JP2007175802A - 光学部品またはその金型の製造方法及びその金型 - Google Patents
光学部品またはその金型の製造方法及びその金型 Download PDFInfo
- Publication number
- JP2007175802A JP2007175802A JP2005375470A JP2005375470A JP2007175802A JP 2007175802 A JP2007175802 A JP 2007175802A JP 2005375470 A JP2005375470 A JP 2005375470A JP 2005375470 A JP2005375470 A JP 2005375470A JP 2007175802 A JP2007175802 A JP 2007175802A
- Authority
- JP
- Japan
- Prior art keywords
- tool
- cutting
- workpiece
- mold
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Optical Elements Other Than Lenses (AREA)
- Turning (AREA)
Abstract
【課題】被加工物の加工面を表面粗さ10nm程度以内の自由曲面に加工することができるフライカット加工機の製造条件を含んだ光学部品またはその金型の製造方法及びその金型を提供すること。
【解決手段】本発明は,工具を,その刃先を外側に向けて軸回りに回転させ,刃先が描く円の1箇所で被工作物の加工対象面を切削しつつ,工具と被工作物とを相対的に所定の送り速度で移動させて1ラインの切削加工を行い,次いで工具と被工作物とを相対的にピッチ方向にピックフィード量だけ移動させて次の1ラインの切削加工を行うことによる製造方法であって,工具回転数(S):10000〜50000回転/分,送り速度(F):300〜2000mm/分,工具の刃先回転半径(D):5〜15mm,ピックフィード量(f):0.01〜0.04mm,工具の刃先ノーズ径(r):5〜20mmの範囲内の条件で切削加工を行う製造方法である。
【選択図】図1
【解決手段】本発明は,工具を,その刃先を外側に向けて軸回りに回転させ,刃先が描く円の1箇所で被工作物の加工対象面を切削しつつ,工具と被工作物とを相対的に所定の送り速度で移動させて1ラインの切削加工を行い,次いで工具と被工作物とを相対的にピッチ方向にピックフィード量だけ移動させて次の1ラインの切削加工を行うことによる製造方法であって,工具回転数(S):10000〜50000回転/分,送り速度(F):300〜2000mm/分,工具の刃先回転半径(D):5〜15mm,ピックフィード量(f):0.01〜0.04mm,工具の刃先ノーズ径(r):5〜20mmの範囲内の条件で切削加工を行う製造方法である。
【選択図】図1
Description
本発明は,自由曲面を有する光学部品の成形用金型を製造するための金型コア製造方法及びその製造方法によって製造された金型に関する。例えば,プロジェクションTV用の自由曲面ミラーの成形用金型コアの製造方法及びその金型に適したものである。
近年,プロジェクションTV用の投影ミラー等では,その鏡面に自由曲面を有するものが使われるようになってきている。特に,リアプロジェクション(背面投影)テレビ等では,光学系をできるだけ薄くする必要性から,自由曲面ミラーが重要となっている。このような自由曲面を有する光学部品を成型するためには,まずその自由曲面を写した金型を製造することが必要となる。一般に,回転軸を有しない自由曲面を切削加工する場合には,図1に示すようなフライカット加工機が用いられる(例えば,特許文献1,特許文献2参照。)。
このようなフライカット加工機1は,定盤11にX軸方向スライドテーブル12とZ軸方向スライドテーブル13とが重ねて備え付けられている。また,Y軸方向スライドテーブル14には工具スピンドル15が取り付けられている。工具スピンドル15の先端部には工具16が取り付けられている。各軸方向スライドテーブル12,13,14は,それぞれの軸方向へ移動制御され,工具スピンドル15は工具16をその主軸回りに回転させるように回転制御される。
このフライカット加工機1によれば,Z軸方向スライドテーブル13の上に載置されたワーク20は,X−Z平面内において2軸制御される。また,工具16は,所定の回転速度で回転されるとともに,Y軸方向へ1軸制御される。これにより,工具16とワーク20とを相対的に3軸制御しつつ切削加工することができる。またこの他に,ワークのテーブルを1軸制御とし,工具のテーブルを2軸制御とした3軸制御の加工機もある。
このフライカット加工機1による切削では一般に,例えば特許文献1の図4に示されているように,工具16の回転円周方向に工具16とワーク20とを相対的に移動させて1ラインの切削を行う。次に,工具16の回転軸方向に工具16とワーク20とを相対的に移動させて,次のラインの切削を行う。そのため,フライカット切削加工による切削面には,例えば特許文献1の図8に示されているようなツールマークが残る。
特開2000−94270号公報
特開2000−298509号公報
近年ますます小型で高精度の光学部品が要求されることから,加工精度のさらなる向上が望まれている。特に,プロジェクションTV用の投影ミラー等では,像が拡大されることから,わずかなツールマークであってもフレアが発生する原因となるおそれがある。しかしながら,前記した従来の金型コア製造方法では,ワーク切削面の表面粗さ0.07μm以内程度の成形精度での加工には十分であったが,切削長に比例して表面粗さが増加するため,例えば表面粗さ10nm程度の切削加工は困難であるという問題点があった。
本発明は,前記した従来の技術が有する問題点を解決するためになされたものである。すなわちその課題とするところは,被加工物の加工面を表面粗さ10nm程度以内の自由曲面に加工することができるフライカット加工機の製造条件を含んだ光学部品またはその金型の製造方法及びその金型を提供することにある。
この課題の解決を目的としてなされた本発明の光学部品またはその金型の製造方法は,工具を,その刃先を外側に向けて軸回りに回転させ,刃先が描く円の1箇所で被工作物の加工対象面を切削しつつ,工具と被工作物とを相対的にライン方向に所定の送り速度で移動させて1ラインの切削加工を行い,次いで工具と被工作物とを相対的にライン方向と交差するピッチ方向にピックフィード量だけ移動させて次の1ラインの切削加工を行うことによる光学部品またはその金型の製造方法であって,
工具回転数(S):10000〜50000回転/分
送り速度(F):300〜2000mm/分
工具の刃先回転半径(D):5〜15mm
ピックフィード量(f):0.01〜0.04mm
工具の刃先ノーズ径(r):5〜20mm
の範囲内の条件で切削加工を行うものである。
工具回転数(S):10000〜50000回転/分
送り速度(F):300〜2000mm/分
工具の刃先回転半径(D):5〜15mm
ピックフィード量(f):0.01〜0.04mm
工具の刃先ノーズ径(r):5〜20mm
の範囲内の条件で切削加工を行うものである。
本発明の製造方法によれば,工具回転数(S)を大きくすることにより,送り速度(F)をも大きくでき,それだけ滑らかな曲面を切削することが可能になる。そして,被加工物の加工面を表面粗さ10nm程度以内の自由曲面に加工することができる。ここで,本発明での方法としては,上記条件での切削による金型の製造方法,上記条件での切削による光学部品の直接製造,上記条件での切削による金型を用いた光学部品の製造を包含する。
さらに本発明では,(F/S)2/8D,f2/8rがともに10nmを超えない条件で切削加工を行うことが望ましい。これらは,送り方向とピックフィード方向との理論上の表面粗さに相当するものであり,このように加工条件を設定することにより,その加工面を表面粗さ10nm程度以内の自由曲面に加工することができる。
また,本発明の光学部品またはその金型の製造方法は,工具を,その刃先を外側に向けて軸回りに回転させ,刃先が描く円の1箇所で被工作物の加工対象面を切削しつつ,工具と被工作物とを相対的にライン方向に所定の送り速度で移動させて1ラインの切削加工を行い,次いで工具と被工作物とを相対的にライン方向と交差するピッチ方向にピックフィード量だけ移動させて次の1ラインの切削加工を行い,その後に研磨工程を経ることによる光学部品またはその金型の製造方法であって,
工具回転数(S):10000〜50000回転/分
送り速度(F):300〜2000mm/分
工具の刃先回転半径(D):5〜15mm
ピックフィード量(f):0.04〜0.08mm
工具の刃先ノーズ径(r):5〜20mm
の範囲内で,かつ,
(F/S)2/8D
f2/8r
がともに40nmを超えない条件で切削加工を行い,研磨工程により加工面の表面粗さRyを10nm以内とするものであってもよい。このようにしても,最終的には表面粗さRyが10nm以内の自由曲面を有する金型を製造できる。
工具回転数(S):10000〜50000回転/分
送り速度(F):300〜2000mm/分
工具の刃先回転半径(D):5〜15mm
ピックフィード量(f):0.04〜0.08mm
工具の刃先ノーズ径(r):5〜20mm
の範囲内で,かつ,
(F/S)2/8D
f2/8r
がともに40nmを超えない条件で切削加工を行い,研磨工程により加工面の表面粗さRyを10nm以内とするものであってもよい。このようにしても,最終的には表面粗さRyが10nm以内の自由曲面を有する金型を製造できる。
また,本発明は,光学部品を射出成形により製造する金型であって,光学部品の光学面を転写する部位が,表面粗さRyが10nm以下である3次元自由曲面である金型にも及ぶ。
本発明の光学部品またはその金型の製造方法及びその金型によれば,被加工物の加工面を表面粗さ10nm程度以内の自由曲面に加工することができる。
以下,本発明を具体化した最良の形態について,添付図面を参照しつつ詳細に説明する。本形態は,自由曲面を有する光学部品の成形用金型の製造方法に本発明を適用したものである。
本形態で使用するフライカット加工機1は,図1に示すように,定盤11には,X軸方向スライドテーブル12とZ軸方向スライドテーブル13とが重ねて備え付けられている。また,Y軸方向スライドテーブル14には工具スピンドル15が取り付けられている。工具スピンドル15の先端部には工具16が取り付けられている。各軸方向スライドテーブル12,13,14は,それぞれの軸方向へ移動制御され,工具スピンドル15は工具16をその主軸回りに回転させるように回転制御される。このフライカット加工機1の基本的な構成は従来のものと同様である。
このフライカット加工機1によれば,Z軸方向スライドテーブル13の上に載置されたワーク20は,X軸方向スライドテーブル12とZ軸方向スライドテーブル13とによってX−Z平面内における所定の位置に配置される。あるいは,ワーク20が所定の速度で所定の方向へ移動するように制御することもできる。また,工具16は,工具スピンドル15によって所定の回転速度で回転されるとともに,Y軸方向スライドテーブル14によってY軸方向へ位置制御される。
本形態では,図1に示すように,工具16を回転させながら,工具16とワーク20とを相対的に近づけて,ワーク20を切削する。この図ではワーク20の左奥側の面が切削面となっている。そして,工具16に切削される状態のまま,ワーク20をX−Z面内で移動させる。例えば,図に矢印で示した方向に工具16を回転させ,X軸方向スライドテーブル12をおよそ図中右奥から左手前方向へ移動させつつ1ラインの切削を行う。このとき,必要とされる切削面形状に合わせて,同時にZ軸方向スライドテーブル13も制御される。
1ラインの切削が終了したら,一旦工具16とワーク20を離し,工具16をY軸方向へ所定量移動させるとともに,ワーク20を右奥位置に戻す。そして,再び工具16とワーク20とを接触させて次の1ラインの切削を行う。この繰り返しにより所望の形状の加工面を得る。以下では,切削時のX−Z面内でのワーク20の移動方向(主としてX軸方向)を送り方向,1ラインごとの工具16のY軸方向の移動方向をピックフィード方向と呼ぶ。また,ピックフィード方向の1回の移動量をピックフィード量と呼ぶ。これらのスライドテーブル12,13,14としては,その位置制御の精度が0.01μm以下のものを使用する。
工具16は,単結晶ダイヤモンド工具である。工具16の刃先部は,図2に示すように,円弧形状に形成されている。この円弧形状の半径を工具ノーズ半径と呼ぶ。この図ではかなり大きく示しているが,実際にはその材料による制限から,工具16としては,あまり大きなものを使用することはできない。大きい工具16を得ることは,コストが大きくなるのみでなく,製造上非常に難しいからである。
ここで,図3に示した各パラメータの工具16の回転数Sと回転半径D,工具16とワーク20との送り方向への相対的な移動速度(送り速度)F,工具16の工具ノーズ半径rと,ピックフィード量fを用いて,理論上の表面粗さを表すと次のようになる。ここで,表面粗さA1は切削ラインに沿った送り方向の表面粗さであり,表面粗さA2はピックフィード方向への表面粗さである。
A1=(F/S)2/8D (送り方向)
A2=f2/8r (ピックフィード方向)
A1=(F/S)2/8D (送り方向)
A2=f2/8r (ピックフィード方向)
「第1の方法」
本形態の第1の方法では,表面粗さA1,A2がともに10nm以内となるように,各パラメータの値を以下のように設定する。まず,工具16の工具ノーズ半径rには上記のように制限があり,ここでは,r=5〜20mmの範囲内とする。さらに,他の条件は以下の範囲内に設定される。
工具16の回転半径D=5〜15mm
工具16の回転数S=10000〜50000rpm
ワーク20の送り速度F=300〜2000mm/min
ピックフィード量f=0.01〜0.04mm
本形態の第1の方法では,表面粗さA1,A2がともに10nm以内となるように,各パラメータの値を以下のように設定する。まず,工具16の工具ノーズ半径rには上記のように制限があり,ここでは,r=5〜20mmの範囲内とする。さらに,他の条件は以下の範囲内に設定される。
工具16の回転半径D=5〜15mm
工具16の回転数S=10000〜50000rpm
ワーク20の送り速度F=300〜2000mm/min
ピックフィード量f=0.01〜0.04mm
このように各パラメータを設定すると,最大の範囲での理論上の表面粗さA1,A2は以下の範囲となる。
A1=0.3〜1000nm
A2=0.63〜40nm
なお,これらのパラメータは互いに関連しているので,総合的に上記のA1,A2がいずれも10nm以内という条件を満たすような組み合わせを選択することが必要である。
A1=0.3〜1000nm
A2=0.63〜40nm
なお,これらのパラメータは互いに関連しているので,総合的に上記のA1,A2がいずれも10nm以内という条件を満たすような組み合わせを選択することが必要である。
例えば,工具16の回転半径Dが5mm以下であると,表面粗さの条件を満たすためにはDに対応して送り速度Fを遅くする必要があり,加工時間が増加するため好ましくない。一方,工具回転半径Dが15mm以上であると,回転による機械的な振動が増加しがちであり,加工精度が低下するため,加工後のワーク20の表面粗さが理論上の表面粗さに比較して悪化する。このため,回転半径Dは,D=5〜15mmの範囲内とすることが望ましい。
また,工具16の回転数Sは,工具スピンドル15の回転制御によって制御される。そして,この工具回転数Sが10000rpm以下であると,Dの場合と同様に,Sに対応して送り速度Fを遅くする必要が生じ加工時間が増加するため好ましくない。また,工具回転数Sが50000rpm以上であると,工具16の回転軸の振れによる機械振動が発生しがちであり,加工精度が低下するため,加工後のワーク20の表面粗さが理論上の表面粗さに比較して悪化する。このため,回転数Sは,S=10000〜50000rpmの範囲内とすることが望ましい。
また,ピックフィード量fが0.01mm以下であるとライン数が多くなりすぎ,加工時間が増加するので生産性が低下する。また,ピックフィード量fが0.04mm以上であると,理論粗さを10nm以内とするためには工具ノーズrを20mm以上とする必要があり,実際的ではない。このため,ピックフィード量fは,0.01mm〜0.04mmの範囲内とすることが望ましい。
本発明者は,以下のような各条件の組み合わせでフライカット加工機1を使用し,表面粗さ10nm以下の切削加工が実現できることを確認した。例えば,工具回転数S=20000rpm,送り速度F=600mm,工具回転半径D=11mm,ピックフィード量f=0.02mm,工具ノーズr=10mmとすれば,理論上の表面粗さは,A1=10nm,A2=5nmとなる。この条件によって製造された金型の加工面は,表面粗さ10nm以内となる。
以上詳細に説明したように本形態のフライカット加工機1による第1の加工方法によれば,フライカット加工機1が3軸制御可能であるので,自由曲面の切削が可能である。さらに,理論上の表面粗さA1,A2がいずれも10nm以内となるように,各パラメータが設定されているので,ワーク20の加工面をその表面粗さが10nm以内となるように加工できる。従って,被加工物の加工面を表面粗さ10nm程度以内の自由曲面に加工することができるフライカット加工機の製造条件を含んだ金型の製造方法となっている。
「第2の方法」
本形態の第2の方法では,表面粗さA1,A2が40nm程度となるように各パラメータの値を設定してフライカット加工し,その後,研磨を行う。これにより,ツールマークの凸部のみを削り取り,最終的に表面粗さが10nm以内となるようにする。研磨方法は一般的なものでよい。
本形態の第2の方法では,表面粗さA1,A2が40nm程度となるように各パラメータの値を設定してフライカット加工し,その後,研磨を行う。これにより,ツールマークの凸部のみを削り取り,最終的に表面粗さが10nm以内となるようにする。研磨方法は一般的なものでよい。
本方法では,表面粗さA1,A2が40nm程度となるように,各パラメータの値を以下のように設定する。
工具16の回転半径D=5〜15mm
工具16の回転数S=10000〜50000rpm
ワーク20の送り速度F=300〜2000mm/min
ピックフィード量f=0.04〜0.08mm
工具16の工具ノーズ半径r=5〜20mm
工具16の回転半径D=5〜15mm
工具16の回転数S=10000〜50000rpm
ワーク20の送り速度F=300〜2000mm/min
ピックフィード量f=0.04〜0.08mm
工具16の工具ノーズ半径r=5〜20mm
この方法では,理論上の表面粗さが40nm以内となるように各パラメータを設定する。上記の最大の範囲での理論上の表面粗さA1,A2は以下の範囲となる。
A1=0.3〜1000nm
A2=10〜160nm
そこで例えば,工具回転数S=20000rpm,送り速度F=1000mm,工具回転半径D=11mm,ピックフィード量f=0.05mm,工具ノーズr=10mmとすると,理論上の表面粗さは,A1=28nm,A2=31nmとなる。
A1=0.3〜1000nm
A2=10〜160nm
そこで例えば,工具回転数S=20000rpm,送り速度F=1000mm,工具回転半径D=11mm,ピックフィード量f=0.05mm,工具ノーズr=10mmとすると,理論上の表面粗さは,A1=28nm,A2=31nmとなる。
このように切削した後,研磨工程を行う。この研磨工程によって,その加工面の表面粗さが10nm以内となった金型を得ることができる。
以上詳細に説明したように本形態のフライカット加工機1による第2の加工方法によれば,フライカット加工機1が3軸制御可能であるので,自由曲面の切削が可能である。さらに,理論上の表面粗さA1,A2がいずれも40nm以内となるように,各パラメータが設定されているので,ワーク20の加工面をその表面粗さが40nm以内となるように加工できる。さらにその後,研磨工程を加えているので,研磨後の加工面の表面粗さを10nm以内とすることができる。従って,被加工物の加工面を表面粗さ10nm程度以内の自由曲面に加工することができるフライカット加工機の製造条件を含んだ金型の製造方法となっている。
なお,本形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。
例えば,上記の各方法によって製造された金型のうち,表面粗さ10nm以内とする部位は,成形する光学素子の光学面を転写する面のみであっても良い。ミラーであれば,蒸着面となる面のみでよい。他の部位については,従来と同様の精度でもかまわない。また,光学部品としてはレンズでも良い。また,上記の形態では金型の製造方法としたが,同様の製造条件を用いて光学部品材料を直接切削することにより光学部品を製造する製造方法にも適用可能である。
例えば,上記の各方法によって製造された金型のうち,表面粗さ10nm以内とする部位は,成形する光学素子の光学面を転写する面のみであっても良い。ミラーであれば,蒸着面となる面のみでよい。他の部位については,従来と同様の精度でもかまわない。また,光学部品としてはレンズでも良い。また,上記の形態では金型の製造方法としたが,同様の製造条件を用いて光学部品材料を直接切削することにより光学部品を製造する製造方法にも適用可能である。
1 フライカット加工機
S 工具回転数
F 送り速度
D 工具の回転半径
f ピックフィード量
r 工具ノーズ半径
S 工具回転数
F 送り速度
D 工具の回転半径
f ピックフィード量
r 工具ノーズ半径
Claims (4)
- 工具を,その刃先を外側に向けて軸回りに回転させ,刃先が描く円の1箇所で被工作物の加工対象面を切削しつつ,工具と被工作物とを相対的にライン方向に所定の送り速度で移動させて1ラインの切削加工を行い,次いで工具と被工作物とを相対的にライン方向と交差するピッチ方向にピックフィード量だけ移動させて次の1ラインの切削加工を行うことによる光学部品またはその金型の製造方法において,
工具回転数(S):10000〜50000回転/分
送り速度(F):300〜2000mm/分
工具の刃先回転半径(D):5〜15mm
ピックフィード量(f):0.01〜0.04mm
工具の刃先ノーズ径(r):5〜20mm
の範囲内の条件で切削加工を行うことを特徴とする光学部品またはその金型の製造方法。 - 請求項1に記載の光学部品またはその金型の製造方法において,
(F/S)2/8D
f2/8r
がともに10nmを超えない条件で切削加工を行うことを特徴とする光学部品またはその金型の製造方法。 - 工具を,その刃先を外側に向けて軸回りに回転させ,刃先が描く円の1箇所で被工作物の加工対象面を切削しつつ,工具と被工作物とを相対的にライン方向に所定の送り速度で移動させて1ラインの切削加工を行い,次いで工具と被工作物とを相対的にライン方向と交差するピッチ方向にピックフィード量だけ移動させて次の1ラインの切削加工を行い,その後に研磨工程を経ることによる光学部品またはその金型の製造方法において,
工具回転数(S):10000〜50000回転/分
送り速度(F):300〜2000mm/分
工具の刃先回転半径(D):5〜15mm
ピックフィード量(f):0.04〜0.08mm
工具の刃先ノーズ径(r):5〜20mm
の範囲内で,かつ,
(F/S)2/8D
f2/8r
がともに40nmを超えない条件で切削加工を行い,
研磨工程により加工面の表面粗さRyを10nm以内とすることを特徴とする光学部品またはその金型の製造方法。 - 光学部品を射出成形により製造する金型において,
光学部品の光学面を転写する部位が,表面粗さRyが10nm以下である3次元自由曲面であることを特徴とする金型。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005375470A JP2007175802A (ja) | 2005-12-27 | 2005-12-27 | 光学部品またはその金型の製造方法及びその金型 |
US11/645,420 US7793403B2 (en) | 2005-12-27 | 2006-12-26 | Manufacturing method of optical component or molding die therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005375470A JP2007175802A (ja) | 2005-12-27 | 2005-12-27 | 光学部品またはその金型の製造方法及びその金型 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007175802A true JP2007175802A (ja) | 2007-07-12 |
Family
ID=38301499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005375470A Withdrawn JP2007175802A (ja) | 2005-12-27 | 2005-12-27 | 光学部品またはその金型の製造方法及びその金型 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007175802A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012203209A (ja) * | 2011-03-25 | 2012-10-22 | Sumitomo Chemical Co Ltd | 端面加工偏光板の製造方法 |
CN102744424A (zh) * | 2012-07-30 | 2012-10-24 | 中国人民解放军国防科学技术大学 | 可用于薄板类光学零件的单点金刚石补偿式切削加工方法 |
CN106181688A (zh) * | 2016-07-14 | 2016-12-07 | 常州湖南大学机械装备研究院 | 一种菲涅尔透镜模具的磨削方法 |
-
2005
- 2005-12-27 JP JP2005375470A patent/JP2007175802A/ja not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012203209A (ja) * | 2011-03-25 | 2012-10-22 | Sumitomo Chemical Co Ltd | 端面加工偏光板の製造方法 |
CN102744424A (zh) * | 2012-07-30 | 2012-10-24 | 中国人民解放军国防科学技术大学 | 可用于薄板类光学零件的单点金刚石补偿式切削加工方法 |
CN106181688A (zh) * | 2016-07-14 | 2016-12-07 | 常州湖南大学机械装备研究院 | 一种菲涅尔透镜模具的磨削方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080273253A1 (en) | Method for producing mold for zonal optical element | |
KR20100119494A (ko) | 가공 장치 및 가공 방법 | |
JP2009184066A (ja) | 凹型フレネルレンズ形状部材の加工方法及び凹型フレネルレンズ形状部材 | |
JP2007175802A (ja) | 光学部品またはその金型の製造方法及びその金型 | |
JP2006334767A (ja) | 光学素子の製造方法および光学素子 | |
JP2011123777A (ja) | 数値制御データの作成方法 | |
JP7413666B2 (ja) | 歯車加工方法 | |
TWI605892B (zh) | Non-circular hole processing methods, non-circular hole processing device and lens | |
JP2004042188A (ja) | 金型の加工方法 | |
WO2021192144A1 (ja) | フレネルレンズ金型製造方法、加工装置および切削工具 | |
JP3305120B2 (ja) | 光学素子の成形用型部材の加工方法 | |
JPH1110401A (ja) | 輪帯レンズ成形用金型の加工方法及びそのバイト | |
JP2006289871A (ja) | 輪帯光学素子の製造方法および輪帯光学素子用金型の製造方法 | |
JP5359844B2 (ja) | フレネルレンズの製造方法、フレネルレンズの金型の製造方法、および、切削加工装置 | |
US20100035524A1 (en) | Method of producing optical element, and optical element | |
JP4670249B2 (ja) | 加工装置、加工方法及びダイヤモンド工具 | |
JP4374161B2 (ja) | 光学レンズ又はその金型の切削加工方法 | |
JP2007175803A (ja) | 光学部品またはその金型の製造方法 | |
JP2000052217A (ja) | 工具と加工方法 | |
JP3662087B2 (ja) | 曲面切削加工方法 | |
JPH10166202A (ja) | フレネルレンズ成形用金型の加工方法 | |
JP3238850B2 (ja) | 表面加工方法 | |
JP2015006713A (ja) | 歯車加工装置 | |
JP2003231001A (ja) | 玉型加工方法及び装置 | |
JPH11300501A (ja) | 光学部品の切削加工方法および切削工具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20090303 |