JP2007156061A - 屈曲光学系、撮像レンズ装置及びデジタル機器 - Google Patents
屈曲光学系、撮像レンズ装置及びデジタル機器 Download PDFInfo
- Publication number
- JP2007156061A JP2007156061A JP2005350343A JP2005350343A JP2007156061A JP 2007156061 A JP2007156061 A JP 2007156061A JP 2005350343 A JP2005350343 A JP 2005350343A JP 2005350343 A JP2005350343 A JP 2005350343A JP 2007156061 A JP2007156061 A JP 2007156061A
- Authority
- JP
- Japan
- Prior art keywords
- prism
- optical system
- lens
- bending optical
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Lenses (AREA)
Abstract
【課題】絞りよりも物体側に配置されるプリズムの入射面及び出射面の形状を最適化することで、コンパクト化を図りつつゴーストによる画質劣化を抑止する。
【解決手段】屈曲光学系10は、絞り13よりも物体側に、入射光を略90度屈曲して反射するプリズム11を備える。プリズム11の入射面11a及び出射面11bには、いずれも凹面110a、110bが形成されている。そして、最も画角の広い状態での全系の焦点距離をfwとし、出射面11bの凹面110bの曲率半径をRoとするとき、Ro/fwが、下記の関係を満たすように凹面110bが設定される。
0.2<Ro/fw<3.5
【選択図】図1
【解決手段】屈曲光学系10は、絞り13よりも物体側に、入射光を略90度屈曲して反射するプリズム11を備える。プリズム11の入射面11a及び出射面11bには、いずれも凹面110a、110bが形成されている。そして、最も画角の広い状態での全系の焦点距離をfwとし、出射面11bの凹面110bの曲率半径をRoとするとき、Ro/fwが、下記の関係を満たすように凹面110bが設定される。
0.2<Ro/fw<3.5
【選択図】図1
Description
本発明は、屈曲光学系と、その屈曲光学系を備える撮像レンズ装置及びその撮像レンズ装置を搭載したデジタル機器に関する。
近年、被写体光の入射窓から撮像素子に至る撮像光学系として、その光路中に反射面を一面備えるプリズムを挿入して光路を略直角に折り曲げた屈曲光学系を採用することで、光軸方向の厚さの小型化(薄肉化)を図るようにした小型デジタルスチルカメラが普及している。このような屈曲光学系において、例えば特許文献1〜3には、前記プリズムの入射面及び射出面に光学的パワーを具備させることが開示されている。
特許文献1には、最も物体側のレンズ群中に光路を折り曲げるプリズムを配置すると共に、このプリズムの入射面及び出射面を凹面として負の屈折力を持たせた屈曲光学系が開示されている。また、特許文献2には、プリズムの入射面を凸面とする一方で出射面を凹面とし、全体として正の光学的パワーを有するプリズムを最も物体側のレンズ群中に配置した屈曲光学系が開示されている。さらに、特許文献3には、特許文献2と同様な構成において、全体として負の光学的パワーを有するプリズムを用いることが開示されている。
特開2005−84285号公報
特開2004−212737号公報
特開2004−295075号公報
上記特許文献1〜3に開示された撮像光学系は、いずれも像側(出射面)の曲率が緩いことからプリズムの小型化が不十分でレンズ全長短縮の効果が小さいという問題がある。また、プリズムの配置位置より物体側にレンズが配置されており、この結果撮像光学系の厚さ方向の寸法が厚くなるという問題もあった。加えて、プリズム面で発生するゴーストへの対策が不十分であり、像品質が低下するという問題があった。
本発明は、上記事情に鑑みてなされたもので、コストアップを抑制しつつコンパクトで、高い光学性能を有し且つゴーストを低減した高い像品質を有する屈曲光学系、撮像レンズ装置及びその撮像レンズ装置を搭載したデジタル機器を提供することを目的とする。
請求項1にかかる屈曲光学系は、絞りよりも物体側の位置に反射面を一面有するプリズムが配置され、前記反射面において被写体光の進行方向が略直角に屈曲される屈曲光学系において、前記プリズムの入射面及び出射面がいずれも凹面とされていると共に、下記条件式(1)を満たすことを特徴とする。
0.2<Ro/fw<3.5 ・・・(1)
但し、fw:最も画角の広い状態での全系の焦点距離
Ro:出射面の曲率半径
0.2<Ro/fw<3.5 ・・・(1)
但し、fw:最も画角の広い状態での全系の焦点距離
Ro:出射面の曲率半径
絞りよりも物体側の位置に、光路を略直角に折り曲げる反射面を一面有するプリズムを配置する場合、プリズムをなるべく小さくしてコンパクト化を図るには、プリズム内の光線の通過方向がプリズム端面に対して平行に近い方が有利となる。例えば、入射面から反射面に至る光線は、出射面に対して平行に近い方が有利となる。そこで、プリズム入射面を凹面とすることで、軸外光線の角度をプリズム端面方向に曲げることが可能となり、これによりプリズムより物体側に強い負の光学的パワーを有するレンズを別途配置せずとも良くなることから、屈曲光学系の厚さを薄くできるようになる。
また、図2に基づいて後記で詳述するが、プリズム出射面を凹面とすることで入射面側において光路余裕を持たせることができ、軸外光線のプリズム入射位置から当該軸外光線の出射位置までの光路距離を十分に確保しながら、プリズム入射面と出射面との光学的な距離を縮めることができるので、プリズムのコンパクト化及びレンズ全長の短縮化を図ることができる。さらに、図3及び図4に基づき後記で詳述するが、プリズム出射面が平面であると入射光が直接出射面で全反射して撮像素子へ向かいゴーストが発生しやすいが、出射面を凹面とすることで出射面に入射する反射光が前記凹面で拡散されて撮像素子へ向かう光量を削減でき、ゴーストの発生を抑止できるようになる。
以上のような屈曲光学系は、条件式(1)の要件を満たすことで最適化される。すなわち、条件式(1)の下限を下回ると、出射面の曲率半径が小さくなりすぎ、当該出射面で発生する像面湾曲、歪曲収差の補正が困難となる傾向が顕著となる。一方、条件式(1)の上限を上回ると、出射面の曲率半径が大きくなりすぎ、上述の光路余裕の確保効果並びにゴースト低減効果が顕在化しなくなる。
請求項2に係る屈曲光学系は、請求項1において、前記プリズムの入射面及び出射面が備える凹面が、下記条件式(2)を満たすことを特徴とする。
−2.0<Ro/Ri<−0.01 ・・・(2)
但し、Ri:入射面の曲率半径
−2.0<Ro/Ri<−0.01 ・・・(2)
但し、Ri:入射面の曲率半径
条件式(2)の下限を下回ると、出射面の曲率半径が大きくなりすぎ、上述の光路余裕の確保効果並びにゴースト低減効果が顕在化しなくなる。若しくは、入射面の曲率半径が小さくなりすぎ、当該入射面で発生する像面湾曲、歪曲収差の補正が困難となる傾向が顕著となる。一方、条件式(2)の上限を上回ると、出射面の曲率半径が小さくなりすぎ、当該出射面で発生する像面湾曲、歪曲収差の補正が困難となる傾向が顕著となる。若しくは、入射面の曲率半径が大きくなりすぎ、入射光線をプリズム端面(出射面)方向に曲げる効果が弱くなり、プリズムが大型化する傾向が生じる。
請求項3に係る屈曲光学系は、請求項1において、前記プリズムの出射面が備える凹面が、下記条件式(3)を満たすことを特徴とする。
0.1<So/fw<0.6 ・・・(3)
但し、So:プリズム出射面有効径位置での面頂点位置からのサグ量
0.1<So/fw<0.6 ・・・(3)
但し、So:プリズム出射面有効径位置での面頂点位置からのサグ量
条件式(3)の下限を下回ると、出射面の面頂点から面周辺への変異量が小さくなりすぎ、光路余裕を確保する効果とゴースト低減の効果が顕在化しなくなる。一方、条件式(3)の上限を上回ると、出射面の面頂点から面周辺への変異量が大きくなりすぎ、当該出射面で発生する像面湾曲、歪曲収差の補正が困難となる傾向が顕著となる。
請求項4に係る屈曲光学系は、請求項1〜3のいずれかにおいて、物体側から順に、負の光学的パワーを有するプリズム、正の光学的パワーを有するレンズを有することを特徴とする。
この構成によれば、最も物体側にプリズムが配置され、プリズムと物体との間には光学部品が配置されない構成であるので、屈曲光学系の厚みを薄くすることができる。さらに、物体側から順に負の光学的パワーを有するプリズム、正の光学的パワーを有するレンズが配置されているので、プリズムで発生する色収差を良好に補正できるようになる。
請求項5に係る屈曲光学系は、請求項1〜4のいずれかにおいて、前記プリズムの入射面及び/又は出射面が非球面とされていることを特徴とする。
この構成によれば、プリズムの入射面及び/又は出射面が非球面とされているので、光学設計の自由度が増し、屈曲光学系のコンパクト化が図り易くなると共に、入射面及び/又は出射面で発生する像面湾曲、歪曲収差の十分な補正が行えるようになる。
請求項6に係る屈曲光学系は、請求項1〜5のいずれかにおいて、前記プリズムが、樹脂材料製のプリズムであることを特徴とする。プリズムを樹脂材料製のものとすることで、入射面及び出射面の双方に凹面が形成される本発明のプリズムを、金型成形等にて生産できるようになり、製造の容易化並びにコストダウンが図れるようになる。
請求項7に係る屈曲光学系は、請求項6において、前記樹脂材料製のプリズムは、樹脂材料中に最大長が30ナノメートル以下の無機粒子を分散させてなる素材を用いて成形したプリズムであることを特徴とする。
一般に透明な樹脂材料に微粒子を混合させると、光の散乱が生じ透過率が低下するため、光学材料として使用することは困難である。しかし、微粒子の大きさを透過光束の波長より小さくすることにより、散乱が実質的に発生しないようにできる。樹脂材料は温度が上昇することにより屈折率が低下してしまうが、無機微粒子は温度が上昇すると屈折率が上昇する。そこで、これらの温度依存性を利用して互いに打ち消しあうように作用させることにより、屈折率変化がほとんど生じないようにすることができる。具体的には、母材となる樹脂材料に最大長が30ナノメートル以下の無機粒子を分散させることで、屈折率の温度依存性が極めて低い樹脂材料とすることができる。例えばアクリルに酸化ニオブ(Nb2O5)の微粒子を分散させることで、温度変化による屈折率変化を小さくすることができる。従って、本発明で用いるプリズムとして、このような無機粒子を分散させた樹脂材料を用いることにより、本発明に係る屈曲光学系の全系の環境温度変化に伴う像点位置変動を小さく抑えることができる。
請求項8に係る撮像レンズ装置は、請求項1〜7のいずれかに記載の屈曲光学系を用い、該屈曲光学系が、所定の結像面上に被写体の光学像を形成可能な構成とされていることを特徴とする。この構成によれば、例えば小型デジタルカメラや携帯情報端末等に搭載可能なコンパクトで、高精細な撮像レンズ装置を提供することが可能となる。
請求項9に係るデジタル機器は、請求項8に記載の撮像レンズ装置と、光学像を電気的な信号に変換する撮像素子と、前記撮像レンズ装置及び撮像素子に被写体の静止画撮影及び動画撮影の少なくとも一方の撮影を行わせる制御部とを具備し、前記撮像レンズ装置の屈曲光学系が、前記撮像素子の受光面上に被写体の光学像を形成可能に組み付けられていることを特徴とする。この構成によれば、コンパクトで、高精細な小型デジタルカメラや携帯情報端末等のデジタル機器を実現し得る。
本発明によれば、反射面を一面有するプリズムを絞りよりも物体側に配置してなる屈曲光学系において、前記プリズムの入射面及び出射面に所定の凹面を形成するようにしたので、コストアップを抑制しつつコンパクトで、高い光学性能を有し且つゴーストを低減した高い像品質を有する屈曲光学系、撮像レンズ装置及びその撮像レンズ装置を搭載したデジタル機器を提供することができる。
以下、図面に基づいて、本発明の実施形態につき説明する。
<屈曲光学系の構成の説明>
図1は、本発明にかかる屈曲光学系10の構成例を示す光路図(広角端の光路図)である。この屈曲光学系10は、光学像を電気的な信号に変換する撮像素子19の受光面(像面)上に物体側に存在する被写体の光学像を形成するものであって、物体側から順に、プリズム11と、物体側に凸の正メニスカスレンズ12とからなる固定の第1レンズ群Gr1、絞り13と、両凸正レンズ14と、両凹負レンズ15とからなりズーム移動する第2レンズ群Gr2、物体側に凸の負メニスカスレンズ16からなりズーム移動する第3レンズ群Gr3、及び両凸正レンズ17からなる固定の第4レンズ群Gr4が配列されてなる。また、当該屈曲光学系10は、広角端から望遠端への変倍時に、第1レンズ群Gr1と第2レンズ群Gr2との間隔が狭くなる一方で、第2レンズ群Gr2と第3レンズ群Gr3との間隔、及び第3レンズ群Gr3と第4レンズ群Gr4との間隔が広くなる変倍動作を行う光学系である。
<屈曲光学系の構成の説明>
図1は、本発明にかかる屈曲光学系10の構成例を示す光路図(広角端の光路図)である。この屈曲光学系10は、光学像を電気的な信号に変換する撮像素子19の受光面(像面)上に物体側に存在する被写体の光学像を形成するものであって、物体側から順に、プリズム11と、物体側に凸の正メニスカスレンズ12とからなる固定の第1レンズ群Gr1、絞り13と、両凸正レンズ14と、両凹負レンズ15とからなりズーム移動する第2レンズ群Gr2、物体側に凸の負メニスカスレンズ16からなりズーム移動する第3レンズ群Gr3、及び両凸正レンズ17からなる固定の第4レンズ群Gr4が配列されてなる。また、当該屈曲光学系10は、広角端から望遠端への変倍時に、第1レンズ群Gr1と第2レンズ群Gr2との間隔が狭くなる一方で、第2レンズ群Gr2と第3レンズ群Gr3との間隔、及び第3レンズ群Gr3と第4レンズ群Gr4との間隔が広くなる変倍動作を行う光学系である。
上記プリズム11は、最も物体側に配置され、光線を略直角に屈曲させる反射面11cを一面有するプリズムである。従って、図1中に光軸AXで示すように、プリズム11の入射面11aから入射した被写体光は、反射面11cで略直角に折り曲げられ、出射面11bから出射し、像側に向けて直線的に導かれる。このような屈曲光学系10の像側には、ローパスフィルタ18を介して撮像素子19が配置され、これにより被写体の光学像が、屈曲光学系10によりその光軸AXに沿って適宜な変倍比で撮像素子19の受光面まで導かれ、撮像素子19により前記被写体の光学像が撮像されるものである。かかる屈曲光学系10は、例えばデジタルカメラの本体ボディ内に収容される(図5に基づき後述する)。このような変倍機能を有する屈曲光学系10を採用することで、従来の沈胴構造の撮像光学系に比べて光軸方向の厚みを薄型化できるという利点がある。
なお、第4レンズ群Gr4とローパスフィルタ18との間に、反射面を一面有するもう一つのプリズム(像面側プリズム)を配置し、前記プリズム11の入射面11aと前記像面側プリズムの出射面とが、略平行となるような光学構成としても良い。この場合、被写体光は、入射側のプリズム11と前記像面側プリズムとで2回、略直角に折り曲げられることとなる。かかる屈曲光学系とすれば、これを組み込んだデジタルカメラの厚さを撮像素子19のサイズに依存しないものとすることができ、たとえ大サイズ(高画素数)の撮像素子19を用いたとしても、厚さ寸法が増加しないという利点がある。
本発明では、このように構成された屈曲光学系10において、プリズム11の入射面11a及び出射面11bに凹面110a、110bが形成される。図2は、プリズム11と光線との関係を説明するためのプリズム断面図である。先ず、絞り13よりも物体側の位置にプリズム11を配置する場合において、入射面11aに凹面110aを形成することで、次のような利点がある。いま、プリズム11から所定の光線幅BTを出射させる場合、プリズム11をなるべく小さくしてコンパクト化を図るには、プリズム11内の光線の通過方向がプリズム端面に対して平行(光軸AXに対して平行)に近い方が有利となる。例えば、入射面11aから反射面11cに至る光線Pabは、出射面11bに対して平行に近い方が有利となる。そこで、プリズム11の入射面11aを凹面110aとすることで、軸外光線opの角度を出射面11b方向に曲げることが可能となり、軸外光線opのプリズム11内における光線角度を、光軸AXに対して平行に近づけることができるようになる。これにより、プリズム11より物体側に強い負の光学的パワーを有するレンズを別途配置することなく、所定の光線幅BTを得るためのプリズムのサイズを小型化することが可能となる。
また、プリズム11の出射面11bに凹面110bを形成することで、軸外光線opのプリズム11への入射位置から当該軸外光線opの出射位置までの光路上距離を十分に確保しながら、入射面11aと出射面11bとの光軸AX上の距離を縮めることができる。すなわち、出射面11bに凹面110bを設けない場合、光軸AX上の距離で同一の出射面11b’は図中点線で示す位置となるが、このような出射面11b’に比べ凹面110bを有する出射面11bであると、入射面11aの下側(入射面11aと出射面11bとの交差部近傍)において延長面11dが形成されるようになる。該延長面11dにおいて、軸外光線opの入射を受け入れることができる(光路余裕が確保できる)状態で、入射面11aと出射面11bとの光軸AX上の距離を短くすることができる。これにより、プリズム11のコンパクト化及びレンズ全長の短縮化を図ることができる。
さらに、プリズム11の出射面11bに凹面110bを形成することで、ゴーストの発生を抑止できるようになる。図3及び図4は、ゴーストの発生状況を説明するためのプリズム断面図である。図3(a)に示すように、プリズム11’の入射面11a’に入射する光線の中には、反射面11c’に直接向かわない被写体平面外からの光線(画角外光線光線P11)が存在する。ここで、プリズム11’の出射面11b’が平面である場合、図3(a)の如く入射面11a’の下側(入射面11a’と出射面11b’との交差部近傍)から入射する画角外光線P11は、平面である出射面11b’で全反射(図中の符号Zで指し示す楕円点線は全反射部を示す。以下同じ)し、反射面11c’で再び反射され、出射面11b’から出射して全て像面へ向かう。かかる画角外光線光線P11の像面への入射が、ゴースト発生の要因となる。
また、図3(b)に示すように、反射面11c’に直接向かうものの、反射面11c’から出射面11b’ に直接向かわない画角外光線光線P12も存在する。かかる画角外光線光線P12は、入射面11a’の上側(入射面11a’と反射面11c’との交差部近傍)から入射し、反射面11c’で反射されると共に入射面11a’でも全反射され、出射面11b’から出射して全て像面へ向かう。かかる画角外光線光線P12の像面への入射も、ゴースト発生の要因となる。
これに対し、図4に示すように、入射面11a及び出射面11bに凹面110a、110bが形成されていると、図4(a)の如く入射面11aの下側から入射する画角外光線P21は、凹面110bで拡散的に全反射される。このため、一部の画角外光線P21−aは反射面11cで再び反射され、出射面11bから出射して像面へ向かうものの、他の画角外光線P21−bは像面には向かわなくなる。すなわち、画角外光線P21が像面に届きにくくなり、ゴーストの発生が抑止されるようになる。
また、図4(b)に示すように、入射面11aの上側から入射して反射面11cで反射され、入射面11aへ向かう画角外光線P22は、入射面11a(凹面110a)で拡散的に全反射されると共に、出射面11bの凹面110bでも拡散的に屈折される。このため、一部の画角外光線P22−aは出射面11bから出射して像面へ向かうものの、他の画角外光線P22−bは像面には向かわなくなる。すなわち、画角外光線P22が像面に届きにくくなり、ゴーストの発生が抑止されるようになるものである。
以上のように構成された屈曲光学系10は、最も画角の広い状態での全系の焦点距離をfwとし、出射面11bの凹面110bの曲率半径をRoとするとき、上記条件式(1)で示したようにRo/fwが、
0.2<Ro/fw<3.5
の関係を満たすように凹面110bが設定される。これにより当該出射面で発生する像面湾曲、歪曲収差補正の困難化を回避しつつ、図2で説明した光路余裕の確保効果、並びに図3、図4で説明したゴースト低減効果が十分に確保されるようになる。
0.2<Ro/fw<3.5
の関係を満たすように凹面110bが設定される。これにより当該出射面で発生する像面湾曲、歪曲収差補正の困難化を回避しつつ、図2で説明した光路余裕の確保効果、並びに図3、図4で説明したゴースト低減効果が十分に確保されるようになる。
ここで、生産性の改善、さらなるコンパクト化の観点からは、上記条件式(1)におけるRo/fwの関係を、下記(1)’の条件式を満たすようにすることが望ましい。
0.4<Ro/fw<2.5 ・・・(1)’
条件式(1)’の下限を下回ると、出射面11bの曲率半径が小さくなり光軸AX付近とその周辺部とでプリズム11の厚み差が大きくなることから、プラスチック成型でプリズム11を製造する場合において、高精度の成型を行うにはどうしても成型時間が長くなり、結果として部品コストが高くなる。また、条件式(1)’の上限を上回ると、光路余裕を確保する効果が少なくなりプリズムが大型化する傾向がある。
0.4<Ro/fw<2.5 ・・・(1)’
条件式(1)’の下限を下回ると、出射面11bの曲率半径が小さくなり光軸AX付近とその周辺部とでプリズム11の厚み差が大きくなることから、プラスチック成型でプリズム11を製造する場合において、高精度の成型を行うにはどうしても成型時間が長くなり、結果として部品コストが高くなる。また、条件式(1)’の上限を上回ると、光路余裕を確保する効果が少なくなりプリズムが大型化する傾向がある。
さらに、入射面11aと出射面11bとの関係において、入射面11aの曲率半径をRiとするとき、上記条件式(2)で示したようにRo/Riが、
−2.0<Ro/Ri<−0.01
の関係を満たすように凹面110a、110bが設定されていることが望ましい。条件式(2)の関係を満たすことで、像面湾曲、歪曲収差補正の困難化を回避しつつ、コンパクト化、上述の光路余裕の確保効果並びにゴースト低減効果を達成することができる。
−2.0<Ro/Ri<−0.01
の関係を満たすように凹面110a、110bが設定されていることが望ましい。条件式(2)の関係を満たすことで、像面湾曲、歪曲収差補正の困難化を回避しつつ、コンパクト化、上述の光路余裕の確保効果並びにゴースト低減効果を達成することができる。
ここで、上記条件式(2)におけるRo/Riの関係を、下記(2)’の条件式を満たすようにすることがより望ましい。
−0.5<Ro/Ri<−0.05 ・・・(2)’
条件式(2)’の下限を下回ると、出射面11bの曲率半径が大きくなりすぎ、光路余裕を確保する効果とゴースト低減の効果が少なくなりプリズムが大型化する傾向がある。若しくは、入射面11aの曲率半径が小さくなりすぎ該入射面11aの誤差感度が高くなる結果、製造が難しくなりコストが上昇する傾向がある。また、条件式(2)’の上限を上回ると、出射面11bの曲率半径が小さくなりすぎ、該出射面11bの誤差感度が高くなる結果、製造が難しくなりコストが上昇する傾向がある。若しくは、入射面11aの曲率半径が大きくなりすぎ、入射光線をプリズム端面方向(光軸AXと平行な方向)に曲げる効果が弱くなりプリズム11が大型化する傾向がある。
−0.5<Ro/Ri<−0.05 ・・・(2)’
条件式(2)’の下限を下回ると、出射面11bの曲率半径が大きくなりすぎ、光路余裕を確保する効果とゴースト低減の効果が少なくなりプリズムが大型化する傾向がある。若しくは、入射面11aの曲率半径が小さくなりすぎ該入射面11aの誤差感度が高くなる結果、製造が難しくなりコストが上昇する傾向がある。また、条件式(2)’の上限を上回ると、出射面11bの曲率半径が小さくなりすぎ、該出射面11bの誤差感度が高くなる結果、製造が難しくなりコストが上昇する傾向がある。若しくは、入射面11aの曲率半径が大きくなりすぎ、入射光線をプリズム端面方向(光軸AXと平行な方向)に曲げる効果が弱くなりプリズム11が大型化する傾向がある。
さらに、出射面11bの凹面110bが、出射面11bの有効径位置での面頂点位置からのサグ量をSoとするとき、上記条件式(3)で示したようにSo/fwが、
0.1<So/fw<0.6
の関係を満たすように設定されていることが望ましい。条件式(3)の関係を満たすことで、出射面11b(凹面110b)の面頂点から面周辺への変異量を適正化でき、結果として像面湾曲、歪曲収差補正の困難化を回避しつつ、上述の光路余裕の確保効果並びにゴースト低減効果を達成することができる。
0.1<So/fw<0.6
の関係を満たすように設定されていることが望ましい。条件式(3)の関係を満たすことで、出射面11b(凹面110b)の面頂点から面周辺への変異量を適正化でき、結果として像面湾曲、歪曲収差補正の困難化を回避しつつ、上述の光路余裕の確保効果並びにゴースト低減効果を達成することができる。
ここで、上記条件式(3)におけるSo/fwの関係を、下記(3)’の条件式を満たすようにすることがより望ましい。
0.2<So/fw<0.4 ・・・(3)’
条件式(3)’の下限を下回ると、凹面110bの面頂点から面周辺への変異量が小さくなり、光路余裕を確保する効果も小さくなる結果、プリズム11が大型化する傾向がある。一方、条件式(3)’の上限を上回ると、凹面110bの面頂点から面周辺への変異量が大きくなり、この面形状を成型で製造することが困難化する傾向がある。
0.2<So/fw<0.4 ・・・(3)’
条件式(3)’の下限を下回ると、凹面110bの面頂点から面周辺への変異量が小さくなり、光路余裕を確保する効果も小さくなる結果、プリズム11が大型化する傾向がある。一方、条件式(3)’の上限を上回ると、凹面110bの面頂点から面周辺への変異量が大きくなり、この面形状を成型で製造することが困難化する傾向がある。
また、プリズム11の入射面11a及び/又は出射面11bは、非球面とされていることが望ましい。これにより、光学設計の自由度が増し、屈曲光学系10のコンパクト化が図り易くなると共に、入射面11a及び/又は出射面11bで発生する像面湾曲、歪曲収差の十分な補正が行えるようになる。特に、プリズム11の入射面11a及び出射面11bに加えて、屈曲光学系10が備えるレンズのすべての面を非球面とすれば、像面湾曲や球面収差補正だけでなく、第1〜第4レンズ群Gr1〜Gr4内のレンズの誤差感度がコントロールできるようになり、レンズ位置調整の手間を省くことができるので特に好ましい。
図1に示す屈曲光学系10のように、物体側から順に、負の光学的パワーを有するプリズム11、正の光学的パワーを有するレンズ(正メニスカスレンズ12)を配置することが望ましい。この構成によれば、最も物体側にプリズム11が配置され、プリズム11の入射面11aと物体との間には光学部品が配置されない構成であるので、屈曲光学系10の厚みを薄くすることができる。さらに、プリズム11で発生する色収差を良好に補正できるようになる。
また、図1に示す屈曲光学系10のように、プリズム11を含むレンズ群(第1レンズ群Gr1)を固定とし、ズーム動作を行うレンズ群(第2レンズ群Gr2及び第3レンズ群Gr3)が、プリズム11と撮像素子19との間に設けられていることが望ましい。プリズム11を含むレンズ群を移動させる構成とすると、その駆動系が複雑化すると共に光軸のずれが発生してしまう恐れがある。また、一般的にズーム光学系はレンズ全長が長くなる傾向があるが、本発明を適応することで全長を短くすることができるという利点もある。
なお、屈曲光学系10において、プリズム11及び他レンズの製造容易性の点から、プリズム11の反射面11cは平面で構成され、屈曲光学系10全体は共軸系構成とされていることが望ましい。反射面11cを曲面とした場合、全体として偏芯した光学系となるため、非対称な歪曲や像面湾曲が発生しそれを補正するために他の光学面にも非対称形状の特殊な面を使用する必要が生じる。このため、製造難易度が上がるばかりでなく、組み込み時の評価や、調整に対しても難易度が上がり、製造コストが高くなるために望ましくない。
また、屈曲光学系10は、光学絞り13の代わりに、撮像素子19に対して遮光を行う機能を有するメカニカルシャッターを配置しても良い。かかるメカニカルシャッターは、例えば撮像素子19としてCCD(Charge Coupled Device)方式のものが用いられた場合に、スミア防止に効果がある。
屈曲光学系10に備えられている各レンズ群や絞り、シャッター等の駆動の駆動源としては、従来公知のカム機構やステッピングモータを用いることができる。また、移動量が少ない場合や駆動群の重量が軽い場合には、超小型の圧電アクチュエータを用いれば、駆動部の体積や電力消費の増加を抑えつつ、各群を独立に駆動させることも可能で、屈曲光学系10を含む撮像レンズ装置の更なるコンパクト化が図れるようになる。
図1に例示しているように、第4レンズ群Gr4と撮像素子19との間には、ローパスフィルタ18を介在させることが望ましい。ローパスフィルタ18は、ノイズ成分を除去する平行平板状の光学部品であって、例えば所定の結晶軸方向が調整された水晶等を材料とする複屈折型ローパスフィルタや、必要とされる光学的な遮断周波数特性を回折効果により実現する位相型ローパスフィルタ等が適用可能である。なお、ローパスフィルタ18は必ずしも備える必要はなく、代わりに撮像素子19の画像信号に含まれるノイズを低減する赤外線カットフィルタを用いるようにしてもよい。さらに、光学的ローパスフィルタ18の表面に赤外線反射コートを施し、両方のフィルタ機能を一つで実現してもよい。
撮像素子19は、屈曲光学系10により結像された被写体の光像の光量に応じて、R、G、B各成分の画像信号に光電変換して所定の画像処理回路へ出力するものである。例えば撮像素子19としては、CCD(Charge Coupled Device)が2次元状に配置されたエリアセンサの各CCDの表面に、R(赤)、G(緑)、B(青)のカラーフィルタが市松模様状に貼り付けられた、いわゆるベイヤー方式と呼ばれる単板式カラーエリアセンサで構成されたものを用いることができる。このようなCCDイメージセンサの他、CMOSイメージセンサ、VMISイメージセンサ等も用いることができる。
続いて、プリズム11及び屈曲光学系10を構成する他のレンズの材質並びに製法について説明する。これらプリズム又はレンズの材質については特に制限はなく、所定の光透過率や屈折率などを備えている光学材料であれば良く、各種ガラス材料や樹脂(プラスチック)材料を用いることができる。しかし、プラスチック材料を用いれば、軽量で、且つインジェクションモールド等により大量生産が可能であることから、ガラス材料で作製する場合に比して、コストの抑制や屈曲光学系10の軽量化の面で有利である。特に、本発明では入射面11a及び出射面11bに凹面110a、110bが形成されたプリズム11が用いられるので、ガラス材料でプリズム11を構成した場合、凹面研磨工程を経て作製する必要があるが、プラスチック材料の場合は型枠等を用いて容易に作製することができるので好ましい。
ここで、入射側プリズム11等をプラスチック材料で構成する場合、そのプラスチック材料として、例えばポリカーボネイトやPMMA等の各種光学プラスチック材料を用いることができる。この中でも、吸水率が0.01%以下のプラスチック材料を選択することが望ましい。プラスチック材料には、空気中の水分と結合する吸湿作用があり、このような吸湿が生じると、設計値通りにプリズムを製作しても吸湿により屈折率等の光学特性が変化する場合がある。従って、吸水率が0.01%以下のプラスチック材料を用いることで、吸湿の影響を受けない屈曲光学系10を構築できるようになる。このようなプラスチック材料としては、例えばZEONEX(日本ゼオン株式会社商品名)を用いることができる。
ところで、プラスチック材料は温度変化時の屈折率変化が大きいため、屈曲光学系10を構成するプリズム及びレンズの全てをプラスチックレンズで構成すると、周囲温度が変化した際に、屈曲光学系10の像点位置が変動してしまうという懸念がある。このような像点位置変動が無視できない仕様の撮像ユニットにおいては、ガラス材料にて形成されるレンズ(例えばガラスモールドレンズ)とプラスチックレンズとを混在させ、且つ複数のプリズム及びレンズ間で温度変化時の像点位置変動をある程度相殺するような屈折力配分とすることで、この温度特性の問題を軽減することができる。
或いは、温度変化時の屈折率変化が小さいプラスチック複合部材にて、入射側プリズム11及びその他の光学レンズを構成することが望ましい。このようなプラスチック複合部材として、例えばアクリルに30ナノメートル以下の酸化ニオブ(Nb2O5)の微粒子を分散させた複合部材のように、プラスチック材料中に無機微粒子を分散配合してなる部材を用いることができる。これにより、上述した通りプラスチック材料及び無機微粒子の温度依存性を利用して屈折率変化がほとんど生じないようにすることができ、屈曲光学系10の全系の温度変化時における像点位置変動を小さく抑えることが可能となる。
ここで、屈折率の温度変化について詳細に説明する。屈折率の温度変化Aは、ローレンツ・ローレンツの式に基づいて、屈折率nを温度tで微分することにより、下記(4)式にて表される。
プラスチック素材の場合は、一般に上記(4)式中第1項に比べ第2項の寄与が小さく、ほぼ無視できる。例えば、PMMA樹脂の場合、線膨張係数αは7×10−5であり、上記式に代入すると、A=−1.2×10−4[/℃]となり、実測値と概ね一致する。 具体的には、従来は−1.2×10−4[/℃]程度であった屈折率の温度変化Aを、絶対値で8×10−5[/℃]未満に抑えることが好ましく、特に絶対値で6×10−5[/℃]未満にすることが好ましい。
本実施形態で適用可能なプラスチック材料の屈折率の温度変化A(=dn/dT)を表1に示す。
また、本実施形態で適用可能な無機材料の屈折率の温度変化A( = d n / d T ) は、プラスチック材料と符号の向きが変わる。これを表2に示す。
<屈曲光学系を組み込んだデジタル機器の説明>
次に、以上説明したような屈曲光学系10が組み込まれたデジタル機器について説明する。図5は、本発明に係るデジタル機器の一実施形態を示す、デジタルカメラ20の外観構成図である。なお、本発明において、デジタル機器としては、前記デジタルカメラの他、カメラ付携帯電話機、ビデオカメラ、デジタルビデオユニット、携帯情報端末(PDA:Personal Digital Assistant)、パーソナルコンピュータ、モバイルコンピュータ、又はこれらの周辺機器(マウス、スキャナ、プリンタ等)を含むものとする。
次に、以上説明したような屈曲光学系10が組み込まれたデジタル機器について説明する。図5は、本発明に係るデジタル機器の一実施形態を示す、デジタルカメラ20の外観構成図である。なお、本発明において、デジタル機器としては、前記デジタルカメラの他、カメラ付携帯電話機、ビデオカメラ、デジタルビデオユニット、携帯情報端末(PDA:Personal Digital Assistant)、パーソナルコンピュータ、モバイルコンピュータ、又はこれらの周辺機器(マウス、スキャナ、プリンタ等)を含むものとする。
図5(a)は、デジタルカメラ20の正面図、図2(b)は背面図、図2(c)は上面図をそれぞれ示している。デジタルカメラ20は薄型の長方形状を呈しており、その上面にメインスイッチ21、静止画撮影又は動画撮影等の動作モードを切り替えるためのモード切り替えスイッチ22、及び撮像動作を開始又は停止させるためのシャッターボタン23が配置され、正面側にフラッシュ24及び被写体光の取り入れ窓となるレンズ窓25が配置され、背面側に十字キーを含む各種操作ボタン26、変倍動作を行わせるズームレバー27及び液晶モニタ(LCD)等からなる表示部28が各々備えられている。ズームレバー27には、望遠を表す「T」の印字、広角を表す「W」の印字が為され、各印字位置が押下されることで、それぞれの変倍動作が指示されるようになっている。
そして、デジタルカメラ20の本体ボディ内部には、図1に示したような屈曲光学系10によって構成された撮像レンズ装置29及び撮像素子19が内装されている。すなわち、撮像レンズ装置29は、レンズ窓25と、図1に示すプリズム11の入射面11aとが一致するように縦型に組み付けられている。この撮像レンズ装置29は、ズーミングやフォーカシング駆動時においてもその長さが変動しない、つまり本体ボディから外部に突出することのないレンズ鏡筒であって、その像面側に撮像素子19が一体的に組み付けられている。このような光路屈曲型の撮像レンズ装置29を具備させることで、デジタルカメラ20の薄型化を図ることができるようになる。
図6は、上記デジタルカメラ20の電気的な機能構成を簡略的に示す機能ブロック図である。このデジタルカメラ20は、撮像部30、画像生成部31、画像データバッファ32、画像処理部33、駆動部34、制御部35、記憶部36、及びI/F部37を備えて構成されている。
撮像部30は、撮像レンズ装置29と撮像素子19とを備えて構成される。被写体からの光線は、屈曲光学系10によって撮像素子19の受光面上に結像され、被写体の光学像となる。撮像素子19は、屈曲光学系10により結像された被写体の光学像をR(赤),G(緑),B(青)の色成分の電気信号(画像信号)に変換し、R,G,B各色の画像信号として画像生成部31に出力する。撮像素子19は、制御部35の制御により、静止画あるいは動画のいずれか一方の撮像、又は撮像素子19における各画素の出力信号の読出し(水平同期、垂直同期、転送)等の撮像動作が制御される。
画像生成部31は、撮像素子19からのアナログ出力信号に対し、増幅処理、デジタル変換処理等を行うと共に、画像全体に対して適正な黒レベルの決定、γ補正、ホワイトバランス調整(WB調整)、輪郭補正及び色ムラ補正等の周知の画像処理を行って、画像信号から各画素の画像データを生成する。画像生成部31で生成された画像データは、画像データバッファ32に出力される。
画像データバッファ32は、画像データを一時的に記憶するとともに、この画像データに対し画像処理部33により後述の処理を行うための作業領域として用いられるメモリであり、例えば、RAM(Random Access Memory)等で構成される。画像処理部33は、画像データバッファ32の画像データに対し、解像度変換等の画像処理を行う回路である。また、必要に応じて画像処理部33に、屈曲光学系10では補正しきれなかった収差を補正させるように構成することも可能である。駆動部34は、制御部35から出力される制御信号により、所望の変倍及びフォーカシングを行わせるように屈曲光学系10の複数のレンズ群を駆動する。
制御部35は、例えばマイクロプロセッサ等を備えて構成され、撮像部30、画像生成部31、画像データバッファ32、画像処理部33、記憶部36及びI/F部37の各部の動作を制御する。すなわち、該制御部35により、被写体の静止画撮影及び動画撮影の少なくとも一方の撮影を、撮像部30が実行するよう制御される。
記憶部36は、被写体の静止画撮影又は動画撮影により生成された画像データを記憶する記憶回路であり、例えば、ROM(Read Only Memory)やRAMを備えて構成される。つまり、記憶部36は、静止画用及び動画用のメモリとしての機能を有する。I/F部37は、外部機器と画像データを送受信するインターフェースであり、例えば、USBやIEEE1394等の規格に準拠したインターフェースである。
以上の通り構成されたデジタルカメラ20の撮像動作について説明する。静止画を撮影するときは、まず、モード切り替えスイッチ22を選択して静止画撮影モードを起動させる。静止画撮影モードが起動されると、制御部35は、撮像部30に静止画の撮影を行わせるように制御する。これにより、光学像が撮像素子19の受光面に周期的に繰り返し結像され、R、G、Bの色成分の画像信号に変換された後、画像生成部31に出力される。その画像信号は、画像データバッファ32に一時的に記憶され、画像処理部33により画像処理が行われた後、表示用メモリ(図略)に転送され、表示部28で被写体像がライブビュー表示される。この状態でシャッターボタン23を押すことで、静止画像を得ることができる。すなわち、静止画用のメモリとしての記憶部36に画像データが格納される。
また、動画撮影を行う場合には、モード切り替えスイッチ22を選択して動画撮影モードを起動させる。これにより、制御部35は、撮像部30を制御し動画の撮影を行わせる。この場合も表示部28で被写体像がライブビュー表示され、シャッターボタン23を押すことで、動画撮影が開始される。撮影された動画のフレーム画像信号は、画像データバッファ32に一時的に記憶され、画像処理部33により画像処理が行われた後、表示用メモリに転送され、表示部28に導かれる。ここで、もう一度シャッターボタン23を押すことで、動画撮影は終了する。撮影された動画像は、動画用のメモリとしての記憶部36に導かれて格納されるものである。
<屈曲光学系のより具体的な実施形態の説明>
以下、図1に示したような屈曲光学系10、すなわち図5に示したようなデジタルカメラ20に搭載される撮像レンズ装置29を構成する屈曲光学系10の具体的構成を、図面を参照しつつ説明する。なお、以下の説明、図表において使用されている用語は、次の通り定義されているものとする。
(a)屈折率は、d線の波長(587.56nm)に対する屈折率である。
(b)アッベ数は、d線、F線(486.13nm)、C線(656.28nm)に対する屈折率を各々nd、nF、nC、アッベ数をνdとした場合に、
νd=(nd−1)/(nF−nC)
の定義式で求められるアッベ数νdをいうものとする。
(c)面形状に関する表記は、近軸曲率に基づいた表記である。
(d)レンズについて、「凹」、「凸」又は「メニスカス」という表記を用いた場合、これらは光軸近傍(レンズの中心付近)でのレンズ形状を表しているもの(近軸曲率に基づいた表記)とする。
以下、図1に示したような屈曲光学系10、すなわち図5に示したようなデジタルカメラ20に搭載される撮像レンズ装置29を構成する屈曲光学系10の具体的構成を、図面を参照しつつ説明する。なお、以下の説明、図表において使用されている用語は、次の通り定義されているものとする。
(a)屈折率は、d線の波長(587.56nm)に対する屈折率である。
(b)アッベ数は、d線、F線(486.13nm)、C線(656.28nm)に対する屈折率を各々nd、nF、nC、アッベ数をνdとした場合に、
νd=(nd−1)/(nF−nC)
の定義式で求められるアッベ数νdをいうものとする。
(c)面形状に関する表記は、近軸曲率に基づいた表記である。
(d)レンズについて、「凹」、「凸」又は「メニスカス」という表記を用いた場合、これらは光軸近傍(レンズの中心付近)でのレンズ形状を表しているもの(近軸曲率に基づいた表記)とする。
図7は、実施例1の屈曲光学系10Aの構成を示す、光軸(AX)を縦断した断面図(広角端の光路図)である。この図7(及び図8〜図16)には、物体側から入射した光の進む経路(光路)の概略も示してあり、その光路の中心線が光軸(AX)である。この屈曲光学系10Aは、光路上物体側から順に、全体として負の光学的パワーを有するプリズム(PR;図1におけるプリズム11が相当)と、物体側に凸の正メニスカスレンズからなる第1レンズ(L1)とから構成される第1レンズ群(Gr1)、絞り(ST)と、両凸正レンズからなる第2レンズ(L2)と、両凹負レンズからなる第3レンズ(L3)とから構成される第2レンズ群(Gr2)、物体側に凸の負メニスカスレンズからなる第4レンズ(L4)1枚で構成される第3レンズ群(Gr3)、両凸正レンズからなる第5レンズ(L5)1枚で構成される第4レンズ群(Gr4)を有して構成されている。そして、第4レンズ群(Gr4)の像側には、平行平面板(PL)を介して撮像素子(SR)が配置されている。この撮像素子(SR)は、縦横比が例えば3:4の撮像素子である。なお、平行平面板(PL)は、光学的ローパスフィルタ、赤外カットフィルタ、撮像素子のカバーガラス等に相当するものである。
プリズム(PR)は、入射面(S1)が負の光学的パワーを、また出射面(S3)も負の光学的パワーを有しており、入射面(S1)と出射面(S3)との間の光路上に平面状の反射面(S2)を備えている。この屈曲光学系10Aは、入射光をプリズム(PR)にて略90度に屈曲して、撮像素子(SR)に導くものである。なお、図中に付している矢印Aの方向は、図5に示したデジタルカメラ20の厚さ方向(表面−背面方向)に対応する。
ここで、第1レンズ群(Gr1)及び第4レンズ群(Gr4)は固定されており、第2レンズ群(Gr2)と第3レンズ群(Gr3)は変倍時に図7の矢印Bの方向に移動する。より詳しくは、図22に示すように、広角端(W)から望遠端(T)への変倍時に、第2レンズ群(Gr2)の位置は物体側に近付く方向に直線的に移動され、第3レンズ群(Gr3)は、物体側に凸の軌道を描くように移動(Uターン移動)される。但し、以下の実施例も含め、これらレンズ群の移動の向きや移動量等は、当該レンズ群の光学的パワーやレンズ構成等に依存して変わり得るものである。例えば、図22において、第2レンズ群(Gr2)のように直線的に移動するように描かれているものであっても、それは物体側又は像側に凸の曲線である場合なども含み、Uターン形状である場合なども含むものである。
図8は、図7におけるプリズム(PR)を、当該プリズムと略等価な機能を有するレンズ(LP)に置換した屈曲光学系10Aの構成を示す図である。また、図8に示した番号ri(i=1,2,3,・・・)は、物体側から数えたときのi番目のレンズ面であり、riに*が付された面は非球面である。なお、接合レンズにおけるレンズ面は、接合レンズの両面のみをレンズ面として扱うのではなく、その接合面も1面として扱っている。例えば、2枚の単レンズで構成される接合レンズの場合は、3面のレンズ面が数えられる。
このような構成の下で、図7の物体側(被写体側)から入射した光線は、プリズム(PR)の入射面(S1)に入射して反射面(S2)で略90度に屈曲して反射された後、出射面(S3)から出射される。そして、第1レンズ(L1)、光学絞り(ST)、第2レンズ(L2)〜第5レンズ(L5)を順次通過し、平行平面板(PL)を通過した後、撮像素子(SR)の受光面に光学像を形成するものである。
そして、撮像素子(SR)において、前記光学像が電気的な信号に変換される。この電気信号は、必要に応じて所定のデジタル画像処理や画像圧縮処理等が施されて、デジタル映像信号として図6に示すようなデジタルカメラ20の記憶部36に記録されたり、有線あるいは無線により他のデジタル機器に伝送されたりする。
なお、屈曲光学系、特にプリズム(PR)の汚損を防止するため、プリズム(PR)の入射面(S1)より被写体側の位置にカバーガラスを設けるようにしても良い。また、光学絞り(ST)の配置箇所に、メカニカルシャッターを配置するようにしても良い。さらに、この実施例1及び後述の実施例2〜5においては、連続的な変倍動作を行う光学系を示しているが、よりコンパクト化を目指して、同一の光学構成での2焦点切り替え式の変倍光学系としても勿論構わない。
実施例1に係る屈曲光学系10Aにおける、各レンズのコンストラクションデータを表3、表4に示す。また、上述した条件式(1)〜(3)を、実施例1に係る屈曲光学系10Aに当てはめた場合のそれぞれの数値を、後掲の表13に示す。
表3に示したものは、左から順に、各レンズ面の番号、各レンズ面の曲率半径(単位はmm)、広角端(W)、中間点(M)及び望遠端(T)における、無限遠合焦状態での光軸上の各レンズ面の間隔(軸上面間隔)(単位はmm)、各レンズの屈折率、そしてアッベ数である。軸上面間隔のM、Tの空欄は、左のW欄の値と同じであることを表している。また、軸上面間隔は、対向する一対の面(光学面、撮像面を含む)間の領域に存在する媒質が空気であるとして換算した距離である。ここで、各レンズ面の番号ri(i=1,2,3,・・・)は、図8に示したように、物体側から数えてi番目のレンズ面であり、riに*が付された面は非球面(非球面形状の屈折光学面または非球面と等価な屈折作用を有する面)である。なお、光学絞り(ST)、遮光板(SH)及び平行平面板(PL)の両面、そして撮像素子(SR)の受光面の各面は平面であるために、それらの曲率半径は∞である。このような扱いは、後述する他の実施例についての光路図(図9〜図16)でも同様で、図中の符号の意味は、基本的に図7、図8と同様である。但し、全く同一のものであるという意味ではなく、例えば、各図を通じて、最も物体側のレンズ面には同じ符号(r1)が付けられているが、これらの曲率等が実施形態を通じて同一であるという意味ではない。
光学面の非球面形状は、面頂点を原点とし、物体から撮像素子に向かう向きをz軸の正の向きとするローカルな直交座標系(x,y,z)を用いた下記(5)式で定義する。
但し、z:高さhの位置でのz軸方向の変位量(面頂点基準)
h:z軸に対して垂直な方向の高さ(h2=x2+y2)
c:近軸曲率(=1/曲率半径)
A,B,C,D,E,F,G,H:それぞれ4,6,8,10,12,14,16,18,20次の非球面係数
k:円錐係数
である。上記(5)式から分かるように、表3に示した非球面レンズに対する曲率半径は、レンズの面頂点付近の値を示している。
h:z軸に対して垂直な方向の高さ(h2=x2+y2)
c:近軸曲率(=1/曲率半径)
A,B,C,D,E,F,G,H:それぞれ4,6,8,10,12,14,16,18,20次の非球面係数
k:円錐係数
である。上記(5)式から分かるように、表3に示した非球面レンズに対する曲率半径は、レンズの面頂点付近の値を示している。
以上のようなレンズ配置、構成のもとでの、実施例1における屈曲光学系10Aの無限遠合焦状態における球面収差(LONGITUDINAL SPHERICAL ABERRATION)、非点収差(ASTIGMATISM)そして歪曲収差(DISTORTION)を、図17の左側から順に示す。この図において、上段は広角端(W)、中段は中間点(M)、下段は望遠端(T)における各収差を表している。また、球面収差と非点収差の横軸は焦点位置のずれをmm単位で表しており、歪曲収差の横軸は歪量を全体に対する割合(%)で表している。球面収差の縦軸は、入射高で規格化した値で示してあるが、非点収差と歪曲収差の縦軸は像の高さ(像高、単位mm)で表してある。
さらに球面収差の図には、一点鎖線で赤色(波長656.27nm)、実線で黄色(いわゆるd線;波長587.56nm)、そして破線で青色(波長435.83nm)と、波長の異なる3つの光を用いた場合の収差がそれぞれ示してある。また、非点収差の図中、破線(T)は、タンジェンシャル(メリディオナル)像面を近軸像面からの光軸(AX)方向のずれ量(横軸、単位mm)で表したものであり、実線(S)は、サジタル(ラディアル)像面を近軸像面からの光軸(AX)方向のずれ量(横軸、単位mm)で表したものである。さらに、非点収差及び歪曲収差の図は、上記黄線(d線)を用いた場合の結果である。
この図17からわかるように、本実施例1の屈曲光学系10Aは、広角端(W)、中間点(M)及び望遠端(T)のいずれにおいても、球面収差、非点収差及び歪曲収差が十分に抑えられており、優れた光学特性を示している。また、この実施例1における広角端(W)、中間点(M)及び望遠端(T)における焦点距離(mm)及びF値を、後掲の表14及び表15にそれぞれ示す。これらの表から、本発明では、明るい光学系が実現できていることがわかる。
図9は、実施例2に係る屈曲光学系10Bの構成を示す、光軸(AX)を縦断した断面図である。この実施例2の屈曲光学系10Bは、光路上物体側から順に、全体として負の光学的パワーを有するプリズム(PR)と、物体側に凸の正メニスカスレンズからなる第1レンズ(L1)とから構成される第1レンズ群(Gr1)、絞り(ST)と、物体側に凸の正メニスカスレンズからなる第2レンズ(L2)と、物体側に凸の負メニスカスレンズからなる第3レンズ(L3)と、両凸正レンズからなる第4レンズ(L4)とから構成される第2レンズ群(Gr2)、両凹負レンズからなる第5レンズ(L5)1枚で構成される第3レンズ群(Gr3)、像側に凸の正メニスカスレンズからなる第6レンズ(L6)1枚で構成される第4レンズ群(Gr4)を有して構成されている。ここで、第3レンズ(L3)と第4レンズ(L4)とは、互いに接合された接合レンズである。そして、第4レンズ群(Gr4)の像側には、平行平面板(PL)を介して撮像素子(SR)が配置されている。
プリズム(PR)は、入射面(S1)が負の光学的パワーを、また出射面(S3)も負の光学的パワーを有しており、入射面(S1)と出射面(S3)との間の光路上に平面状の反射面(S2)を備えている。この反射面(S2)は、入射光を略90度に屈曲して、第1レンズ(L1)に向けて反射する。当該屈曲光学系10Bは、図22に示すように、広角端(W)から望遠端(T)への変倍時に、第1レンズ群(Gr1)及び第4レンズ群(Gr4)は固定され、第2レンズ群(Gr2)及び第3レンズ群(Gr3)が、いずれも物体側に近付く方向に直線的に移動される。
図10は、図9におけるプリズム(PR)を、当該反射プリズムと略等価な機能を有するレンズ(LP)に置換した屈曲光学系10Bの構成を示す図である。また、実施例2に係る屈曲光学系10Bにおける、各レンズのコンストラクションデータを表5、表6に示す。
図11は、実施例3に係る屈曲光学系10Cの構成を示す、光軸(AX)を縦断した断面図である。この実施例3の屈曲光学系10Cは、光路上物体側から順に、全体として負の光学的パワーを有するプリズム(PR)と、物体側に凸の正メニスカスレンズからなる第1レンズ(L1)とから構成される第1レンズ群(Gr1)、絞り(ST)と、両凸正レンズから構成される第2レンズ(L2)と、物体側に凸の負メニスカスレンズからなる第3レンズ(L3)とからなる第2レンズ群(Gr2)、物体側に凸の負メニスカスレンズからなる第4レンズ(L4)1枚で構成される第3レンズ群(Gr3)、両凸正レンズからなる第5レンズ(L5)1枚で構成される第4レンズ群(Gr4)を有して構成されている。そして、第4レンズ群(Gr4)の像側には、平行平面板(PL)を介して撮像素子(SR)が配置されている。
プリズム(PR)は、入射面(S1)が負の光学的パワーを、また出射面(S3)も負の光学的パワーを有しており、入射面(S1)と出射面(S3)との間の光路上に平面状の反射面(S2)を備えている。この反射面(S2)は、入射光を略90度に屈曲して、第1レンズ(L1)に向けて反射する。当該屈曲光学系10Cは、図22に示すように、広角端(W)から望遠端(T)への変倍時に、第1レンズ群(Gr1)及び第4レンズ群(Gr4)は固定され、第2レンズ群(Gr2)の位置は物体側に近付く方向に直線的に移動され、第3レンズ群(Gr3)は、物体側に凸の軌道を描くように移動(Uターン移動)される。
図12は、図11におけるプリズム(PR)を、当該反射プリズムと略等価な機能を有するレンズ(LP)に置換した屈曲光学系10Cの構成を示す図である。また、実施例3に係る屈曲光学系10Cにおける、各レンズのコンストラクションデータを表7、表8に示す。
図13は、実施例4に係る屈曲光学系10Dの構成を示す、光軸(AX)を縦断した断面図である。この実施例4の屈曲光学系10Dは、光路上物体側から順に、全体として負の光学的パワーを有するプリズム(PR)と、物体側に凸の正メニスカスレンズからなる第1レンズ(L1)とから構成される第1レンズ群(Gr1)、絞り(ST)と、両凸正レンズから構成される第2レンズ(L2)と、物体側に凸の負メニスカスレンズからなる第3レンズ(L3)と、両凸正レンズからなる第4レンズ(L4)とからなる第2レンズ群(Gr2)、両凹負レンズからなる第5レンズ(L5)1枚で構成される第3レンズ群(Gr3)、両凸正レンズからなる第6レンズ(L6)1枚で構成される第4レンズ群(Gr4)を有して構成されている。ここで、第3レンズ(L3)と第4レンズ(L4)とは、互いに接合された接合レンズである。そして、第4レンズ群(Gr4)の像側には、平行平面板(PL)を介して撮像素子(SR)が配置されている。
プリズム(PR)は、入射面(S1)が負の光学的パワーを、また出射面(S3)も負の光学的パワーを有しており、入射面(S1)と出射面(S3)との間の光路上に平面状の反射面(S2)を備えている。この反射面(S2)は、入射光を略90度に屈曲して、第1レンズ(L1)に向けて反射する。当該屈曲光学系10Dは、図22に示すように、広角端(W)から望遠端(T)への変倍時に、第1レンズ群(Gr1)及び第4レンズ群(Gr4)は固定され、第2レンズ群(Gr2)及び第3レンズ群(Gr3)が、いずれも物体側に近付く方向に直線的に移動される。
図14は、図13におけるプリズム(PR)を、当該反射プリズムと略等価な機能を有するレンズ(LP)に置換した屈曲光学系10Dの構成を示す図である。また、実施例4に係る屈曲光学系10Dにおける、各レンズのコンストラクションデータを表9、表10に示す。
図15は、実施例5に係る屈曲光学系10Eの構成を示す、光軸(AX)を縦断した断面図である。この実施例5の屈曲光学系10Eは、光路上物体側から順に、全体として負の光学的パワーを有するプリズム(PR)と、両凸正レンズからなる第1レンズ(L1)とから構成される第1レンズ群(Gr1)、両凹負レンズからなる第2レンズ(L2)と、物体側に凸の正メニスカスレンズからなる第3レンズ(L3)とから構成される第2レンズ群(Gr2)、絞り(ST)と、両凸正レンズからなる第4レンズ(L4)とから構成される第3レンズ群(Gr3)、物体側に凸の正メニスカスレンズからなる第5レンズ(L5)と、両凸正レンズからなる第6レンズ(L6)と、両凹負レンズからなる第7レンズ(L7)とから構成される第4レンズ群(Gr4)、両凸正レンズからなる第8レンズ(L8)1枚で構成される第5レンズ群(Gr5)を有して構成されている。ここで、第6レンズ(L6)と第7レンズ(L7)とは、互いに接合された接合レンズである。そして、第5レンズ群(Gr5)の像側には、平行平面板(PL)を介して撮像素子(SR)が配置されている。
プリズム(PR)は、入射面(S1)が負の光学的パワーを、また出射面(S3)も負の光学的パワーを有しており、入射面(S1)と出射面(S3)との間の光路上に平面状の反射面(S2)を備えている。この反射面(S2)は、入射光を略90度に屈曲して、第1レンズ(L1)に向けて反射する。当該屈曲光学系10Eは、図22に示すように、広角端(W)から望遠端(T)への変倍時に、第1レンズ群(Gr1)、第3レンズ群(Gr3)及び第5レンズ群(Gr5)は固定され、第2レンズ群(Gr2)は像側へ近付く方向に直線的に移動され、第4レンズ群(Gr4)は、物体側に凸の軌道を描くように移動(Uターン移動)される。
図16は、図15におけるプリズム(PR)を、当該反射プリズムと略等価な機能を有するレンズ(LP)に置換した屈曲光学系10Eの構成を示す図である。また、実施例5に係る屈曲光学系10Eにおける、各レンズのコンストラクションデータを表11、表12に示す。
以上のようなレンズ配置、構成のもとでの、本実施例2〜5の屈曲光学系10B〜10Eの球面収差、非点収差及び歪曲収差を、図18〜図21の左側から順に示す。これら屈曲光学系10B〜10Eも、広角端(W)、中間点(M)及び望遠端(T)のいずれにおいても、球面収差、非点収差及び歪曲収差が十分に抑えられており、優れた光学特性を示している。
なお、上記条件式(1)〜(3)を、実施例2〜5に係る屈曲光学系10B〜Eに当てはめた場合のそれぞれの数値を、表13に示す。
また、この実施例2〜5の屈曲光学系10B〜10Eについての、広角端(W)、中間点(M)及び望遠端(T)における焦点距離(単位mm)及びF値を、表14、表15にそれぞれ示す。これらの表から、実施例1同様、明るい光学系が実現できていることがわかる。
以上説明したように、上記実施例1〜5の屈曲光学系10A〜10Eは、いずれもプリズム(PR)の入射面(S1)及び出射面(S3)が所定形状の凹面とされているので、画角外光線は入射面(S1)及び出射面(S3)に形成されている凹面で拡散され、撮像素子(SR)の受光面へ向かう画角外光線は少なくなる。従って、ゴーストの発生を抑止できるようになる。
また、入射面(S1)に凹面を形成することでプリズム(PR)の内部における光線角度を光軸AXに対して平行に近づけることができると共に、出射面(S3)に凹面を形成することで光路余裕ができる結果、屈曲光学系10A〜10Eをコンパクト化することができる。
10、10A〜10E 屈曲光学系
11、PR プリズム
11a プリズムの入射面
11b プリズムの出射面
11c プリズムの反射面
110a、110b 凹面
12、14〜18、L1〜L8 レンズ
13、ST 光学絞り
18、PL ローパスフィルタ(平行平面板)
19、SR 撮像素子
20 デジタルカメラ(デジタル機器)
29 撮像レンズ装置
30 撮像部
35 制御部
AX 光軸
11、PR プリズム
11a プリズムの入射面
11b プリズムの出射面
11c プリズムの反射面
110a、110b 凹面
12、14〜18、L1〜L8 レンズ
13、ST 光学絞り
18、PL ローパスフィルタ(平行平面板)
19、SR 撮像素子
20 デジタルカメラ(デジタル機器)
29 撮像レンズ装置
30 撮像部
35 制御部
AX 光軸
Claims (9)
- 絞りよりも物体側の位置に反射面を一面有するプリズムが配置され、前記反射面において被写体光の進行方向が略直角に屈曲される屈曲光学系において、
前記プリズムの入射面及び出射面がいずれも凹面とされていると共に、下記条件式(1)を満たすことを特徴とする屈曲光学系。
0.2<Ro/fw<3.5 ・・・(1)
但し、fw:最も画角の広い状態での全系の焦点距離
Ro:出射面の曲率半径 - 前記プリズムの入射面及び出射面が備える凹面が、下記条件式(2)を満たすことを特徴とする請求項1に記載の屈曲光学系。
−2.0<Ro/Ri<−0.01 ・・・(2)
但し、Ri:入射面の曲率半径 - 前記プリズムの出射面が備える凹面が、下記条件式(3)を満たすことを特徴とする請求項1に記載の屈曲光学系。
0.1<So/fw<0.6 ・・・(3)
但し、So:プリズム出射面有効径位置での面頂点位置からのサグ量 - 物体側から順に、負の光学的パワーを有するプリズム、正の光学的パワーを有するレンズを有することを特徴とする請求項1〜3のいずれかに記載の屈曲光学系。
- 前記プリズムの入射面及び/又は出射面が非球面とされていることを特徴とする請求項1〜4のいずれかに記載の屈曲光学系。
- 前記プリズムが、樹脂材料製のプリズムであることを特徴とする請求項1〜5のいずれかに記載の屈曲光学系。
- 前記樹脂材料製のプリズムは、樹脂材料中に最大長が30ナノメートル以下の無機粒子を分散させてなる素材を用いて成形したプリズムであることを特徴とする請求項6に記載の屈曲光学系。
- 請求項1〜7のいずれかに記載の屈曲光学系を用い、該屈曲光学系が、所定の結像面上に被写体の光学像を形成可能な構成とされていることを特徴とする撮像レンズ装置。
- 請求項8に記載の撮像レンズ装置と、光学像を電気的な信号に変換する撮像素子と、前記撮像レンズ装置及び撮像素子に被写体の静止画撮影及び動画撮影の少なくとも一方の撮影を行わせる制御部とを具備し、
前記撮像レンズ装置の屈曲光学系が、前記撮像素子の受光面上に被写体の光学像を形成可能に組み付けられていることを特徴とするデジタル機器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005350343A JP2007156061A (ja) | 2005-12-05 | 2005-12-05 | 屈曲光学系、撮像レンズ装置及びデジタル機器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005350343A JP2007156061A (ja) | 2005-12-05 | 2005-12-05 | 屈曲光学系、撮像レンズ装置及びデジタル機器 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007156061A true JP2007156061A (ja) | 2007-06-21 |
Family
ID=38240516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005350343A Pending JP2007156061A (ja) | 2005-12-05 | 2005-12-05 | 屈曲光学系、撮像レンズ装置及びデジタル機器 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007156061A (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009015243A1 (en) * | 2007-07-23 | 2009-01-29 | Stereo Display, Inc. | Compact image taking lens system with a lens-surfaced prism |
WO2009069468A1 (ja) * | 2007-11-26 | 2009-06-04 | Konica Minolta Opto, Inc. | 撮像レンズ及び撮像装置 |
JP2010152146A (ja) * | 2008-12-25 | 2010-07-08 | Panasonic Corp | ズームレンズ系、撮像装置及びカメラ |
WO2013125603A1 (ja) * | 2012-02-20 | 2013-08-29 | コニカミノルタ株式会社 | ズームレンズ、撮像装置及び携帯端末 |
CN109188675A (zh) * | 2018-09-29 | 2019-01-11 | 辽宁中蓝电子科技有限公司 | 长焦距双棱镜潜望式镜头 |
CN109239903A (zh) * | 2018-09-29 | 2019-01-18 | 辽宁中蓝电子科技有限公司 | 一种潜望式取像光学透镜组 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003098430A (ja) * | 2001-09-21 | 2003-04-03 | Olympus Optical Co Ltd | 折り曲げ結像光学系 |
JP2003107356A (ja) * | 2001-09-28 | 2003-04-09 | Olympus Optical Co Ltd | 光路折り曲げズーム光学系 |
WO2005006322A1 (ja) * | 2003-07-11 | 2005-01-20 | Konica Minolta Opto, Inc. | 光ピックアップ装置、光ピックアップ装置に用いられる光学素子、及び光学素子の製造方法 |
-
2005
- 2005-12-05 JP JP2005350343A patent/JP2007156061A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003098430A (ja) * | 2001-09-21 | 2003-04-03 | Olympus Optical Co Ltd | 折り曲げ結像光学系 |
JP2003107356A (ja) * | 2001-09-28 | 2003-04-09 | Olympus Optical Co Ltd | 光路折り曲げズーム光学系 |
WO2005006322A1 (ja) * | 2003-07-11 | 2005-01-20 | Konica Minolta Opto, Inc. | 光ピックアップ装置、光ピックアップ装置に用いられる光学素子、及び光学素子の製造方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009015243A1 (en) * | 2007-07-23 | 2009-01-29 | Stereo Display, Inc. | Compact image taking lens system with a lens-surfaced prism |
WO2009069468A1 (ja) * | 2007-11-26 | 2009-06-04 | Konica Minolta Opto, Inc. | 撮像レンズ及び撮像装置 |
JP2010152146A (ja) * | 2008-12-25 | 2010-07-08 | Panasonic Corp | ズームレンズ系、撮像装置及びカメラ |
WO2013125603A1 (ja) * | 2012-02-20 | 2013-08-29 | コニカミノルタ株式会社 | ズームレンズ、撮像装置及び携帯端末 |
CN109188675A (zh) * | 2018-09-29 | 2019-01-11 | 辽宁中蓝电子科技有限公司 | 长焦距双棱镜潜望式镜头 |
CN109239903A (zh) * | 2018-09-29 | 2019-01-18 | 辽宁中蓝电子科技有限公司 | 一种潜望式取像光学透镜组 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5062173B2 (ja) | 撮像光学系、撮像レンズ装置及びデジタル機器 | |
JP4894754B2 (ja) | 変倍光学系、撮像レンズ装置及びデジタル機器 | |
JP5083219B2 (ja) | 変倍光学系、撮像装置及びデジタル機器 | |
JP4840719B2 (ja) | ズームレンズ及び撮像装置 | |
JP5364965B2 (ja) | 撮像光学系、撮像レンズ装置及びデジタル機器 | |
JP4802658B2 (ja) | 変倍光学系、撮像レンズ装置及びデジタル機器 | |
JP4853764B2 (ja) | ズームレンズ | |
JP5082604B2 (ja) | 変倍光学系、撮像装置及びデジタル機器 | |
JP4059228B2 (ja) | ズームレンズ及び撮像装置 | |
CN201732203U (zh) | 变焦透镜及摄像装置 | |
JP4844012B2 (ja) | 変倍光学系及び撮像装置 | |
US9316822B2 (en) | Zoom lens and imaging apparatus | |
JP2008233611A (ja) | 変倍光学系、撮像装置及びデジタル機器 | |
JPWO2008072466A1 (ja) | 変倍光学系、撮像装置及びデジタル機器 | |
JP2002055278A (ja) | 撮像レンズ装置 | |
JPWO2008075566A1 (ja) | 変倍光学系、撮像装置及びデジタル機器 | |
JP2007133096A (ja) | 撮像光学系、撮像レンズ装置及びデジタル機器 | |
JP2004245982A (ja) | 撮像レンズ装置およびそれを備えた電子機器 | |
JP2007072263A (ja) | 変倍光学系 | |
JP2009217167A (ja) | ズーム光学系及び撮像装置 | |
JP2005331860A (ja) | 変倍光学系、撮像レンズ装置及びデジタル機器 | |
JP4656453B2 (ja) | ズームレンズおよび撮像装置 | |
CN201716463U (zh) | 变焦透镜及摄像装置 | |
JP4569155B2 (ja) | 変倍光学系、撮像レンズ装置及びデジタル機器 | |
JP2006163075A (ja) | 変倍光学系、撮像レンズ装置及びデジタル機器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20081127 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20110902 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110906 |
|
A02 | Decision of refusal |
Effective date: 20120110 Free format text: JAPANESE INTERMEDIATE CODE: A02 |