CN110261965B - 一种可增强表面拉曼散射信号的光纤头 - Google Patents

一种可增强表面拉曼散射信号的光纤头 Download PDF

Info

Publication number
CN110261965B
CN110261965B CN201910589415.XA CN201910589415A CN110261965B CN 110261965 B CN110261965 B CN 110261965B CN 201910589415 A CN201910589415 A CN 201910589415A CN 110261965 B CN110261965 B CN 110261965B
Authority
CN
China
Prior art keywords
optical fiber
gap
head
raman scattering
aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910589415.XA
Other languages
English (en)
Other versions
CN110261965A (zh
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing feituoxinchuang Communication Technology Co.,Ltd.
Original Assignee
Beijing Feituoxinchuang Communication Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Feituoxinchuang Communication Technology Co ltd filed Critical Beijing Feituoxinchuang Communication Technology Co ltd
Priority to CN201910589415.XA priority Critical patent/CN110261965B/zh
Publication of CN110261965A publication Critical patent/CN110261965A/zh
Application granted granted Critical
Publication of CN110261965B publication Critical patent/CN110261965B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity
    • G01D5/35364Sensor working in reflection using backscattering to detect the measured quantity using inelastic backscattering to detect the measured quantity, e.g. using Brillouin or Raman backscattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/3537Optical fibre sensor using a particular arrangement of the optical fibre itself
    • G01D5/35374Particular layout of the fiber
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/324Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres using Raman scattering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements

Abstract

本发明涉及光纤技术领域,具体涉及一种可增强表面拉曼散射信号的光纤头,包括一光纤纤芯头,所述光纤纤芯头为柱状,所述光纤纤芯头由石英材料制成,所述光纤芯头上表面设有缝隙,所述缝隙内表面设有一层贵金属颗粒。通过在光纤纤芯头上表面设置缝隙,当入射光照射时,缝隙内表面上的贵金属颗粒与入射光之间发生耦合,在贵金属颗粒表面产生很强的局域电场,对于入射光产生很强的吸收和耗散,从而提高本申请实施例光纤头的表面拉曼散射信号。解决了现有技术中存在的光纤拉曼散射信号弱的技术问题,具有很好的推广实用价值。

Description

一种可增强表面拉曼散射信号的光纤头
技术领域
本发明涉及光纤技术领域,具体涉及一种可增强表面拉曼散射信号的光纤头。
背景技术
光纤是光导纤维的简写,是一种由玻璃或塑料制成的纤维,可作为光传导工具。传输原理是“光的全反射”。拉曼效应(Raman scattering),也称拉曼散射,指光波在被散射后频率发生变化的现象。
当光照射到物质上时会发生散射,散射光中除了与激发光波长相同的弹性成分(瑞利散射)外,还有比激发光的波长长的和短的成分,后一现象统称为拉曼效应。由分子振动、固体中的光学声子等元激发与激发光相互作用产生的非弹性散射称为拉曼散射,一般把瑞利散射和拉曼散射合起来所形成的光谱称为拉曼光谱。由于拉曼散射非常弱,所以直到1928年才被印度物理学家拉曼等人发现。
而光纤拉曼散射效应随着1881年英国科学家瑞利(Rayleigh),提出光的散射至由介质的密度起伏造成的,Rayleigh散射光的强度与光波波长的四次方成反比。研究发现拉曼散射光谱的频移与分子的振动,转动运动有关,在量子理论基础上,建立拉曼散射光谱的理论。另一方面,拉曼散射光谱也成为研究分子结构及其运动特性的重要工具。但目前光纤头的表面拉曼散射效应都很弱,很难增强。
发明内容
为了解决现有技术中存在的上述问题,本发明提供了一种可增强表面拉曼散射信号的光纤头。本发明要解决的技术问题通过以下技术方案实现:
一种可增强表面拉曼散射信号的光纤头,包括:一光纤纤芯头,所述光纤纤芯头为柱状;所述光纤纤芯头由石英材料制成;所述光纤芯头上表面设有缝隙;所述缝隙内表面设有一层贵金属颗粒。
进一步地,所述缝隙为矩形或者楔形。
进一步地,所述缝隙包括第一缝隙和第二缝隙。
进一步地,所述第一缝隙与所述第二缝隙形状相同或者不同。
进一步地,所述缝隙深度为1~10μm;所述缝隙宽度100~1000nm。
进一步地,所述第一缝隙与所述第二缝隙平行或者垂直相交于所述光纤纤芯头的端面。
进一步地,所述第一缝隙与所述第二缝隙相交处设有一锥形孔。
进一步地,所述缝隙内部设有一纳米线;所述纳米线由热膨胀材料制成。
进一步地,所述缝隙内表面粗糙。
与现有技术相比,本发明的有益效果:
1、本申请实施例提供了一种可增强表面拉曼散射信号的光纤头,通过在光纤纤芯头上表面设置缝隙,当入射光照射时,缝隙内表面上的贵金属颗粒与入射光之间发生耦合,在贵金属颗粒表面产生很强的局域电场,对于入射光产生很强的吸收和耗散,从而提高本申请实施例光纤头的表面拉曼散射信号。
2、本申请实施例提供了一种可增强表面拉曼散射信号的光纤头,缝隙内填充有热膨胀材料制成的纳米线,当环境温度改变,纳米线发生膨胀或者收缩,纳米线的体积发生改变,同时引起缝隙宽度的改变,从而改变贵金属颗粒处的激发电场位置与强度,改变入射光与本申请实施例探测结构之间的耦合模式,产生不同的拉曼信号,从而达到通过外界环境调节拉曼信号的目的。同理,可通过所测得的拉曼信号实现对环境或者设备温度的探测。
附图说明
图1是本发明可增强表面拉曼散射信号的光纤头的结构示意图一;
图2是本发明可增强表面拉曼散射信号的光纤头的结构示意图二。
图中:1、光纤纤芯头;2、缝隙;3、贵金属颗粒。
具体实施方式
下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。
实施例1:
为解决目前光纤头的表面拉曼散射信号无法增强的问题,本实施例提供了一种可增强表面拉曼散射信号的光纤头,如图1和图2所示,包括:一光纤纤芯头1,所述光纤纤芯头1为柱状,所述光纤纤芯头1由石英材料制成,所述光纤芯头上表面设有缝隙2,所述缝隙2内表面设有一层贵金属颗粒3。
具体而言:
本实施例提供了一种可增强表面拉曼散射信号的光纤头,通过在光纤纤芯头1上表面设置缝隙2,通过缝隙2内表面上的贵金属颗粒3与入射光之间的耦合,当入射光照射时,将入射光引导至缝隙2内部,缝隙内表面上的贵金属颗粒3与入射光之间发生耦合,在贵金属颗粒3表面产生很强的局域电场,对于入射光产生很强的吸收和耗散,,从而提高本实施例光纤头的表面拉曼散射信号,达到增强光纤头表面拉曼散射信号的目的。
特别的,所述缝隙2为矩形或者楔形,楔形头部开口宽,底部窄,力学性能更稳定。
如图1与图2所示,所述缝隙2包括第一缝隙和第二缝隙,所述第一缝隙与所述第二缝隙形状相同或者不同,所述第一缝隙与所述第二缝隙平行或者垂直相交于所述光纤纤芯头1的端面,所述缝隙2深度为1~10μm,所述缝隙2宽度100~1000nm。当所述第一缝隙与所述第二缝隙垂直时,光纤内的能量更容易一种在上述两缝隙的交叉处,有利于充分利用光纤中的能量,激发贵金属颗粒3中的表面等离激元。当所述第一缝隙与所述第二缝隙平行时,两缝隙间的夹层可以很薄,以增强两缝隙中贵金属颗粒3上的表面等离激元耦合,进而增强贵金属颗粒3上的局域电场,进一步地增强拉曼信号的强度。
多条缝隙2可以增加入射光与贵金属颗粒3之间的耦合,增加电场的局域面积,从而达到增强光纤头表面拉曼散射信号的目的。
所述第一缝隙与所述第二缝隙相交处设有一锥形孔。
具体的,光纤纤芯头1头部为圆锥的底,这样一来,将光纤纤芯头1中部的能量分布到光纤纤芯头1上缝隙2的两侧,增强两侧缝隙2上贵金属颗粒3的激发电场,从而产生更强的表面拉曼散射信号。
所述缝隙2内部设有一纳米线;所述纳米线由热膨胀材料制成。
本实施例一种可增强表面拉曼散射信号的光纤头,缝隙2内填充有热膨胀材料制成的纳米线,当环境温度改变,纳米线发生膨胀或者收缩,改变缝隙2宽度,从而改变贵金属颗粒3处的激发电场,改变入射光与本实施例探测结构之间的耦合模式,产生不同的拉曼散射信号,从而达到通过外界环境温度调节拉曼信号的目的。
同理,可通过反向测量,利用环境温度与拉曼信号的对应关系实现对探测结构所处环境或者设备温度的探测。
所述缝隙2内表面粗糙。缝隙2内表面粗糙,以便于在贵金属表面耦合处更多的能量,用以激发贵金属颗粒3,来产生更强的局域电场。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (7)

1.一种可增强表面拉曼散射信号的光纤头,其特征在于,包括:一光纤纤芯头,所述光纤纤芯头为柱状;所述光纤纤芯头由石英材料制成;
所述光纤纤芯头上表面设有缝隙,所述缝隙为矩形或者楔形,且所述缝隙贯穿光纤纤芯头的侧面,通过缝隙使得光纤纤芯头具有向外扩展的能力;所述缝隙内表面设有一层贵金属颗粒;
其中,所述缝隙内部设有一纳米线;所述纳米线由热膨胀材料制成。
2.根据权利要求1所述的可增强表面拉曼散射信号的光纤头,其特征在于,所述缝隙包括第一缝隙和第二缝隙。
3.根据权利要求2所述的可增强表面拉曼散射信号的光纤头,其特征在于,所述第一缝隙与所述第二缝隙形状相同或者不同。
4.根据权利要求1所述的可增强表面拉曼散射信号的光纤头,其特征在于,所述缝隙深度为1~10μm;所述缝隙宽度100~1000nm。
5.根据权利要求2所述的可增强表面拉曼散射信号的光纤头,其特征在于,所述第一缝隙与所述第二缝隙平行或者垂直相交于所述光纤纤芯头的端面。
6.根据权利要求5所述的可增强表面拉曼散射信号的光纤头,其特征在于,所述第一缝隙与所述第二缝隙相交处设有一锥形孔。
7.根据权利要求1所述的可增强表面拉曼散射信号的光纤头,其特征在于,所述缝隙内表面粗糙。
CN201910589415.XA 2019-07-02 2019-07-02 一种可增强表面拉曼散射信号的光纤头 Active CN110261965B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910589415.XA CN110261965B (zh) 2019-07-02 2019-07-02 一种可增强表面拉曼散射信号的光纤头

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910589415.XA CN110261965B (zh) 2019-07-02 2019-07-02 一种可增强表面拉曼散射信号的光纤头

Publications (2)

Publication Number Publication Date
CN110261965A CN110261965A (zh) 2019-09-20
CN110261965B true CN110261965B (zh) 2021-06-08

Family

ID=67923775

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910589415.XA Active CN110261965B (zh) 2019-07-02 2019-07-02 一种可增强表面拉曼散射信号的光纤头

Country Status (1)

Country Link
CN (1) CN110261965B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008028521A1 (en) * 2006-09-07 2008-03-13 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. A probe, a raman spectrometer and a method of manufacturing a probe
CN101713738A (zh) * 2009-12-22 2010-05-26 上海大学 表面增强拉曼散射光纤探针
CN102944543A (zh) * 2012-11-05 2013-02-27 中物院成都科学技术发展中心 基于表面增强拉曼检测超痕量样品的方法和装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7713849B2 (en) * 2004-08-20 2010-05-11 Illuminex Corporation Metallic nanowire arrays and methods for making and using same
WO2009140608A1 (en) * 2008-05-16 2009-11-19 Prescient Medical, Inc. High collection efficiency fiber optic probes
JP2012500865A (ja) * 2008-08-21 2012-01-12 イノーバ ダイナミクス インコーポレイテッド 増強された表面、コーティング、および関連方法
CN101601607A (zh) * 2009-05-22 2009-12-16 东南大学 一种对肿瘤细胞同时进行磁感应加热、成像及测温的方法
CN103854722A (zh) * 2012-12-06 2014-06-11 国家电网公司 混模测温通信相导线及测温通信系统
CN205668940U (zh) * 2016-05-11 2016-11-02 河南城建学院 具有增强拉曼信号的纳米银衬底
CN106556589A (zh) * 2017-01-12 2017-04-05 重庆大学 高重复性表面增强拉曼散射基底的制备方法及其基底
CN208765847U (zh) * 2018-10-29 2019-04-19 中山科立特光电科技有限公司 一种增强光吸收的光探测器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008028521A1 (en) * 2006-09-07 2008-03-13 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. A probe, a raman spectrometer and a method of manufacturing a probe
CN101713738A (zh) * 2009-12-22 2010-05-26 上海大学 表面增强拉曼散射光纤探针
CN102944543A (zh) * 2012-11-05 2013-02-27 中物院成都科学技术发展中心 基于表面增强拉曼检测超痕量样品的方法和装置

Also Published As

Publication number Publication date
CN110261965A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
Gramotnev et al. Nanofocusing of electromagnetic radiation
Bozhevolnyi et al. Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics
Koehler et al. Resolving the mystery of milliwatt-threshold opto-mechanical self-oscillation in dual-nanoweb fiber
Jian et al. Resonant optical tunneling effect: recent progress in modeling and applications
WO2018010701A1 (zh) 一种光纤传感器及其声波探测应用方法
CN107064100A (zh) 基于色散时变的光纤拉曼光谱仪
CN110261965B (zh) 一种可增强表面拉曼散射信号的光纤头
JPS62502818A (ja) コヒ−レント放射発生方法および装置
Peier et al. Imaging of THz waves in 2D photonic crystal structures embedded in a slab waveguide
Shao et al. Ultrasonic sensitivity-improved fiber-optic Fabry–Perot interferometer using a beam collimator and its application for ultrasonic imaging of seismic physical models
Rivera–Pérez et al. An approach to the measurement of the nonlinear refractive index of very short lengths of optical fibers
CN206270563U (zh) 一种高灵敏度金属基带铠装振动传感光缆
Tao et al. Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy
Bingi et al. Plasmonic nanopillar coupled two-dimensional random medium for broadband light trapping and harvesting
CN210604364U (zh) 一种探测光子晶体光纤及光纤传感器
Desiatov et al. Nanoscale mode selector in silicon waveguide for on chip nanofocusing applications
CN110286443B (zh) 一种氧化石墨烯光纤头
JP2016180652A (ja) 光センサプローブ
Stenmark et al. Photoemission electron microscopy to characterize slow light in a photonic crystal line defect
Simone Strong plasmon-mechanical coupling through standing acoustic waves and antenna enhancement, toward mass transduction
Chen et al. Nanofocusing of light energy by ridged metal heterostructures
Zhang et al. A window-shaped resonator nanostructure based on an MIM waveguide for refractive index sensing
Chen et al. Double plasmon induced transparency in disk and nanobars coupled nanosystems and its application to plasmonic resonance sensing
Abbasi Plasmonic refractive index sensor based on resonant system with two plasmonic waveguides, two rings and two cavities
CN110108645B (zh) 一种可测量多通道分析物的c型光子晶体平面阵列

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210513

Address after: 101100 2800, 2nd floor, building 1, No.4, Matou Village West, Tongzhou District, Beijing

Applicant after: Beijing feituoxinchuang Communication Technology Co.,Ltd.

Address before: 528458 Room 501, 4th floor, 118 Wuguishan commercial street, Zhongshan City, Guangdong Province

Applicant before: ZHONGSHAN KELITE OPTOELECTRONICS TECHNOLOGY Co.,Ltd.

GR01 Patent grant
GR01 Patent grant