JP2007110068A - 半導体記憶装置及びその製造方法 - Google Patents

半導体記憶装置及びその製造方法 Download PDF

Info

Publication number
JP2007110068A
JP2007110068A JP2006058486A JP2006058486A JP2007110068A JP 2007110068 A JP2007110068 A JP 2007110068A JP 2006058486 A JP2006058486 A JP 2006058486A JP 2006058486 A JP2006058486 A JP 2006058486A JP 2007110068 A JP2007110068 A JP 2007110068A
Authority
JP
Japan
Prior art keywords
film
electrode
memory cell
drain electrode
memory device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006058486A
Other languages
English (en)
Inventor
Kazuhiro Kaihara
一裕 海原
Shinzo Kayama
信三 香山
Takehisa Kato
剛久 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006058486A priority Critical patent/JP2007110068A/ja
Priority to US11/520,011 priority patent/US7629635B2/en
Publication of JP2007110068A publication Critical patent/JP2007110068A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40111Multistep manufacturing processes for data storage electrodes the electrodes comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/78391Field effect transistors with field effect produced by an insulated gate the gate comprising a layer which is used for its ferroelectric properties

Abstract

【課題】設計の自由度に優れ、また、微細化が可能な構造を有する、強誘電体膜を用いた半導体記憶装置を提供する。
【解決手段】半導体記憶装置は、基板11上に形成された下部電極12と、下部電極12の上に形成された強誘電体膜13と、強誘電体膜13の上に互いに間隔を置いて配置されたソース電極14及びドレイン電極15と、ソース電極14とドレイン電極15との間に形成された絶縁膜16とを備えている。
【選択図】図1

Description

本発明は、強誘電体膜をゲート絶縁膜として用いた強誘電体メモリ素子に関する。
強誘電体膜を用いた不揮発性メモリには、大きく分けてキャパシタ型とMFSFET(Metal-Ferroelectric-Semiconductor Field Effect Transistor)型との2種類がある。
キャパシタ型の不揮発性メモリの場合では、情報を読み出す際に、記憶されていた情報を破壊してしまうので、情報を書き込む動作が再度必要となる。このため、情報を読み出す毎に強誘電体膜の分極を反転させることになるので、強誘電体膜の分極反転疲労が問題となる。また、1T1C型を量産するためには課題が多く、微細化する際においても問題が多く存在している。
一方、MFSFET型の不揮発性メモリの場合では、情報の読み出しは、強誘電体膜の分極の向きによって変化するチャネルの導通状態を検出することによって行なわれるので、分極の反転を伴うことなく情報の読み出しができる、つまり、非破壊で情報を読み出すことができる。また、キャパシタ型の不揮発性メモリの場合と比べて、メモリセル領域の微細化が可能であり、古くから研究されている。しかしながら、MFSFET型の不揮発性メモリの場合には、シリコン基板の上に強誘電体膜を形成する必要があるが、シリコン基板の上に強誘電体膜を形成することは容易ではなく、この問題を回避するために提案されているMFISFET(Metal-Ferroelectric-Insulator-Semiconductor Field Effect Transistor)型の不揮発性メモリであっても、フラットバンドシフト又はメモリ保持などに関する問題がある。
以上のような問題を解決するために、従来から、強誘電体膜と絶縁膜との界面にキャリアを伝導させることにより、情報の読み出しを可能とする構造を有する界面伝導素子が提案されている(例えば、特許文献1参照)
−従来の半導体記憶装置の構造−
図5は、特許文献1に提案されている従来の界面伝導素子を含む半導体記憶装置の構造を示す要部断面図である。
図5に示すように、半導体基板101の上には、導電膜102及び絶縁膜103がこの順で形成されている。絶縁膜103の上には、互いに間隔を置いて配置されたソース電極104及びドレイン電極105が形成されている。また、絶縁膜103上におけるソース電極104とドレイン電極105との間の領域には、強誘電体膜106が形成されている。強誘電体膜106の上には、ゲート電極107が形成されている。
特開2003−332538号公報
ところで、従来の半導体記憶装置において、情報を書き込む場合、上述したように、ゲート電極107と導電膜102との間に電圧を印加することにより、強誘電体膜106の分極の向きを定めている。しかしながら、ゲート電極107と導電膜102との間には、強誘電体膜106の他にも絶縁膜103が存在しているので、強誘電体膜106中に十分な分極を生じさせるためには、ゲート電極107と導電膜102との間に高い電圧を印加する必要がある。このため、絶縁膜103及び強誘電体膜106の絶縁破壊、並びに強誘電体膜の比誘電率を考慮したデバイス設計を行なう必要が生じるので、デバイスの形状又は材料選択などの点において大きな制約を受けることになる。
また、強誘電体膜106中に分極を生じさせるためには、ゲート電極107を用いることが必須であるので、半導体記憶装置の微細化の観点においては、ゲート電極107の存在が大きな障害となっている。
さらに、上記従来の半導体記憶装置を構成する界面伝導素子をアレイ化した場合には、以下に示す問題が発生する。
図13は、従来の界面伝導素子をアレイ化した場合の回路構成図を示している。
図13では、従来の界面導素子である例えば第1〜第6の素子201〜206がアレイ状に配置されており、第1〜第3の素子201〜203のソース電極に接続するソース線SL0 及びドレイン電極に接続するビット線BL0 が配置され、同様に、第4〜第6の素子204〜206のソース電極に接続するソース線SL1 及びドレイン電極に接続するビット線BL1 が配置されている。また、第1及び第4の素子201及び204の強誘電体容量の一方の電極に接続するワード線WL0 が配置され、同様に、第2及び第5の素子202及び205の強誘電体容量の一方の電極に接続するワード線WL1 、並びに、第3及び第6の素子203及び206の強誘電体容量の一方の電極に接続するワード線WL2 が配置されている。また、第1〜第3の素子の強誘電体容量の他方の電極に接続するプレート線PL0 及び第4〜第6の素子の強誘電体容量の他方の電極に接続するプレート線PL1 が配置されている。
前述したように、当該界面伝導素子を用いたメモリ素子では、強誘電体膜と絶縁膜との界面に流れる電流を検知し、分極の方向によって界面に流れる電流の大きさが異なることを利用して、分極の方向の違いを情報として読み出す。しかしながら、例えば第1の素子201を読み出す場合には、第2の素子202及び第3の素子203に対しても、ソース線SL0 とビット線BL0 間の電流が流れる。このため、複数の素子をビット線に接続すると情報を一意に検出することができないという問題がある。また、書き込み時において、書き込み対象として選択していない素子の分極状態が破壊され、読み出す際に読み出し誤りを発生してしまうという問題がある。これは、例えば第1の素子201へ書き込みを行う場合、ワード線WL0 及びソース線SL0 へ電圧パルスを印加することになるが、例えば、書き込み対象ではない第4の素子204に接続するソース線SL1 はハイインピーダンス状態に設定することで、第4の素子204内の強誘電体容量への電圧印加を防止することができる。しかし、現実には、ソース線SL1 は例えば基板と容量結合し、微小な電圧がソース線SL1 に発生してしまう。その結果、第1の素子201への書き込み時に、書き込み対象ではない第4の素子204に対して微少な電圧が印加され、第4の素子204における強誘電体の分極が減少してしまうというディスターブの問題が発生する。
前記に鑑み、本発明の目的は、設計の自由度に優れ、また、微細化が可能な構造を有する、強誘電体膜を用いた半導体記憶装置を提供することである。さらに、読み出しを一意に決定することが可能であって、また、上記ディスターブの問題の発生を防止可能な半導体記憶装置を提供することである。
前記の目的を達成するために、本発明の第1の側面に係る半導体記憶装置は、基板上に形成された導電膜と、導電膜の上方又は下方に形成された強誘電体膜と、強誘電体膜を挟んで導電膜と対向する位置に配置され、且つ、互いに間隔を置いて配置されたソース電極及びドレイン電極と、ソース電極とドレイン電極との間に形成された絶縁膜とを備えている。
本発明の第1の側面に係る半導体記憶装置によると、強誘電体膜における絶縁膜の上方又は下方に位置する領域における分極反転を利用して、強誘電体膜と絶縁膜との界面を伝導するキャリアを検出することにより、情報の読み出し及び書き込みを行なうことが可能になる。すなわち、導電膜と、ソース電極及びドレイン電極の少なくとも一方との間に電圧を印加すると、強誘電体膜における絶縁膜の上方又は下方に位置する領域に、ソース電極及びドレイン電極の少なくとも一方の端部などから生じる電界が形成されることにより、当該領域で生じる分極反転を利用して情報の書き込みを行なうことができると共に、当該領域の分極反転によって変化する、強誘電体膜と絶縁膜との界面におけるキャリアの伝導を検出することにより、情報の読み出しを行なうことができる。そして、本構成によると、情報の書き込みに必要な電圧の印加は、強誘電体膜の単層のみに対して行なえばよいため、従来例のようなデバイス設計上の制約を受けることがなくなり、設計の自由度が向上する。また、本構成によると、導電膜とソース電極及びドレイン電極の少なくとも一方とを用いて、情報の書き込みに必要な電圧の印加を行なうことができ、従来例のようにゲート電極を用いる必要がないので、半導体装置の微細化にとって優れた構造である。
また、本発明の第1の側面に係る半導体記憶装置において、導電膜は、平面的に見て、ソース電極が存在する領域、ドレイン電極が存在する領域、及び、強誘電体膜と絶縁膜との界面が存在する領域によって構成される単位素子形成領域毎に形成されていることが好ましい。
このようにすると、導電膜が単位素子形成領域毎に形成されるので、単位素子を構成する当該半導体記憶装置をアレイ状に配置した場合に、各単位素子内の強誘電体膜に対して選択的に電圧を印加することができる。
また、本発明の第1の側面に係る半導体記憶装置において、導電膜は、強誘電体膜と絶縁膜との界面の上方又は下方に位置する領域に形成されていることが好ましい。
このようにすると、単位素子形成領域内における強誘電体膜のうち、分極反転を生じさせる必要がある領域のみに選択的に電圧を印加することが可能になる。また、導電膜は、強誘電体膜と絶縁膜との界面の上方又は下方に位置しており、導電膜のうち、ソース電極及びドレイン電極が存在している領域と平面的に見てオーバーラップする領域が全くないか又はオーバーラップする領域がわずかであると、導電膜とソース電極及びドレイン電極の少なくとも一方との間に高電圧を印加した場合であっても、強誘電体膜における絶縁破壊を生じさせることなく、強誘電体膜における絶縁膜の上方又は下方に位置する領域に分極反転を確実に生じさせることができる。
また、本発明の第1の側面に係る半導体記憶装置は、強誘電体膜における絶縁膜の上方又は下方に位置する領域に電界を形成する構成として、導電膜と、ソース電極及びドレイン電極のうちの少なくとも一方とを利用する電界形成手段をさらに備える。
また、本発明の第1の側面に係る半導体記憶装置において、導電膜は、強誘電体膜を介してソース電極と対向するように形成された第1の部分と、第1の部分と間隔を置いて配置され、強誘電体膜を介してドレイン電極と対向するように形成された第2の部分とからなることが好ましい。
このようにすると、単位素子形成領域内における強誘電体膜のうち、分極反転を生じさせる必要がある領域のみに選択的に電圧を形成することが可能になる。また、第1の部分及びドレイン電極よりなる組み合わせ、並びに第2の部分及びソース電極よりなる組み合わせのうちの少なくとも一方を用いると、強誘電体膜における絶縁膜の上方又は下方に位置する領域に電界を効率的に形成することができる。さらに、これらの組み合わせを利用することから、これらの組み合わせの少なくとも一方に対して高電圧を印加した場合であっても、強誘電体膜における絶縁破壊を生じさせることなく、強誘電体膜における絶縁膜の上方又は下方に位置する領域に分極反転を確実に生じさせることができる。
また、本発明の第1の側面に係る半導体記憶装置は、強誘電体膜における絶縁膜の上方又は下方に位置する領域に電界を形成する構成として、第1の部分及びドレイン電極よりなる組み合わせ、並びに第2の部分及びソース電極よりなる組み合わせのうちの少なくとも一方を利用する電界形成手段をさらに備える。
また、本発明の第1の側面に係る半導体記憶装置において、強誘電体膜における絶縁膜の上方又は下方に位置する領域に含まれる結晶粒の分極方向は、強誘電体膜における絶縁膜の上方又は下方に位置する領域に形成される電界の方向とほぼ一致していることが好ましい。
このようにすると、最小限の電界により、強誘電体膜における絶縁膜の上方又は下方に位置する領域に分極反転を生じさせることができる。具体的には、キャリアの伝導に利用される強誘電体膜と絶縁膜との界面では、電界がこの界面に対して斜め又は平行に形成されるので、強誘電体膜における界面の上方又は下方に位置する領域に含まれる結晶粒の分極方向がこの界面に対して斜め又は平行になるように、強誘電体膜を形成するとよい。
また、本発明の第1の側面に係る半導体記憶装置において、強誘電体膜における絶縁膜の上方又は下方に位置する領域は、単一の結晶粒によって構成されていることが好ましい。
このようにすると、結晶粒界での電子のトラップの影響などを排除することができるので、強誘電体膜と絶縁膜との界面におけるキャリアの伝導変化の挙動が安定する。
また、本発明の第1の側面に係る半導体記憶装置において、絶縁膜の比誘電率は、強誘電体膜の比誘電率よりも高いことが好ましい。
このようにすると、ソース電極及びドレイン電極の少なくとも一方の端部などから生じ、強誘電体膜における絶縁膜の上方又は下方に位置する領域にある導電膜に向かう電気力線の多くは、ソース電極とドレイン電極との間に設けられた絶縁膜の方向に一旦大きくはみ出しした後に、該導電膜に到達する。このため、キャリアが伝導する強誘電体膜と絶縁膜との界面においては、電界が該界面に対して垂直に形成されることになる。したがって、結晶粒の分極方向が該界面に対して垂直に配向している、強誘電体膜における絶縁膜の上方又は下方に位置する領域を有効に利用して、情報の読み出し及び書き込みを行なうことが可能になる。また、強誘電体膜における絶縁膜の上方又は下方に位置する領域に形成される電界の方向のばらつきが軽減されるので、強誘電体膜が単結晶によって構成されている場合にさらに大きな効果を得ることができる。
また、本発明の第1の側面に係る半導体記憶装置において、絶縁膜は、強誘電体によって構成されていることが好ましい。
このようにすると、強誘電体は非常に優れた絶縁性を示すことから、当該半導体記憶装置のリーク特性が向上する。また、強誘電体は比誘電率が高いので、上記と同様に、キャリアが伝導する強誘電体膜と絶縁膜との界面に対して電界が比較的垂直に印加され、上記と同様の効果を得ることができる。
本発明の第2の側面に係る半導体記憶装置は、半導体基板上に形成されたゲート電極と、互いに間隔を置いて配置され、ゲート電極によって制御されるチャネルと電気的に接続する第1のソース電極及び第1のドレイン電極とを有する第1の素子と、第1の素子を覆うように配置された第1の絶縁膜上に形成された導電膜と、導電膜の上に形成され、強誘電体膜及び第2の絶縁膜よりなる積層構造と、強誘電体膜と第2の絶縁膜との界面に電流を印加可能な位置に形成された第2のソース電極及び第2のドレイン電極とを有する第2の素子とを備えており、第1のソース電極は、第2のソース電極と電気的に接続されており、第1のドレイン電極は、第2のドレイン電極と電気的に接続されている。
本発明の第2の側面に係る半導体記憶装置によると、情報の書き込み及び読み出し動作を可能にする、例えばトランジスタの構成を有する第1の素子と例えば界面伝導素子の構成を有する第2の素子よりなるメモリセルを提供し、当該メモリセルをアレイ化した場合には、読み出しを一意に決定することが可能であって、また、ディスターブの問題の発生を防止可能な構成を有する半導体記憶装置が実現される。
本発明の第2の側面に係る半導体記憶装置において、第1の素子は、第2の素子の下方領域に配置されていることが好ましい。
この場合、平面的配置において、第1の素子の形成領域が第2の素子の形成領域と重なるように、第1の素子と第2の素子とが配置されているので、第1の素子及び第2の素子よりなるメモリセルのセル面積を縮小することができる。
本発明の第2の側面に係る半導体記憶装置において、第1の素子及び第2の素子よりなるメモリセルが行列状に配置されてなるメモリセルアレイを有し、メモリセルアレイにおけるビット線方向の各メモリセル群において、一のメモリセルと、一のメモリセルにビット線方向で隣り合うメモリセルとは、第1のソース電極又は第1のドレイン電極を共有している。
このようにすると、メモリセルをアレイ化した場合に、非アクセスのメモリセルの分極量が減少するというディスターブの発生を回避することが可能な構成を有する半導体記憶装置を実現することができる。さらに、メモリセルをアレイ化した場合に、メモリセルのセル面積の一部は互いに隣り合うメモリセル同士によって共有されるので、アレイ状に配置された複数のメモリセル全体としてセル面積を縮小することができる。
本発明の第2の側面に係る半導体記憶装置において、第1の素子及び第2の素子よりなるメモリセルがビット線方向及びワード線方向に行列状に配置されてなるメモリセルアレイを有し、メモリセルアレイにおけるビット線方向の各メモリセル群において、一のメモリセルと、一のメモリセルにビット線方向で隣り合うメモリセルとは、第2のソース電極又は第2のドレイン電極を共有している。
このようにすると、メモリセルをアレイ化した場合に、非アクセスのメモリセルの分極量が減少するというディスターブの発生を回避することが可能な構成を有する半導体記憶装置を実現することができる。さらに、メモリセルをアレイ化した場合に、メモリセルのセル面積の一部は互いに隣り合うメモリセル同士によって共有されるので、アレイ状に配置された複数のメモリセル全体としてセル面積を縮小することができる。
本発明の一側面に係る半導体記憶装置の駆動方法は、半導体基板上に複数のメモリセルがビット線方向及びワード線方向に行列状に配置されてなるメモリセルアレイを有する半導体記憶装置の駆動方法であって、メモリセルは、半導体基板上に形成されたゲート電極と、互いに間隔を置いて配置され、ゲート電極によって制御されるチャネルと電気的に接続する第1のソース電極及び第1のドレイン電極とを有する第1の素子と、半導体基板上に、第1の素子を覆うように配置された第1の絶縁膜上に形成された導電膜と、導電膜の上に形成され、強誘電体膜及び第2の絶縁膜よりなる積層構造と、強誘電体膜と第2の絶縁膜との界面に電流を印加可能な位置に形成され、第1のソース電極と電気的に接続する第2のソース電極と、第1のドレイン電極と電気的に接続する第2のドレイン電極とを有する第2の素子とによって構成され、メモリセルアレイにおけるビット線方向の各メモリセル群において、一のメモリセルと、一のメモリセルにビット線方向で隣り合うメモリセルとは、第1のソース電極又は第1のドレイン電極を共有し、且つ、第2のソース電極又は第2のドレイン電極を共有しており、以下の工程を備えている。すなわち、複数のメモリセルのうちデータの書き込み又は読み出しの動作対象として選択するメモリセルにおけるゲート電極と接地する工程(a)と、複数のメモリセルのうち動作対象として選択しないメモリセルにおけるゲート電極に対して電圧を印加する工程(b)とを備えている。
本発明の一側面に係る半導体記憶装置の駆動方法によると、書き込み又は読み出しの動作対象として選択されないメモリセルの第2の素子である例えばトランジスタのゲート電極に対して電圧を印加すると共に、動作対象として選択するメモリセルの第2の素子である例えばトランジスタのゲート電極を接地することにより、データを書き込む際には、書き込み対象として選択しないメモリセルの第1の素子内の強誘電体容量に微小な電圧が印加されることなく、書き込み対象として選択するメモリセルの第1の素子内の強誘電体容量のみに所望の電圧を印加することが可能になり、データを読み出す際には、情報の読み出しを一意に行うことが可能になる。
本発明の一側面に係る半導体記憶装置の駆動方法において、メモリセルには、ビット線方向の各メモリセル群における第1のドレイン電極及び第2のドレイン電極と接続するビット線が設けられており、導電膜は、ワード線方向の各メモリセル群における各第2のソース電極同士を接続するソース線であって、データの書き込み動作の場合には、工程(a)及び工程(b)よりも後に、ビット線に書き込みデータに対応する電圧を印加する工程(c)と、工程(c)よりも後に、ソース線にパルス電圧を印加する工程(d)とを備えることが好ましい。
本発明の一側面に係る半導体記憶装置の駆動方法において、メモリセルには、ビット線方向の各メモリセル群における第1のドレイン電極及び第2のドレイン電極と接続するビット線と、導電膜は、ワード線方向の各メモリセル群における各第2のソース電極同士を接続するソース線であって、データの読み出し動作の場合には、工程(a)及び工程(b)よりも後に、ソース線にパルス電圧を印加する工程と(e)と、工程(e)よりも後に、ビット線に出現する電圧を検出する工程(f)とを備えることが好ましい。
本発明によると、絶縁膜と強誘電体膜と界面におけるキャリア伝導を利用した強誘電体メモリ装置であって、比較的容易にデバイス設計が可能な強誘電体メモリ装置を提供することが可能となる。また、微細化にとって優れた構造を有している。さらに、本発明によると、情報の書き込み及び読み出し動作を可能にする、トランジスタ及び界面伝導素子よりなるメモリセルを提供し、当該メモリセルをアレイ化した場合には、読み出しを一意に決定することが可能であって、また、ディスターブの問題の発生を防止可能な半導体記憶装置が実現される。
以下、本発明の各実施形態について、図面を参照しながら説明する。
(第1の実施形態)
以下、本発明の第1の実施形態に係る半導体記憶装置及びその製造方法について、図1(a)及び(b)を参照しながら説明する。
図1(a)及び(b)は、本発明の第1の実施形態に係る半導体記憶装置の構成概念図を示す要部断面図であって、(a)では情報を読み出す場合の構成を併せて示しており、(b)では、情報を書き込む場合の構成及び強誘電体膜中の電気力線の概念図を併せてしている。
−本発明の第1の実施形態に係る半導体記憶装置の構成−
図1(a)及び(b)に示すように、基板11の上には、導電膜よりなる下部電極12及び強誘電体膜13が下からこの順に積層されている。強誘電体膜13の上には、互いに間隔を置いて配置された導電膜よりなるソース電極14及び導電膜よりなるドレイン電極15が形成されている。また、強誘電体膜13の上には、ソース電極14及びドレイン電極15を覆うように絶縁膜16が形成されており、該絶縁膜16には、ソース電極14に電圧を印加できるように、ソース電極14の上面を露出させる第1のコンタクトホール16aが形成されていると共に、ドレイン電極15に電圧を印加できるように、ドレイン電極15の上面を露出させる第2のコンタクトホール16bが形成されている。このように、下部電極12は、強誘電体膜13を介してソース電極14及びドレイン電極15と対向するように配置されている。また、ソース電極14及びドレイン電極15は、強誘電体膜13と絶縁膜16との界面17に接し、且つ、界面17を介して対向し合うように配置されており、界面17におけるキャリアの伝導の程度、つまり界面電流の有無を検出する電極対を構成している。
−本発明の第1の実施形態に係る半導体記憶装置の製造方法−
まず、図1(a)及び(b)に示すように、基板11の上に、導電膜よりなる下部電極12を形成した後に、該下部電極12の上に強誘電体膜13を形成する。次に、強誘電体膜13の上に、互いに間隔を置いて配置されるように、導電膜よりなるソース電極14及びドレイン電極15を形成する。次に、強誘電体膜13の上に、ソース電極14及びドレイン電極15を覆うように絶縁膜16を堆積した後に、該絶縁膜16に、ソース電極14に電圧を印加できるように、ソース電極14の上面を露出させる第1のコンタクトホール16aを形成すると共に、ドレイン電極15に電圧を印加できるように、ドレイン電極15の上面を露出させる第2のコンタクトホール16bを形成する。
以上において、基板1の材料は特に限定されるものではなく、例えば、Si、SiO2 、又はSrTiO3 が一般的であるが、絶縁性物質であればよい。
また、下部電極12を構成する導電膜を堆積する方法としては、スパッタリング法、EB蒸着法、MOCVD法、レーザーアブレーション法、又はPLD法などを用いればよい。
また、下部電極12を構成する導電膜の材料としては、強誘電体膜13のリーク特性を考慮して、強誘電体膜13よりも高仕事関数である金属を用いることが好ましい。また、下部電極12を構成する導電膜の材料としては、強誘電体膜13が分極反転疲労特性に優れるように、Pt、Ir、IrOx 、Au、又はRuOx などを用いることが好ましい。
また、強誘電体膜13及び絶縁膜16の成膜方法としては、スパッタリング法、MOCVD法、レーザーアブレーション法、PLD法、MOD法、又はゾルゲル法などを用いればよい。また、強誘電体膜13及び絶縁膜16との界面17が清浄になるように、強誘電体膜13の上に絶縁膜16を成膜することが好ましい。
また、強誘電体膜13における界面17の下部に位置する領域は、単結晶よりなることが好ましい。このようにすると、結晶粒界での電子のトラップの影響などを排除することができるので、界面17におけるキャリアの伝導変化の挙動が安定する。
また、強誘電体膜13及び絶縁膜16をヘテロエピタキシャル成長させることが好ましい。
また、強誘電体膜13における界面17の下部に位置する領域では、電界が形成される方向と強誘電体膜13の結晶粒の方位とが一致することが好ましい。このようにすると、最小限の電界により、強誘電体膜13の分極を反転させることができる。具体的には、キャリアの伝導に利用される強誘電体膜13と絶縁膜16との界面17では、電界がこの界面17に対して斜め又は平行に形成されるので、強誘電体膜13における界面17の下部に位置する領域に含まれる結晶粒の分極方向が界面17に対して斜め又は平行になるように、強誘電体膜13を形成することが好ましい。
また、強誘電体膜13を構成する材料としては、例えば、SBT(SrBi2Ta29)、SBTN(SrBi2(Ta,Nb)29 )、BLT((Bi,La)4Ti312 )、BiFeO3 、PbTiO3 、PZT(Pb(Zr,Ti)O3 )、PLZT((Pb,La)(Zr,Ti)O3 )、BaTiO3 、LiNbO3 、又はSrTiO3 などを用いるとよい。
また、絶縁膜16の材料としては、ソース電極14とドレイン電極15とのリーク電流を防止するために、高絶縁性を示す材料を用いることが好ましい。例えば、SiO2 、SiON、PGS(Phospho-Silicate-Glass)、BPGS(Boro-Phospho-Silicate-Glass)、HfOx 、又はSrTiO3 などを用いるとよい。特に、HfOx は、高誘電率であって且つ高融点であるので好ましい。
また、ソース電極14を構成する導電膜の材料及びドレイン電極15を構成する導電膜の材料としては、下部電極12を構成する導電膜の材料の選択と同様に、強誘電体膜13のリーク特性の観点から、強誘電体膜13よりも高仕事関数である金属を選択するとよく、また、強誘電体膜13の分極反転疲労特性の観点から、Pt、Ir、IrOx 、Au、又はRuOx などを用いるとよい。また、ソース電極14を構成する導電膜及びドレイン電極15を構成する導電膜の堆積は、強誘電体膜13と絶縁膜16との界面を清浄に保つことが可能な方法を用いることが好ましい。
−本発明の第1の実施形態に係る半導体記憶装置における動作について−
<情報の書き込み動作>
図1(a)及び(b)に示した本実施形態に係る半導体記憶装置において、情報の書き込み動作としては、ソース電極14及びドレイン電極15と下部電極12との間に、正又は負の電圧を印加することによって正又は負の電界を印加して、強誘電体膜13中に自発分極を誘起させることによって行なわれる。例えば、図1(b)では、電源18(電圧Vapp)を用いて、ソース電極14及びドレイン電極15と下部電極12との間に、下向きの電界が形成されている場合が示されている。具体的には、ソース電極14と下部電極12との間、及びドレイン電極15と下部電極12との間には、垂直方向下向きに電界が形成されている一方で、強誘電体膜13におけるソース電極14とドレイン電極15との間に挟まれた領域、つまり、強誘電体膜13における界面17の直下に位置する領域では、ソース電極14及びドレイン電極15のそれぞれの端部などから曲線的に下向きに延びる電界19(以下、はみ出し電界19という)が形成される。このように、強誘電体膜13における界面17の直下に位置する領域にはみ出し電界19が形成されるので、強誘電体膜13における界面17の直下に位置する領域において分極反転を生じさせることにより、情報を書き込むことができる。ここで、強誘電体膜13における界面17の直下に位置する領域において分極反転を生じさせるためには、ソース電極14とドレイン電極15との距離Lと、電圧Vapp の大きさとを調整すればよい。
<情報の読み出し動作>
一方、情報の読み出しは、強誘電体膜13の分極の向きによってチャネルの導通状態が異なることから、このチャネルの導通状態の変化を検出することによって非破壊で行なわれる。具体的には、上記情報の書き換え動作で説明したように、はみ出し電界19により、強誘電体膜13における界面17の直下に位置する領域に分極反転が生じるので、強誘電体膜13と絶縁膜16との界面17に電子又は正孔の自由電荷が発生する。そして、自由電荷は強誘電体膜13の分極の向きによって大きく変化するので、これを利用して、強誘電体膜13の分極の向きが上向きであるか、下向きであるかを判別する。強誘電体膜13の分極の向きが上向きである場合には、強誘電体膜13と絶縁膜16との界面17には移動可能な電子の数が少ないので、チャネルの電気伝導度は小さくなる一方で、下向きである場合には、強誘電体膜13と絶縁膜16との界面17には移動可能な電子の数が多いので、チャネルの電気伝導は大きくなり、強誘電体膜13と絶縁膜16との界面17に界面電流(チャネル電流)が流れる。したがって、例えば、図1(a)に示すように、ソース電極14とドレイン電極15との間に接続された電流計20を用いて、強誘電体膜13と絶縁膜16との界面17における界面電流の有無を検出することによって情報の読み出しが行なわれる。
本実施形態によると、下部電極12と、ソース電極14及びドレイン電極15との間に電圧を印加することにより、強誘電体膜13における絶縁膜16の直下に位置する領域に、ソース電極14及びドレイン電極15の端部などから生じるはみ出し電界19が形成されて、当該領域で生じる分極反転を利用して情報の書き込みを行なうことができると共に、当該領域の分極反転によって変化する、強誘電体膜13と絶縁膜16との界面17におけるキャリアの伝導を検出することにより、情報の読み出しを行なうことができる。そして、本構成によると、情報の書き込みに必要な電圧の印加は、強誘電体膜13の単層のみに対して行なえばよいため、従来例のようなデバイス設計上の制約を受けることがなくなり、設計の自由度が向上する。また、本構成によると、下部電極12とソース電極14及びドレイン電極15の少なくとも一方とを用いて、情報の書き込みに必要な電圧の印加を行なうことができ、従来例のようにゲート電極を用いる必要がないので、半導体装置の微細化にとって優れている。
(第2の実施形態)
以下、本発明の第2の実施形態に係る半導体記憶装置及びその製造方法について、図2(a)及び(b)を参照しながら説明する。
図2(a)及び(b)は、本発明の第2の実施形態に係る半導体記憶装置の構成概念図を示す要部断面図であって、(a)では情報を読み出す場合の構成を併せて示しており、(b)では、情報を書き込む場合の構成及び強誘電体膜中の電気力線の概念図を併せてしている。
−本発明の第2の実施形態に係る半導体記憶装置の構成−
図2(a)及び(b)に示すように、基板21の上には、導電膜よりなる下部電極22が形成されており、該下部電極22を覆うように強誘電体膜23が形成されている。強誘電体膜23の上には、互いに間隔を置いて配置された導電膜よりなるソース電極24及び導電膜よりなるドレイン電極25が形成されている。また、強誘電体膜23の上には、ソース電極24及びドレイン電極25を覆うように絶縁膜26が形成されており、該絶縁膜26には、ソース電極24に電圧を印加できるように、ソース電極24の上面を露出させる第1のコンタクトホール26aが形成されていると共に、ドレイン電極25に電圧を印加できるように、ドレイン電極25の上面を露出させる第2のコンタクトホール26bが形成されている。なお、ソース電極24及びドレイン電極25は、強誘電体膜23と絶縁膜26との界面27に接し、且つ、界面27を介して対向し合うように配置されており、界面27におけるキャリアの伝導の程度、つまり界面電流の有無を検出する電極対を構成している。
本実施形態に係る半導体記憶装置では、図2(a)及び(b)に示したように、下部電極22が、ソース電極24とドレイン電極25とによって挟まれた領域の下方に形成されており、つまり、下部電極22は、ソース電極24が形成されている領域、ドレイン電極25が形成されている領域、及びソース電極24とドレイン電極25との間の領域よりなる単位素子形成領域内に含まれるように選択的に形成されており、この点が、第1の実施形態と異なる本実施形態の特徴である。
−本発明の第2の実施形態に係る半導体記憶装置の製造方法−
まず、図2(a)及び(b)に示すように、基板21の上に、導電膜よりなる下部電極22を形成する。次に、基板21の上に、下部電極22を覆うように強誘電体膜23を形成する。次に、強誘電体膜23の上に、互いに間隔を置いて配置されるように、導電膜よりなるソース電極24及びドレイン電極25を形成する。次に、強誘電体膜23の上に、ソース電極24及びドレイン電極25を覆うように絶縁膜26を堆積した後に、該絶縁膜26に、ソース電極24に電圧を印加できるように、ソース電極24の上面を露出させる第1のコンタクトホール26aを形成すると共に、ドレイン電極25に電圧を印加できるように、ドレイン電極25の上面を露出させる第2のコンタクトホール26bを形成する。
本実施形態に係る半導体記憶装置の製造方法では、下部電極22を形成する工程において、後に形成されるソース電極24とドレイン電極25とによって挟まれた領域の下方に位置するように、基板21上に堆積された導電膜をドライエッチング法又はリフトオフ法などによってパターニングする。この点が、第1の実施形態と異なる本実施形態の特徴である。これにより、下部電極22は、ソース電極24が形成されている領域、ドレイン電極25が形成されている領域、及びソース電極24とドレイン電極25との間の領域を有する単位素子形成領域内に含まれるように選択的に形成される。
なお、上記した本実施形態に係る半導体記憶装置及びその製造方法において、成膜方法又は材料などその他の点は第1の実施形態と同様である。
−本発明の第2の実施形態に係る半導体記憶装置における動作について−
<情報の書き込み動作>
図2(a)及び(b)に示した本実施形態に係る半導体記憶装置において、情報の書き込み動作としては、ソース電極24及びドレイン電極25と下部電極22との間に、正又は負の電圧を印加することによって生じるはみ出し電界29により、強誘電体膜23中に自発分極を誘起させることによって行なわれる。例えば、図2(b)では、電源28(電圧Vapp)を用いて、ソース電極24及びドレイン電極25のそれぞれの端部から下部電極22の上面に向かって、曲線的に下向きに延びるはみ出し電界29が形成されている場合が示されている。このように、強誘電体膜23における界面27の直下に位置する領域にはみ出し電界29が形成されて、強誘電体膜23における界面27の直下に位置する領域において分極反転を生じさせることにより、情報を書き込むことができる。ここで、強誘電体膜23における界面27の直下に位置する領域において分極反転を生じさせるためには、ソース電極24とドレイン電極25との距離Lと、電圧Vapp の大きさとを調整すればよい。
本実施形態では、下部電極22は、ソース電極24とドレイン電極25とによって挟まれた領域の下方に位置するようにパターニングされており、ソース電極24が形成されている領域及びドレイン電極25が形成されている領域の下方には形成されていない。つまり、下部電極22は、ソース電極24及びドレイン電極25のそれぞれと対向する位置には存在しておらず、平面的に見て、下部電極22が位置する領域は、ソース電極24及びドレイン電極25が形成される領域とオーバーラップしていない。このため、ソース電極24及びドレイン電極25のうちの少なくとも一方に、下部電極22との間に大きな電界を印加する場合であっても、強誘電体膜23に対して直接的な電界(例えば、第1の実施形態における対向し合う電極間に生じる電界)は印加されないので、強誘電体膜23における絶縁破壊の危険性及びリーク電流を低減することができる。
<情報の読み出し動作>
一方、情報の読み出しは、強誘電体膜23の分極の向きによってチャネルの導通状態が異なることから、このチャネルの導通状態の変化を検出することによって非破壊で行なわれる。具体的には、上記情報の書き込み動作で説明したように、はみ出し電界29により、強誘電体膜23における界面27の直下に位置する領域に分極反転が生じるので、強誘電体膜23と絶縁膜26との界面27に電子又は正孔の自由電荷が発生する。そして、自由電荷は強誘電体膜23の分極の向きによって大きく変化するので、これを利用して、強誘電体膜23の分極の向きが上向きであるか、下向きであるかを判別する。具体的には、上記した第1の実施形態における説明と同様であり、本実施形態では、例えば、図2(a)に示すように、ソース電極24とドレイン電極25との間に接続された電流計30を用いて、強誘電体膜23と絶縁膜26との界面27における界面電流の有無を検出することによって情報の読み出しが行なわれる。
(第3の実施形態)
以下、本発明の第3の実施形態に係る半導体記憶装置及びその製造方法について、図3(a)及び(b)を参照しながら説明する。
図3(a)及び(b)は、本発明の第3の実施形態に係る半導体記憶装置の構成概念図を示す要部断面図であって、(a)では情報を読み出す場合の構成を併せて示しており、(b)では、情報を書き込む場合の構成及び強誘電体膜中の電気力線の概念図を併せてしている。
−本発明の第3の実施形態に係る半導体記憶装置の構成−
図3(a)及び(b)に示すように、基板31の上には、互いに間隔を置いて配置された導電膜よりなる下部電極32a及び32bが形成されており、該下部電極32a及び32bを覆うように強誘電体膜33が形成されている。強誘電体膜33の上には、互いに間隔を置いて配置された導電膜よりなるソース電極34及びドレイン電極35が形成されている。また、強誘電体膜33の上には、ソース電極34及びドレイン電極35を覆うように絶縁膜36が形成されており、該絶縁膜36には、ソース電極34に電圧を印加できるように、ソース電極34の上面を露出させる第1のコンタクトホール36aが形成されていると共に、ドレイン電極35に電圧を印加できるように、ドレイン電極35の上面を露出させる第2のコンタクトホール36bが形成されている。なお、ソース電極34及びドレイン電極35は、強誘電体膜33と絶縁膜36との界面37に接し、且つ、界面37を介して対向し合うように配置されており、界面37におけるキャリアの伝導の程度、つまり界面電流の有無を検出する電極対を構成している。
本実施形態に係る半導体記憶装置では、図3(a)及び(b)に示したように、 下部電極32aとソース電極34とが、強誘電体膜33を介して互いに対向し合うように形成されていると共に、下部電極32bとドレイン電極35とが、強誘電体膜33を介して互いに対向し合うように形成されている。この点が、第1の実施形態と異なる本実施形態の特徴である。なお、下部電極32a及び32bが単位素子形成領域内に形成されている点は、第2の実施形態と同様である。
−本発明の第3の実施形態に係る半導体記憶装置の製造方法−
まず、図3(a)及び(b)に示すように、基板31の上に、互いに間隔を置いて配置されるように、導電膜よりなる下部電極32a及び32bを形成する。次に、基板31の上に、下部電極32a及び32bを覆うように強誘電体膜33を形成する。次に、強誘電体膜33の上に、互いに間隔を置いて配置されるように、導電膜よりなるソース電極34及びドレイン電極35を形成する。次に、強誘電体膜33の上に、ソース電極34及びドレイン電極35を覆うように絶縁膜36を堆積した後に、該絶縁膜36に、ソース電極34に電圧を印加できるように、ソース電極34の上面を露出させる第1のコンタクトホール36aを形成すると共に、ドレイン電極35に電圧を印加できるように、ドレイン電極35の上面を露出させる第2のコンタクトホール36bを形成する。
本実施形態に係る半導体記憶装置の製造方法では、強誘電体膜33を介して下部電極32aに対向するように、ドライエッチング法又はリフトオフ法などを用いて導電膜をパターニングしてソース電極34を形成すると共に、強誘電体膜33を介して下部電極32bに対向するように、ドライエッチング法又はリフトオフ法などを用いて導電膜をパターニングしてドレイン電極35を形成する。この点が、第1の実施形態と異なる本実施形態の特徴である。
なお、上記した本実施形態に係る半導体記憶装置及びその製造方法において、成膜方法又は材料などその他の点は第1の実施形態と同様であり、下部電極32a及び32bが単位素子形成領域内に形成される点は、第2の実施形態と同様である。
−本発明の第3の実施形態に係る半導体記憶装置における動作について−
<情報の書き込み動作>
図3(a)及び(b)に示した本実施形態に係る半導体記憶装置において、情報の書き込み動作としては、ソース電極34及びドレイン電極35と下部電極32a及び32bとの間に、正又は負の電圧を印加することによって生じるはみ出し電界39により、強誘電体膜33中に自発分極を誘起させることによって行なわれる。例えば、図3(b)では、電源38a(電圧Vapp#A )を用いて発生させる、ソース電極34の端部から下部電極32bの上面に向かって曲線的に延びる第1のはみ出し電界39a、及び電源38b(電圧Vapp#B )を用いて発生させる、ドレイン電極35の端部から下部電極32aの上面に向かって曲線的に延びる第2のはみ出し電界39bよりなるはみ出し電界39が形成されている場合が示されている。このように、強誘電体膜33における界面37の直下に位置する領域にはみ出し電界39が形成されるので、強誘電体膜33における界面37の直下に位置する領域において分極反転を生じさせ、情報を書き込むことができる。ここで、強誘電体膜33における界面37の直下に位置する領域において分極反転を生じさせるためには、ソース電極34とドレイン電極35との距離L1と、下部電極32a及び下部電極32bとの距離L2と、電圧Vapp#A 及び電圧Vapp#B の大きさとを調整すればよい。なお、上記では、電源38a及び電源38bの双方を用いてはみ出し電界39を形成する場合について説明したが、いずれか一方を用いて、強誘電体膜33における界面37の直下に位置する領域において分極反転を生じさせてもよい。
本実施形態によると、ソース電極34と下部電極32bとの間及びドレイン電極35と下部電極32aとの間のうちの少なくとも一方に電圧を印加することにより、強誘電体膜33における界面37の直下に位置する領域に選択的に電圧を効率良く形成でき、分極反転を生じさせることができる。
また、ソース電極34と下部電極32bとの間に電圧を印加することにより、ソース電極34の端部から下部電極32bの上面に向かって第1のはみだし電界39aを発生させると共に、ドレイン電極35と下部電極32aとの間に電圧を印加することにより、ドレイン電極35の端部から下部電極32aの上面に向かって第2のはみ出し電界39bを発生させる一方で、第2の実施形態と同様に、強誘電体膜33に対して直接的な電界を印加することはないので、強誘電体膜33における絶縁破壊の危険性及びリーク電流を低減することができる。
一方、情報の読み出しは、強誘電体膜33の分極の向きによってチャネルの導通状態が異なることから、このチャネルの導通状態の変化を検出することによって非破壊で行なわれる。具体的には、上記情報の書き込み動作で説明したように、はみ出し電界39により、強誘電体膜33における界面37の直下に位置する領域に分極反転が生じるので、強誘電体膜33と絶縁膜36との界面37に電子又は正孔の自由電荷が発生する。そして、自由電荷は強誘電体膜33の分極の向きによって大きく変化するので、これを利用して、強誘電体膜33の分極の向きが上向きであるか、下向きであるかを判別する。具体的には、上記した第1の実施形態における説明と同様であり、本実施形態では、例えば、図3(a)に示すように、ソース電極34とドレイン電極35との間に接続された電流計40を用いて、強誘電体膜33と絶縁膜36との界面37における界面電流の有無を検出することによって情報の読み出しが行なわれる。
(第4の実施形態)
以下、本発明の第4の実施形態に係る半導体記憶装置及びその製造方法について、図4を参照しながら説明する。
図4は、本発明の第4の実施形態に係る半導体記憶装置の構成概念図を示す要部断面図であって、情報を書き込む場合の構成及び強誘電体膜中の電気力線の概念図を併せて示している。
−本発明の第4の実施形態に係る半導体記憶装置の構成−
図4に示すように、基板41の上には、導電膜よりなる下部電極42が形成されており、該下部電極42を覆うように強誘電体膜43が形成されている。強誘電体膜43の上には、互いに間隔を置いて配置された導電膜よりなるソース電極44及び導電膜よりなるドレイン電極45が形成されている。また、強誘電体膜43の上には、ソース電極44及びドレイン電極24を覆うように高誘電率を有する高誘電率絶縁膜46が形成されており、該高誘電率絶縁膜46には、ソース電極44に電圧を印加できるように、ソース電極44の上面を露出させる第1のコンタクトホール46aが形成されていると共に、ドレイン電極45に電圧を印加できるように、ドレイン電極45の上面を露出させる第2のコンタクトホール46bが形成されている。なお、ソース電極44及びドレイン電極45は、強誘電体膜43と高誘電率絶縁膜46との界面47に接し、且つ、界面47を介して対向し合うように配置されており、界面47におけるキャリアの伝導の程度、つまり界面電流の有無を検出する電極対を構成している。このように、本実施形態に係る半導体記憶装置は、上記第2の実施形態に係る半導体記憶装置における絶縁膜26の代わりに、高誘電率を有する高誘電率絶縁膜46を備えている点で、第2の実施形態に係る半導体記憶装置と異なり、その他の構成及びこれに基づく効果は第2の実施形態と同様である。
また、本実施形態に係る半導体記憶装置の製造方法は、第2の実施形態に係る半導体記憶装置の製造方法と同様であり、図2に示す絶縁膜26を形成する代わりに高誘電率を有する高誘電率絶縁膜46を形成する点が特徴である。
ここで、高誘電率絶縁膜46の材料としては、例えばSiO2 などの低誘電率材料ではなく、HfOx などの高い比誘電率を持つ材料を用いることが好ましく、さらに、強誘電体膜43の比誘電率よりも高い比誘電率を持つ材料を用いることが好ましい。例えば、強誘電体膜45がSBTよりなる場合、この場合における強誘電体膜45の比誘電率は室温で約550であるので、この値以上の比誘電率を持つ高誘電体材料である、SrBi2Nb29 (比誘電率:約1100)、PbBi2Nb29 (比誘電率:約2100)、Bi4Ti312 (比誘電率:約1700)、SrBi4Ti415 (比誘電率:約1600)、又はPbBi4Ti415 (比誘電率:約5500)などを用いるとよい。
また、高誘電率絶縁膜46の材料として、強誘電体材料を用いることも好ましい。特に、強誘電体材料は非常に優れた絶縁性を示すと共に、強誘電体膜43の比誘電率よりも高い比誘電率を実現することが可能である。高誘電率絶縁膜46として強誘電体材料を用いる場合には、その強誘電性によって界面47におけるキャリアの伝導の挙動が変化しないように、強誘電体膜45の抗電界よりも大きい抗電界を有する強誘電体材料を用いるか、又は、その強誘電性を積極的に利用し、特許文献1に開示されているように、高誘電率絶縁膜46の上にも導電膜を形成し、高誘電率絶縁膜46及び強誘電体膜43に対して電界を印加することにより、界面47におけるチャネルが増幅されるように制御することが好ましい。
−本発明の第4の実施形態に係る半導体記憶装置における動作について−
図4に示した本実施形態に係る半導体記憶装置において、情報の書き込み動作としては、ソース電極44及びドレイン電極45と下部電極42との間に、正又は負の電圧を印加することによって生じるはみ出し電界48により、強誘電体膜43中に自発分極を誘起させることによって行なわれる。例えば、図4では、電源49(電圧Vapp)を用いて、ソース電極44及びドレイン電極45のそれぞれの端部及び側壁部から下部電極42の上面に向かって曲線的に下向きに延びるはみ出し電界48が形成されている場合を示している。本実施形態に係る半導体記憶装置は高誘電率の高誘電率絶縁膜46を備えているので、図4に示すように、ソース電極44及びドレイン電極45の端部からだけではなく、側壁部からも電界がはみ出し、また、高誘電率絶縁膜46中を迂回するように電気力線が描かれる。このように、強誘電体膜43における界面47の直下に位置する領域に、はみ出し電界48が比較的垂直に形成されるので、界面47に垂直な方向に結晶粒の分極方向が配向している、強誘電体膜43における界面47の直下に位置する領域を有効に利用することが可能になる。つまり、強誘電体膜43における界面47の直下に位置する領域において分極反転を効率良く生じさせて、情報を書き込むことができる。強誘電体膜43と高誘電率絶縁膜46との界面47においてキャリアの伝導が生じることになる。ここで、強誘電体膜43における界面47の直下に位置する領域において分極反転を生じさせるためには、ソース電極44とドレイン電極45との距離と、電圧Vapp の大きさとを調整すればよい点は、第2の実施形態と同様である。なお、本実施形態に係る図4に示した半導体記憶装置における読み出し動作については、第2の実施形態での説明と同様であるので、ここではその説明を省略する。
(第5の実施形態)
次に、本発明の第5の実施形態に係る半導体記憶装置について説明する。
本発明の第5の実施形態に係る半導体記憶装置は、強誘電体膜と絶縁膜との界面の抵抗変化を検知することで情報の書き込み及び読み出しを可能とする界面伝導素子と、当該界面伝導素子を駆動するトランジスタとを有する構造を有しており、以下では、当該界面伝導素子が、前述の図2に示した構造の界面伝導素子である場合を例として示している。
図5は、本発明の第5の実施形態に係る半導体記憶装置の構造を示す断面図である。
図5に示すように、例えばシリコンよりなる半導体基板51の上には、例えばシリコン酸化膜よりなるゲート絶縁膜53が形成されており、該ゲート絶縁膜53の上には、例えばポリシリコンよりなるトランジスタのゲート電極54が下から順に形成されている。ゲート絶縁膜53及びゲート電極54の側面には、例えばシリコン窒化膜よりなるサイドウォール55が形成されている。半導体基板51におけるサイドウォール55の側方下には、トランジスタのドレイン電極52a及びソース電極52bとして機能する不純物拡散層52が形成されている。
また、半導体基板51の上には、トランジスタを覆うように、例えばシリコン酸化膜、シリコン窒化膜、又はシリコン窒化酸化膜などよりなる第1の絶縁膜56が形成されている。第1の絶縁膜56の上には、トランジスタの上方に位置するように、界面伝導素子の書き込み電極57が形成されていると共に、例えばシリコン酸化膜、シリコン窒化膜、又はシリコン窒化酸化膜などよりなる第2の絶縁膜58が形成されている。書き込み電極57及び第2の絶縁膜58の上には、強誘電体膜59が形成されている。強誘電体膜59、第2の絶縁膜58及び第1の絶縁膜56には、これらの膜を貫通し且つ下端がトランジスタのドレイン電極52aと接続する例えばタングステンよりなるプラグ60aが形成されていると共に、下端がトランジスタのソース電極52bと接続する例えばタングステンよりなるプラグ60bが形成されている。強誘電体膜59の上には、プラグ60aを介してトランジスタのドレイン電極52aと接続する界面伝導素子のドレイン電極61aが形成されていると共に、プラグ60bを介してトランジスタのソース電極52bと接続する界面伝導素子のソース電極62bが形成されている。また、強誘電体膜59の上には、界面伝導素子のドレイン電極61a及びソース電極62bを覆うように、例えばシリコン酸化膜、シリコン窒化膜、又はシリコン窒化酸化膜などよりなる第3の絶縁膜62が形成されている。
ここで、上記構成よりなるトランジスタは、図5に示すように、ソース電極62b及びドレイン電極62aによって挟まれた強誘電体膜59と書き込み電極57とを有する界面伝導素子の下方領域に形成されることが好ましい。このようにすると、界面伝導素子とトランジスタよりなるメモリセルの面積を縮小することができる。また、後述する第6の実施形態に示すように、該メモリセルをアレイ化した際には、隣り合うメモリセルとメモリセル面積の一部を共有する構成とすることができ、半導体記憶装置の微細化を実現することができる。
ここで、強誘電体膜59としては、例えば、SBT(SrBi2Ta29)、SBTN(SrBi2(Ta,Nb)29 )、BLT((Bi,La)4Ti312 )、BiFeO3 、PbTiO3 、PZT(Pb(Zr,Ti)O3 )、PLZT((Pb,La)(Zr,Ti)O3 )、BaTiO3 、LiNbO3 、又はSrTiO3 などの分極を有する強誘電体材料を用いるとよい。
また、書き込み電極57、ドレイン電極61a、及びソース電極61bとしては、白金、金、銀、銅、又はアルミニウム等の金属材料を用いるとよい。
次に、以上の構成を有する半導体記憶装置において、界面伝導素子とトランジスタとからなるメモリセルの動作について説明する。
<書き込み動作>
まず最初に、トランジスタのドレイン電極52aに対して、書き込みデータに対応する高電圧又は低電圧を印加する。このとき、トランジスタのゲート電極54に対しては例えば低電圧を印加している。この電圧状態で、書き込み電極57に対してパルス電圧を印加すると、界面伝導素子のドレイン電極61a及びソース電極61bと書き込み電極との間に電圧が印加される。このため、界面伝導素子のドレイン電極61a及びソース電極61と書き込み電極57との間には、例えば前述の図2(b)に示したようなはみ出し電界が発生するので、界面伝導素子のドレイン電極61a及びソース電極61bと書き込み電極57とによって挟まれた強誘電体膜59には自発分極が誘起される。なお、この強誘電体膜59の分極方向は、トランジスタのドレイン電極52aへ入力されたデータに対応する電圧(高電圧又は低電圧)によってその分極方向が決定される。また、印加する電圧は、強誘電体が分極反転するのに十分な電圧を印加すればよいが、界面伝導素子のドレイン電極61aとソース電極61bとの距離や印加電圧を調整することによって実現できる。
このように、界面伝導素子のドレイン電極61a及びソース電極61bと書き込み電極57とによって挟まれた強誘電体膜59の分極反転を生じさせて、情報の書き込みを行う。
<読み出し動作>
まず最初に、トランジスタのドレイン電極52aを接地する。このとき、トランジスタのゲート電極53に対しては接地電圧を印加する。次に、トランジスタのドレイン電極52aに対して電圧を印加する。次に、トランジスタのソース電極52bに対して電圧を印加する。このとき、界面伝導素子のドレイン電極61aとソース電極61bとの間に流れる電流が、トランジスタのドレイン電極52aとソース電極52bとの間に流れるので、その電流を例えば電流計(図示せず)を用いて検出することによって情報の読み出しを行なうことができる。つまり、強誘電体膜59の分極の向きによって強誘電体膜59と第3の絶縁膜62との界面に流れる電流の有無が異なることから、この電流の有無を検出することによって情報の読み出しが行われる。このとき、印加する電圧は強誘電体が反転しない大きさの電圧であるため、読み出し後も再び書き込みを行う必要がない。
以上のように、本発明の第5の実施形態に係る半導体記憶装置では、ドレイン電極61a及びソース電極61b、書き込み電極57、強誘電体膜59、及び第3の絶縁膜62を有する界面伝導素子と、トランジスタとを用いることにより、強誘電体膜59と第3の絶縁膜62との界面抵抗の変化を利用して、情報の書き込み及び読み出しを行う。
(第6の実施形態)
次に、本発明の第6の実施形態に係る半導体記憶装置について説明する。
図6は本発明の第6の実施形態に係る半導体記憶装置の構成を示す回路図である。
図6に示す半導体記憶装置は、書き込みデータ及び読み出しデータに対応した電圧をビット線BL1 及びBL2 にそれぞれ入出力を行う入出力バッファ回路I/O1 及びI/O2 と、アレイ状に配置され、界面抵抗素子を含む界面伝導素子とワード線WL0 〜WL3 に制御されるトランジスタとからなるメモリセルa1 〜d1 及びa2 〜d2 と、入出力バッファ回路I/O1 及びI/O2 に接続すると共にメモリセルa1 〜d1 及びメモリセルa2 〜d2 内のトランジスタのドレイン電極と接続するビット線BL1 及びBL2 と、ワード線方向(WL0 〜WL3 )に隣り合うメモリセル(a1 とa2 、b1 とb2 、c1 とc2 、d1 とd2 )のそれぞれの界面伝導素子のソース電極と接続するソース線SL0 〜SL3 と、ゲート線GWLで制御され、メモリセルa1 内の界面伝導素子及びメモリセルa2 内の界面伝導素子とビット線BL1 及びBL2 との接続状態を制御する第1のスイッチS1 及びS2 と、ゲート電極によって制御され、ビット線BL1 及びBL2 とセンスアンプSA1 及びSA2 との接続状態を制御する第2のスイッチSS1 及びSS2 と、第2のスイッチSS1 及びSS2 を構成するトランジスタの一方の電極と接続するセンスアンプSA1 及びSA2 と、センスアンプSA1 及びSA2 と接続する参照電圧生成回路REF1 及びREF2 と、一端が接地される一方で他端が第2のスイッチSS1 及びSS2 を構成するトランジスタの一方の電極と接続する抵抗素子R1 及びR2 とを備えている。
メモリセルa1 〜d1 はビット線BL1 及びBL2 方向に隣り合うメモリセルと接続されており、具体的には、メモリセル内のトランジスタのソース電極と隣り合うメモリセル内のトランジスタのドレイン電極とが電気的に接続されている。例えば、メモリセルa1 内のトランジスタのソース電極とメモリセルb1 内のトランジスタのドレイン電極とが接続されている。また、メモリセルa2 〜d2 についても同様の構成である。
なお、以上では、4つのメモリセルa1 〜d1 、及び4つのメモリセルa2 〜d2 が2列に直列接続されている場合を例として説明したが、1列に含まれるメモリセルの個数及び列の個数は任意に設計することができる。
図7は、図6における第1のスイッチS1 及びS2 、メモリセルa1 〜d1 、メモリセルa2 〜d2 、ビット線BL1 及びBL2 、並びにソース線SL0 〜SL3 を含む回路構成に対応するレイアウト図である。なお、図7では、後述で詳説する図8〜図10における構成要素に対応する部分には、図8〜図10に付した符号と同一の符号を示している。
図7に示すように、ゲート線GWL(73a)とビット線BL1(84)とが平面的に交差する領域を中心に第1のスイッチS1 が形成されており、ゲート線GWL(73a)とビット線BL2 (84’)とが平面的に交差する領域を中心に第1のスイッチS2 が形成されている。また、ソース線SL0 〜SL3 (書き込み電極77b 〜77e )とビット線BL1 (84)とがそれぞれ平面的に交差する領域を中心にメモリセルa1 〜d1 内の4つのトランジスタがそれぞれ形成されており、ソース線SL0 〜SL3 (書き込み電極77b 〜77e )とビット線BL2 (84’)とがそれぞれ平面的に交差する領域を中心にメモリセルa2 〜d2 内の4つのトランジスタがそれぞれ形成されている。また、図示するように、メモリセルa1 〜d4 内のトランジスタのプラグ(80a〜80d)は隣り合うメモリセルと共有されている。
次に、本発明の第6の実施形態に係る半導体記憶装置の断面構造について説明する。
図8は、図7に示したVIII-VIII線に対応する断面図であり、図9は、図7に示したIX-IX線に対応する断面図であり、図10は、図7におけるX-X線に対応する断面図である。
図8では、図7に示した回路のうち、界面伝導素子及びトランジスタよりなるメモリセルa1 〜d1 とビット線BL1 と第1のスイッチS1 とを主として示している。なお、図8では示していないが、ビット線BL2 に沿う断面におけるメモリセルa2 〜d2 と第1のスイッチS2 の断面構造としては、以下で説明する図8の断面構造と同様であって、図7のレイアウト図上において紙面に向かって上半分に対応する構成(図7に示した符号に「’」をつけた符号)が示されている。
図8に示すように、例えばシリコンよりなる半導体基板70における例えばSTI(shallow trench isolation)よりなる分離絶縁膜71によって区画された素子形成領域には、例えばシリコン酸化膜よりなるゲート絶縁膜72a〜72e及び例えばポリシリコン膜よりなるゲート電極73a〜73eが下から順に形成されており、該ゲート絶縁膜72a〜72e及びゲート電極73a〜73eの側面には、例えばシリコン窒化膜よりなるサイドウォール74a〜74eが形成されている。また、半導体基板70におけるサイドウォール74a〜74eの側方下の領域には、ソース電極又はドレイン電極となる不純物拡散層75a〜75fが形成されている。このようにして、ゲート電極73aを含む第1のスイッチS1 となるトランジスタと、ゲート電極73b〜73eを含む4つのトランジスタとが形成されている。
また、半導体基板70上の全面には、上記の5つのトランジスタを覆うように、例えばシリコン酸化膜、シリコン窒化膜、又はシリコン酸窒化膜よりなる膜厚が約200nmの第1の絶縁膜76が形成されている。第1の絶縁膜76の上には、ゲート電極73b〜73eを含む4つのトランジスタの各々の上方に位置するように、界面伝導素子の書き込み電極77b〜77eが形成されていると共に、例えばシリコン酸化膜、シリコン窒化膜、又はシリコン窒化酸化膜などよりなる膜厚約100nmの第2の絶縁膜78が形成されている。
書き込み電極77b〜77e及び第2の絶縁膜58の上には、膜厚が約50nmの強誘電体膜79が形成されている。ここで、強誘電体膜79としては、例えば、SBT(SrBi2Ta29)、SBTN(SrBi2(Ta,Nb)29 )、BLT((Bi,La)4Ti312 )、BiFeO3 、PbTiO3 、PZT(Pb(Zr,Ti)O3 )、PLZT((Pb,La)(Zr,Ti)O3 )、BaTiO3 、LiNbO3 、又はSrTiO3 などの分極を有する強誘電体材料を用いるとよい。強誘電体膜79、第2の絶縁膜78及び第1の絶縁膜76には、これらの膜を貫通し且つ下端がトランジスタの不純物拡散層75a〜75eと接続する例えばタングステンよりなるプラグ80a〜80eが形成されている。
強誘電体膜79の上には、プラグ80a〜80eを介してトランジスタの不純物拡散層75a〜75eと接続する界面伝導素子の電流を検知するソース電極又はドレイン電極となる電極81a〜81eが形成されている。また、強誘電体膜79の上には、界面伝導素子の電極81a〜81eを覆うように、例えばシリコン酸化膜、シリコン窒化膜、又はシリコン窒化酸化膜などよりなる膜厚が200nmの第3の絶縁膜82が形成されている。第3の絶縁膜82、強誘電体膜79、第2の絶縁膜78及び第1の絶縁膜76には、これらの膜を貫通し且つ下端が不純物拡散層75fと接続する例えばタングステンよりなるプラグ83fが形成されている。また、第3の絶縁膜82の上には、下面がプラグ83fと接続するビット線BL1 である金属配線84が形成されており、該金属配線84の上には、例えばシリコン酸化膜、シリコン窒化膜、又はシリコン酸窒化膜よりなる膜厚が約150nmの第4の絶縁膜85が形成されている。
次に、図9では、メモリセルb1 及びb2 2個分と2つのビット線BL1 及びBL2 とを主として示している。
図9に示すように、半導体基板70の上には、ゲート絶縁膜72c、ゲート電極73c、及び第1の絶縁膜76が形成されている。第1の絶縁膜76の上には、書き込み電極77cが形成されており、該書き込み電極77cの上には強誘電体膜79が形成されている。強誘電体膜79の上には、第3の絶縁膜82が形成されている。第3の絶縁膜82の上には、ビット線BL1 である金属配線84及びビット線BL2 である金属配線84’が形成されている。また、第3の絶縁膜82の上には、金属配線84及び84’を覆うように第4の絶縁膜85が形成されている。
次に、図10では、メモリセルb1及びb2とメモリセルc1及びc2とが共有化している領域を主として示している。
図10に示すように、半導体基板70における素子分離絶縁膜71によって囲まれた素子形成領域には、不純物拡散層75c及び75c’が形成されている。素子分離絶縁膜71並びに不純物拡散層75c及び75c’の上には、第1の絶縁膜76、第2の絶縁膜78及び強誘電体膜79が形成されており、これらの膜を貫通し且つ下端が不純物拡散層75c及び75c’と接続するプラグ80c及び80c’が形成されている。強誘電体膜79の上には、下面がプラグ80c及び80c’の上端に接続する界面伝導素子のソース電極又はドレイン電極となる電極81c及び81c’が形成されている。
強誘電体膜79の上には、電極81c及び81c’を覆うように第3の絶縁膜82が形成されており、該第3の絶縁膜82の上には、ビット線BL1 である金属配線84及びビット線BL2 である金属配線84’が形成されている。また、第3の絶縁膜82の上には、金属配線84及び84’を覆うように第4の絶縁膜85が形成されている。
以上の構造を有する本発明の第6の実施形態に係る半導体記憶装置の動作について、前述した図7並びに図11(a)及び(b)を参照しながら以下に説明する。
図11(a)及び(b)は、データを書き込む時の電圧印加手順の一例を説明するために用いる動作波形図であって、(a)はデータ書き込み時の電圧波形を示しており、(b)はデータ読み出し時の電圧波形を示している。なお、図において、”H”は高電圧に相当する電圧を示すと共に、”L”は低電圧に相当する電圧を示している。また、図において、データの書き込み又は読み出し対象として選択されるメモリセルのワード線(WL)への印加電圧をWL(選択)、データの書き込み又は読みだし対象として選択されないメモリセルのワード線(WL)への印加電圧をWL(非選択)、メモリセルとビット線とを切り離すための第1のスイッチ(S)をONする場合におけるゲート線(GWL)への印加電圧をGWL(選択)、第1のスイッチ(S)をOFFする場合におけるゲート線(GWL)への印加電圧をGWL(非選択)、ビット線(BL)への印加電圧をBL、ソース線(SL)への印加電圧をSL、そして、センスアンプ(SA)との接続を行う第2のスイッチ(SS)への印加電圧をSSとして示している。
<書き込み動作>
まず最初に、全ての印加電圧を”L”にする。次に、選択するゲート線(GWL)への印加電圧を”H”とすると共に、データの書き込み対象として選択されないメモリセルのワード線(WL)への印加電圧を”H”とする。このようにすると、データの書き込み対象として選択するメモリセルの界面伝導素子の読み出し電極であるソース電極がビット線(BL)に電気的に接続される。この状態で、ビット線(BL)に書き込みデータに対応する書き込み電圧として”H”又は”L”の印加電圧を与える。ここで、書き込み電圧が”H”の場合であれば、ソース線(SL)の”L”の電圧との間に電位差が生じて、データの書き込み対象として選択したメモリセル内の界面伝導素子のソース線(書き込み電極)とソース電極との間の強誘電体膜(79)の分極が反転する。このとき、界面伝導素子のソース線とソース電極とは、平面的配置において、必ずしもオーバーラップする位置に配置されないが、書き込み時の電気力線ははみだし電界によってソース電極から垂直に出て、その電気力線はソース線に対して垂直に入力されるため、ソース線とソース電極との間の強誘電体膜(79)は十分に反転する。次に、ビット線(BL)に書き込み電圧を印加した状態で、ソース線(SL)にパルス電圧を印加する。このとき、書き込み電圧が”L”である場合には、データの書き込み対象として選択するメモリセル内の界面伝導素子のソース線とソース電極との間にソース線(SL)の”H”の電位差が生じて、データの書き込み対象として選択されたメモリセル内の界面伝導素子のソース線とソース電極との間の強誘電体膜(79)の分極が反転する。また、このとき、データの書き込み対象として選択されないメモリセルにおけるトランジスタのゲート電極が”H”であるので、ワード線(WL)に与える電位がトランジスタの閾値電圧程度に昇圧されるなどの設計を行っておき、また、選択しないソース線(SL)はハイインピーダンスになるように電気的に切り離されているので、データの書き込み対象として選択されないメモリセル内の界面伝導素子のソース線とソース電極との間の電位は同電位となる。これにより、データの書き込み対象として選択されないメモリセル内の界面伝導素子のソース線とソース電極との間には電圧が印加されないので、分極を減少させずに書込みを行うことができる。次に、ビット線(BL)の電位を”L”に戻して、データの書き込み対象として選択されなかったメモリセルのワード線(WL)、及び選択したゲート線(GWL)への印加電圧を共に”L”に戻して、書き込み動作を完了する。
<読み出し動作>
まず最初に、全ての印加電圧を”L”にする。次に、データの読み出し対象として選択されないメモリセルのワード線(WL)を”H”にすると共に、選択したゲート線(GWL)を”H”にする。このようにすると、データの読み出し対象として選択されたメモリセル内における界面伝導素子の読み出し電極であるソース電極がビット線に電気的に接続される。この状態において、ソース線(SL)はハイインピーダンス状態にしておくことにより、読み出し時に分極反転が生じることを防止することができる。そして、センスアンプ(SA)との接続を行う第2のスイッチ(SS)への印加電圧を”H”とする。このとき、データの読み出し対象として選択されたメモリセル内における界面伝導素子のソース電極とソース線との間の強誘電体膜(79)の分極方向により、絶縁膜(第3の絶縁膜)と強誘電体膜(79)との界面における抵抗値が異なり、該抵抗値と参照抵抗との直列抵抗が形成される。このため、データの読み出し対象として選択されたメモリセル内における界面伝導素子の界面抵抗の値が変化していると、ビット線(BL)に発生する電圧も変化することになる。この電圧をセンスアンプ(SA)によって差動増幅することにより、ビット線(BL)にデータの読み出し対象となるメモリセル内における強誘電体の分極状態によって電圧”H”又は”L”が発生する。このとき、データの読み出し対象となるメモリセル内における界面伝導素子のソース電極とソース線とは、データの書き込み時と同様に同電位になっているので、読み出しによる分極量の減少は発生しない。また、読み出しにより、データの読み出し対象となるメモリセル内における界面伝導素子のソース電極とソース線との間の強誘電体膜(79)の分極量が少し減少した場合であっても、センスアンプ(SA)による差動増幅後に”L”のデータの再書き込みが行われ、続いて、ソース線(SL)への印加電圧を”L”にすることにより、”H”のデータについても再書き込みを行うことができる。その後、センスアンプ(SA)との接続を行う第2のスイッチ(SS)、データの読み出し対象として選択しなかったメモリセルのワード線(WL)、及び選択していたゲート線(GWL)への印加電圧を”L”にすることにより、読み出し動作を完了する。
以上のようにして、本発明の第2の実施形態に係る半導体記憶装置では、第1の実施形態における界面伝導素子及びトランジスタよりなるメモリセルをアレイ状に配置した場合に、情報の読み出しを一意に決定することができ、且つ、ディスターブが生じない半導体記憶装置を提供することができる。
本発明の半導体記憶装置は、強誘電体膜を用いた不揮発性メモリとして有用であり、Siを用いないので、次世代のプロセスとして、及びロジック上に積層されたメモリデバイスとしての応用に有用である。また、本発明に係る半導体記憶装置は、高密度混載メモリにとって有用である。また、高密度スタンドアローンメモリの用途にも応用できる。
(a)及び(b)は、本発明の第1の実施形態に係る半導体記憶装置の構成概念図を示す要部断面図であって、(a)では情報を読み出す場合の構成を併せて示しており、(b)では、情報を書き込む場合の構成及び強誘電体膜中の電気力線の概念図を併せてしている。 (a)及び(b)は、本発明の第2の実施形態に係る半導体記憶装置の構成概念図を示す要部断面図であって、(a)では情報を読み出す場合の構成を併せて示しており、(b)では、情報を書き込む場合の構成及び強誘電体膜中の電気力線の概念図を併せてしている。 (a)及び(b)は、本発明の第3の実施形態に係る半導体記憶装置の構成概念図を示す要部断面図であって、(a)では情報を読み出す場合の構成を併せて示しており、(b)では、情報を書き込む場合の構成及び強誘電体膜中の電気力線の概念図を併せてしている。 本発明の第4の実施形態に係る半導体記憶装置の構成概念図を示す要部断面図であって、情報を書き込む場合の構成及び強誘電体膜中の電気力線の概念図を併せてしている。 本発明の第5の実施形態に係る半導体記憶装置の構造を示す断面図である。 本発明の第6の実施形態に係る半導体記憶装置の回路構成図である。 本発明の第6の実施形態に係る半導体記憶装置の構成を示すレイアウト図である。 本発明の第6の実施形態に係る半導体記憶装置におけるVIII-VIII線の断面図である。 本発明の第6の実施形態に係る半導体記憶装置におけるIX-IX線の断面図である。 本発明の第6の実施形態に係る半導体記憶装置におけるX-X線の断面図である。 (a)及び(b)は、本発明の第6の実施形態に係る半導体記憶装置の動作を説明する動作波形図であり、(a)は書き込み時の動作波形を示しており、(b)は読み出し時の動作波形を示している。 従来の半導体記憶装置の構成を示す要部断面図である。 本発明の課題を説明するための半導体記憶装置の回路構成図である。
符号の説明
11、21、31、41 基板
12、22、32a、32b、42 下部電極
13、23、33、43 強誘電体膜
14、24、34、44 ソース電極
15、25、35、45 ドレイン電極
16、26、36 絶縁膜
16a、16b、26a、26b、36a、36b、46a、46b コンタクトホール
17、27、37、47 界面
18、28、38a、38b、49 電源
19、29、39a、39b、49 はみ出し電界
20、30、40 電流計
51、70 半導体基板
52、75a〜25f 不純物拡散層
52a トランジスタのドレイン電極
52b トランジスタのソース電極
53、72a〜72e ゲート絶縁膜
54、73a〜73e ゲート電極
55、27a〜74e サイドウォール
56、76 第1の絶縁膜
57 書き込み電極
58、78 第2の絶縁膜
59、79 強誘電体膜
60a プラグ
61a 界面伝導素子のドレイン電極
61b 界面伝導素子のソース電極
62、82 第3の絶縁膜
77b〜77e 書き込み電極(ソース線)
80a〜80e、80a’〜80e’、83f、83f’ プラグ
81a〜81e、81a’〜81e’ 電極(ソース電極又はドレイン電極)
84、84’ ビット線となる金属配線
85 第4の絶縁膜
1 〜d1 、a2 〜d2 メモリセル
BL(BL1 、BL2 ) ビット線
WL(WL0 〜WL3 ) ワード線
SL(SL0 〜SL3 ) ソース線
GWL ゲート線
S(S1 、S2 ) 第1のスイッチ
SS(SS1 、SS2 ) 第2のスイッチ
R(R1 、R2 ) 抵抗素子
SA(SA1 、SA2 ) センスアンプ
REF(REF1 、REF2 ) 参照電圧生成回路
I/O(I/O1 、I/O2 ) 入出力バッファ回路

Claims (17)

  1. 基板上に形成された導電膜と、
    前記導電膜の上方又は下方に形成された強誘電体膜と、
    前記強誘電体膜を挟んで前記導電膜と対向する位置に配置され、且つ、互いに間隔を置いて配置されたソース電極及びドレイン電極と、
    前記ソース電極と前記ドレイン電極との間に形成された絶縁膜とを備えていることを特徴とする半導体記憶装置。
  2. 前記導電膜は、平面的に見て、前記ソース電極が存在する領域、前記ドレイン電極が存在する領域、及び、前記強誘電体膜と前記絶縁膜との界面が存在する領域によって構成される単位素子形成領域毎に形成されていることを特徴とする請求項1に記載の半導体記憶装置。
  3. 前記導電膜は、前記強誘電体膜と前記絶縁膜との界面の上方又は下方に位置する領域に形成されていることを特徴とする請求項1に記載の半導体記憶装置。
  4. 前記導電膜と、前記ソース電極及び前記ドレイン電極のうちの少なくとも一方とを利用して、前記強誘電体膜における前記絶縁膜の上方又は下方に位置する領域に電界を形成する電界形成手段をさらに備えていることを特徴とする請求項1〜3のうちのいずれか1項に記載の半導体記憶装置。
  5. 前記導電膜は、
    前記強誘電体膜を介して前記ソース電極と対向するように形成された第1の部分と、
    前記導電膜と間隔を置いて配置され、前記強誘電体膜を介して前記ドレイン電極と対向するように形成された第2の部分とからなることを特徴とする請求項1に記載の半導体記憶装置。
  6. 前記第1の部分及び前記ドレイン電極よりなる組み合わせ、並びに前記第2の部分及び前記ソース電極よりなる組み合わせのうちの少なくとも一方を利用して、前記強誘電体膜における前記絶縁膜の上方又は下方に位置する領域に電界を形成する電界形成手段をさらに備えていることを特徴とする請求項5に記載の半導体記憶装置。
  7. 前記強誘電体膜における前記絶縁膜の上方又は下方に位置する領域に含まれる結晶粒の分極方向は、前記強誘電体膜における前記絶縁膜の上方又は下方に位置する領域に形成される電界の方向とほぼ一致していることを特徴とする請求項4又は6に記載の半導体記憶装置。
  8. 前記強誘電体膜における前記絶縁膜の上方又は下方に位置する領域は、単一の結晶粒によって構成されていることを特徴とする請求項1〜7のうちのいずれか1項に記載の半導体記憶装置。
  9. 前記絶縁膜の比誘電率は、前記強誘電体膜の比誘電率よりも高いことを特徴とする請求項1〜8のうちのいずれか1項に記載の半導体記憶装置。
  10. 前記絶縁膜は、強誘電体によって構成されていることを特徴とする請求項1〜9のうちのいずれか1項に記載の半導体記憶装置。
  11. 半導体基板上に形成されたゲート電極と、
    互いに間隔を置いて配置され、前記ゲート電極によって制御されるチャネルと電気的に接続する第1のソース電極及び第1のドレイン電極とを有する第1の素子と、
    前記第1の素子を覆うように配置された第1の絶縁膜上に形成された導電膜と、
    前記導電膜の上に形成され、強誘電体膜及び第2の絶縁膜よりなる積層構造と、
    前記強誘電体膜と前記第2の絶縁膜との界面に電流を印加可能な位置に形成された第2のソース電極及び第2のドレイン電極とを有する第2の素子とを備えており、
    前記第1のソース電極は、前記第2のソース電極と電気的に接続されており、
    前記第1のドレイン電極は、前記第2のドレイン電極と電気的に接続されていることを特徴とする半導体記憶装置。
  12. 前記第1の素子は、前記第2の素子の下方領域に配置されていることを特徴とする請求項11に記載の半導体記憶装置。
  13. 前記第1の素子及び前記第2の素子よりなるメモリセルがビット線方向及びワード線方向に行列状に配置されてなるメモリセルアレイを有し、
    前記メモリセルアレイにおけるビット線方向の各メモリセル群において、一のメモリセルと、前記一のメモリセルにビット線方向で隣り合うメモリセルとは、前記第1のソース電極又は前記第1のドレイン電極を共有していることを特徴とする請求項11に記載の半導体記憶装置。
  14. 前記第1の素子及び前記第2の素子よりなるメモリセルがビット線方向及びワード線方向に行列状に配置されてなるメモリセルアレイを有し、
    前記メモリセルアレイにおけるビット線方向の各メモリセル群において、一のメモリセルと、前記一のメモリセルにビット線方向で隣り合うメモリセルとは、前記第2のソース電極又は前記第2のドレイン電極を共有していることを特徴とする請求項11に記載の半導体記憶装置。
  15. 半導体基板上に複数のメモリセルがビット線方向及びワード線方向に行列状に配置されてなるメモリセルアレイを有する半導体記憶装置の駆動方法であって、
    前記メモリセルは、
    前記半導体基板上に形成されたゲート電極と、互いに間隔を置いて配置され、前記ゲート電極によって制御されるチャネルと電気的に接続する第1のソース電極及び第1のドレイン電極とを有する第1の素子と、
    前記半導体基板上に、前記第1の素子を覆うように配置された第1の絶縁膜上に形成された導電膜と、前記導電膜の上に形成され、強誘電体膜及び第2の絶縁膜よりなる積層構造と、前記強誘電体膜と前記第2の絶縁膜との界面に電流を印加可能な位置に形成され、前記第1のソース電極と電気的に接続する第2のソース電極と、前記第1のドレイン電極と電気的に接続する第2のドレイン電極とを有する第2の素子とによって構成され、
    前記メモリセルアレイにおけるビット線方向の各メモリセル群において、一のメモリセルと、前記一のメモリセルに前記ビット線方向で隣り合うメモリセルとは、前記第1のソース電極又は前記第1のドレイン電極を共有し、且つ、前記第2のソース電極又は前記第2のドレイン電極を共有しており、
    前記複数のメモリセルのうちデータの書き込み又は読み出しの動作対象として選択するメモリセルにおける前記ゲート電極と接地する工程(a)と、
    前記複数のメモリセルのうち前記動作対象として選択しないメモリセルにおける前記ゲート電極に対して電圧を印加する工程(b)とを備えることを特徴とする半導体記憶装置の駆動方法。
  16. 前記メモリセルには、
    前記ビット線方向の各メモリセル群における前記第1のドレイン電極及び前記第2のドレイン電極と接続するビット線と、
    前記導電膜は、前記ワード線方向の各メモリセル群における各前記第2のソース電極同士を接続するソース線であって、
    前記工程(a)及び前記工程(b)よりも後に、
    前記ビット線に書き込みデータに対応する電圧を印加する工程(c)と、
    前記工程(c)よりも後に、前記ソース線にパルス電圧を印加する工程(d)とを備えることを特徴とする請求項15に記載の半導体記憶装置の駆動方法。
  17. 前記メモリセルには、
    前記ビット線方向の各メモリセル群における前記第1のドレイン電極及び前記第2のドレイン電極と接続するビット線が設けられており、
    前記導電膜は、前記ワード線方向の各メモリセル群における各前記第2のソース電極同士を接続するソース線であって、
    前記工程(a)及び前記工程(b)よりも後に、
    前記ソース線にパルス電圧を印加する工程と(e)と、
    前記工程(e)よりも後に、前記ビット線に出現する電圧を検出する工程(f)とを備えることを特徴とする請求項15に記載の半導体記憶装置の駆動方法。
JP2006058486A 2005-09-14 2006-03-03 半導体記憶装置及びその製造方法 Pending JP2007110068A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006058486A JP2007110068A (ja) 2005-09-14 2006-03-03 半導体記憶装置及びその製造方法
US11/520,011 US7629635B2 (en) 2005-09-14 2006-09-13 Semiconductor memory and driving method for the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005267553 2005-09-14
JP2006058486A JP2007110068A (ja) 2005-09-14 2006-03-03 半導体記憶装置及びその製造方法

Publications (1)

Publication Number Publication Date
JP2007110068A true JP2007110068A (ja) 2007-04-26

Family

ID=37883198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006058486A Pending JP2007110068A (ja) 2005-09-14 2006-03-03 半導体記憶装置及びその製造方法

Country Status (2)

Country Link
US (1) US7629635B2 (ja)
JP (1) JP2007110068A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013255A1 (ja) * 2009-07-31 2011-02-03 株式会社 東芝 不揮発性記憶装置
WO2017086399A1 (ja) * 2015-11-19 2017-05-26 国立大学法人東京大学 不揮発性メモリ素子、不揮発性メモリおよび不揮発性メモリの制御方法
KR20210012648A (ko) * 2019-07-26 2021-02-03 한양대학교 산학협력단 다치화를 구현한 강유전체 물질 기반의 3차원 플래시 메모리 및 그 동작 방법

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8736151B2 (en) * 2006-09-26 2014-05-27 Velos Industries, LLC Electric generator
JP5190275B2 (ja) * 2008-01-09 2013-04-24 パナソニック株式会社 半導体メモリセル及びそれを用いた半導体メモリアレイ
US9076805B2 (en) * 2012-07-14 2015-07-07 Infineon Technologies Ag Current sense transistor with embedding of sense transistor cells
US11322519B2 (en) * 2020-05-28 2022-05-03 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method of fabricating the same
US11721747B2 (en) * 2021-08-12 2023-08-08 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit, transistor and method of fabricating the same
US11527649B1 (en) * 2021-08-30 2022-12-13 Taiwan Semiconductor Manufacturing Company Limited Ferroelectric field effect transistor devices and methods for forming the same
US11646376B2 (en) * 2021-09-20 2023-05-09 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027947A (en) * 1996-08-20 2000-02-22 Ramtron International Corporation Partially or completely encapsulated top electrode of a ferroelectric capacitor
JP3915868B2 (ja) * 2000-07-07 2007-05-16 セイコーエプソン株式会社 強誘電体メモリ装置およびその製造方法
JP4100958B2 (ja) 2002-05-16 2008-06-11 財団法人大阪産業振興機構 強誘電体メモリ素子とその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013255A1 (ja) * 2009-07-31 2011-02-03 株式会社 東芝 不揮発性記憶装置
JP5419983B2 (ja) * 2009-07-31 2014-02-19 株式会社東芝 不揮発性記憶装置
US9379320B2 (en) 2009-07-31 2016-06-28 Kabushiki Kaisha Toshiba Nonvolatile memory device
WO2017086399A1 (ja) * 2015-11-19 2017-05-26 国立大学法人東京大学 不揮発性メモリ素子、不揮発性メモリおよび不揮発性メモリの制御方法
KR20210012648A (ko) * 2019-07-26 2021-02-03 한양대학교 산학협력단 다치화를 구현한 강유전체 물질 기반의 3차원 플래시 메모리 및 그 동작 방법
KR102219753B1 (ko) 2019-07-26 2021-02-24 한양대학교 산학협력단 다치화를 구현한 강유전체 물질 기반의 3차원 플래시 메모리 및 그 동작 방법

Also Published As

Publication number Publication date
US7629635B2 (en) 2009-12-08
US20070063238A1 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
US5300799A (en) Nonvolatile semiconductor storage device with ferroelectric capacitors
JP2007110068A (ja) 半導体記憶装置及びその製造方法
KR100899583B1 (ko) 반도체 소자, 이 반도체 소자를 이용한 반도체 기억 장치,그 데이터 기록 방법, 데이터 판독 방법 및 이들의 제조방법
US7123503B2 (en) Writing to ferroelectric memory devices
KR100406536B1 (ko) 산소확산방지막으로서 알루미늄 산화막을 구비하는강유전체 메모리 소자 및 그 제조 방법
US20050013157A1 (en) Methods of reading junction-isolated depletion mode ferroelectric memory devices
KR100895740B1 (ko) 강유전체형 불휘발성 반도체 메모리
US6191441B1 (en) Ferroelectric memory device and its drive method
KR100261221B1 (ko) 단일 트랜지스터 셀 및 이를 제조하는 방법 및 이 소자로 구성된 메모리 회로와 이를 구동하는 방법
KR20040038893A (ko) 강유전체형 불휘발성 반도체 메모리
US6172897B1 (en) Semiconductor memory and write and read methods of the same
US6205048B1 (en) Single transistor cell, method for manufacturing the same, memory circuit composed of single transistor cells, and method for driving the same
JP2005503632A (ja) 強誘電体メモリおよびその動作方法
JP2001043694A (ja) 半導体記憶素子
US6449185B2 (en) Semiconductor memory and method for driving the same
US7952907B2 (en) Ferroelectric random access memory device
US6753560B2 (en) Semiconductor memory and method for driving the same
JP4827316B2 (ja) 強誘電体トランジスタ型不揮発性記憶素子の駆動方法
JP4720046B2 (ja) 強誘電体型不揮発性半導体メモリの駆動方法
JP2000269444A (ja) 誘電体メモリ装置
JP2007235072A (ja) 半導体記憶装置及びその駆動方法
JP2003282838A (ja) 強誘電体キャパシタおよびその製造方法、メモリセルアレイ、誘電体キャパシタの製造方法、ならびに、メモリ装置
KR100624472B1 (ko) 강유전체 기억소자 및 그의 제조 방법
JP2007235071A (ja) 半導体記憶装置及びその駆動方法
JP2000058768A (ja) 強誘電体メモリ装置