドギャップが入射側である第1の層310のフォトニックバンドギャップよりも低周波数側(長波長側)にずれている。これを模式図的に描くと図3と同様になる。よって、波長変換装置300は、波長変換装置100と同様に、第1の層310のフォトニックバンドギャップの低周波数端(長波長端)近くの周波数の電磁波を入射すると、第3の層330から第2の層320には透過できず、即ち反射され、第2の層320から出射されない。しかし、この状態で第3の層330の屈折率を小さくなるように変化させると、入射波は第3の層330付近にトラップされたまま、周波数が上昇し、第2の層320の高周波数端の周波数(短波長端の波長)に達した段階で、透過波として出ていく。
尚、シミュレーションにおいては、屈折率を、第1の層と第2の層におけるチタニアが2.5、シリカが1.45とし、第3の層330では屈折率は2.5から1へ14.3nsで変化するとした。x軸を膜厚方向(光の伝搬方向)にとり、第1の層310はxが0〜7857nm、第2の層320はxが9707〜17807nmとした。以下全く実施例1と同様にして、周波数328THz(波長915nm)の電磁波を第1の層310の表面(シリカの層311−1の表面)に励起させるシミュレーションを行った。
図8.A乃至図8.Cに、その結果を示す。図8.Aはt=3.3ns、図8.Bはt=6.7ns、図8.Cはt=10nsにおける、膜厚方向(x軸方向)の位置と、周波数と、電場の強さを3次元的に示したグラフ図である。図8.Aのように、t=3.3nsでは入射光は第3の層330(x=7857〜9707)に達するが、第2の層320(xが9707以上)には達しない。図8.Bのように、t=6.7nsでは入射光は第3の層330の屈折率が低下したことにより第3の層330(x=7857〜9707)付近にトラップされる。範囲は第3の層330の前後5周期ずつぐらいである。図8.Cのように、t=10nsでは第3の層330の屈折率の低下と共に、第3の層330(x=7857〜9707)付近にトラップされた光は、その周波数が徐々に高くなっていくとともに、その周波数が429THz(波長700nm)に達し、第2の層320のフォトニックバンドギャップの高周波数端(短波長端)に一致した段階で第2の層320を透過し、波長変換装置300から出射される。
〔第2実施例における第3の層の具体例〕
上記の波長変換装置300のうち、いずれも多層膜である第1の層310及び第2の層320は、既に述べた通り、チタニアとシリカの多層膜で当然構成可能である。屈折率が変化する第3の層330は次のように実現することができる。図9.Aは、本発明による波長変換装置400の断面図、図9.Bは多層膜部分の拡大図である。
上記の波長変換装置300のうち、いずれも多層膜である第1の層310及び第2の層320は、既に述べた通り、チタニアとシリカの多層膜で当然構成可能である。屈折率が変化する第3の層330は次のように実現することができる。図9.Aは、本発明による波長変換装置400の断面図、図9.Bは多層膜部分の拡大図である。
波長変換装置400は、振動装置450に固定された、形状任意の2つの透光性ガラス401及び402に挟持された多層膜480とから成る。波長変換装置400は2つの透光性ガラス401及び402に挟持された多層膜480を所定の周期で振動させることにより、実施例2の第3の層330を有する波長変換装置300を実現するものである。また、光の入射及び出射は、2つの透光性ガラス401及び402に挟持された多層膜480全体で行われる。
多層膜480は、図6の波長変換装置300とほぼ同様の構成である。第1の層410は、いずれも97nm厚の41層のシリカの層411−1〜411−41と40層のチタニアの層412−1〜412−40とを合計81層交互に形成する。第2の層420は、いずれも100nm厚の41層のシリカの層421−1〜421−41と40層のチタニアの層422−1〜422−40とを合計81層交互に形成する。第3の層430は、シリカの層411−41と421−1との間で厚さは1850nmのチタニアで形成され、紙面に垂直方向にストライプ状に形成された「空隙部分」を有する。当該空隙部分の屈折率は1である。
第3の層430はストライプ状に形成された幅2μmのチタニア部分と、幅2μmのチタニアの無い空隙部分とから成る。電磁波では波長程度以下の構造は識別できないことから、チタニア部分と空隙部分との境界は鮮明には識別されずに、それぞれの屈折率が徐々に変化する境界として認識される。
こうして、圧電素子などを用いた振動装置450により第3の層430を紙面内上下方向に2μm動かすと、屈折率を2.5(チタニア相当)から1(空隙相当)あるいはその逆に徐々に変化させることができる。これは実施例1の場合と原理として同じである。さらに、この変化の速度は、上記のシミュレーションより14.3nsであり、往復では28.6nsである。これを振動の周波数に直すと、1/(28.6ns)=35MHzとなる。この振動の周波数は、圧電セラミックなどを使えば、実現可能なレベルである。そこで、圧電セラミックなどを用いた振動装置により、考案した多層膜を振動させることで、波長変換装置を実現できる。
本発明では非線形光学材料を用いないことから、強度が低い入射波でも波長変換が可能である。たとえば、暗視カメラの機能をもつ膜、即ち赤外線を入射させて可視光に変換して出力する装置に応用できる。
10:第1の層(フォトニックバンドギャップを有する多重層)
20:第2の層(第1の層のフォトニックバンドギャップと異なるフォトニックバンドギャップを有する多重層)
30:第3の層(実効屈折率変化層)
11−1〜21、21−1〜21:アルミナの層
12−1〜20、22−1〜20:ケイ素の層
311−1〜41、321−1〜41:シリカの層
312−1〜40、322−1〜40:チタニアの層
20:第2の層(第1の層のフォトニックバンドギャップと異なるフォトニックバンドギャップを有する多重層)
30:第3の層(実効屈折率変化層)
11−1〜21、21−1〜21:アルミナの層
12−1〜20、22−1〜20:ケイ素の層
311−1〜41、321−1〜41:シリカの層
312−1〜40、322−1〜40:チタニアの層
Claims (5)
- フォトニックバンドギャップを有する第1の層と、
前記第1の層のフォトニックバンドギャップと一部重なり、且つより長い波長帯域に渡ってフォトニックバンドギャップを有する第2の層と、
前記第1の層と前記第2の層との間に形成された、実効屈折率を時間的に変化可能な第3の層とから成り、
前記第1の層に、そのフォトニックバンドギャップの長波長端の光を入射させながら、前記第3の層の実効屈折率を減少させることで前記第2の層からそのフォトニックバンドギャップの短波長端の光を出射させることを特徴とする波長変換装置。 - 前記第3の層は、
第1の屈折率から成る第1の構成材料が膜厚方向全体に充填された第1の部分と、
前記第1の屈折率より小さい第2の屈折率から成る第2の構成材料が膜厚方向全体に充填された第2の部分と、
それらの間に形成され、前記第1の部分から前記第2の部分にかけて、前記第1の構成材料の膜厚が減り且つ前記第2の構成材料の膜厚が増えるように形成された、構成材料膜厚比変化部分とから成り、
前記第1の層に入射された長波長端の光が、時間と共に前記第1の部分、前記構成材料膜厚比変化部分、前記第2の部分に入射するように前記第3の層を膜厚方向と垂直方向に移動又は回転させるようにしたことを特徴とする請求項1に記載の波長変換装置。 - フォトニックバンドギャップを有する第1の層と、
前記第1の層のフォトニックバンドギャップと一部重なり、且つより短い波長帯域に渡ってフォトニックバンドギャップを有する第2の層と、
前記第1の層と前記第2の層との間に形成された、実効屈折率を時間的に変化可能な第3の層とから成り、
前記第1の層に、そのフォトニックバンドギャップの短波長端の光を入射させながら、前記第3の層の実効屈折率を増加させることで前記第2の層からそのフォトニックバンドギャップの長波長端の光を出射させることを特徴とする波長変換装置。 - 前記第3の層は、
第1の屈折率から成る第1の構成材料が膜厚方向全体に充填された第1の部分と、
前記第1の屈折率より大きい第2の屈折率から成る第2の構成材料が膜厚方向全体に充填された第2の部分と、
それらの間に形成され、前記第1の部分から前記第2の部分にかけて、前記第1の構成材料の膜厚が減り且つ前記第2の構成材料の膜厚が増えるように形成された、構成材料膜厚比変化部分とから成り、
前記第1の層に入射された短波長端の光が、時間と共に前記第1の部分、前記構成材料膜厚比変化部分、前記第2の部分に入射するように前記第3の層を膜厚方向と垂直方向に移動又は回転させるようにしたことを特徴とする請求項3に記載の波長変換装置。 - 前記第1の層と前記第2の層とは、各々多重層からなるブラッグ反射層を形成していることを特徴とする請求項1乃至請求項4のいずれか1項に記載の波長変換装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006026001A JP2007206439A (ja) | 2006-02-02 | 2006-02-02 | 波長変換装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006026001A JP2007206439A (ja) | 2006-02-02 | 2006-02-02 | 波長変換装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007206439A true JP2007206439A (ja) | 2007-08-16 |
Family
ID=38485961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006026001A Pending JP2007206439A (ja) | 2006-02-02 | 2006-02-02 | 波長変換装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007206439A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009075360A1 (ja) | 2007-12-12 | 2009-06-18 | Osaka Prefecture University Public Corporation | 複合フォトニック構造素子、その複合フォトニック構造素子を用いた面発光レーザ、波長変換素子、その波長変換素子を備えたレーザ加工装置 |
-
2006
- 2006-02-02 JP JP2006026001A patent/JP2007206439A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009075360A1 (ja) | 2007-12-12 | 2009-06-18 | Osaka Prefecture University Public Corporation | 複合フォトニック構造素子、その複合フォトニック構造素子を用いた面発光レーザ、波長変換素子、その波長変換素子を備えたレーザ加工装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4612844B2 (ja) | 3次元周期構造及びそれを有する機能素子 | |
JP5188009B2 (ja) | 3次元周期構造及びそれを有する機能素子および発光素子 | |
KR102211661B1 (ko) | 방향-선택적 간섭계형 광필터 | |
JP5631917B2 (ja) | 光送受信システムおよび光受光ユニット | |
JP4689441B2 (ja) | 導波路及びそれを有するデバイス | |
JP2007206439A (ja) | 波長変換装置 | |
JP2004310049A (ja) | フォトニック結晶を用いた共振器および共振装置 | |
JP4689355B2 (ja) | 周期構造体及び周期構造体による光素子 | |
US7529454B2 (en) | Photonic crystal surface states | |
JP5235180B2 (ja) | 光学微小機械装置 | |
JP2008298846A (ja) | 光共振器、波長フィルタ及び光センサ | |
JP2007279455A (ja) | 光反射器及び光学装置 | |
JPWO2004081625A1 (ja) | フォトニック結晶を用いた導波路素子 | |
JP2005072652A (ja) | 弾性波伝搬体 | |
JPWO2006103850A1 (ja) | 導波路素子及びレーザ発生器 | |
JP5372682B2 (ja) | 表面効果3次元フォトニック結晶 | |
US7529456B2 (en) | Photonic crystal surface states | |
RU2703833C1 (ru) | Устройство для возбуждения далеко бегущей плазмонной моды плазмонного волновода | |
JP2015079132A (ja) | 多層膜ミラー | |
JP6846145B2 (ja) | フォトニック結晶垂直型光導波路デバイス | |
JP2012014068A (ja) | 光学素子 | |
WO2024069856A1 (ja) | レーザ装置、光回路システム、センシングシステム、レーザ光生成ユニット、及びメタマテリアル | |
CN110261965B (zh) | 一种可增强表面拉曼散射信号的光纤头 | |
KR102357157B1 (ko) | 음향 광학 상호 작용 구조체 | |
JP2006178209A (ja) | 導波路 |