JP2007106884A - セルロースアシレートフィルム、その製造方法、光学補償フィルム、偏光板および液晶表示装置 - Google Patents

セルロースアシレートフィルム、その製造方法、光学補償フィルム、偏光板および液晶表示装置 Download PDF

Info

Publication number
JP2007106884A
JP2007106884A JP2005299128A JP2005299128A JP2007106884A JP 2007106884 A JP2007106884 A JP 2007106884A JP 2005299128 A JP2005299128 A JP 2005299128A JP 2005299128 A JP2005299128 A JP 2005299128A JP 2007106884 A JP2007106884 A JP 2007106884A
Authority
JP
Japan
Prior art keywords
group
film
cellulose acylate
carbon atoms
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2005299128A
Other languages
English (en)
Inventor
Sumio Otani
純生 大谷
Hiroaki Sata
博暁 佐多
Takahiro Moto
隆裕 本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2005299128A priority Critical patent/JP2007106884A/ja
Publication of JP2007106884A publication Critical patent/JP2007106884A/ja
Abandoned legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Moulding By Coating Moulds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

【課題】光学的異方性が小さく実質的に光学的等方性であり、さらには輝点異物の少ないセルロースアシレートフィルム、該フィルムを高生産性で安価に製造する方法、該フィルムを用いた光学補償フィルム、偏光板および液晶表示装置を提供すること。
【解決手段】下記式(I)から(IV)をすべて満たし、且つアシル基置換度が2.75から2.86であることを特徴とするセルロースアシレートフィルム、その製造方法、該フィルムを用いた光学補償フィルム、偏光板および液晶表示装置。(I)0≦Re(590)≦10、(II)−50≦Rth(590)≦7、(III)|Re(400)−Re(700)|≦10、(IV)|Rth(400)−Rth(700)|≦35
【選択図】なし

Description

本発明は液晶表示装置に有用なセルロースアシレートフィルムおよびその製造方法に関するものである。また、さらにそれを用いた光学補償フィルム、偏光板などの光学材料および液晶表示装置に関するものである。
従来、セルロースアシレートフィルムはその強靭性と難燃性から写真用支持体や各種光学材料に用いられてきた。特に、近年は液晶表示装置用の光学透明フィルムとして多く用いられている。セルロースアシレートフィルムは、光学的に透明性が高いことと、光学的に等方性が高いことから、液晶表示装置のように偏光を取り扱う装置用の光学材料として優れており、これまで偏光子の保護フィルムや、斜め方向からの見た表示を良化(視野角補償)できる光学補償フィルムの支持体として用いられてきた。
液晶表示装置用の部材のひとつである偏光板には偏光子の少なくとも片側に偏光子の保護フィルムが貼合によって形成されている。一般的な偏光子は延伸されたポリビニルアルコール(PVA)系フィルムをヨウ素または二色性色素で染色することにより得られる。多くの場合、偏光子の保護フィルムとしてはPVAに対して直接貼り合わせることができる、セルロースアシレートフィルム、なかでもトリアセチルセルロースフィルムが用いられている。偏光子の保護フィルムは、光学的等方性に優れることが重要であり、偏光子の保護フィルムの光学特性が偏光板の特性を大きく左右する。
最近の液晶表示装置においては、視野角特性の改善がより強く要求されるようになっており、偏光子の保護フィルムや光学補償フィルムの支持体などの光学的に透明なフィルムは、より光学的に等方性であることが求められている。光学的に等方性であるとは、光学透明フィルムの複屈折と厚みの積で表されるレターデーション値が小さいことが重要である。とりわけ、斜め方向からの表示良化のためには、正面方向のレターデーション(Re)だけでなく、膜厚方向のレターデーション(Rth)を小さくする必要がある。具体的には光学透明フィルムの光学特性を評価した際に、フィルム正面から測定したReが小さく、角度を変えて測定してもそのReが変化しないことが要求される。
そこでセルロースアシレートフィルムの代わりにポリカーボネート系フィルムや熱可塑性シクロオレフィンフィルムを用いて、Reの角度変化の小さい光学透明フィルムの提案がなされた(ZEONOR(日本ゼオン社製)や、ARTON(JSR社製)など)。しかし、これらの光学透明フィルムは、偏光子の保護フィルムとして使用する場合、フィルムが疎水的なためにPVAとの貼合性に問題がある。またフィルム面内全体の光学特性が不均一であることも問題である。それに対して特許文献1ではPVAへの貼合適正に優れるセルロースアシレートフィルムを、より光学的異方性を低下させて改良し、正面のReをほぼゼロとし且つレターデーションの角度変化も小さい、すなわちRthもほぼゼロとした光学的に等方性である光学的に透明なフィルムが提案されている。該特許文献には、セルロースアシレートのアシル基置換度を大きくすることによって光学的異方性を低下できることが開示されている。
一方、セルロースアシレートフィルムを高速製膜する方法としては冷却ゲル化製膜法が知られている(特許文献2)。この方法はセルロースアシレートの高濃度溶液を流延し、ほとんど乾燥せずに直ちに冷却することによってゲル化させ、支持体から剥離して乾燥する方法である。この製膜法では、乾燥の初期から両面乾燥を行うため乾燥がはやくなり、従って高速製膜ができる。
特開2005−120352号公報 特開昭62−115035号公報
上記特許文献1においては、光学異方性の小さいセルロースアシレートフィルムを得ることに成功しているが、開示されている製造方法は必ずしも十分な生産性を有するものではなく、さらなる生産性の向上が求められていた。また、セルロースアシレートのアシル基置換度を大きくすると溶剤に対する溶解性が低下する傾向があり、そのため溶解に負荷を要したり、溶液のろ過が困難になる結果、高置換度のセルロースアシレートを用いて製膜されたフィルムでは異物が増加する可能性があるという問題があることがわかった。
すなわち本発明の目的は、光学的異方性(Re、Rth)が小さく実質的に光学的等方性であり、さらには輝点異物の少ないセルロースアシレートフィルム、該フィルムを高生産性で安価に製造する方法、該フィルムを用いた光学補償フィルム、偏光板および液晶表示装置を提供することである。
本発明者らは、鋭意検討した結果、置換度2.75〜2.86の通常置換度のセルロースアシレートを原料に用いて、光学異方性が小さく、さらには輝点異物の少ないセルロースアシレートフィルムを、少ない工程負荷で生産性よく製造することに成功した。
また本発明においては、セルロースアシレートフィルムの溶液流延製膜方法において冷却ゲル化製膜法を用いる等により、フィルムの高速乾燥を実現することにより効果的に光学異方性、特に膜厚方向のレターデーションを低下させることに成功した。さらに、冷却ゲル化製膜法によれば、弾性率がより大きいセルロースアシレートフィルムを得ることができるという予期せぬ優れた効果を奏することを見出した。
また、レターデーション低下剤をセルロースアシレートフィルムに添加することにより、より効果的にレターデーション、特に膜厚方向のレターデーションを低減することに成功した。
これらの方法を用いることでアシル置換度の小さいセルロースアシレートを原料に用いた場合でも光学異方性の小さいセルロースアシレートフィルムが提供できることを見出した。
本発明は、以下のとおりである。
1)下記式(I)から(IV)をすべて満たし、且つアシル基置換度が2.75から2.86であることを特徴とするセルロースアシレートフィルム。
(I)0≦Re(590)≦10
(II)−50≦Rth(590)≦7
(III)|Re(400)−Re(700)|≦10
(IV)|Rth(400)−Rth(700)|≦35
[式中、Re(λ)は波長λnmにおける正面レターデーション値(単位:nm)、Rth(λ)は波長λnmにおける膜厚方向のレターデーション値(単位:nm)である。]
2)オクタノール・水分配係数(logP値)が0〜10である化合物の少なくとも1種を、セルロースアシレート固形分に対して0.01〜30質量%の割合で含むことを特徴とする上記1)に記載のセルロースアシレートフィルム。
3)前記オクタノール・水分配係数(logP値)が0〜10である化合物が、下記一般式(1)から(6)のいずれかであらわされる化合物であることを特徴とする上記2)に記載のセルロースアシレートフィルム。
Figure 2007106884
[式(1)中、R1はアリール基を表す。RおよびRはそれぞれ独立にアルキル基またはアリール基を表し、少なくとも一方はアリール基である。また、アルキル基およびアリール基はそれぞれ置換基を有していてもよい。]
一般式(2)
Figure 2007106884
[式(2)中、R4、R5およびR6はそれぞれ独立にアルキル基を表す。また、アルキル基はそれぞれ置換基を有していてもよい。]
一般式(3)
Figure 2007106884
(式(3)中、R、R、RおよびRは、それぞれ、水素原子、置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表す。X、X、XおよびXは、それぞれ、単結合、−CO−および−NR−(Rは置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表す)からなる群から選ばれる1種以上の基から形成される2価の連結基を表す。a、b、cおよびdは0以上の整数であり、a+b+c+dは2以上である。Qは(a+b+c+d)価の有機基を表す。)
一般式(4)
Figure 2007106884
[式(4)中、R1はアルキル基またはアリール基を表し、R2およびR3は、それぞれ独立に、水素原子、アルキル基またはアリール基を表す。R1、R2およびR3の炭素原子数の総和は10以上である。]
Figure 2007106884
[式(5)中、R4およびR5は、それぞれ独立に、アルキル基またはアリール基を表す。R4およびR5の炭素原子数の総和は10以上である。]
Figure 2007106884
(式(6)中、R1は置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表し、R2は水素原子、置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表す。L1は、2価〜6価の連結基を表し、nはL1の価数に応じた2〜6の整数を表す。)
4)波長200〜400nmの紫外領域に吸収を持つ化合物の少なくとも1種を、セルロースアシレートに対して0.01〜30質量%の割合で含むことを特徴とする上記2)または3)に記載のセルロースアシレートフィルム。
5)前記アシル基がアセチル基であるセルロースアシレートを使用することを特徴とする上記1)〜4)のいずれかに記載のセルロースアシレートフィルム。
6)セルロースアシレート溶液を支持体上に流延する工程、流延膜をフィルムとして剥離する工程、剥離したフィルムを乾燥する工程を含むセルロースアシレートフィルムの製造方法において、残留揮発分が190%の状態から5%の状態になるまで1.5〜5分で乾燥することを特徴とする上記1)〜5)のいずれかに記載のセルロースアシレートフィルムを製造する方法。
7)15℃以下に冷却した支持体上にセルロースアシレート溶液を流延し、残留揮発分が150〜330%の状態で該支持体から流延膜を剥離することを特徴とする上記6)に記載のセルロースアシレートフィルムの製造方法。
8)前記セルロースアシレート溶液中のセルロースアシレート濃度が18〜24質量%であることを特徴とする上記6)または7)に記載のセルロースアシレートフィルムの製造方法。
9)上記1)〜5)のいずれかに記載のセルロースアシレートフィルムを含有することを特徴とする光学補償フィルム。
10)上記1)〜5)のいずれかに記載のセルロースアシレートフィルムまたは上記9)に記載の光学補償フィルムを少なくとも1枚用いたことを特徴とする偏光板。
11)上記1)〜5)のいずれかに記載のセルロースアシレートフィルム、上記9)に記載の光学補償フィルム、または上記10)に記載の偏光板を少なくとも1枚用いたことを特徴とする液晶表示装置。
本発明によれば、光学的異方性(Re、Rth)が小さく実質的に光学的等方性であり、さらには輝点異物の少ないセルロースアシレートフィルム、該フィルムを高生産性で安価に製造する方法、該フィルムを用いた光学補償フィルム、偏光板および液晶表示装置を提供することができる。
また、本発明によれば、従来よりも弾性率が大きいセルロースアシレートフィルムを得ることができる。
以下、本発明の具体的態様について詳細に説明する。以下の本発明の記述において、セルロースアシレート中の含有成分量、例えば残留硫酸量、微量金属成分量などは当業界の慣例に従ってセルロースアシレートに対する質量基準の「ppm」によって記述するが、これはセルロースアシレートに対する「mg/kg」と同じである。
[レターデーション、Re、Rth]
本明細書において、Re、Rthは各々、波長λにおける正面レターデーションおよび膜厚方向のレターデーションを表す。ReはKOBRA 21ADH(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。Rthは前記Re、正面の遅相軸(KOBRA 21ADHにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して+40°傾斜した方向から波長λnmの光を入射させて測定したレターデーション値、および正面の遅相軸を傾斜軸(回転軸)としてフィルム法線方向に対して−40°傾斜した方向から波長λnmの光を入射させて測定したレターデーション値の計3つの方向で測定したレターデーション値を基にKOBRA 21ADHが算出する。ここで平均屈折率の仮定値はポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する。
セルロースアセテート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。
これら平均屈折率の仮定値と膜厚を入力することで、KOBRA21ADHはn、n、nを算出する。
本明細書においては特に断らない限り、測定は25℃、60%RHの条件で行い、測定波長λは590nmを使用した。また、直接測定不可能な波長のレターデーションについては、Cauthyの式を用い、周辺の波長のレターデーション値よりフィッティングで求めた。
本発明のセルロースアシレートフィルムの光学的異方性、特に波長590nmで測定した正面レターデーションRe(590)および膜厚方向のレターデーションRth(590)は、下記式(I)または(II)をみたす範囲であることが好ましい。光学異方性の小さいセルロースアシレートフィルムを用いることにより、複屈折率を有する光学異方性層と併用すると、光学異方性層の光学性能のみを効果的に発現することができる。また光学異方性の小さいセルロースアシレートフィルムを偏光板保護フィルムとして用いることにより、保護フィルムに起因する余計な複屈折の発生を抑制することができる。
(I)0≦Re(590)≦10
(II)−50≦Rth(590)≦7
(単位:nm。以下同様。)
上記式(I)、(II)は
(I)0≦Re(590)≦5
(II)−25≦Rth(590)≦7
であることがより好ましく、
(I)0≦Re(590)≦3
(II)|Rth(590)|≦5
であることがより好ましく、
(I)0≦Re(590)≦2
(II)|Rth(590)|≦2
であることが特に好ましい。
(レターデーションの波長分散|Re(400)−Re(700)|、及び|Rth(400)−Rth(700)|)
本発明においてレターデーションの波長分散とは、上記方法により算出した波長400nm、及び700nmにおけるRe、及びRthのそれぞれの差の絶対値により求めた。レターデーション波長分散が小さいフィルムほど、斜め方向から見たときのディスプレイの色味変化が小さく、視認性に優れた表示装置を作製することができる。
本発明のセルロースアシレートフィルムの光学的異方性、特に波長400nm、及び700nmにおける正面レターデーションおよび膜厚方向のレターデーションが下記式(III)および(IV)をみたす範囲であることが好ましい。
(III)|Re(400)−Re(700)|≦10
(IV)|Rth(400)−Rth(700)|≦35
上記式(III)および(IV)は
(III)|Re(400)−Re(700)|≦7
(IV)|Rth(400)−Rth(700)|≦25
であることがより好ましく、
(III)|Re(400)−Re(700)|≦5
(IV)|Rth(400)−Rth(700)|≦15
であることが特に好ましい。
[セルロースアシレート原料綿]
本発明に用いられるセルロースアシレート原料のセルロースとしては、綿花リンタや木材パルプ(広葉樹パルプ,針葉樹パルプ)などがあり、何れの原料セルロースから得られるセルロースアシレートでも使用でき、場合により混合して使用してもよい。これらの原料セルロースについての詳細な記載は、例えばプラスチック材料講座(17)繊維素系樹脂(丸澤、宇田著、日刊工業新聞社、1970年発行)や発明協会公開技報2001−1745(7頁〜8頁)に見られる。
[セルロースアシレート置換度、平均酢化度]
次に上述のセルロースを原料に製造される本発明のセルロースアシレートについて記載する。本発明のセルロースアシレートはセルロースの水酸基がアシル化されたものである。アシル基としては炭素原子数が2のアセチル基から炭素原子数が22のものまでいずれも用いることができる。セルロースの水酸基に置換する酢酸及び/又は炭素原子数3〜22の脂肪酸の結合度を測定し、計算によって置換度あるいは平均酢化度を得ることができる。その測定方法としては、ASTMのD−817−91に準じて実施することが出来る。
光学的異方性ReがゼロかつRthがゼロに近くなるようにするためには、できるだけ置換度の高いセルロースアシレートを用いることが好ましい。セルロースアシレートの平均置換度の理論的な上限値は3.00であるが、平均置換度の値が2.86を越えて3.00に近くなればなるほど溶剤に対する溶解性が低下し、フィルム製造が困難になる。特許文献1では置換度が2.87以上のセルロースエステルを使用しているが、このような高置換度のセルロースアシレートを十分に溶解するためには、高温高圧条件で溶解したり、−70℃以下まで冷却することがのぞましく、製造工程の負荷が大きかった。本発明のセルロースアシレートフィルムの場合は、セルロースの水酸基へのアシル置換度が2.75〜2.86であるセルロースアシレートを使用することにより、溶解性が著しく改善され、異物の少ないセルロースアシレートフィルムを提供できるようになった。アシル置換度は2.78〜2.85であることが更に望ましく、2.80〜2.84であることが特に望ましい。一方置換度が2.75よりも小さいと、好ましいRe及びRthを得ることが難しくなる。
セルロースの水酸基に置換する酢酸及び/又は炭素原子数3〜22の脂肪酸のうち、炭素数2〜22のアシル基としては、脂肪族アシル基でも芳香族アシル基でもよく特に限定されず、セルロースユニットへの置換形態では、単一アシル基でも2種類以上のアシル基の混合エステルでもよい。それらは、例えばセルロースのアルキルカルボニルエステル、アルケニルカルボニルエステルあるいは芳香族カルボニルエステル、芳香族アルキルカルボニルエステルなどであり、それぞれさらに置換された基を有していてもよい。これらの好ましいアシル基としては、アセチル、プロピオニル、ブタノイル、へプタノイル、ヘキサノイル、オクタノイル、デカノイル、ドデカノイル、トリデカノイル、テトラデカノイル、ヘキサデカノイル、オクタデカノイル、iso−ブタノイル、t−ブタノイル、シクロヘキサンカルボニル、オレオイル、ベンゾイル、ナフチルカルボニル、シンナモイルの各基などを挙げることが出来る。これらの中でも、アセチル、プロピオニル、ブタノイル、ドデカノイル、オクタデカノイル、t−ブタノイル、オレオイル、ベンゾイル、ナフチルカルボニル、シンナモイルなどの各基が好ましく、アセチル基、プロピオニル基、ブタノイル基がより好ましい。
上述のセルロースの水酸基に置換するアシル置換基のうちで、実質的にアセチル基のみからなる場合、または実質的にアセチル基/プロピオニル基/ブタノイル基の少なくとも2種類からなる場合においても、その全置換度が2.75〜2.86の場合に溶剤への溶解性が良好であり、かつセルロースアシレートフィルムの光学異方性が低下できることがわかった。より好ましいアシル置換度は2.78〜2.85であり、さらに望ましくは2.80〜2.84である。
[セルロースアシレートの重合度]
本発明で好ましく用いられるセルロースアシレートの重合度は、粘度平均重合度で180〜700であり、セルロースアセテートにおいては、200〜550がより好ましく、250〜450が更に好ましく、280〜400が特に好ましい。重合度が高すぎるとセルロースアシレートのドープ溶液の粘度が高くなり、流延によりフィルム作製が困難になる。重合度が低すぎると作製したフィルムの強度が低下してしまう。平均重合度は、宇田らの極限粘度法(宇田和夫、斉藤秀夫、繊維学会誌、第18巻第1号、105〜120頁、1962年)により測定できる。特開平9−95538号公報に詳細に記載されている。
(セルロースアシレートの粘度特性)
セルロースアシレートの固有粘度特性は「6%粘度値」で表される。6%粘度は、メチレンクロライドとメタノールの質量比率91対9の混合溶媒にセルロースアシレートを6質量%溶解し、オストワルド粘度計を用いて25℃における流下時間を測定し、次式により6%粘度を算出する。
6%粘度(mPa・s)=流下時間(秒)×粘度計係数
「粘度計係数」は粘度計較正用標準液を用いて、上記溶液と同様の操作で流下秒数を測定して求める。
ここに、「粘度計係数=標準液の絶対粘度(cps)×溶液の密度(1.235g/cm)/標準液の密度(g/cm)/標準液の流下時間(秒)」である。
本発明で好ましい6%粘度値は260から700である。6%粘度値が260以上において、製膜時加圧ダイの内圧を十分に高く設定でき、幅方向に均一に押し出すことができ、好ましい。6%粘度値が700以下において、セルロースアシレート溶液をろ過する際に適切な過圧力によってろ過することができ、好ましい。6%粘度値は300から500が更に好ましく、300から430が特に好ましい。
(平均分子量)
また、本発明で好ましく用いられるセルロースアシレートの分子量分布はゲルパーミエーションクロマトグラフィーによって評価される。数平均分子量Mnの好ましい範囲は5万から15万であり、より好ましくは7万から12万である。質量平均分子量Mwの好ましい範囲は13万から36万であり、より好ましくは20万から31万である。その多分散性指数Mw/Mn(Mwは質量平均分子量、Mnは数平均分子量)が小さく、分子量分布が狭いことが好ましい。具体的なMw/Mnの値としては、2.0〜4.0であることが好ましく、2.3〜3.4であることがさらに好ましい。Mw/Mnが小さすぎるとセルロースアシレート溶液の粘度が小さくなり、大きすぎると低分子成分が溶出しやすくなったり溶液粘度が大きくなったりして、いずれも好ましくない。Z平均分子量Mzの好ましい範囲は19万から80万であり、より好ましくは40万から65万である。
低分子成分を除去すると、平均分子量(重合度)が高くなる。しかし同じ平均分子量同士のセルロースアシレート同士で比較すると、低分子成分を除去したものの方が、溶液にしたときの粘度は通常のセルロースアシレートよりも低くなるため有用である。低分子成分の少ないセルロースアシレートは、通常の方法で合成したセルロースアシレートから低分子成分を除去することにより得ることができる。低分子成分の除去は、セルロースアシレートを適当な有機溶媒で洗浄することにより実施できる。
(含水率)
本発明のセルロースアシレートの製造においては、その含水率は2質量%以下であることが好ましく、さらに好ましくは1質量%以下であり、特には0.7質量%以下の含水率を有するセルロースアシレートである。一般に、セルロースアシレートは、水を含有しており2.5〜5質量%が知られている。本発明でこのセルロースアシレートの含水率にするためには、乾燥することが必要であり、その方法は目的とする含水率になれば特に限定されない。本発明のこれらのセルロースアシレートは、その原料綿や合成方法は発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)にて7頁〜12頁に詳細に記載されている。
(形状)
本発明に用いるセルロースアシレートの粉体特性は、通常のものであれば特に問題ない。好ましい安息角は20度以上50度以下であり、25度以上45度以下が更に好ましい。好ましい嵩密度は0.3g/cm以上0.75g/cm以下であり、0.4g/cm以上0.65g/cm以下が更に好ましい。粒子サイズは0.01から10mmが好ましく、0.1から4mmが更に好ましい。このような範囲の粉体であれば、セルロースアシレートのハンドリングに問題を生ぜず、風送、自動計量など自動仕込みができる。
(含有元素)
通常、セルロースアシレート合成過程で使用する硫酸、酢酸、水酸化カルシウム、水酸化マグネシウムなどがそのままあるいはセルロースアシレートと反応した形で残留している。また不純物として鉄イオンの混入も知られている。本発明においてセルロースアシレートに残留している上記諸物質の含有量の好ましい範囲は、硫酸量は30から150ppmであり、カルシウムは10から120ppmであり、マグネシウムは0.1から20ppmであり、鉄は3ppm以下である。また遊離酢酸は0.01から0.2%である。
本発明に用いるセルロースアシレートは置換基、置換度、重合度、分子量分布など前述した範囲であれば、単一あるいは異なる2種類以上のセルロースアシレートを混合して用いることができる。
[セルロースアシレートへの添加剤]
本発明では、セルロースアシレート溶液に、各調製工程において用途に応じた種々の添加剤(例えば、光学的異方性を低下する化合物、波長分散調整剤、紫外線防止剤、可塑剤、劣化防止剤、微粒子、光学特性調整剤など)を加えることができる。これらについて以下に説明する。またその添加する時期はドープ作製工程において何れでも添加しても良いが、ドープ調製工程の最後の調製工程に添加剤を添加し調製する工程を加えて行ってもよい。
[Rthを低下させる化合物]
本発明のセルロースアシレートフィルムは、Rthを低下させる化合物(以下、Rth低下剤ともいう)の少なくとも1種を、セルロースアシレートに対して0.01〜30質量%含むことが望ましい。
より望ましくは、Rth低下剤を下記数式(3)及び(4)を満たす範囲で含有することが望ましい。
数式(3):(Rth−Rth)/A≦−1.0
数式(4):0.01≦A≦30
上記数式(3)、(4)において、さらに望ましくは、
数式(3−1):(Rth−Rth)/A≦−2.0
数式(4−1):0.05≦A≦25
であり、特に望ましくは、
数式(3−2):(Rth−Rth)/A≦−3.0
数式(4−2):0.1≦A≦20
である。
ここで、RthはRthを低下させる化合物をA質量%含有したフィルムのRth(nm)、RthはRthを低下させる化合物を含有しないフィルムのRth(nm)、Aはセルロースアシレートの質量を100としたときの化合物の質量(%)である。
(Rth低下剤の構造的特徴)
セルロースアシレートフィルムのRth低下剤について説明する。
光学異方性を十分に低下させ、Re、Rthがともにゼロに近くなるようにするためには、フィルム中のセルロースアシレートが、正面方向及び膜厚方向に配向するのを抑制する化合物を用いることが好ましい。また、光学異方性を低下させる化合物は、セルロースアシレートに十分に相溶し、化合物自身が棒状の構造や平面性の構造を持たないことが有利である。具体的には芳香族基のような平面性の官能基を複数持っている場合、それらの官能基を同一平面ではなく、非平面に持つような構造が有利である。
(logP値)
本発明のセルロースアシレートフィルムを作製するに当たっては、上記のように、フィルム中のセルロースアシレートが正面及び膜厚方向に配向するのを抑制してRth低下剤のうち、オクタノール・水分配係数(logP値)が0〜10である化合物を選択することが好ましい。logP値が10以下の化合物であれば、セルロースアシレートとの相溶性に優れ、フィルムの白濁や粉吹きなどの不都合を生じない。またlogP値が0以上の化合物は、親水性が高くなりすぎることがなく、セルロースアセテートフィルムの耐水性を悪化させるなどの問題が生じないので好ましい。logP値としてさらに好ましい範囲は1〜7であり、特に好ましい範囲は1.5〜5である。
オクタノール・水分配係数(logP値)の測定は、JIS Z−7260−107(2000)に記載のフラスコ震盪法により実施することができる。また、オクタノール・水分配係数(logP値)は、実測に代わって、計算化学的手法又は経験的方法により見積もることも可能である。計算方法としては、Crippen’s fragmentation法{“J.Chem.Inf.comput.Sci.”,27巻、p.21(1987年)}、Viswanadhan’s fragmentation法{“J.Chem.Inf.comput.Sci.”,29巻、p.163(1989年)}、Broto’s fragmentation法{“Eur.J.Med.Chem.−Chim.Theor.”,19巻、p.71(1984年)}などが好ましく用いられるが、Crippen’s fragmentation法がより好ましい。ある化合物のlogPの値が、測定方法又は計算方法により異なる場合に、該化合物が前記範囲内であるかどうかは、Crippen’s fragmentation法により判断するものとする。
(分子量)
また、Rth低下剤は、分子量が150以上3000以下であることが好ましく、170以上2000以下であることがより好ましく、200以上1000以下であることが特に好ましい。これらの分子量の範囲であれば、特定のモノマー構造であってもよいし、そのモノマーユニットが複数結合したオリゴマー構造、ポリマー構造でもよい。
以下に本発明で好ましく用いられる分子量が3000以下であってlogP値が0〜10の範囲内のRth低下剤の具体例として、下記一般式(1)〜(6)のいずれかで表される化合物が挙げられるが、本発明はこれら化合物に限定されない。
また、本発明のセルロースアシレートフィルムでは、耐久性や製造および加工の工程適正を向上させる目的で、使用する添加剤に解離性基が無い方が好ましく、下記一般式(1)〜(3)のいずれかで表される化合物がより好ましく、一般式(2)又は(3)で表される化合物が更に好ましい。
まず、一般式(1)で表される化合物に関して詳細に説明する。
Figure 2007106884
上記一般式(1)において、Rはアリール基を表す。RおよびRはそれぞれ独立にアルキル基またはアリール基を表し、少なくとも一方はアリール基である。Rがアリール基であるときRはアルキル基またはアリール基であるが、アルキル基であることがより好ましい。ここで、アルキル基は直鎖であっても、分岐であっても、環状であってもよく、炭素原子数が1乃至20のものが好ましく、1乃至15のものがさらに好ましく、1乃至12のものが最も好ましい。アリール基は炭素原子数が6乃至36のものが好ましく、6乃至24のものがより好ましい。
次に、一般式(2)で表される化合物に関して詳細に説明する。
一般式(2)
Figure 2007106884
上記一般式(2)において、R、R5およびRはそれぞれ独立にアルキル基を表す。ここで、アルキル基は直鎖であっても、分岐であっても、環状であってもよい。Rは環状のアルキル基であることが好ましく、R5およびRの少なくとも一方が環状のアルキル基であることがより好ましい。アルキル基は炭素原子数が1乃至20のものが好ましく、1乃至15のものがさらに好ましく、1乃至12のものが最も好ましい。環状のアルキル基としては、シクロヘキシル基が特に好ましい。
上記一般式(1)及び(2)におけるアルキル基およびアリール基は、それぞれ置換基を有していてもよい。置換基としてはハロゲン原子(例えば、塩素、臭素、フッ素およびヨウ素)、アルキル基、アリール基、アルコキシ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、スルホニルアミノ基、ヒドロキシ基、シアノ基、アミノ基およびアシルアミノ基が好ましく、より好ましくはハロゲン原子、アルキル基、アリール基、アルコキシ基、アリールオキシ基、スルホニルアミノ基およびアシルアミノ基であり、特に好ましくはアルキル基、アリール基、スルホニルアミノ基およびアシルアミノ基である。
また、本発明の一般式(1)および(2)で表される化合物の添加量は、セルロースアシレート100質量部に対して1〜30質量部であることが好ましく、2〜30質量部であることがより好ましく、2〜25質量部であることがさらに好ましく、2〜20質量部であることが最も好ましい。
次に、一般式(1)または一般式(2)で表される化合物の好ましい例を下記に示すが、本発明はこれらの具体例に限定されるものではない。
なお、下記の一般式(1)または一般式(2)で表される化合物の好ましい例において、(A− )と付してある化合物が一般式(1)で表される化合物の具体例であり、(B− )と付してある化合物が一般式(2)で表される化合物の具体例である。
Figure 2007106884
Figure 2007106884
Figure 2007106884
上述の化合物はいずれも既知の方法により製造することができる。すなわち、一般式(1)および一般式(2)の化合物は、縮合剤(例えばジシクロヘキシルカルボジイミド(DCC)など)を用いたカルボン酸類とアミン類との脱水縮合反応、あるいはカルボン酸クロリド誘導体とアミン誘導体との置換反応などにより得ることができる。
次に、下記一般式(3)で表される化合物について、説明する。
一般式(3)
Figure 2007106884
(式(3)中、R、R、RおよびRは、それぞれ、水素原子、置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表す。X、X、XおよびXは、それぞれ、単結合、−CO−および−NR−(Rは置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表す)からなる群から選ばれる1種以上の基から形成される2価の連結基を表す。a、b、cおよびdは0以上の整数であり、a+b+c+dは2以上である。Qは(a+b+c+d)価の有機基を表す。)
前記一般式(3)で表される化合物は、更に下記一般式(7)で表される化合物であることが好ましい。
一般式(7)
Figure 2007106884
(一般式(7)中、R11、R12、R13およびR14は、それぞれ、水素原子、置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表す。X11、X12、X13およびX14は、それぞれ、単結合、−CO−および−NR−(Rは置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表す)からなる群から選ばれる1種以上の基から形成される2価の連結基を表す。k、l、mおよびnは0または1であり、k+l+m+nは2、3または4である。Qは2〜4価の有機基を表す。)
前記一般式(3)で表される化合物は、更に下記一般式(8)で表される化合物であることが好ましい。
一般式(8)
Figure 2007106884
(一般式(8)中、R21およびR22は、それぞれ、置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表す。YおよびYは、それぞれ、−CONR23−または−NR24CO−を表す(R23およびR24は置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表す)。Lは、−O−、−S−、−SO−、−SO−、−CO−、−NR25−(R25は水素原子、置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表す。)、アルキレン基およびアリーレン基からなる群から選ばれる1種以上の基から形成される2価の有機基を表す。)
前記一般式(3)で表される化合物は、更に下記一般式(9)で表される化合物であることが好ましい。
一般式(9)
Figure 2007106884
(一般式(9)中、R31、R32、R33およびR34はそれぞれ置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表す。Lは−O−、−S−、−SO−、−SO−、−CO−、−NR35−(R35は水素原子、置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表す。)、アルキレン基およびアリーレン基からなる群から選ばれる1種以上の基から形成される2価の有機基を表す。)
前記一般式(3)で表される化合物は、更に下記一般式(11)で表される化合物であることが好ましい。
一般式(11)
Figure 2007106884
(一般式(11)中、R51、R52、R53およびR54はそれぞれ置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表す。Lは−O−、−S−、−SO−、−SO−、−CO−、−NR55−(R55は水素原子、置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表す。)、アルキレン基およびアリーレン基からなる群から選ばれる1種以上の基から形成される2価の有機基を表す。)
以下、本発明一般式(3)で表される化合物についてさらに説明する。
上記一般式(3)で表される化合物において、R1、R2、R3およびR4は、それぞれ、水素原子、置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表し、脂肪族基が好ましい。脂肪族基は、直鎖、分岐、環状のいずれであってもよく、環状であることがより好ましい。脂肪族基および芳香族基が有していてもよい置換基としては後述の置換基Tが挙げられるが、無置換のものが好ましい。X1、X2、X3およびX4は、それぞれ、単結合、−CO−、−NR5−R5は置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表し、無置換のものおよび/または脂肪族基がより好ましい。)からなる群から選ばれる1種以上の基から形成される2価の連結基を表す。X1、X2、X3およびX4の組み合わせは特に限定されないが、−CO−、−NR5−(から選ばれるのがより好ましい。
a、b、cおよびdは0以上の整数であり、a+b+c+dは2以上である。a+b+c+dは、2〜8であることが好ましく、より好ましくは2〜6、さらに好ましくは2〜4である。Q1は(a+b+c+d)価の有機基(環状のものを除く)を表す。Q1の価数は2〜8が好ましく、2〜6がより好ましく、2〜4が最も好ましい。
有機基とは、有機化合物からなる基をいう。
また、上記一般式(3)としては、好ましくは上記一般式(7)で表される化合物である。
上記一般式(7)において、R11、R12、R13およびR14は、それぞれ、水素原子、置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表し、脂肪族基が好ましい。脂肪族基は、直鎖、分岐、環状のいずれであってもよく、環状であることがより好ましい。脂肪族基および芳香族基が有していてもよい置換基としては後述の置換基Tが挙げられるが、無置換のものが好ましい。X11、X12、X13およびX14はそれぞれ独立に単結合、−CO−、−NR15−(R15は置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表し、無置換のものおよび/または脂肪族基がより好ましい。)から選ばれる1種以上の基から形成される2価の連結基を表す。それぞれX11、X12、X13およびX14の組み合わせは特に限定されないが、−CO−、−NR15−から選ばれるのがより好ましい。k、l、mおよびnは0または1であり、k+l+m+n=2、3または4である。Q1は2〜4価の有機基(環状のものを除く)を表す。Q1の価数は2〜4が好ましく、2または3がより好ましい。
上記一般式(3)としては、好ましくは上記一般式(8)で表される化合物である。
上記一般式(8)において、R21およびR22は、それぞれ、置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表し、脂肪族基が好ましい。脂肪族基は、直鎖、分岐、環状のいずれであってもよく、環状であることがより好ましい。脂肪族基および芳香族基が有していてもよい置換基としては後述の置換基Tが挙げられるが、無置換のものが好ましい。Y1およびY2はそれぞれ独立に−CONR23−または−NR24CO−を表し、R23およびR24は置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表表し、無置換のものおよび/または脂肪族基がより好ましい。L1は−O−、−S−、−SO−、−SO2−、−CO−、−NR25−、アルキレン基およびアリーレン基から選ばれる1種以上の基から形成される2価の有機基(環状のものを除く)を表す。L1の組み合わせは特に限定されないが、−O−、−S−、−NR25−、およびアルキレン基から選ばれるのが好ましく、−O−、−S−およびアルキレン基から選ばれるのがさらに好ましく、−O−、−S−およびアルキレン基から選ばれるのが最も好ましい。
上記一般式(3)としては、好ましくは上記一般式(9)で表される化合物である。
上記一般式(9)において、R31、R32、R33およびR34はそれぞれ置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表し、脂肪族基が好ましい。脂肪族基は、直鎖、分岐、環状のいずれであってもよく、環状であることがより好ましい。脂肪族基および芳香族基が有していてもよい置換基としては後述の置換基Tが挙げられるが、無置換のものが好ましい。L2は−O−、−S−、−SO−、−SO2−、−CO−、−NR35−(R35は置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表し、無置換のものおよび/または脂肪族基がより好ましい。)、アルキレン基、アリーレン基から選ばれる1種以上の基から形成される2価の連結基を表す。L2の組み合わせは特に限定されないが、−O−、−S−、−NR35−、およびアルキレン基から選ばれるのが好ましく、−O−、−S−およびアルキレン基から選ばれるのがさらに好ましく、−O−、−S−およびアルキレン基から選ばれるのが最も好ましい。
上記一般式(3)としては、好ましくは上記一般式(11)で表される化合物である。上記一般式(11)において、R51、R52、R53およびR54はそれぞれ置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表し、脂肪族基が好ましい。脂肪族基は、直鎖、分岐、環状のいずれであってもよく、環状であることがより好ましい。脂肪族基および芳香族基が有していてもよい置換基としては後述の置換基Tが挙げられるが、無置換のものが好ましい。L4は−O−、−S−、−SO−、−SO2−、−CO−、−NR55−(R55は置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表し、無置換のものおよび/または脂肪族基がより好ましい。)、アルキレン基、アリーレン基から選ばれる1種以上の基から形成される2価の連結基を表す。L4の組み合わせは特に限定されないが、−O−、−S−、−NR55−、およびアルキレン基から選ばれるのが好ましく、−O−、−S−およびアルキレン基から選ばれるのがさらに好ましく、−O−、−S−およびアルキレン基から選ばれるのが最も好ましい。
以下に一般式(3)及び一般式(7)〜(11)の置換基として述べた置換若しくは無置換の脂肪族基について説明する。脂肪族基は直鎖であっても、分岐であっても、環状であってもよく、炭素原子数1〜25のものが好ましく、6〜25のものがより好ましく、6〜20のものが特に好ましい。脂肪族基の具体例としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、シクロプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、アミル基、イソアミル基、tert−アミル基、n−ヘキシル基、シクロヘキシル基、n−ヘプチル基、n−オクチル基ビシクロオクチル基、アダマンチル基、n−デシル基、tert−オクチル基、ドデシル基、ヘキサデシル基、オクタデシル基、ジデシル基などが挙げられる。
以下に一般式(3)及び一般式(7)〜(11)の置換基として述べた芳香族基について説明する。芳香族基は芳香族炭化水素基でも芳香族ヘテロ環基でもよく、より好ましくは芳香族炭化水素基である。芳香族炭化水素基としては、炭素原子数が6〜24のものが好ましく、6〜12のものがさらに好ましい。芳香族炭化水素基の具体例な環としては、例えば、ベンゼン、ナフタレン、アントラセン、ビフェニル、ターフェニルなどの各環基が挙げられる。芳香族炭化水素基としては、ベンゼン、ナフタレン、ビフェニルの各基が特に好ましい。芳香族ヘテロ環基としては、酸素原子、窒素原子あるいは硫黄原子のうち少なくとも1つを含むものが好ましい。ヘテロ環の具体例としては、例えば、フラン、ピロール、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどの各環が挙げられる。芳香族ヘテロ環基としては、ピリジン環、トリアジン環、キノリン環が特に好ましい。
また、以下に上記各一般式に係る前述の置換基Tに関して詳細に説明する。
置換基Tとしては、例えばアルキル基(好ましくは炭素原子数1〜20、より好ましくは1〜12、特に好ましくは1〜8のものであり、例えばメチル基、エチル基、イソプロピル基、tert−ブチル基、n−オクチル基、n−デシル基、n−ヘキサデシル基、シクロプロピル基、シクロペンチル、シクロヘキシル基などが挙げられる。)、アルケニル基(好ましくは炭素原子数2〜20、より好ましくは2〜12、特に好ましくは2〜8であり、例えばビニル基、アリル基、2−ブテニル基、3−ペンテニル基などが挙げられる。)、アルキニル基(好ましくは炭素原子数2〜20、より好ましくは2〜12、特に好ましくは2〜8であり、例えばプロパルギル基、3−ペンチニル基などが挙げられる。)、アリール基(好ましくは炭素原子数6〜30、より好ましくは6〜20、特に好ましくは6〜12であり、例えばフェニル基、ビフェニル基、ナフチル基などが挙げられる。)、アミノ基(好ましくは炭素原子数0〜20、より好ましくは0〜10、特に好ましくは0〜6であり、例えばアミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基などが挙げられる。)、
アルコキシ基(好ましくは炭素原子数1〜20、より好ましくは1〜12、特に好ましくは1〜8であり、例えばメトキシ基、エトキシ基、ブトキシ基などが挙げられる。)、アリールオキシ基(好ましくは炭素原子数6〜20、より好ましくは6〜16、特に好ましくは6〜12であり、例えばフェニルオキシ基、2−ナフチルオキシ基などが挙げられる。)、アシル基(好ましくは炭素原子数1〜20、より好ましくは1〜16、特に好ましくは1〜12であり、例えばアセチル基、ベンゾイル基、ホルミル基、ピバロイル基などが挙げられる。)、アルコキシカルボニル基(好ましくは炭素原子数2〜20、より好ましくは2〜16、特に好ましくは2〜12であり、例えばメトキシカルボニル基、エトキシカルボニル基などが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素原子数7〜20、より好ましくは7〜16、特に好ましくは7〜10であり、例えばフェニルオキシカルボニル基などが挙げられる。)、アシルオキシ基(好ましくは炭素原子数2〜20、より好ましくは2〜16、特に好ましくは2〜10であり、例えばアセトキシ基、ベンゾイルオキシ基などが挙げられる。)、
アシルアミノ基(好ましくは炭素原子数2〜20、より好ましくは2〜16、特に好ましくは2〜10であり、例えばアセチルアミノ基、ベンゾイルアミノ基などが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素原子数2〜20、より好ましくは2〜16、特に好ましくは2〜12であり、例えばメトキシカルボニルアミノ基などが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素原子数7〜20、より好ましくは7〜16、特に好ましくは7〜12であり、例えばフェニルオキシカルボニルアミノ基などが挙げられる。)、スルホニルアミノ基(好ましくは炭素原子数1〜20、より好ましくは1〜16、特に好ましくは1〜12であり、例えばメタンスルホニルアミノ基、ベンゼンスルホニルアミノ基などが挙げられる。)、スルファモイル基(好ましくは炭素原子数0〜20、より好ましくは0〜16、特に好ましくは0〜12であり、例えばスルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、フェニルスルファモイル基などが挙げられる。)、カルバモイル基(好ましくは炭素原子数1〜20、より好ましくは1〜16、特に好ましくは1〜12であり、例えばカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、フェニルカルバモイル基などが挙げられる。)、
アルキルチオ基(好ましくは炭素原子数1〜20、より好ましくは1〜16、特に好ましくは1〜12であり、例えばメチルチオ基、エチルチオ基などが挙げられる。)、アリールチオ基(好ましくは炭素原子数6〜20、より好ましくは6〜16、特に好ましくは6〜12であり、例えばフェニルチオ基などが挙げられる。)、スルホニル基(好ましくは炭素原子数1〜20、より好ましくは1〜16、特に好ましくは1〜12であり、例えばメシル基、トシル基などが挙げられる。)、スルフィニル基(好ましくは炭素原子数1〜20、より好ましくは1〜16、特に好ましくは1〜12であり、例えばメタンスルフィニル基、ベンゼンスルフィニル基などが挙げられる。)、ウレイド基(好ましくは炭素原子数1〜20、より好ましくは1〜16、特に好ましくは1〜12であり、例えばウレイド基、メチルウレイド基、フェニルウレイド基などが挙げられる。)、リン酸アミド基(好ましくは炭素原子数1〜20、より好ましくは1〜16、特に好ましくは1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素原子数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基などが挙げられる。)、シリル基(好ましくは、炭素原子数3〜40、より好ましくは3〜30、特に好ましくは3〜24であり、例えば、トリメチルシリル基、トリフェニルシリル基などが挙げられる)などが挙げられる。
これらの置換基は更に置換されてもよい。また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
また、一般式(3)、特にび一般式(7)〜(11)ののいずれか1以上で表される化合物の添加量は、セルロースアシレート100質量部に対して1〜30質量部であることが好ましく、2〜30質量部であることがより好ましく、2〜25質量部であることがさらに好ましく、2〜20質量部であることが最も好ましい。
一般式(3)で表される化合物の好ましい例を下記に示すが、本発明はこれらの具体例に限定されるものではない。
Figure 2007106884
Figure 2007106884
Figure 2007106884
本発明に用いられる化合物はいずれも既知の化合物より製造することができる。一般式(3)〜(11)のいずれか1以上で表される化合物は、例えば、カルボニルクロリドとアミンとの縮合反応により得られる。
一般式(4)および(5)で表される化合物について説明する。
一般式(4)
Figure 2007106884
上記一般式(4)において、R1はアルキル基またはアリール基を表し、R2およびR3は、それぞれ独立に、水素原子、アルキル基またはアリール基を表す。また、R1、R2およびR3の炭素原子数の総和が10以上であることが特に好ましい。
Figure 2007106884
また、一般式(5)中、R4およびR5は、それぞれ独立に、アルキル基またはアリール基を表す。また、R4およびR5の炭素原子数の総和は10以上であり、各々、アルキル基およびアリール基は置換基を有していてもよい。置換基としてはフッ素原子、アルキル基、アリール基、アルコキシ基、スルホン基およびスルホンアミド基が好ましく、アルキル基、アリール基、アルコキシ基、スルホン基およびスルホンアミド基が特に好ましい。また、アルキル基は直鎖であっても、分岐であっても、環状であってもよく、炭素原子数1乃至25のものが好ましく、6乃至25のものがより好ましく、6乃至20のもの(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、t-ブチル、アミル、イソアミル、t-アミル、ヘキシル、シクロヘキシル、ヘプチル、オクチル、ビシクロオクチル、ノニル、アダマンチル、デシル、t-オクチル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシル、ノナデシル、ジデシル)が特に好ましい。アリール基としては炭素原子数が6乃至30のものが好ましく、6乃至24のもの(例えば、フェニル、ビフェニル、テルフェニル、ナフチル、ビナフチル、トリフェニルフェニル)が特に好ましい。一般式(4)または一般式(5)で表される化合物の好ましい例を下記に示すが、本発明はこれらの具体例に限定されるものではない。
Figure 2007106884
Figure 2007106884
Figure 2007106884
Figure 2007106884
Figure 2007106884
以下、本発明一般式(6)で表される化合物について説明する。
Figure 2007106884
上記一般式(6)において、R1は置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表し、R2は水素原子、置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表す。置換基としては後述の置換基Tが挙げられる(以下、特に述べない限り同じ。)。L1は2〜6価の連結基を表す。L1の価数として好ましくは2〜4、より好ましくは2または3である。nはL1の価数に応じた2〜6の整数を表し、2〜4がより好ましく、2または3が特に好ましい。
1つの化合物の中に含まれる2つ以上のR1およびR2は、それぞれ、同一であってもよいし、異なっていてもよい。好ましくは同一である。
上記一般式(6)としては、好ましくは下記一般式(6a)で表される化合物である。
Figure 2007106884
上記一般式(6a)において、R4は置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表す。R4として好ましくは置換若しくは無置換の芳香族基であり、さらに好ましくは無置換の芳香族基である。R5は水素原子、置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表す。R5として好ましくは水素原子または置換若しくは無置換の脂肪族基であり、さらに好ましくは水素原子である。L2は−O−、−S−、−CO−、−NR3−(R3は水素原子、置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表す。)、アルキレン基およびアリーレン基から選ばれる1種以上の基から形成される2価の連結基を表す。連結基の組み合わせは特に限定されないが、−O−、−S−、−NR3−およびアルキレン基から選ばれるのが好ましく、−O−、−S−およびアルキレン基から選ばれるのが特に好ましい。また、連結基は、−O−、−S−およびアルキレン基から選ばれる2以上をからなる連結基が好ましい。
置換若しくは無置換の脂肪族基は直鎖であっても、分岐であっても、環状であってもよく、炭素原子数1〜25のものが好ましく、6〜25のものがより好ましく、6〜20のものが特に好ましい。脂肪族基の具体例としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、シクロプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、アミル基、イソアミル基、tert−アミル基、n−ヘキシル基、シクロヘキシル基、n−ヘプチル基、n−オクチル基、ビシクロオクチル基、アダマンチル基、n−デシル基、tert−オクチル基、ドデシル基、ヘキサデシル基、オクタデシル基、ジデシル基などが挙げられる。
芳香族基は芳香族炭化水素基でも芳香族ヘテロ環基でもよく、より好ましくは芳香族炭化水素基である。芳香族炭化水素基としては、炭素原子数が6〜24のものが好ましく、6〜12のものがさらに好ましい。芳香族炭化水素基の具体例な環としては、例えば、ベンゼン、ナフタレン、アントラセン、ビフェニル、ターフェニルなどが挙げられる。芳香族炭化水素基としては、ベンゼン、ナフタレン、ビフェニルが特に好ましい。芳香族ヘテロ環基としては、酸素原子、窒素原子あるいは硫黄原子のうち少なくとも1つを含むものが好ましい。ヘテロ環の具体例としては、例えば、フラン、ピロール、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族ヘテロ環基としては、ピリジン、トリアジン、キノリンが特に好ましい。
また、前述の置換基Tは上記の一般式(3)で説明したものと同義である。
また、上記一般式(6)として、下記一般式(6c)で表される化合物であることがより好ましい。
Figure 2007106884
上記一般式(6c)において、R11、R12、R13、R14、R15、R21、R22、R23、R24およびR25はそれぞれ独立に水素原子または置換基を表し、置換基としては上記の置換基Tが適用できる。R11、R12、R13、R14、R15、R21、R22、R23、R24およびR25としては、好ましくはアルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、スルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、ヒドロキシ基、メルカプト基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素原子数1〜30、より好ましくは1〜12のものであり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子が挙げられ、具体的には例えば、イミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基などが挙げられる。)、シリル基であり、より好ましくは、アルキル基、アリール基、アリールオキシカルボニルアミノ基、アルコキシ基、アリールオキシ基であり、特に好ましくはアルキル基、アリール基、アリールオキシカルボニルアミノ基である。これらの置換基はさらに置換されてもよく、置換基が2つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。R11とR21、R12とR22、R13とR23、R14とR24およびR15とR25はそれぞれ同一であることが好ましい。さらに、R11〜R25はいずれも水素原子である場合がより好ましい。
3は−O−、−S−、−CO−、−NR3−(R3は水素原子、脂肪族基または芳香族基を表す。)、アルキレン基、アリーレン基から選ばれる1種以上の基から形成される2価の連結基を表す。連結基の組み合わせは特に限定されないが、−O−、−S−、−NR3−、およびアルキレン基から選ばれるのが好ましく、−O−、−S−およびアルキレン基から選ばれるのが特に好ましい。また、連結基は、−O−、−S−およびアルキレン基から選ばれる2以上からなる連結基がさらに好ましい。
一般式(6)、とくに一般式(6a)〜一般式(6c)で表される化合物の好ましい例を下記に示すが、本発明はこれらの具体例に限定されるものではない。
Figure 2007106884
Figure 2007106884
Figure 2007106884
本発明に用いられる化合物はいずれも既知の化合物より製造することができる。一般式(6)、特に一般式(6a)〜(6c)で表される化合物は、一般的には、スルホニルクロリドと多官能アミンとの縮合反応により得られる。
一般式(1)ないし(6)で表される化合物のうち、オクタノール・水分配係数(logP値)が0ないし10である化合物が好ましい。logP値が10を超える化合物は、セルロースアシレートとの相溶性に乏しく、フィルムの白濁や粉吹きを生じやすい。また、logP値が0よりも小さな化合物は親水性が高いために、セルロースアセテートフィルムの耐水性を悪化させる場合がある。logP値としてさらに好ましい範囲は1ないし7であり、特に好ましい範囲は1.5ないし5である。
一般式(1)ないし(6)で表される化合物は、分子量が150以上3000以下であることが好ましく、170以上2000以下であることが好ましく、200以上1000以下であることが特に好ましい。これらの分子量の範囲であれば、特定のモノマー構造であっても良いし、そのモノマーユニットが複数結合したオリゴマー構造、ポリマー構造でも良い。
一般式(1)ないし(6)で表される化合物は、好ましくは、25℃で液体であるか、融点が25〜250℃の固体であり、さらに好ましくは、25℃で液体であるか、融点が25〜200℃の固体である。またレターデーションを低下させる化合物は、セルロースアシレートフィルム作製のドープ流延、乾燥の過程で揮散しないことが好ましい。
一般式(1)ないし(6)で表される化合物の添加量は、セルロースアシレートの0.01ないし30質量%であることが好ましく、1ないし25質量%であることがより好ましく、5ないし20質量%であることが特に好ましい。
一般式(1)ないし(6)で表される化合物は、単独で用いても、2種以上を任意の比で混合して用いてもよい。
一般式(1)ないし(6)で表される化合物を添加する時期はドープ作製工程中の何れであってもよく、ドープ調製工程の最後に行ってもよい。
一般式(1)ないし(6)で表される化合物は、少なくとも一方の側の表面から全膜厚の10%までの部分における該化合物の平均含有率が、該セルロースアシレートフィルムの中央部における該化合物の平均含有率の80−99%である。本発明の化合物の存在量は、例えば、特開平8−57879号公報に記載の赤外吸収スペクトルを用いる方法などにより表面および中心部の化合物量を測定して求めることができる。
[波長分散調整剤]
本発明の発明者らは、鋭意検討した結果、200〜400nmの紫外領域に吸収を持ち、フィルムの|Re400−Re700|及び|Rth400−Rth700|を低下させる化合物、すなわちレターデーションの波長分散を低下させる化合物(以下、波長分散調整剤ともいう)を少なくとも1種、セルロースアシレートフィルム原料ポリマーの固形分に対して0.01〜30質量%含むことが好ましい。以下、波長分散調整剤について説明する。
セルロースアシレートフイルムのRe、Rthの値は一般に短波長側よりも長波長側が大きい波長分散特性となる。したがって相対的に小さい短波長側のRe、Rthを大きくすることによって波長分散を平滑にすることが要求される。一方200〜400nmの紫外領域に吸収を持つ化合物は長波長側よりも短波長側の吸光度が大きい波長分散特性をもつ。この化合物自身がセルロースアシレートフイルム内部で等方的に存在していれば、化合物自身の複屈折性、ひいてはRe、Rthの波長分散は吸光度の波長分散と同様に短波長側が大きいと想定される。
したがって上述したような、200〜400nmの紫外領域に吸収を持ち、化合物自身のRe、Rthの波長分散が短波長側が大きいと想定されるものを用いることによって、セルロースアシレートフイルムのRe、Rthの波長分散を調整することができる。このためには波長分散を調整する化合物はセルロースアシレートに十分均一に相溶することが要求される。
上述のような、本発明で好ましく用いられる波長分散調整剤は揮散性の観点から分子量が250〜1000であることが好ましい。より好ましくは260〜800であり、更に好ましくは270〜800であり、特に好ましくは300〜800である。これらの分子量の範囲であれば、特定のモノマー構造であっても良いし、そのモノマーユニットが複数結合したオリゴマー構造、ポリマー構造でも良い。
本発明のセルロースアシレートフィルムの、Rthの波長分散を良化させるためには、下記数式(6)で表されるRthの波長分散ΔRthを低下させる化合物(波長分散調整剤)を、下記数式(7)及び(8)を満たす範囲で少なくとも1種含有することが望ましい。
数式(6):ΔRth=|Rth400−Rth700
数式(7):(ΔRth−ΔRth)/B≦−2.0
数式(8):0.01≦B≦30
上記数式(7)及び(8)において、より望ましくは、
数式(7−2):(ΔRth−ΔRth)/B≦−3.0
数式(8−2):0.05≦B≦25
であり、さらに望ましくは、
数式(7−3):(ΔRth−ΔRth)/B≦−4.0
数式(8−3):0.1≦B≦20
である。
ここでΔRthは、波長分散調整剤をB質量%含有したフィルムのΔRth(nm)、Rthは波長分散調整剤を含有しないフィルムのΔRth(nm)、Bはセルロースアシレートの質量を100としたときの波長分散調整剤の質量(%)である。
(波長分散調整剤の添加方法)
これら波長分散調整剤は、単独で用いても、2種以上化合物を任意の比で混合して用いてもよい。またこれら波長分散調整剤を添加する時期はドープ作製工程中の何れであってもよく、ドープ調製工程の最後に行ってもよい。
本発明に好ましく用いられる波長分散調整剤の具体例としては、例えばベンゾトリアゾール系化合物、ベンゾフェノン系化合物、シアノ基を含む化合物、オキシベンゾフェノン系化合物、サリチル酸エステル系化合物、ニッケル錯塩系化合物などが挙げられるが、本発明はこれら化合物だけに限定されるものではない。
ベンゾトリアゾール系化合物としては、下記一般式(101)で示されるものが本発明における波長分散調整剤として好ましく用いられる。
一般式(101):Q31−Q32−OH
(式中、Q31は含窒素芳香族ヘテロ環、Q32は芳香族環を表す。)
31は含窒素方向芳香族へテロ環を表し、好ましくは5〜7員の含窒素芳香族ヘテロ環であり、より好ましくは5〜6員の含窒素芳香族ヘテロ環であり、例えば、イミダゾール、ピラゾール、トリアゾール、テトラゾール、チアゾール、オキサゾール、セレナゾール、ベンゾトリアゾール、ベンゾチアゾール、ベンズオキサゾール、ベンゾセレナゾール、チアジアゾール、オキサジアゾール、ナフトチアゾール、ナフトオキサゾール、アザベンズイミダゾール、プリン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、トリアザインデン、テトラザインデン等が挙げられ、更に好ましくは、5員の含窒素芳香族ヘテロ環であり、具体的にはイミダゾール、ピラゾール、トリアゾール、テトラゾール、チアゾール、オキサゾール、ベンゾトリアゾール、ベンゾチアゾール、ベンズオキサゾール、チアジアゾール、オキサジアゾールが好ましく、特に好ましくは、ベンゾトリアゾールである。
31で表される含窒素芳香族ヘテロ環は、更に置換基を有してもよく、置換基としては後述の置換基Tが適用できる。また、置換基が複数ある場合にはそれぞれが縮環して更に環を形成してもよい。
32で表される芳香族環は、芳香族炭化水素環でも芳香族ヘテロ環でもよい。また、これらは単環であってもよいし、更に他の環と縮合環を形成してもよい。
芳香族炭化水素環として、好ましくは炭素数6〜30の単環又は二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環など)であり、より好ましくは炭素数6〜20の芳香族炭化水素環、更に好ましくは炭素数6〜12の芳香族炭化水素環である。最も好ましくはベンゼン環である。
芳香族ヘテロ環として、好ましくは窒素原子又は硫黄原子を含む芳香族ヘテロ環である。ヘテロ環の具体例としては、例えば、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族ヘテロ環として、好ましくは、ピリジン、トリアジン、キノリンである。
32で表される芳香族環として、好ましくは芳香族炭化水素環であり、より好ましくはナフタレン環、ベンゼン環であり、特に好ましくはベンゼン環である。Q32は更に置換基を有してもよく、下記の置換基Tが好ましい。
置換基Tとしては、例えばアルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル、エチル、i−プロピル、t−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばプロパルギル、3−ペンチニルなどが挙げられる)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチルなどが挙げられる)、置換又は未置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノなどが挙げられる)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメトキシ、エトキシ、ブトキシなどが挙げられる)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、2−ナフチルオキシなどが挙げられる)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えばフェニルオキシカルボニルなどが挙げられる)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる)、アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、ピペリジル、モルホリノ、ベンゾオキサゾリル、ベンズイミダゾリル、ベンズチアゾリルなどが挙げられる)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24であり、例えば、トリメチルシリル、トリフェニルシリルなどが挙げられる)などが挙げられる。これらの置換基は更に置換されてもよい。また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
一般式(101)として、好ましくは下記一般式(102)で表される化合物である。
Figure 2007106884
上記一般式(102)において、R31、R32、R33、R34、R35、R36、R37及びR38は、それぞれ独立に水素原子又は置換基を表し、置換基としては上記の置換基Tが適用できる。またこれらの置換基は、更に別の置換基によって置換されてもよく、置換基同士が縮環して環構造を形成してもよい。
31及びR33として、好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換又は無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基又はハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基又はハロゲン原子であり、更に好ましくは水素原子又は炭素1〜12アルキル基であり、特に好ましくは炭素数1〜12のアルキル基(好ましくは炭素数4〜12)である。
32、及びR34として、好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換若しくは無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基又はハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基又はハロゲン原子であり、更に好ましくは水素原子又は炭素1〜12アルキル基であり、特に好ましくは水素原子又はメチル基であり、最も好ましくは水素原子である。
35及びR38として、好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換若しくは無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基又はハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基又はハロゲン原子であり、更に好ましくは水素原子又は炭素1〜12アルキル基であり、特に好ましくは水素原子又はメチル基であり、最も好ましくは水素原子である。
36及びR37として、好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換若しくは無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基又はハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基又はハロゲン原子であり、更に好ましくは水素原子又はハロゲン原子であり、特に好ましくは水素原子又は塩素原子である。
一般式(101)として、より好ましくは下記一般式(103)で表される化合物である。
Figure 2007106884
式中、R31、R33、R36及びR37は、各々上記一般式(102)におけるそれらと同義であり、また好ましい範囲も同様である。
以下に一般式(101)で表される化合物の具体例を挙げるが、本発明は下記具体例に何ら限定されるものではない。
Figure 2007106884
Figure 2007106884
以上例にあげたベンゾトリアゾール系化合物の中でも、分子量が320以上のものが、本発明のセルロースアシレートフィルムを作製した場合に、保留性の点で有利であることが確認された。
また本発明に用いられる波長分散調整剤の1つであるベンゾフェノン系化合物としては一般式(104)で示されるものが好ましく用いられる。
Figure 2007106884
式中、Q41及びQ42は、それぞれ独立に芳香族環を表す。X41はNR41(R41は水素原子又は置換基を表す)、酸素原子又は硫黄原子を表す。
41及びQ42で表される芳香族環は、芳香族炭化水素環でも芳香族ヘテロ環でもよい。また、これらは単環であってもよいし、更に他の環と縮合環を形成してもよい。
41及びQ42で表される芳香族炭化水素環として、好ましくは炭素数6〜30の単環又は二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環など)であり、より好ましくは炭素数6〜20の芳香族炭化水素環、更に好ましくは炭素数6〜12の芳香族炭化水素環である。更に好ましくはベンゼン環である。
41及びQ42で表される芳香族ヘテロ環として、好ましくは酸素原子、窒素原子又は硫黄原子のどれか1つを少なくとも1つ含む芳香族ヘテロ環である。ヘテロ環の具体例としては、例えば、フラン、ピロール、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族ヘテロ環として好ましくは、ピリジン、トリアジン、キノリンである。
41及びQ42で表される芳香族環として好ましくは芳香族炭化水素環であり、より好ましくは炭素数6〜10の芳香族炭化水素環であり、更に好ましくは置換又は無置換のベンゼン環である。
41及びQ42は更に置換基を有してもよく、前記の置換基Tが好ましいが、置換基にカルボン酸、スルホン酸、4級アンモニウム塩を含むことはない。また、可能な場合には置換基同士が連結して環構造を形成してもよい。
41は、NR42(R42は水素原子又は置換基を表す。置換基としては前記の置換基Tが適用できる)、酸素原子又は硫黄原子を表し、X41として好ましくは、NR42(R42として好ましくはアシル基、スルホニル基であり、これらの置換基は更に置換してもよい)、又は酸素であり、特に好ましくは酸素である。
一般式(104)として、好ましくは下記一般式(105)で表される化合物である。
Figure 2007106884
式中、R411、R412、R413、R414、R415、R416、R417、R418及びR419は、それぞれ独立に、水素原子又は置換基を表し、置換基としては前記の置換基Tが適用できる。またこれらの置換基は、更に別の置換基によって置換されてもよく、置換基同士が縮環して環構造を形成してもよい。
411、R413、R414、R415、R416、R418及びR419として、好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換又は無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは水素原子、メチル基であり、最も好ましくは水素原子である。
412として、好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換又は無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子、より好ましくは水素原子、炭素数1〜20のアルキル基、炭素数0〜20のアミノ基、炭素数1〜12のアルコキシ基、炭素数6〜12アリールオキシ基、ヒドロキシ基であり、更に好ましくは炭素数1〜20のアルコキシ基であり、特に好ましくは炭素数1〜12のアルコキシ基である。
417として、好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換又は無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子、より好ましくは水素原子、炭素数1〜20のアルキル基、炭素数0〜20のアミノ基、炭素数1〜12のアルコキシ基、炭素数6〜12アリールオキシ基、ヒドロキシ基であり、更に好ましくは水素原子、炭素数1〜20のアルキル基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくはメチル基)であり、特に好ましくはメチル基、水素原子である。
一般式(104)として、より好ましくは下記一般式(106)で表される化合物である。
Figure 2007106884
式中、R420は水素原子、置換又は無置換のアルキル基、置換又は無置換のアルケニル基、置換又は無置換のアルキニル基、置換又は無置換のアリール基を表し、置換基としては前記の置換基Tが適用できる。R420として、好ましくは置換又は無置換のアルキル基であり、より好ましくは炭素数5〜20の置換又は無置換のアルキル基であり、更に好ましくは炭素数5〜12の置換又は無置換のアルキル基(n−ヘキシル基、2−エチルヘキシル基、n−オクチル基、n−デシル基、n-ドデシル基、ベンジル基、などが挙げられる。)であり、特に好ましくは、炭素数6〜12の置換又は無置換のアルキル基(2−エチルヘキシル基、n−オクチル基、n−デシル基、n−ドデシル基、ベンジル基)である。
一般式(104)で表される化合物は特開平11−12219号公報記載の公知の方法により合成できる。
以下に一般式(104)で表される化合物の具体例を挙げるが、本発明は下記具体例に何ら限定されるものではない。
Figure 2007106884
Figure 2007106884
また本発明に用いられる波長分散調整剤の1つであるシアノ基を含む化合物としては一般式(107)で示されるものが好ましく用いられる。
Figure 2007106884
式中、Q51及びQ52は、それぞれ独立に芳香族環を表す。X51及びX52は水素原子又は置換基を表し、少なくともどちらか1つはシアノ基であり、他方はカルボニル基、スルホニル基、芳香族ヘテロ環を表す。Q51及びQ52で表される芳香族環は芳香族炭化水素環でも芳香族ヘテロ環でもよい。また、これらは単環であってもよいし、更に他の環と縮合環を形成してもよい。
芳香族炭化水素環として、好ましくは炭素数6〜30の単環又は二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環など)であり、より好ましくは炭素数6〜20の芳香族炭化水素環、更に好ましくは炭素数6〜12の芳香族炭化水素環である。更に好ましくはベンゼン環である。
芳香族ヘテロ環として、好ましくは窒素原子又は硫黄原子を含む芳香族ヘテロ環である。ヘテロ環の具体例としては、例えば、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族ヘテロ環として好ましくは、ピリジン、トリアジン、キノリンである。
51及びQ52であらわされる芳香族環として、好ましくは芳香族炭化水素環であり、より好ましくはベンゼン環である。Q51及びQ52は更に置換基を有してもよく、前記の置換基Tが好ましい。
51及びX52は、水素原子又は置換基を表し、少なくともどちらか1つは、シアノ基であり、他方は、カルボニル基、スルホニル基、芳香族ヘテロ環を表す。X51及びX52で表される置換基は、前記の置換基Tを適用することができる。また、X51及びX52はで表される置換基は更に他の置換基によって置換されてもよく、X51及びX52は、それぞれが縮環して環構造を形成してもよい。
51及びX52として、好ましくは水素原子、アルキル基、アリール基、シアノ基、ニトロ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、より好ましくは、シアノ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、更に好ましくはシアノ基、カルボニル基であり、特に好ましくはシアノ基、アルコキシカルボニル基{−C(=O)OR51(R51は、炭素数1〜20アルキル基、炭素数6〜12のアリール基及びこれらを組み合せたもの)}である。
一般式(107)として、好ましくは下記一般式(108)で表される化合物である。
Figure 2007106884
式中、R511、R512、R513、R514、R515、R516、R517、R518、R519及びR520は、それぞれ独立に、水素原子又は置換基を表し、置換基としては前記の置換基Tが適用できる。またこれらの置換基は更に別の置換基によって置換されてもよく、置換基同士が縮環して環構造を形成してもよい。X511及びX512は、それぞれ前記一般式(107)におけるX51及びX52と同義である。
511、R512、R514、R515、R516、R517、R519及びR520として好ましくは、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換又は無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは水素原子、メチル基であり、最も好ましくは水素原子である。
513及びR518として、好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換又は無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子、より好ましくは水素原子、炭素数1〜20のアルキル基、炭素数0〜20のアミノ基、炭素数1〜12のアルコキシ基、炭素数6〜12アリールオキシ基、ヒドロキシ基であり、更に好ましくは水素原子、炭素数1〜12のアルキル基、炭素数1〜12アルコキシ基であり、特に好ましくは水素原子である。
一般式(107)として、より好ましくは下記一般式(109)で表される化合物である。
Figure 2007106884
式中、R513及びR518は一般式(108)におけるそれらと同義であり、また、好ましい範囲も同様である。X513は水素原子又は置換基を表し、置換基としては、前記の置換基Tが適用でき、また、可能な場合は更に他の置換基で置換されてもよい。
513として、好ましくは水素原子、アルキル基、アリール基、シアノ基、ニトロ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、より好ましくは、シアノ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、更に好ましくはシアノ基、カルボニル基であり、特に好ましくはシアノ基、アルコキシカルボニル基{−C(=O)OR52(R52は、炭素数1〜20アルキル基、炭素数6〜12のアリール基及びこれらを組み合せたもの)}である。
一般式(107)として、更に好ましくは一般式(110)で表される化合物である。
Figure 2007106884
式中、R513及びR518は、一般式(108)におけるそれらと同義であり、また、好ましい範囲も同様である。R52は炭素数1〜20のアルキル基を表す。R52として、好ましくは、R513及びR518が両方水素の場合には、炭素数2〜12のアルキル基であり、より好ましくは炭素数4〜12のアルキル基であり、更に好ましくは、炭素数6〜12のアルキル基であり、特に好ましくは、n−オクチル基、t−オクチル基、2−エチルへキシル基、n−デシル基、n−ドデシル基であり、最も好ましくは2−エチルへキシル基である。
52として、R513及びR518が水素以外の場合には、好ましくは一般式(110)で表される化合物の分子量が300以上になり、且つ炭素数20以下の炭素数のアルキル基が好ましい。
本発明において、一般式(107)で表される化合物は、“J.Am.Chem.Soc.”,63巻、3452頁(1941年)記載の方法によって合成できる。
以下に一般式(107)で表される化合物の具体例を挙げるが、本発明は下記具体例に何ら限定されるものではない。
Figure 2007106884
Figure 2007106884
Figure 2007106884
[マット剤微粒子]
本発明のセルロースアシレートフィルムには、マット剤として微粒子を加えることが好ましい。本発明に使用される微粒子としては、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。微粒子はケイ素を含むものが濁度が低くなる点で好ましく、特に二酸化珪素が好ましい。二酸化珪素の微粒子は、1次平均粒子径が20nm以下であり、かつ見かけ比重が70g/リットル以上であるものが好ましい。1次粒子の平均径が5〜16nmと小さいものがフィルムのヘイズを下げることができより好ましい。見かけ比重は90〜200g/リットル以上が好ましく、100〜200g/リットル以上がさらに好ましい。見かけ比重が大きい程、高濃度の分散液を作ることが可能になり、ヘイズ、凝集物が良化するため好ましい。
これらの微粒子は、通常平均粒子径が0.1〜3.0μmの2次粒子を形成し、これらの微粒子はフィルム中では、1次粒子の凝集体として存在し、フィルム表面に0.1〜3.0μmの凹凸を形成させる。2次平均粒子径は0.2μm以上1.5μm以下が好ましく、0.4μm以上1.2μm以下がさらに好ましく、0.6μm以上1.1μm以下が最も好ましい。1次、2次粒子径はフィルム中の粒子を走査型電子顕微鏡で観察し、粒子に外接する円の直径をもって粒径とした。また、場所を変えて粒子200個を観察し、その平均値をもって平均粒子径とした。
二酸化珪素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)などの市販品を使用することができる。酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。
これらの中でアエロジル200V、アエロジルR972Vが1次平均粒子径が20nm以下であり、かつ見かけ比重が70g/リットル以上である二酸化珪素の微粒子であり、フィルムの濁度を低く保ちながら、摩擦係数をさげる効果が大きいため特に好ましい。
本発明において2次平均粒子径の小さな粒子を有するセルロースアシレートフィルムを得るために、微粒子の分散液を調製する際にいくつかの手法が考えられる。例えば、溶剤と微粒子を撹拌混合した微粒子分散液をあらかじめ作成し、この微粒子分散液を別途用意した少量のセルロースアシレート溶液に加えて撹拌溶解し、さらにメインのセルロースアシレートドープ液と混合する方法がある。この方法は二酸化珪素微粒子の分散性がよく、二酸化珪素微粒子が更に再凝集しにくい点で好ましい調製方法である。ほかにも、溶剤に少量のセルロースエステルを加え、撹拌溶解した後、これに微粒子を加えて分散機で分散を行いこれを微粒子添加液とし、この微粒子添加液をインラインミキサーでドープ液と十分混合する方法もある。本発明はこれらの方法に限定されないが、二酸化珪素微粒子を溶剤などと混合して分散するときの二酸化珪素の濃度は5〜30質量%が好ましく、10〜25質量%が更に好ましく、15〜20質量%が最も好ましい。分散濃度が高い方が添加量に対する液濁度は低くなり、ヘイズ、凝集物が良化するため好ましい。最終的なセルロースアシレートのドープ溶液中でのマット剤の添加量は1m2あたり0.01〜1.0gが好ましく、0.03〜0.3gが更に好ましく、0.08〜0.16gが最も好ましい。
使用される溶剤は低級アルコール類としては、好ましくはメチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール等が挙げられる。低級アルコール以外の溶媒としては特に限定されないが、セルロースアシレートフィルムの製膜時に用いられる溶剤を用いることが好ましい。
[可塑剤、劣化防止剤、剥離剤]
上記のRth低下剤、波長分散調整剤の他に、本発明のセルロースアシレートフィルムには、各調製工程において用途に応じた種々の添加剤(例えば、可塑剤、紫外線防止剤、劣化防止剤、剥離剤、赤外吸収剤、など)を加えることができ、それらは固体でもよく油状物でもよい。すなわち、その融点や沸点において特に限定されるものではない。例えば20℃以下と20℃以上の紫外線吸収材料の混合や、同様に可塑剤の混合などであり、例えば特開2001−151901号公報などに記載されている。さらにまた、赤外吸収染料としては例えば特開2001−194522号公報に記載されている。またその添加する時期はドープ作製工程において何れで添加しても良いが、ドープ調製工程の最後の調製工程に添加剤を添加し調製する工程を加えて行ってもよい。更にまた、各素材の添加量は機能が発現する限りにおいて特に限定されない。また、セルロースアシレートフィルムが多層から形成される場合、各層の添加物の種類や添加量が異なってもよい。例えば特開2001−151902号公報などに記載されているが、これらは従来から知られている技術である。これらの詳細は、発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)にて16頁〜22頁に詳細に記載されている素材が好ましく用いられる。
[化合物添加の比率]
本発明のセルロースアシレートフィルムにおいては、分子量が3000以下の化合物の総量は、セルロースアシレート質量に対して5〜45%であることが望ましい。より好ましくは10〜40%であり、さらに望ましくは15〜30%である。これらの化合物としては上述したように、Rth低下剤、波長分散調整剤、紫外線防止剤、可塑剤、劣化防止剤、微粒子、剥離剤、赤外吸収剤などであり、分子量としては3000以下が望ましく、2000以下がより望ましく、1000以下がさらに望ましい。これら化合物の総量が5%未満であると、セルロースアシレート単体の性質が出やすくなり、例えば、温度や湿度の変化に対して光学性能や物理的強度が変動しやすくなるなどの問題がある。またこれら化合物の総量が45%超であると、セルロースアシレートフィルム中に化合物が相溶する限界を超え、フィルム表面に析出してフィルムが白濁する(フィルムからの泣き出し)などの問題が生じやすくなる。
[セルロースアシレート溶液の有機溶媒]
本発明では、ソルベントキャスト法によりセルロースアシレートフィルムを製造することが好ましく、セルロースアシレートを有機溶媒に溶解した溶液(ドープ)を用いてフィルムは製造される。本発明の主溶媒として好ましく用いられる有機溶媒は、炭素原子数が3〜12のエステル、ケトン、エーテル、および炭素原子数が1〜7のハロゲン化炭化水素から選ばれる溶媒が好ましい。エステル、ケトンおよび、エーテルは、環状構造を有していてもよい。エステル、ケトンおよびエーテルの官能基(すなわち、−O−、−CO−および−COO−)のいずれかを二つ以上有する化合物も、主溶媒として用いることができ、たとえばアルコール性水酸基のような他の官能基を有していてもよい。二種類以上の官能基を有する主溶媒の場合、その炭素原子数はいずれかの官能基を有する化合物の規定範囲内であればよい。
本発明のセルロースアシレートフィルムに対しては塩素系のハロゲン化炭化水素を主溶媒としても良いし、発明協会公開技報2001−1745(12頁〜16頁)に記載されているように、非塩素系溶媒を主溶媒としても良く、本発明のセルロースアシレートフィルムに対しては特に限定されるものではない。
その他、本発明のセルロースアシレート溶液及びフィルムについての溶媒は、その溶解方法も含め以下の特許に開示されており、好ましい態様である。それらは、例えば、特開2000−95876号、特開平12−95877号、特開平10−324774号、特開平8−152514号、特開平10−330538号、特開平9−95538号、特開平9−95557号、特開平10−235664号、特開平12−63534号、特開平11−21379号、特開平10−182853号、特開平10−278056号、特開平10−279702号、特開平10−323853号、特開平10−237186号、特開平11−60807号、特開平11−152342号、特開平11−292988号、特開平11−60752号、特開平11−60752号などの各公報に記載されている。これらの特許によると本発明のセルロースアシレートに好ましい溶媒だけでなく、その溶液物性や共存させる共存物質についても記載があり、本発明においても適用可能である。
本発明の製造方法において冷却ゲル化を効果的に行うためには、溶液組成の選定が重要である。溶媒の選定においては主溶媒以外に使用する、いわゆる非溶媒あるいは貧溶媒とも称される、単独ではセルロースアシレートを溶解しない補助溶剤の選定が重要である。冷却ゲル化流延に効果の高い補助溶剤はアルコール類である。特に炭素数が1から5のアルコール類が好ましい。補助溶剤の全溶剤中の割合は12から25質量%が好ましく、15から20質量%が更に好ましい。炭素数1あるいは2のアルコール100質量部に対して、炭素数が3から5のアルコール3から30質量部の割合で2種以上のアルコール類を混合した補助溶媒の使用が更に好ましい。炭素数3から5のアルコールのなかではブタノールが好ましく、1−ブタノールが特に好ましい。
[セルロースアシレートフィルムの製造工程]
[仕込み溶解工程]
Rthをゼロに近くするためには、できるだけアシレート置換度の高いセルロースアシレートを使用するほうが有利であるが、そのようなセルロースアシレートは室温撹拌だけでは溶解せず、冷却溶解法あるいは高温溶解方法、さらにはこれらの組み合わせで実施することが避けられなかった。しかし本発明のように通常広く用いられているアシレート置換度のセルロースアシレートの溶解は、室温撹拌だけで難なく溶解できることが一つの特徴である。従って本発明においてはセルロースアシレートの溶解方法に制限はない。ポリマー溶解方法として広く一般に使用される方法が使用可能である。それでも非常に短時間に溶解を終了させたい場合は、高温溶解方法は有効である。
仕込にはセルロースアシレートフレークスだけでなく、本発明のフィルム屑を裁断して加えてもよい。フィルム屑とは、本発明のフィルムを製造する際に発生する例えば耳屑や面状不良のために製品にならなかったフィルムなどのことである。また本発明以外のセルロースアシレートフィルム屑を加えることも可能である。後者の場合は加えるフィルムの種類によって制限が生じる。たとえばセルロースアシレートのアシル基は同じ種類のものでなければならない。セルロースアシレートのアシル置換度は異なっていてもよいが、フィルムの添加割合は制限されることがある。またフィルムに含まれる可塑剤、紫外線吸収剤やレターデーション調整剤の種類が異なる場合は、添加割合は制限される。本発明のフィルム屑の添加割合はセルロースアシレートフレークス使用量に対して制限はない。一方本発明以外のフィルム屑の添加割合はフィルムの種類にもよるが、概ね25質量%以下に制限される。
本発明では完全に溶解した溶液を濃縮し、溶液中のセルロースアシレート濃度を18〜24質量%にすることが好ましい。特に好ましくはセルロースアシレート濃度を19.0〜22.5質量%にする。この範囲が冷却ゲル化特性と流延適性共に最も優れるため好ましい。本発明において濃縮の方法は特に限定されない。具体的な濃縮方法の一例はフラッシュ濃縮法である。米国特許公報4,504,355に記されているように、加熱したセルロースアシレート溶液を減圧容器の中に細いノズルから噴出すことにより、瞬間的に溶剤を蒸発させて濃縮液を得る方法である。
[ドープろ過工程]
流延に先立って金網やネルなどの適当なろ材を用いて、未溶解物やゴミ、不純物などを除去しておく。セルロースアシレート溶液のろ過は絶対ろ過精度が1から100μmのフィルターが用いられる。ろ過はろ過精度の大きなフィルターから複数段に渡って順次細かなフィルターでろ過してもよい。好ましい最終段階のろ材のろ過精度は1から50μmである。3から20μmろ材が更に好ましい。ろ過圧力は1.6MPa以下が好ましく、より好ましくは1.2MPa以下であり、1MPa以下が特に好ましい。ろ過圧が低いのは問題ないが、高すぎるとろ材の破損の恐れが高くなったり、不純物や不溶解物が漏れる可能性が大きくなり、好ましくない。
ろ過効率を改善するために、目の粗いろ材から順次目の細かいろ材へと多段ろ過をすることが好ましい。例えば最初に30μm前後の孔径のろ材でろ過し、次に15μm前後のろ材でろ過し、最後に5から10μmのろ材でろ過する。別の例としては、最初に20μm前後のろ材でろ過し、そのドープをフラッシュ濃縮した後再度同じ20μmフィルターでろ過し、続いて10μm前後のろ材でろ過する。このような多段ろ過を行うと、終段ろ材の目詰まりが防止される。多段ろ過は2段から4段が効率的であり好ましい。ろ過工程の後流延ダイまでの配管が長い場合は、その間に配管中の異物を拾う恐れがあるので、孔径が50μm以上のろ材あるいはストレーナーを通すことも好ましく行われる。
セルロースアシレート溶液はろ過により目詰まりしにくいものが好ましい。ろ過による目詰まりは液の特性だけでなく、ろ材の特性、特に平均孔径によるところが大きい。適切な溶液の調製方法の選定と適切なろ材の選定により、ろ過閉塞係数を900/m以下にすることが好ましい。500/m以下にすることが更に好ましい。ろ材の選定は特に一段目のろ材の選定が重要である。一段目のろ材で捕捉すべき異物の大半を除去できるようにろ材の孔径を選定し、必要ならば後段のろ材よりもろ材の面積を増やすことにより、目詰まりを防止する。また一段目のろ材はろ過精度よりも異物捕捉容量の大きなデプスフィルターと呼ばれるろ材が好ましい。一般的にデプスフィルターは孔径分布が広くて捕捉すべき粒子のカットオフ性能は劣るが、ろ材が厚くできているため表面の孔をすり抜けた異物もろ材内部の孔で確率的に捕捉される。表面に細くされた異物が堆積しにくいため、たくさんの異物を捕捉でき目詰まりが遅いという特徴を有している。終段のろ材には孔径分布が比較的狭くろ過精度に優れるサーフェスフィルターが好ましい。
<ろ過閉塞係数測定方法>
有効面積12.5cm2の円板内に直径3.8mmの孔を61個設けた多孔板に支えられたろ紙(孔径47μm、厚さ1.32mm、密度0.32g/m)に、36℃に保温したセルロースアシレート溶液を7ml/分の流量でろ過を行い、ろ過圧力が一時的に安定した時から3.5時間ないし4時間圧力上昇を観測した。横軸にろ過時間を取り、縦軸にP0/P0.64をプロットしたグラフを作成し、そのプロットの直線近似式をもとめた。P及びP0はろ過圧及び初期ろ過圧を表す。
求めた直線の傾きを、ろ過閉塞係数式[−Ks=3.5×傾き]に代入してろ過閉塞係数Ksを算出する。なおここで、使用するろ紙の孔径はろ紙のバブルポイント値から計算した値である。また送液にはギアポンプ(川崎重工製KA1)を使用した。
(ドープ溶液の透明度)
本発明のセルロースアシレート溶液のドープ透明度としては85%以上であることが好ましい。より好ましくは88%以上であり、さらに好ましくは90%以上である。本発明においてはセルロースアシレートドープ溶液に各種の添加剤が十分に溶解していることを確認した。具体的なドープ透明度の算出方法としては、ドープ溶液を1cm角のガラスセルに注入し、分光光度計(UV−3150、島津製作所)で550nmの吸光度を測定した。溶媒のみをあらかじめブランクとして測定しておき、ブランクの吸光度との比からセルロースアシレート溶液の透明度を算出した。
(添加剤の混合)
セルロースアシレート溶液を用いたフィルムの製造方法について述べる。本発明のセルロースアシレートフィルムを製造する方法及び設備は、従来セルローストリアセテートフィルム製造に供する溶液流延製膜方法及び溶液流延製膜装置が用いられる。溶解機(釜)から調製されたドープ(セルロースアシレート溶液)を貯蔵釜で一旦貯蔵し、ドープに含まれている泡を脱泡して最終調製をする。ドープをドープ排出口から、例えば回転数によって高精度に定量送液できる加圧型定量ギヤポンプを通して送り、流延ダイの手前であらかじめ調製しておいたRth低下剤、波長分散調整剤、マット剤溶液、UV吸収剤溶液、剥離剤溶液あるいは可塑剤溶液などをインラインで混合する。これら添加液の混合は逐次に混合してもよいし、あるいはそれらの一部あるいは全部をあらかじめ混合しておいた上でセルロースアシレート溶液と混合してもよい。マット剤溶液は予めUV吸収剤溶液、Rth低下剤、あるいは波長分散調整剤などと混合した後、セルロースアシレート溶液と混合すると、マット剤の凝集防止効果が得られるため好ましい。
添加剤が混合されたセルロースアシレート溶液(ドープ)は加圧型ダイの口金(スリット)からエンドレスに走行している流延部の金属支持体の上に均一に流延される。
(流延)
溶液の流延方法としては、調製されたドープを加圧ダイから金属支持体上に均一に押し出す方法、一旦金属支持体上に流延されたドープをブレードで膜厚を調節するドクターブレードによる方法、或いは逆回転するロールで調節するリバースロールコーターによる方法等があるが、加圧ダイによる方法が好ましい。加圧ダイにはコートハンガータイプやTダイタイプ等があるがいずれも好ましく用いることができる。また、ここで挙げた方法以外にも従来知られているセルロースアシレート溶液を流延製膜する種々の方法で実施でき、用いる溶媒の沸点等の違いを考慮して各条件を設定することによりそれぞれの公報に記載の内容と同様の効果が得られる。本発明のセルロースアシレートフィルムを製造するのに使用されるエンドレスに走行する金属支持体としては、表面がクロムメッキによって鏡面仕上げされたり、あるいは研磨によって表面粗さが0.05μm以下に仕上げされたステンレス板やドラムが用いられる。本発明において金属支持体の表面温度は15℃以下が好ましく、−50〜5℃が更に好ましく、−35〜0℃が特に好ましい。支持体温度は低いほどドープが速くゲル化するため好ましいが、経済性を考えると−25〜−5℃であることが一番好ましい。本発明のセルロースアシレートフィルムの製造に用いられる加圧ダイは、金属支持体の上方に1基或いは2基以上の設置でもよい。好ましくは1基又は2基である。
2基以上設置する場合には流延するドープ量をそれぞれのダイに種々な割合にわけてもよく、複数の精密定量ギヤアポンプからそれぞれの割合でダイにドープを送液してもよい。流延に用いられるセルロースアシレート溶液の温度は−10〜55℃が好ましく、より好ましくは25〜50℃である。使用する溶剤の沸点よりも5ないし15℃低い温度が好ましい。工程のすべての場所でセルロースアシレート溶液の温度が同一でもよく、あるいは工程の各所で異なっていてもよい。異なる場合は、流延直前で前記範囲の温度であればよい。
エンドレス金属支持体の幅は0.8から2.5m、長さは5から120m、厚さは0.8から3.5mmのものが好ましく使用できる。流延幅は40cmから2.3m、金属支持体の移動速度(すなわち流延速度)はドープの固形分濃度や出来上がりのフィルム厚さ、エンドレス金属支持体の長さ、支持体温度などにもよるが、0.5から300m/分が使用できる。
さらに特開2001−129838号、特開2000−317960号、特開2000−301555号、特開2000−301558号、特開平11−221833号、特開平07−032391号、特開平05−185445号、特開平05−086212号、特開平03−193316号、特開平02−276607号、特開平02−111511号、特開平02−208650号特開昭62−037113号、特開昭62−115035号、特開昭55−014201号および特開昭52−10362号の各公報に記載の技術を本発明では応用できる。
(重層流延)
セルロースアシレート溶液を、金属支持体としての平滑なバンド上或いはドラム上に単層液として流延してもよいし、2層以上の複数のセルロースアシレート液を流延してもよい。複数のセルロースアシレート溶液を流延する場合、金属支持体の進行方向に間隔を置いて設けた複数の流延口からセルロースアシレートを含む溶液をそれぞれ流延させて積層させながらフィルムを作製してもよく、例えば特開昭61−158414号、特開平1−122419号、および特開平11−198285号の各公報などに記載の方法が適応できる。また、2つの流延口からセルロースアシレート溶液を流延することによってもフィルム化することでもよく、例えば特公昭60−27562号、特開昭61−94724号、特開昭61−947245号、特開昭61−104813号、特開昭61−158413号、および特開平6−134933号の各公報に記載の方法で実施できる。また、特開昭56−162617号公報に記載の高粘度セルロースアシレート溶液の流れを低粘度のセルロースアシレート溶液で包み込み、その高,低粘度のセルロースアシレート溶液を同時に押出すセルロースアシレートフィルム流延方法でもよく、特にこの方法は高粘度溶液を用いる冷却ゲル化流延法においては好ましい流延方法である。更に又、特開昭61−94724号および特開昭61−94725号の各公報に記載の外側の溶液が内側の溶液よりも貧溶媒であるアルコール成分を多く含有させることも好ましい態様である。或いはまた2個の流延口を用いて、第一の流延口により金属支持体に成型したフィルムを剥離し、金属支持体面に接していた側に第二の流延を行なうことでより、フィルムを作製することでもよく、例えば特公昭44−20235号公報に記載されている方法である。流延するセルロースアシレート溶液は同一の溶液でもよいし、異なるセルロースアシレート溶液でもよく特に限定されない。複数のセルロースアシレート層に機能を持たせるために、その機能に応じたセルロースアシレート溶液を、それぞれの流延口から押出せばよい。さらにセルロースアシレート溶液は、他の機能層(例えば、接着層、染料層、帯電防止層、アンチハレーション層、UV吸収層、偏光層など)を同時に流延することも実施しうる。
従来の単層液では、必要なフィルム厚さにするためには高濃度で高粘度のセルロースアシレート溶液を押出すことが必要であり、その場合セルロースアシレート溶液の安定性が悪くて固形物が発生し、ブツ故障となったり、平面性が不良であったりして問題となることが多かった。この解決として、複数のセルロースアシレート溶液を流延口から流延することにより、高粘度の溶液を同時に金属支持体上に押出すことができ、平面性も良化し優れた面状のフィルムが作製できるばかりでなく、濃厚なセルロースアシレート溶液を用いることで乾燥負荷の低減化が達成でき、フィルムの生産スピードを高めることができた。共流延の場合、内側と外側の厚さは特に限定されないが、好ましくは外側が全膜厚の1〜50%であることが好ましく、より好ましくは2〜30%の厚さである。ここで、3層以上の共流延の場合は金属支持体に接した層と空気側に接した層のトータル膜厚を外側の厚さと定義する。共流延の場合、可塑剤、紫外線吸収剤、マット剤、剥離剤等の添加物濃度が異なるセルロースアシレート溶液を共流延して、積層構造のセルロースアシレートフィルムを作製することもできる。例えば、スキン層/コア層/スキン層といった構成のセルロースアシレートフィルムを作ることができる。例えば、マット剤は、スキン層に多く、又はスキン層のみに入れることができる。可塑剤、紫外線吸収剤はスキン層よりもコア層に多くいれることができ、コア層のみにいれてもよい。又、コア層とスキン層で可塑剤、紫外線吸収剤の種類を変更することもでき、例えばスキン層に低揮発性の可塑剤及び/又は紫外線吸収剤を含ませ、コア層に可塑性に優れた可塑剤、或いは紫外線吸収性に優れた紫外線吸収剤を添加することもできる。また、剥離剤を金属支持体側のスキン層のみ含有させることも好ましい態様である。また、冷却ゲル化流延法で金属支持体を冷却して溶液をゲル化させるために、スキン層に貧溶媒であるアルコールをコア層より多く添加することも好ましい。スキン層とコア層のTgが異なっていても良く、スキン層のTgよりコア層のTgが低いことが好ましい。
(冷却ゲル化)
本発明で行われる冷却ゲル化は、特開昭62−115035号公報に記されている如き、冷却ゲル化流延法の使用が、乾燥が速く生産性に優れるため好ましい。該方法では金属支持体は15℃以下に冷却され、支持体表面温度が上昇しない程度の温度と風量の乾燥風を、2秒以上あてて乾燥することが好ましい。この方法ではフィルムは主に冷却による粘度上昇あるいは冷却ゲル化により自己保持性が付与されるため、高残留揮発分でも剥離可能になる。剥離時の好ましい残留揮発分は150から330%であり、更に好ましくは190から310%である。ここで残留揮発分とは、固形分(乾燥終了後にフィルムとして残る成分)を100%とした時、フィルム中の揮発性成分の割合をいう。剥離時の好ましいフィルム温度は5から−50℃であり、更に好ましくは0から−35℃であり、特に好ましくは−5から−25℃である。本方法では非常に残留溶剤が多い状態でフィルムを支持体から剥離するため、その後の乾燥は両面から行われ、従って急速乾燥になる。このように急速に乾燥することによりRthを効果的に低減できると推定される。また片面乾燥の時間を短くできるので、トータルの乾燥時間を大幅に短縮でき、コスト及び環境負荷の削減効果も大きい。
(残留揮発分の定義)
(フィルム中の揮発成分重量/フィルム中の不揮発成分の重量)×100
(揮発分の測定手順)
採取した未乾フィルムの重量を測定し、その未乾フィルムを十分に乾燥して溶剤を蒸発させる。該乾燥したフィルムの重量を測定する。その重量は上記式中の「フィルム中の不揮発成分の重量」にあたる。「フィルム中の揮発成分重量」は採取直後のフィルム重量から乾燥後のフィルム重量を引いた値にあたる。
冷却ゲル化流延では金属支持体としてドラムを使用することが有利である。ドラム中に冷却液を封入することにより、流延液膜を効果的に冷却ゲル化できる。ドラムの好ましい外周長さは2から20mである。好ましい流延速度は毎分0.5から300mである。ドラム外周長1mあたりの更に好ましい流延速度は毎分2から20mであり、特に好ましくは5から15mである。
(テンター乾燥)
高揮発分でフィルム(流延膜)を金属支持体から剥離すると、その後の乾燥過程でフィルムは収縮しやすく、収縮の過程で面状を悪くする。面状悪化防止のため、本発明では以下に述べるような方法で延伸したり収縮を抑えながら乾燥するのが好ましい。
本発明ではフィルムを支持体から剥離する時、フィルムは支持体速度の1.01倍から1.4倍の速度で引っ張り、面状悪化を防止する。また引張速度比が大きくなるほど、フィルムの流延方向弾性率を大きく出来る。剥離されたフィルムは例えば特開昭62−115035号公報や特開昭62−46625号公報に記されている如き、幅規制装置(例えばテンター装置)によりフィルム両端を保持されて、フィルムの収縮を規制しながらあるいは幅方向に延伸しながら乾燥される。幅規制装置の入り口と出口におけるフィルム幅の比は、0.75から1.4が好ましい。幅方向に延伸するとフィルムの幅方向弾性率を大きく出来るので好ましい。乾燥は50〜150℃の熱風を吹き込むことによって行われる。幅規制装置の中を2から5段階に区切り、順次乾燥風の温度を低い方から高いほうに変化させることが好ましい。最初は50〜100℃の風を用いることが好ましく、70〜90℃が更に好ましい。温度が高すぎるとフィルムが発泡しやすくなる。最終段においては130〜150℃の風を用いることが好ましく、135〜145℃が更に好ましい。150℃を越えるとフィルムの弾性が著しく小さくなり、高速搬送が難しくなる。
本発明の溶液流延製膜法によるセルロースアシレートフィルムの製造方法においては、乾燥速度はフィルムが発泡しない範囲で速ければ速いほどRth低下が見込まれるので好ましい。フィルム中の残留揮発分が190%の状態から5%の状態になるまでの時間は1.5分〜5分が好ましく、1.5〜4分が更に好ましい。最も好ましくは1.5〜3分である。フィルムの発泡を防ぐため、熱風はフィルムの中央部のみに吹きつけ、製品にならないクリップに保持されている部分は逆に冷却することが好ましい。
(巻取り)
フィルム中の残留溶剤分が20%以下になった後、フィルムを幅規制装置からはずし、更に100から150℃の温度で乾燥する。幅規制装置によって変形している両耳部を切り落とし、両端部にナーリングを付与して巻き取る。ナーリングの幅は3mm〜50mm、より好ましくは5mm〜30mm、高さは0.5〜500μmであり、より好ましくは1〜200μmである。これは片押しであっても両押しであってもよい。巻き取る長さは1ロールあたり100〜10000mが好ましく、より好ましくは500〜6000mであり、さらに好ましくは1000〜4000mである。
(フィルム厚さ)
本発明の出来上がり(乾燥後)のセルロースアシレートフィルムの厚さは、30から180μmの範囲が好ましい。更に38〜100μmの範囲が好ましく、特に38〜82μmの範囲が最も好ましい。
フィルム厚さの調整は、所望の厚さになるように、ドープ中に含まれる固形分濃度、ダイの口金のスリット間隙、ダイからの押し出し圧力、金属支持体速度等を調節すればよい。
(フィルムの弾性率)
冷却ゲル化流延による本発明のセルロースアシレートフィルムの好ましい弾性率は4.2GPaから6GPaである。剥離後幅方向に収縮させないようにすれば流延方向も幅方向もともに4GPa以上の弾性率を得られることを見出した。特に幅方向に5%以上延伸することにより、流延方向も幅方向もともに4.2GPa以上の弾性率を得られることを見出した。一方冷却ゲル化流延によらないセルロースアシレートフィルムの弾性率は流延方向も幅方向もともに4GPa前後である。液晶表示装置に使用するためには、弾性率は大きい事が好ましい。セルロースアシレートフィルムの弾性率を大きくすることにより、液晶表示装置に使用される偏光板のポリビニルアルコールフィルムの収縮を抑える効果が大きくなり、その結果液晶表示装置の周辺部における光漏れを減少することが出来る。本発明のセルロースアシレートフィルムの更に好ましい弾性率は4.3Gから5.5GPaであり、特に好ましい弾性率は、4.4Gから5.2GPaである。
(フィルムの寸法変化率)
セルロースアシレートの寸法変化率は小さいことが好ましい。60℃、90%RHの条件下に24時間静置した場合の寸度変化および90℃、3%RHの条件下に24時間静置した場合の寸度変化が、いずれも±2%以内であることが望ましい。寸法変化率が大きいと液晶表示装置に装填したときにフィルムに応力を生じ、その結果応力によるレターデーションが発生し、液晶表示装置の光漏れの原因となる。また寸法変化が大きいと、液晶表示装置に反りを生じる可能性が高くなり、好ましくない。
(偏光板)
偏光板は、偏光子およびその両側に配置された二枚の透明保護フィルムからなっている。この透明保護フィルムとして、本発明のセルロースアシレートフィルムを用いることができる。本発明のセルロースアシレートフィルムを偏光子の両側に使用してもよいし、片側だけに使用してもよい。偏光子には、ヨウ素系偏光子、二色性染料を用いる染料系偏光子やポリエン系偏光子がある。ヨウ素系偏光子および染料系偏光子は、一般にポリビニルアルコール系フィルムを用いて製造する。本発明のセルロースアシレートフィルムを偏光板の保護フィルムとして用いる場合、偏光板の作製方法は特に限定されず、一般的な方法で作製することができる。得られたセルロースアシレートフィルムをアルカリ処理し、ポリビニルアルコールフィルムを沃素溶液中に浸漬延伸して作製した偏光子の両面に完全ケン化ポリビニルアルコール水溶液を用いて貼り合わせる方法がある。アルカリ処理の代わりに特開平6−94915号公報、特開平6−118232号公報に記載されているような易接着加工を施してもよい。保護フィルム処理面と偏光子を貼り合わせるのに使用される接着剤としては、例えば、ポリビニルアルコール、ポリビニルブチラール等のポリビニルアルコール系接着剤や、ブチルアクリレート等のビニル系ラテックス等が挙げられる。偏光板は偏光子及びその両面を保護する保護フィルムで構成されており、更に該偏光板の一方の面にプロテクトフィルムを、反対面にセパレートフィルムを貼合して構成される。プロテクトフィルム及びセパレートフィルムは偏光板出荷時、製品検査時等において偏光板を保護する目的で用いられる。この場合、プロテクトフィルムは、偏光板の表面を保護する目的で貼合され、偏光板を液晶板へ貼合する面の反対面側に用いられる。又、セパレートフィルムは液晶板へ貼合する接着層をカバーする目的で用いられ、偏光板を液晶板へ貼合する面側に用いられる。
本発明のセルロースアシレートフィルムの偏光子への貼り合せ方は、偏光子の光軸との貼りあわせ角度には特に制限はない。セルロースアシレートフィルムの遅相軸と偏光子の透過軸とを平行にしてもよいし、直交させてもよいし、あるいはその中間の適当な角度にしてもよい。
本発明の偏光板は、25℃60%RHにおける単板透過率TT、平行透過率PT、直交透過率CT、偏光度Pが下記式(a)〜(d)の少なくとも1つ以上を満たすことが好ましい。
(a)40.0≦TT≦45.0
(b)30.0≦PT≦40.0
(c)CT≦2.0
(d)95.0≦P
単板透過率TT、平行透過率PT、直交透過率CTはこの順でそれぞれ、より好ましくは、40.5≦TT≦45、32≦PT≦39.5、CT≦1.5であり、さらに好ましくは41.0≦TT≦44.5、34≦PT≦39.0、CT≦1.3である。偏光度Pは95.0%以上であることが好ましく、より好ましくは96.0%以上、さらに好ましくは97.0%以上である。
本発明の偏光板は、波長λにおける直交透過率をCT(λ)としたときに、CT(380)、CT(410)、CT(700)が下記式(e)〜(g)の少なくとも1つ以上を満たすことが好ましい。
(e)CT(380)≦2.0
(f)CT(410)≦1.0
(g)CT(700)≦0.5
より好ましくはCT(380)≦1.95、CT(410)≦0.9、CT(700)≦0.49であり、さらに好ましくはCT(380)≦1.90、CT(410)≦0.8、CT(700)≦0.48である。
本発明の偏光板は、60℃95%RHの条件下に500時間静置した場合の直交透過率の変化量ΔCT、偏光度変化量ΔPが下記式(j)、(k)の少なくとも1つ以上を満たすことが好ましい。
(j)−6.0≦ΔCT≦6.0
(k)−10.0≦ΔP≦0.0
(ただし、変化量とは試験後測定値から試験前測定値を差し引いた値を示す)
より好ましくは−5.8≦ΔCT≦5.8、−9.5≦ΔP≦0.0、更に好ましくは、−5.6≦ΔCT≦5.6、−9.0≦ΔP≦0.0である。
本発明の偏光板は、60℃90%RHの条件下に500時間静置した場合の直交透過率の変化量ΔCT、偏光度変化量ΔPが下記式(h)、(i)の少なくとも1つ以上を満たすことが好ましい。
(h)−3.0≦ΔCT≦3.0
(i)−5.0≦ΔP≦0.0
本発明の偏光板は、80℃の条件下に500時間静置した場合の直交透過率の変化量ΔCT、偏光度変化量ΔPが下記式(l)、(m)の少なくとも1つ以上を満たすことが好ましい。
(l)−3.0≦ΔCT≦3.0
(m)−2.0≦ΔP≦0.0
偏光板の単板透過率TT、平行透過率PT、直交透過率CTは、UV3100PC(島津製作所社製)を用い、380nm〜780nmの範囲で測定し、TT、PT、CTともに、10回測定の平均値(400nm〜700nmでの平均値)を用いる。偏光度Pは、偏光度(%)=100×{(平行透過率−直交透過率)/(平行透過率+直交透過率)}1/2で求めることができる。偏光板耐久性試験は(1)偏光板のみと(2)偏光板をガラスに粘着剤を介して貼り付けた、2種類の形態で次のように行う。偏光板のみの測定は、2つの偏光子の間に本発明のセルロースアシレートフィルムが挟まれるように組み合わせて直交、同じものを2つ用意し測定する。ガラス貼り付け状態のものはガラスの上に偏光板を本発明のセルロースアシレートフィルムがガラス側にくるように貼り付けたサンプル(約5cm×5cm)を2つ作成する。単板透過率測定ではこのサンプルのフィルムの側を光源に向けてセットして測定する。2つのサンプルをそれぞれ測定し、その平均値を単板の透過率とする。
[用途(光学補償フィルム)]
本発明のセルロースアシレートフィルムは、様々な用途で用いることができ、液晶表示装置の光学補償フィルムとして用いると特に効果がある。なお、光学補償フィルムとは、一般に液晶表示装置に用いられ、位相差を補償する光学材料のことを指し、位相差板、光学補償シートなどと同義である。光学補償フィルムは複屈折性を有し、液晶表示装置の表示画面の着色を取り除いたり、視野角特性を改善したりする目的で用いられる。本発明のセルロースアシレートフィルムは光学的異方性が小さく、また波長分散が小さいため、余計な異方性を生じず、複屈折を持つ光学異方性層を併用すると光学異方性層の光学性能のみを発現することができる。
したがって本発明のセルロースアシレートフィルムを液晶表示装置の光学補償フィルムとして用いる場合、併用する光学異方性層のReおよびRthはRe=0〜200nmかつ|Rth|=0〜400nmであることが好ましく、この範囲であればどのような光学異方性層でも良い。本発明のセルロースアシレートフィルムが使用される液晶表示装置の液晶セルの光学性能や駆動方式に制限されず、光学補償フィルムとして要求される、どのような光学異方性層も併用することができる。併用される光学異方性層としては、液晶性化合物を含有する組成物から形成しても良いし、複屈折を持つポリマーフィルムから形成しても良い。
前記液晶性化合物としては、ディスコティック液晶性化合物または棒状液晶性化合物が好ましい。
(ディスコティック液晶性化合物)
本発明に使用可能なディスコティック液晶性化合物の例には、様々な文献(C.Destrade et al.,Mol.Crysr.Liq.Cryst.,vol.71,p.111(1981);日本化学会編、季刊化学総説、No.22、液晶の化学、第5章、第10章第2節(1994);B.Kohne et al.,Angew.Chem.Soc.Chem.Comm.,p.1794(1985);J.Zhang et al.,J.Am.Chem.Soc.,vol.116,p.2655(1994))に記載の化合物が含まれる。
光学異方性層において、ディスコティック液晶性分子は配向状態で固定されているのが好ましく、重合反応により固定されているのが最も好ましい。ディスコティック液晶性分子の重合については、特開平8−27284号公報に記載がある。ディスコティック液晶性分子を重合により固定するためには、ディスコティック液晶性分子の円盤状コアに、置換基として重合性基を結合させる必要がある。ただし、円盤状コアに重合性基を直結させると、重合反応において配向状態を保つことが困難になる。そこで、円盤状コアと重合性基との間に、連結基を導入する。重合性基を有するディスコティック液晶性分子について、特開2001−4387号公報に開示されている。
(棒状液晶性化合物)
本発明において、使用可能な棒状液晶性化合物の例には、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が含まれる。以上のような低分子液晶性化合物だけではなく、高分子液晶性化合物も用いることができる。
光学異方性層において、棒状液晶性分子は配向状態で固定されているのが好ましく、重合反応により固定されているのが最も好ましい。本発明に使用可能な重合性棒状液晶性化合物の例には、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許4683327号、同5622648号、同5770107号、世界特許(WO)95/22586号、同95/24455号、同97/00600号、同98/23580号、同98/52905号、特開平1−272551号、同6−16616号、同7−110469号、同11−80081号、および特開2001−328973号などに記載の化合物が含まれる。
(ポリマーフィルムからなる光学異方性層)
上記した様に、光学異方性層はポリマーフィルムから形成してもよい。ポリマーフィルムは、光学異方性を発現し得るポリマーから形成する。そのようなポリマーの例には、ポリオレフィン(例、ポリエチレン、ポリプロピレン、ノルボルネン系ポリマー)、ポリカーボネート、ポリアリレート、ポリスルホン、ポリビニルアルコール、ポリメタクリル酸エステル、ポリアクリル酸エステルおよびセルロースエステル(例、セルローストリアセテート、セルロースジアセテート)が含まれる。また、これらのポリマーの共重合体あるいはポリマー混合物を用いてもよい。
ポリマーフィルムの光学異方性は、延伸により得ることが好ましい。延伸は一軸延伸または二軸延伸であることが好ましい。具体的には、2つ以上のロールの周速差を利用した縦一軸延伸、またはポリマーフィルムの両サイドを掴んで幅方向に延伸するテンター延伸、これらを組み合わせての二軸延伸が好ましい。なお、二枚以上のポリマーフィルムを用いて、二枚以上のフィルム全体の光学的性質が前記の条件を満足してもよい。ポリマーフィルムは、複屈折のムラを少なくするためにソルベントキャスト法により製造することが好ましい。ポリマーフィルムの厚さは、20〜500μmであることが好ましく、40〜100μmであることが最も好ましい。本発明の光学補償フィルムにおいては、光学異方性を有する層を本発明のセルロースアシレートフィルムに塗布または積層することで得てもよいし、またポリマー層を本発明のセルロースアシレートフィルムに塗布または積層した後に、ポリマー層と支持体フィルムを同時に延伸して光学異方性を発現させてもよい。
(液晶表示装置の構成例)
セルロースアシレートフィルムを光学補償フィルムとして用いる場合は、偏光素子の透過軸と、セルロースアシレートフィルムからなる光学補償フィルムの遅相軸とをどのような角度で配置しても構わない。液晶表示装置は、二枚の電極基板の間に液晶を担持してなる液晶セル、その両側に配置された二枚の偏光素子、および該液晶セルと該偏光素子との間に少なくとも一枚の光学補償フィルムを配置した構成を有している。
液晶セルの液晶層は、通常は、二枚の基板の間にスペーサーを挟み込んで形成した空間に液晶を封入して形成する。透明電極層は、導電性物質を含む透明な膜として基板上に形成する。液晶セルには、さらにガスバリアー層、ハードコート層あるいは(透明電極層の接着に用いる)アンダーコート層(下塗り層)を設けてもよい。これらの層は、通常、基板上に設けられる。液晶セルの基板は、一般に50μm〜2mmの厚さを有する。
(液晶表示装置の種類)
本発明のセルロースアシレートフィルムは、様々な表示モードの液晶セルに用いることができる。TN(Twisted Nematic)、IPS(In−Plane Switching)、FLC(Ferroelectric Liquid Crystal)、AFLC(Anti−ferroelectric Liquid Crystal)、OCB(Optically Compensatory Bend)、STN(Supper Twisted Nematic)、VA(Vertically Aligned)、ECB(Electrically Controlled Birefringence)、およびHAN(Hybrid Aligned Nematic)のような様々な表示モードが提案されている。また、上記表示モードを配向分割した表示モードも提案されている。本発明のセルロースアシレートフィルムは、いずれの表示モードの液晶表示装置においても有効である。また、透過型、反射型、半透過型のいずれの液晶表示装置においても有効である。
(TN型液晶表示装置)
本発明のセルロースアシレートフィルムを、TNモードの液晶セルを有するTN型液晶表示装置の光学補償シートの支持体または偏光板保護フィルムとして用いてもよい。TNモードの液晶セルとTN型液晶表示装置については、古くから良く知られている。TN型液晶表示装置に用いる光学補償シートについては、特開平3−9325号、特開平6−148429号、特開平8−50206号、特開平9−26572号の各公報に記載がある。また、モリ(Mori)他の論文(Jpn.J.Appl. Phys.、Vol.36(1997)p.143や、Jpn.J.Appl. Phys.、Vol.36(1997)p.1068)に記載がある。
(STN型液晶表示装置)
本発明のセルロースアシレートフィルムを、STNモードの液晶セルを有するSTN型液晶表示装置の光学補償シートの支持体または偏光板保護フィルムとして用いてもよい。一般的にSTN型液晶表示装置では、液晶セル中の棒状液晶性分子が90〜360度の範囲にねじられており、棒状液晶性分子の屈折率異方性(Δn)とセルギャップ(d)との積(Δnd)が300〜1500nmの範囲にある。STN型液晶表示装置に用いる光学補償シートについては、特開2000−105316号公報に記載がある。
(VA型液晶表示装置)
本発明のセルロースアシレートフィルムは、VAモードの液晶セルを有するVA型液晶表示装置の光学補償シートの支持体または偏光板保護フィルムとして特に有利に用いられる。VA型液晶表示装置に用いる光学補償シートのReレターデーション値を0乃至150nmとし、Rthレターデーション値を70乃至400nmとすることが好ましい。Reレターデーション値は、20乃至70nmであることが更に好ましい。VA型液晶表示装置に二枚の光学的異方性ポリマーフィルムを使用する場合、フィルムのRthレターデーション値は70乃至250nmであることが好ましい。VA型液晶表示装置に一枚の光学的異方性ポリマーフィルムを使用する場合、フィルムのRthレターデーション値は150乃至400nmであることが好ましい。VA型液晶表示装置は、例えば特開平10−123576号公報に記載されているような配向分割された方式であっても構わない。
(IPS型液晶表示装置およびECB型液晶表示装置)
本発明のセルロースアシレートフィルムは、IPSモードおよびECBモードの液晶セルを有するIPS型液晶表示装置およびECB型液晶表示装置の光学補償シートの支持体、または偏光板の保護フィルムとしても特に有利に用いられる。これらのモードは黒表示時に液晶材料が略平行に配向する態様であり、電圧無印加状態で液晶分子を基板面に対して平行配向させて、黒表示する。これらの態様において本発明のセルロースアシレートフィルムを用いた偏光板は視野角拡大、コントラストの良化に寄与する。この態様においては、前記偏光板の保護膜と保護膜と液晶セルの間に配置された光学異方性層のレターデーションの値は、液晶層のΔn・d(屈折率差×厚み)の値の2倍以下に設定するのが好ましい。またRth値の絶対値|Rth|は、25nm以下、より好ましくは20nm以下、さらに好ましくは15nm以下に設定するのが好ましいため、本発明のセルロースアシレートフィルムが有利に用いられる。
(OCB型液晶表示装置およびHAN型液晶表示装置)
本発明のセルロースアシレートフィルムは、OCBモードの液晶セルを有するOCB型液晶表示装置あるいはHANモードの液晶セルを有するHAN型液晶表示装置の光学補償シートの支持体または偏光板保護フィルムとしても有利に用いられる。OCB型液晶表示装置あるいはHAN型液晶表示装置に用いる光学補償シートには、レターデーションの絶対値が最小となる方向が光学補償シートの面内にも法線方向にも存在しないことが好ましい。OCB型液晶表示装置あるいはHAN型液晶表示装置に用いる光学補償シートの光学的性質も、光学的異方性層の光学的性質、支持体の光学的性質および光学的異方性層と支持体との配置により決定される。OCB型液晶表示装置あるいはHAN型液晶表示装置に用いる光学補償シートについては、特開平9−197397号公報に記載がある。また、モリ(Mori)他の論文(Jpn.J.Appl.Phys.Vol.38(1999)p.2837)に記載がある。
(反射型液晶表示装置)
本発明のセルロースアシレートフィルムは、TN型、STN型、HAN型、GH(Guest−Host)型の反射型液晶表示装置の光学補償シートの支持体または偏光板保護フィルムとしても有利に用いられる。これらの表示モードは古くから良く知られている。TN型反射型液晶表示装置については、特開平10−123478号、WO9848320号、特許第3022477号の各公報に記載がある。反射型液晶表示装置に用いる光学補償シートについては、WO00−65384号に記載がある。
(その他の液晶表示装置)
本発明のセルロースアシレートフィルムは、ASM(Axially Symmetric Aligned Microcell)モードの液晶セルを有するASM型液晶表示装置の光学補償シートの支持体または偏光板保護フィルムとしても有利に用いられる。ASMモードの液晶セルは、セルの厚さが位置調整可能な樹脂スペーサーにより維持されているとの特徴がある。その他の性質は、TNモードの液晶セルと同様である。ASMモードの液晶セルとASM型液晶表示装置については、クメ(Kume)他の論文(Kume et al.,SID98 Digest,1089(1998))に記載がある。
(ハードコートフィルム、防眩フィルム、反射防止フィルム)
本発明のセルロースアシレートフィルムは、またハードコートフィルム、防眩フィルム、反射防止フィルムへの適用が好ましく実施できる。LCD、PDP、CRT、EL等のフラットパネルディスプレイの視認性を向上する目的で、本発明のセルロースアシレートフィルムの片面または両面にハードコート層、防眩層、反射防止層の何れかあるいは全てを付与することができる。このような防眩フィルム、反射防止フィルムとしての望ましい実施態様は、発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)の54頁〜57頁に詳細に記載されており、本発明のセルロースアシレートフィルムも好ましく用いることができる。
以下、本発明を実施例によりさらに説明するが、本発明は下記例に制限されるものではない。
まず、本発明の実施例で用いている測定方法について記す。
<セルロースアシレートの平均分子量Mn、Mwの測定方法>
液体クロマトグラフィー法により、以下の条件で測定した。
溶媒: メチレンクロライド
カラム: 東ソーTSKgel GMH(東ソー(株)製を2本接続して使用した。)
カラム温度:29℃
試料濃度: 0.2質量/容量%
流量: 0.8ml/lmin
(校正は、標準試料 Mw=772000〜6900迄の6サンプルによる校正曲線を使用した。)
<セルロースアシレートの6%粘度の測定方法>
メチレンクロライドとメタノールの質量比率91対9の混合溶媒にセルロースアシレートを6質量%溶解し、オストワルド粘度計を用いて25℃における流下時間を測定し、次式により6%粘度を算出する。
6%粘度(mPa・s)=流下時間(秒)×粘度計係数
粘度計係数は粘度計較正用標準液を用いて、上記溶液と同様の操作で流下秒数を測定して求める。
ここに、粘度計係数=標準液の絶対粘度(cps)×溶液の密度(1.235g/cm)/標準液の密度(g/cm)/標準液の流下時間(秒) である。
用いたセルロースアシレート(CA1)〜(CA3)の置換基と置換度、6%粘度、数平均分子量Mn、質量平均分子量Mw、カルシウム含有量、マグネシウム含有量、硫酸残存量及び出発原料は、表1に示した通りである。
Figure 2007106884
(セルロースアシレート溶液の調製−1−)
表2のD1からD5の組成物をそれぞれミキシングタンクに投入し、攪拌して各成分を溶解した。本発明のセルロースアシレート溶液D1〜D4にはRth低下剤として、logP値がそれぞれ4.2及び3.1である下記化学構造のカルボンアミド系Rth低下剤(A−13)またはスルホンアミド系Rth低下剤(SA−19)を使用した。また、D1、D3及びD4では波長分散調整剤としてUV−102を使用した。温度は20から30℃で、約4時間攪拌した。これらの溶液を平均孔径34μmのろ紙でろ過した。溶液D4を除いて著しいろ圧上昇は認められなかった。一方溶液D4はろ過圧上昇が著しく、途中でろ過を打ち切った。ろ圧上昇の原因は使用したセルロースアシレートが十分に溶解していないためであった。
Figure 2007106884
Figure 2007106884
Figure 2007106884
(セルロースアシレート溶液の調製−2−)
表2のD6及びD7の組成物をそれぞれミキシングタンクに投入し、攪拌して各成分を溶解した。温度は25から40℃で、約1時間攪拌した。この溶液をギアポンプで熱交換器に送り、70ないし75℃の温度に10分間保った後、冷却熱交換器にて30℃に冷却した。これらの溶液を平均孔径47μmのろ紙で、続いて平均孔径20μmの焼結金属フィルターでろ過した。この液を再びギアポンプで熱交換器に送り出し、溶液の温度を84℃にした後フラッシュ濃縮装置に導入して濃縮し、更に平均孔径10μmの焼結金属フィルターでろ過した。できたセルロースアシレート溶液の固形分濃度を測定し、セルロースアシレートの濃度を算出すると、いずれも20.5から21.5質量%の間であった。
(マット剤溶液の調製)
平均粒径16nmのシリカ粒子(AEROSIL R972、日本アエロジル(株)製)20質量部及びメタノール80質量部を30分間よく攪拌混合してシリカ粒子分散液とした。この分散液を下記の組成物とともに分散機に投入し、さらに30分以上攪拌して各成分を溶解し、平均孔径20μmの不織布フィルターでろ過し、マット剤溶液を調製した。
<マット剤溶液組成>
平均粒径16nmのシリカ粒子分散液 12.0質量部
メチレンクロライド 68.5質量部
エタノール 11.8質量部
1−ブタノール 0.7質量部
セルロースアシレート溶液(D6) 11.3質量部
(添加剤溶液の調製)
下記組成の液を作成し、平均孔径47μmのろ紙でろ過し、添加剤溶液を調製した。
<添加剤溶液組成>
波長分散調整剤(UV−102) 7.3質量部
メチレンクロライド 55.3質量部
エタノール 9.5質量部
1−ブタノール 0.6質量部
セルロースアシレート溶液(D6) 12.8質量部
(セルロースアシレートフィルムの作製−1−)
ギアポンプで送液したセルロースアシレート溶液D1からD3及びD5をダイから冷却したステンレスドラム上に均一に流延し、短時間で冷却ゲル化させてドラムから剥離した。剥離の際、流延方向に約10%延伸した。このフィルムの両端をテンターで把持し、フィルム幅方向に約10%延伸した。その後テンターに把持されたフィルムを2段階の温度で2分づつ熱風乾燥させた。その後フィルムをテンターからはずして更に20分間140℃で乾燥した。表3の製膜条件C1によりフィルムF11からF15を作成し、製膜条件C2によりフィルムF21からF25を作成した。いずれのフィルムも輝点異物は少なかった。弾性率はいずれも、流延方向、幅方向共に4.2GPa以上であった。90℃24時間処理によるフィルムの収縮はいずれも、流延方向、幅方向共に2%未満であった。できたフィルムの光学特性と膜厚を表4に示す。Rth低下剤を使用しないF15及びF25は、レターデーションが大きくなった。Rth低下剤の中でも特にA−13使用はRth低下効果が大きい。また波長分散調整剤UV−102の使用により、波長による膜厚方向レターデーションの変動幅が減少した。
(セルロースアシレートフィルムの作製−2−)
マット剤溶液1.6質量部、添加剤溶液2.2質量部の割合で送液しながら、スタチックミキサーで連続的に混合した。この混合液3.8質量部をセルロースアシレート溶液D6の80質量部中に注入しながら、スタチックミキサーで連続的に混合し、加圧ダイから冷却ドラム上に流延した。ドラムから剥離する際流延方向に約10%延伸し、テンターでは収縮を規制し幅を維持した他、表3に示すC3条件で流延及び乾燥を行い、長巻きフィルムF31を得た。またマット剤溶液1.6質量部を各セルロースアシレート溶液(D6、D7)80質量部中に注入しながら、スタチックミキサーで連続的に混合し、加圧ダイから冷却ドラム上に流延した。ドラムから剥離する際流延方向に約10%延伸し、テンターでは収縮を規制し幅を維持した他、表3に示すC3条件で流延及び乾燥を行い、長巻きフィルムF32及びF33を得た。いずれも巻取りでのフィルム幅は134cm、巻き長さは2600mであった。いずれのフィルムも輝点異物は少なかった。弾性率はいずれも流延方向が4.5GPa、幅方向は3.6GPaであった。90℃24時間処理によるフィルムの収縮はいずれも、流延方向、幅方向共に2%未満であった。できたフィルムの光学特性と膜厚を表4に示す。
(セルロースアシレートフィルムの作製−3−)
ギアポンプで送液したセルロースアシレート溶液D1を加圧ダイから15℃のステンレス無端ベルト上に均一に流延し、最初の20秒間は60℃の熱風で、次の30秒間は80℃の熱風で、次の30秒間は120℃の熱風で合計約80秒間乾燥した後ステンレスベルトから剥離した。剥離の際、流延方向に約3%延伸した。表3の示すC4条件で乾燥を行い、フィルムF41を得た。いずれのフィルムも輝点異物は少なかった。弾性率は流延方向が3.5GPa、幅方向は3.3GPaであった。90℃24時間処理によるフィルムの収縮は、流延方向、幅方向共に2%未満であった。できたフィルムの光学特性と膜厚を表4に示す。金属支持体上での片面乾燥時間が長いため、Rthがプラス側に大きくなってしまった。
Figure 2007106884
Figure 2007106884
(本発明の偏光板の作製)
本発明のセルロースアシレートフィルムF31を、1.5規定の水酸化ナトリウム水溶液に、55℃で2分間浸漬した。室温の水洗浴槽中で洗浄し、30℃で0.1規定の硫酸を用いて中和した。再度、室温の水洗浴槽中で洗浄し、さらに100℃の温風で乾燥した。このようにして、表面をケン化したセルロースアシレートフィルムを得た。市販のセルロースアセテートフィルムTD80UF(富士写真フイルム(株)製)にも同様の表面ケン化処理を行った。
続いて、厚さ80μmのロール状ポリビニルアルコールフィルムをヨウ素水溶液中で連続して5倍に延伸し、乾燥して偏光膜を得た。ポリビニルアルコール(クラレ製PVA−117H)3%水溶液を接着剤として、偏光膜の片面にケン化した本発明のフィルムを、反対面にケン化処理したTD80UFを貼り合わせ、偏光板P31を得た。
また偏光膜の両面にケン化処理したTD80UFを1枚づつ貼り合わせ、偏光板P0を作成した。
同様にして本発明及び比較例のセルロースアシレートフィルムF32、F41についても、それぞれ偏光板P32、P41を作製した。本発明のセルロースアシレートフィルムはいずれも延伸したポリビニルアルコールとの貼合性は十分であり、優れた偏光板加工適性を有していた。
(IPSモード液晶セル1の作製)
一枚のガラス基板上に、隣接する電極間の距離が20μmとなるように電極を配設し、その上にポリイミド膜を配向膜として設け、ラビング処理を行なった。別に用意した一枚のガラス基板の一方の表面にポリイミド膜を設け、ラビング処理を行なって配向膜とした。二枚のガラス基板を、配向膜同士を対向させて、基板の間隔(ギャップ;d)を3.9μmとし、二枚のガラス基板のラビング方向が平行となるようにして重ねて貼り合わせ、次いで屈折率異方性(Δn)が0.0769及び誘電率異方性(Δε)が正の4.5であるネマチック液晶組成物を封入した。液晶層のd・Δnの値は300nmであった。
(液晶表示装置への組込み)
作製したIPSモード液晶セルの両面に実施例または比較例として作成した偏光板を、その吸収軸が液晶セルのラビング方向と平行になるよう、且つ本発明あるいは比較例のセルロースアシレートフィルムが液晶セル側になるように貼り付けた。続いて、IPSモード液晶セルのもう一方の側に偏光板P0をクロスニコルの配置で貼り付けた。
このように作製した液晶表示装置の黒の色味を極角60度における全方位角方向で観察し、色味変化を比較した。偏光板P31〜P32の偏光板を用いたものは色味変化が少なかったが、それに比較して偏光板P41を用いたときは、色味変化が大きくなった。

Claims (11)

  1. 下記式(I)から(IV)をすべて満たし、且つアシル基置換度が2.75から2.86であることを特徴とするセルロースアシレートフィルム。
    (I)0≦Re(590)≦10
    (II)−50≦Rth(590)≦7
    (III)|Re(400)−Re(700)|≦10
    (IV)|Rth(400)−Rth(700)|≦35
    [式中、Re(λ)は波長λnmにおける正面レターデーション値(単位:nm)、Rth(λ)は波長λnmにおける膜厚方向のレターデーション値(単位:nm)である。]
  2. オクタノール・水分配係数(logP値)が0〜10である化合物の少なくとも1種を、セルロースアシレート固形分に対して0.01〜30質量%の割合で含むことを特徴とする請求項1に記載のセルロースアシレートフィルム。
  3. 前記オクタノール・水分配係数(logP値)が0〜10である化合物が、下記一般式(1)から(6)のいずれかであらわされる化合物であることを特徴とする請求項2に記載のセルロースアシレートフィルム。
    Figure 2007106884
    [式(1)中、R1はアリール基を表す。RおよびRはそれぞれ独立にアルキル基またはアリール基を表し、少なくとも一方はアリール基である。また、アルキル基およびアリール基はそれぞれ置換基を有していてもよい。]
    一般式(2)
    Figure 2007106884
    [式(2)中、R4、R5およびR6はそれぞれ独立にアルキル基を表す。また、アルキル基はそれぞれ置換基を有していてもよい。]
    一般式(3)
    Figure 2007106884
    (式(3)中、R、R、RおよびRは、それぞれ、水素原子、置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表す。X、X、XおよびXは、それぞれ、単結合、−CO−および−NR−(Rは置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表す)からなる群から選ばれる1種以上の基から形成される2価の連結基を表す。a、b、cおよびdは0以上の整数であり、a+b+c+dは2以上である。Qは(a+b+c+d)価の有機基を表す。)
    一般式(4)
    Figure 2007106884
    [式(4)中、R1はアルキル基またはアリール基を表し、R2およびR3は、それぞれ独立に、水素原子、アルキル基またはアリール基を表す。R1、R2およびR3の炭素原子数の総和は10以上である。]
    Figure 2007106884
    [式(5)中、R4およびR5は、それぞれ独立に、アルキル基またはアリール基を表す。R4およびR5の炭素原子数の総和は10以上である。]
    Figure 2007106884
    (式(6)中、R1は置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表し、R2は水素原子、置換若しくは無置換の脂肪族基または置換若しくは無置換の芳香族基を表す。L1は、2価〜6価の連結基を表し、nはL1の価数に応じた2〜6の整数を表す。)
  4. 波長200〜400nmの紫外領域に吸収を持つ化合物の少なくとも1種を、セルロースアシレートに対して0.01〜30質量%の割合で含むことを特徴とする請求項2または3に記載のセルロースアシレートフィルム。
  5. 前記アシル基がアセチル基であるセルロースアシレートを使用することを特徴とする請求項1〜4のいずれかに記載のセルロースアシレートフィルム。
  6. セルロースアシレート溶液を支持体上に流延する工程、得られた流延膜をフィルムとして剥離する工程、剥離したフィルムを乾燥する工程を含むセルロースアシレートフィルムの製造方法において、残留揮発分が190%の状態から5%の状態になるまで1.5〜5分で乾燥することを特徴とする請求項1〜5のいずれかに記載のセルロースアシレートフィルムを製造する方法。
  7. 15℃以下に冷却した支持体上にセルロースアシレート溶液を流延し、残留揮発分が150〜330%の状態で該支持体から流延膜を剥離することを特徴とする請求項6に記載のセルロースアシレートフィルムの製造方法。
  8. 前記セルロースアシレート溶液中のセルロースアシレート濃度が18〜24質量%であることを特徴とする請求項6または7に記載のセルロースアシレートフィルムの製造方法。
  9. 請求項1〜5のいずれかに記載のセルロースアシレートフィルムを含有することを特徴とする光学補償フィルム。
  10. 請求項1〜5のいずれかに記載のセルロースアシレートフィルムまたは請求項9に記載の光学補償フィルムを少なくとも1枚用いたことを特徴とする偏光板。
  11. 請求項1〜5のいずれかに記載のセルロースアシレートフィルム、請求項9に記載の光学補償フィルム、または請求項10に記載の偏光板を少なくとも1枚用いたことを特徴とする液晶表示装置。
JP2005299128A 2005-10-13 2005-10-13 セルロースアシレートフィルム、その製造方法、光学補償フィルム、偏光板および液晶表示装置 Abandoned JP2007106884A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005299128A JP2007106884A (ja) 2005-10-13 2005-10-13 セルロースアシレートフィルム、その製造方法、光学補償フィルム、偏光板および液晶表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005299128A JP2007106884A (ja) 2005-10-13 2005-10-13 セルロースアシレートフィルム、その製造方法、光学補償フィルム、偏光板および液晶表示装置

Publications (1)

Publication Number Publication Date
JP2007106884A true JP2007106884A (ja) 2007-04-26

Family

ID=38033005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005299128A Abandoned JP2007106884A (ja) 2005-10-13 2005-10-13 セルロースアシレートフィルム、その製造方法、光学補償フィルム、偏光板および液晶表示装置

Country Status (1)

Country Link
JP (1) JP2007106884A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019130829A1 (ja) * 2017-12-27 2019-07-04 富士フイルム株式会社 農産容器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053750A (ja) * 2001-08-13 2003-02-26 Fuji Photo Film Co Ltd 溶液製膜方法及び偏光板保護膜、光学機能性膜並びに偏光板
JP2005272796A (ja) * 2004-02-23 2005-10-06 Fuji Photo Film Co Ltd セルロースアシレートフィルム、光学補償フィルム、偏光板、及びそれらを用いた画像表示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053750A (ja) * 2001-08-13 2003-02-26 Fuji Photo Film Co Ltd 溶液製膜方法及び偏光板保護膜、光学機能性膜並びに偏光板
JP2005272796A (ja) * 2004-02-23 2005-10-06 Fuji Photo Film Co Ltd セルロースアシレートフィルム、光学補償フィルム、偏光板、及びそれらを用いた画像表示装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019130829A1 (ja) * 2017-12-27 2019-07-04 富士フイルム株式会社 農産容器
CN111527033A (zh) * 2017-12-27 2020-08-11 富士胶片株式会社 农用容器
JPWO2019130829A1 (ja) * 2017-12-27 2020-11-19 富士フイルム株式会社 農産容器
CN111527033B (zh) * 2017-12-27 2021-11-09 富士胶片株式会社 农用容器
US11957092B2 (en) 2017-12-27 2024-04-16 Fujifilm Corporation Agricultural container

Similar Documents

Publication Publication Date Title
KR101249641B1 (ko) 액정 디스플레이
JP2006301570A (ja) 透明フィルム、透明フィルムの製造方法、光学補償フィルム、偏光板および液晶表示装置
JP4596927B2 (ja) 液晶表示装置
JP2006291186A (ja) セルロースアシレートフィルム及びその製造方法、光学補償フィルム、偏光板および液晶表示装置
JP4142691B2 (ja) 液晶表示装置
KR101268747B1 (ko) 셀룰로오스 아실레이트 필름, 광학 보상 필름, 편광 필름 및 액정표시장치
JP4860333B2 (ja) 液晶表示装置
JP2008001893A (ja) セルロースアシレートフィルム、セルロースアシレートフィルムの製造方法、光学補償フィルム、偏光板および液晶表示装置
JP2006257143A (ja) セルロースアシレートフィルム、並びにそれを用いた偏光板及び液晶表示装置
US20090224217A1 (en) Cellulose acylate film, optically compensatory film, polarizing plate and liquid crystal display
JP2007015366A (ja) セルロースアシレートフィルムの製造方法、セルロースアシレートフィルム、光学補償フィルム、偏光板及び液晶表示装置。
JP4596940B2 (ja) セルロースアシレートフィルムの製造方法
JP2006206826A (ja) セルロースアシレートフィルム、セルロースアシレートフィルムの製造方法、光学補償フィルム、偏光板、および液晶表示装置
JP2006221155A (ja) 光学フィルム、それを用いた光学補償フィルム、偏光板及び液晶表示装置
JP2006265288A (ja) 透明フィルム、透明フィルムの製造方法、光学補償フィルム、偏光板、及び液晶表示装置
JP2006220971A (ja) 光学補償シート、偏光板およびこれを用いた液晶表示装置
JP2007332188A (ja) セルロースエステルフィルムの製造方法および、その方法により得られたセルロースエステルフィルム、光学補償フィルム、偏光板および液晶表示装置
JP2006195140A (ja) 光学補償シート、偏光板、及び液晶表示装置
JP2007106884A (ja) セルロースアシレートフィルム、その製造方法、光学補償フィルム、偏光板および液晶表示装置
JP5114591B2 (ja) 光学ポリマーフィルム、並びにそれを用いた偏光板及び液晶表示装置
JP5114012B2 (ja) 光学ポリマーフィルム、並びにそれを用いた偏光板及び液晶表示装置
JP5587391B2 (ja) 液晶表示装置
JP2010007037A (ja) 樹脂フィルム、偏光板および液晶表示装置
JP2006208587A (ja) セルロースアシレートフィルム、並びにそれを用いた光学補償シート、偏光板及び液晶表示装置
JP2006308954A (ja) セルロースアシレートフィルム、並びにそれを用いた光学補償フィルム、偏光板及び液晶表示装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20110228