JP5114591B2 - 光学ポリマーフィルム、並びにそれを用いた偏光板及び液晶表示装置 - Google Patents

光学ポリマーフィルム、並びにそれを用いた偏光板及び液晶表示装置 Download PDF

Info

Publication number
JP5114591B2
JP5114591B2 JP2011263667A JP2011263667A JP5114591B2 JP 5114591 B2 JP5114591 B2 JP 5114591B2 JP 2011263667 A JP2011263667 A JP 2011263667A JP 2011263667 A JP2011263667 A JP 2011263667A JP 5114591 B2 JP5114591 B2 JP 5114591B2
Authority
JP
Japan
Prior art keywords
film
group
liquid crystal
carbon atoms
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011263667A
Other languages
English (en)
Other versions
JP2012053490A (ja
Inventor
純生 大谷
隆裕 本
博暁 佐多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2011263667A priority Critical patent/JP5114591B2/ja
Publication of JP2012053490A publication Critical patent/JP2012053490A/ja
Application granted granted Critical
Publication of JP5114591B2 publication Critical patent/JP5114591B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Description

本発明は液晶表示装置に有用な光学ポリマーフィルム、さらにそれを用いた光学補償フィルム、偏光板などの光学材料および液晶表示装置に関するものである。
従来、セルロースアシレートフィルムはその強靭性と難燃性から写真用支持体や各種光学材料に用いられてきた。特に、近年は液晶表示装置用の光学透明フィルムとして多く用いられている。セルロースアシレートフィルムは、光学的に透明性が高いことと、光学的に等方性が高いことから、液晶表示装置のように偏光を取り扱う装置用の光学材料として優れており、これまで偏光子の保護フィルムや、斜め方向からの見た表示を良化(視野角補償)できる光学補償フィルムの支持体として用いられてきた。
液晶表示装置用の部材のひとつである偏光板には偏光子の少なくとも片側に偏光子の保護フィルムが貼合によって形成されている。一般的な偏光子は延伸されたポリビニルアルコール(PVA)系フィルムをヨウ素または二色性色素で染色することにより得られる。多くの場合、偏光子の保護フィルムとしてはPVAに対して直接貼り合わせることができる、セルロースアシレートフィルム、なかでもトリアセチルセルロースフィルムが用いられている。偏光子の保護フィルムは、光学的等方性に優れることが重要であり、偏光子の保護フィルムの光学特性が偏光板の特性を大きく左右する。
最近の液晶表示装置においては、視野角特性の改善がより強く要求されるようになっており、偏光子の保護フィルムや光学補償フィルムの支持体などの光学的に透明なフィルムは、より光学的に等方性であることが求められている。光学的に等方性であるとは、光学フィルムの複屈折と厚みの積で表されるレターデーション値が小さいことが重要である。とりわけ、斜め方向からの表示良化のためには、正面方向のレターデーション(Re)だけでなく、膜厚方向のレターデーション(Rth)を小さくする必要がある。具体的には光学透明フィルムの光学特性を評価した際に、フィルム正面から測定したReが小さく、角度を変えて測定してもそのReが変化しないことが要求される。
そこでセルロースアシレートフィルムの代わりにポリカーボネート系フィルムや熱可塑性シクロオレフィンフィルムを用いて、Reの角度変化の小さい光学透明フィルムの提案がされた(ZEONOR(日本ゼオン社製)や、ARTON(JSR社製)など)。しかし、これらの光学透明フィルムは、偏光子の保護フィルムとして使用する場合、フィルムが疎水的なためにPVAとの貼合性に問題がある。またフィルム面内全体の光学特性が不均一であることも問題である。
上記問題に対して、特許文献1ではPVAへの貼合適正に優れるセルロースアシレートフィルムを、より光学的異方性を低下させて改良し、正面のReをほぼゼロとし且つレターデーションの角度変化も小さい、すなわちRthもほぼゼロとした光学的に等方性である光学的に透明なフィルムが提案されている。
特開2005−154764号公報
上記特許文献1に述べられているように、従来、偏光板保護フィルや光学補償フィルムの面内レターデーション(Re)及び膜厚方向のレターデーション(Rth)は共に0に近いほどよいと考えられている。しかしIPSモード液晶表示装置においてはそのような偏光板保護フィルや光学補償フィルムを用いても、黒表示時の光漏れが完全には抑えられず、コントラストが十分に大きくならないという問題をかかえていた。また黒表示時の正面から見たときと斜め方向から見たときの色味変化も完全にはなくならないという問題があった。
すなわち、本発明の第一の課題は、IPS液晶表示装置のコントラスト改良である。本発明の第二の課題は、IPSモード液晶表示装置における正面方向と斜め方向との色味変化の解消である。
本発明の発明者らは鋭意検討した結果、偏光板保護フィルムや光学補償フィルムのRthは0nm付近よりも、5nmから30nmとすることにより、IPS液晶表示装置のコントラストを大きくでき、さらに、正面方向と斜め方向との色味変化を小さくできることを見出した。具体的には以下の解決手段による。
〔1〕
ポリマーとしての環状ポリオレフィンを熱溶融製膜法により製膜してなり、
0≦Re(630)≦10であり、9≦Rth(630)≦17であり、且つ
480から750nmの全光波長領域において−10≦Rth(λ)≦20であることを特徴とする光学ポリマーフィルム[式中、Re(λ)は波長λnmにおける正面レターデーション値(単位:nm)、Rth(λ)は波長λnmにおける膜厚方向のレターデーション値(単位:nm)である。]。
〔2〕
グロー放電表面処理後における純水との接触角が50°未満であることを特徴とする請求項1に記載の光学ポリマーフィルム。
〔3〕
〔1〕又は〔2〕に記載の光学ポリマーフィルムを少なくとも1枚、偏光子の保護膜として用いたことを特徴とする偏光板。
〔4〕
〔1〕又は〔2〕に記載の光学ポリマーフィルム、または〔3〕に記載の偏光板を少なくとも1枚用いたことを特徴とするIPSモード液晶表示装置。
本発明は、上記〔1〕〜〔4〕に係る発明であるが、以下、それ以外の事項(例えば、下記(1)〜(8))についても記載している。
(1) 0≦Re(630)≦10且つ、5≦Rth(630)≦30且つ、480から750nmの全光波長領域において−15≦Rth(λ)≦33であることを特徴とする光学ポリマーフィルム[式中、Re(λ)は波長λnmにおける正面レターデーション値(単位:nm)、Rth(λ)は波長λnmにおける膜厚方向のレターデーション値(単位:nm)である。]。
(2) ポリマーとして、全置換度が2.78以上であり、且つアセチル基以外のアシル基置換度が0から1.0の範囲であるセルロースアシレートを使用することを特徴とする、(1)に記載の光学ポリマーフィルム。
(3) ポリマーとして、環状ポリオレフィンを使用することを特徴とする、(1)に記載の光学ポリマーフィルム。
(4) 膜厚さを80μmに換算したときのフィルムの透湿率が350から700g/m/日であることを特徴とする、(1)から(3)のいずれかに記載の光学ポリマーフィルム。
(5) 弾性率が3から5MPaであることを特徴とする、(1)から(4)のいずれかに記載の光学ポリマーフィルム。
(6) オクタノール・水分配係数(logP値)が0〜10である化合物の少なくとも1種を、セルロースアシレート固形分に対して0.01〜30質量%の割合で含むことを特徴とする(1)から(5)のいずれかに記載の光学ポリマーフィルム。
(7) (1)から(6)のいずれかに記載の光学ポリマーフィルムを少なくとも1枚、偏光子の保護膜として用いたことを特徴とする偏光板。
(8) (1)から(6)のいずれかに記載の光学ポリマーフィルム、または(7)の偏光板を少なくとも1枚用いたことを特徴とするIPSモード液晶表示装置。
本発明の第一の効果は、IPS液晶表示装置のコントラスト増大である。本発明の第二の効果は、IPS液晶表示装置における正面方向と斜め方向との色味変化の減少である。
本発明の液晶表示装置の一例を示す概略図である。 本発明の液晶表示装置の一例を示す概略断面図である。 本発明の液晶表示装置の一例を示す概略断面図である。
以下、本発明の具体的態様について詳細に説明する。以下の本発明の記述において、セルロースアシレート中の含有成分量、例えば残留硫酸量、微量金属成分量などは当業界の慣例に従ってセルロースアシレートに対する質量基準の「ppm」によって記述するが、これはセルロースアシレートに対する「mg/kg」と同じである。
[レターデーション、Re、Rth]
本明細書において、Re(λ)、Rth(λ)は各々、波長λにおける面内のレターデーションおよび厚さ方向のレターデーションを表す。Re(λ)はKOBRA 21ADHまたはWR(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。
測定されるフィルムが1軸または2軸の屈折率楕円体で表されるものである場合には、以下の方法によりRth(λ)は算出される。
Rth(λ)は前記Re(λ)を、面内の遅相軸(KOBRA 21ADHまたはWRにより判断される)を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)のフィルム法線方向に対して法線方向から片側50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて全部で6点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADHまたはWRが算出する。
上記において、法線方向から面内の遅相軸を回転軸として、ある傾斜角度にレターデーションの値がゼロとなる方向をもつフィルムの場合には、その傾斜角度より大きい傾斜角度でのレターデーション値はその符号を負に変更した後、KOBRA 21ADHまたはWRが算出する。
尚、遅相軸を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)、任意の傾斜した2方向からレターデーション値を測定し、その値と平均屈折率の仮定値及び入力された膜厚値を基に、以下の式(1)及び式(2)よりRthを算出することもできる。
Figure 0005114591
式(1)におけるnxは面内における遅相軸方向の屈折率を表し、nyは面内においてnxに直交する方向の屈折率を表し、nzはnx及びnyに直交する方向の屈折率を表す。
Figure 0005114591
測定されるフィルムが1軸や2軸の屈折率楕円体で表現できないもの、いわゆる光学軸
(optic axis)がないフィルムの場合には、以下の方法によりRth(λ)は算出される。
Rth(λ)は前記Re(λ)を、面内の遅相軸(KOBRA 21ADHまたはWRにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して−50度から+50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて11点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADHまたはWRが算出する。
上記の測定において、平均屈折率の仮定値は ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する: セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート
(1.49)、ポリスチレン(1.59)である。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADHまたはWRはnx、ny、nzを算出する。この算出されたnx、ny、nzよりNz=(nx−nz)/(nx−ny)が更に算出される。
本発明の光学ポリマーフィルムの光学的異方性、特に波長630nmで測定した面内のレターデーションRe(630)および厚さ方向のレターデーションRth(630)は、下記式(I)または(II)を満たす範囲である。
(I)0≦Re(630)≦10
(II)5≦Rth(630)≦30
上記式(I)、(II)は
(I)0≦Re(630)≦5
(II)9≦Rth(630)≦17であることが好ましい。
また本発明の光学ポリマーフィルムは、波長λが480から750nmの全波長領域において、−15≦Rth(λ)≦33であり、−10≦Rth(λ)≦20であることが好ましい。
本発明の光学フィルムに好ましく使用できるポリマーは、非晶性で透明なポリマーである。特に好ましくはセルロースアシレート類及び環状ポリオレフィン類を用いることにより発生できる。
環状ポリオレフィンを使用する光学フィルムの場合は、一般的にRth(480)の値、Rth(630)の値及びRth(750)の値がほぼ同じになる。Rth(λ)はノルボルネン環の置換基の種類を変えることにより調整できる。
一方セルロースアシレートを使用する光学フィルムの場合は、一般的にRth(480)<Rth(630)<Rth(750)である。従って可視域全体のRth(λ)を調整すると同時にRth(750)とRth(480)との差を小さくする手段を同時にとる必要がある。全Rth(λ)の調整はセルロースアシレートのアシル置換度の調整により達成できる。またセルロースアシレートに添加する可塑剤、紫外線吸収剤やその他の添加剤の種類と量によって調整できる。Rth(750)とRth(480)との差を小さくするには、ある種の紫外部に吸収をもつ化合物を添加することで達成できる。
以下に本発明の詳細な達成手段について述べる。
[ポリマー材料]
本発明の光学フィルムに好ましく使用できるポリマーは、非晶性で透明なポリマーである。特に好ましくはセルロースアシレート類及び環状ポリオレフィン類である。
<環状ポリオレフィン>
環状オレフィン構造を有する重合体樹脂の例には、(1)ノルボルネン系重合体、(2)単環の環状オレフィンの重合体、(3)環状共役ジエンの重合体、(4)ビニル脂環式炭化水素重合体、及び(1)〜(4)の水素化物などがある。
本発明に好ましい重合体は下記一般式(I)で表される繰り返し単位と一般式(II)で表される環状繰り返し単位を少なくとも1種類以上含む共重合体環状ポリオレフィン及び、一般式(II)あるいは(III)で表される環状繰り返し単位を少なくとも1種含む開環(共)重合体あるいは付加(共)重合体である。
Figure 0005114591
Figure 0005114591
Figure 0005114591
式中、mは0〜4の整数を表す。R〜Rは水素原子又は炭素数1〜10の炭化水素基、X〜X、Y〜Yは水素原子、炭素数1〜10の炭化水素基、ハロゲン原子、ハロゲン原子で置換された炭素数1〜10の炭化水素基、−(CHCOOR11、−(CHOOCR12、−(CHNCO、−(CHNO、−(CHCN、−(CHCONR1314、−(CHNR1314、−(CHOCOZ、−(CHOZ、−(CHW、または、XとY、XとYもしくはXとYから構成された、(−CO)Oもしくは(−CO)NR15を示す。なお、R11,R12,R13,R14,R15は炭素数1〜20の炭化水素基、Zは炭化水素基またはハロゲンで置換された炭化水素基、WはSiR16 3−p(R16は炭素数1〜10の炭化水素基、Dはハロゲン原子−OCOR16または−OR16、pは0〜3の整数を示す)、nは0〜10の整数を示す。
〜X、Y〜Yの置換基に分極性の大きい官能基を導入することにより、光学フィルムの厚さ方向レターデーション(Rth)を大きくしたり、面内レターデーション(Re)の発現性を大きくすることが出来る。Re発現性の大きなフィルムは、製膜過程で延伸することによりRe値を大きくすることができる。
ノルボルネン系重合体水素化物は、特開平1−240517号、特開平7−196736号、特開昭60−26024号あるいは特開昭62−19801号、WO2004/070463A1号等に開示されているように、多環状不飽和化合物を付加重合したり、メタセシス開環重合したのち水素添加することにより作られる。本発明に用いるノルボルネン系重合体において、R〜Rは水素原子又は−CHが好ましく、X、及びYは水素原子、Cl、−COOCHが好ましく、その他の基は適宜選択される。このノルボルネン系樹脂は、JSR(株)からアートン(Arton)GあるいはアートンFという商品名で発売されており、また日本ゼオン(株)からゼオノア(Zeonor)ZF14、ZF16、ゼオネックス(Zeonex)250あるいはゼオネックス280という商品名で市販されており、これらを使用することができる。
ノルボルネン系付加(共)重合体は、特開平10−7732号、特表2002−504184号あるいは、WO2004/070463A1号等に開示されている。ノルボルネン系多環状不飽和化合物同士を付加重合したり、ノルボルネン系多環状不飽和化合物と、エチレン、プロピレン、ブテン;ブタジエン、イソプレンのような共役ジエン;エチリデンノルボルネンのような非共役ジエン;アクリロニトリル、アクリル酸、メタアクリル酸、無水マレイン酸、アクリル酸エステル、メタクリル酸エステル、マレイミド、酢酸ビニル、塩化ビニルなどの線状ジエン化合物とを付加重合してつくられる。このノルボルネン系付加(共)重合体は、三井化学(株)よりアペルの商品名で発売されており、ガラス転移温度(Tg)の異なる例えばAPL8008T(Tg70℃)、APL6013T(Tg125℃)あるいはAPL6015T(Tg145℃)などのグレードがある。またポリプラスチック(株)よりTOPAS8007、同6013、同6015などのペレットが発売されている。
<セルロースアシレート類>
本発明に用いられるセルロースアシレート原料のセルロースとしては、綿花リンタや木材パルプ(広葉樹パルプ,針葉樹パルプ)などがあり、何れの原料セルロースから得られるセルロースアシレートでも使用でき、場合により混合して使用してもよい。これらの原料セルロースについての詳細な記載は、例えばプラスチック材料講座(17)繊維素系樹脂(丸澤、宇田著、日刊工業新聞社、1970年発行)や発明協会公開技報2001−1745(7頁〜8頁)に見られる。
(セルロースアシレート置換度、平均酢化度)
次に上述のセルロースを原料に製造される本発明のセルロースアシレートについて記載する。本発明のセルロースアシレートはセルロースの水酸基がアシル化されたものである。アシル基としては炭素原子数が2のアセチル基から炭素原子数が22のものまでいずれも用いることができる。セルロースの水酸基に置換する酢酸及び/又は炭素原子数3〜22の脂肪酸の結合度を測定し、計算によって置換度あるいは平均酢化度を得ることができる。その測定方法としては、ASTMのD−817−91に準じて実施することが出来る。
セルロースアシレートの平均置換度の理論的な上限値は3.00であるが、平均置換度の値は3.00にできるだけ近く高い値をとることが望ましい。置換度の高い綿を用いることで、光学的異方性ReをゼロかつRthを小さくなるようにすることができ、フィルム面内および膜厚方向に配向するのを抑制する化合物の添加量を低減できるようになる。セルロースアシレートがセルロースアセテートの場合は、セルロースの水酸基へのアセチル置換度が2.78〜3.00であることが望ましい。置換度が小さいと好ましいReレターデーション及びRthレターデーションを得ることが難しくなる。アセチル置換度は2.83〜2.97であることが更に望ましく、2.87〜2.93であることが特に望ましい。置換度が3.00に近づけば近づくほど、セルロースアセテートの溶剤に対する溶解性は悪くなる傾向がある。
セルロースの水酸基に置換する酢酸及び/又は炭素原子数3〜22の脂肪酸のうち、炭素数2〜22のアシル基としては、脂肪族アシル基でもアリルアシル基でもよく特に限定されず、セルロースユニットへの置換形態では、単一アシル基でも2種類以上のアシル基の混合エステルでもよい。それらは、例えばセルロースのアルキルカルボニルエステル、アルケニルカルボニルエステルあるいは芳香族カルボニルエステル、芳香族アルキルカルボニルエステルなどであり、それぞれさらに置換された基を有していてもよい。これらの好ましいアシル基としては、アセチル、プロピオニル、ブタノイル、へプタノイル、ヘキサノイル、オクタノイル、デカノイル、ドデカノイル、トリデカノイル、テトラデカノイル、ヘキサデカノイル、オクタデカノイル、iso−ブタノイル、t−ブタノイル、シクロヘキサンカルボニル、オレオイル、ベンゾイル、ナフチルカルボニル、シンナモイルの各基などを挙げることが出来る。これらの中でも、アセチル、プロピオニル、ブタノイル、ドデカノイル、オクタデカノイル、t−ブタノイル、オレオイル、ベンゾイル、ナフチルカルボニル、シンナモイルなどの各基が好ましく、アセチル基、プロピオニル基、ブタノイル基がより好ましい。
上述のセルロースの水酸基に置換するアシル置換基のうちで、実質的にアセチル基/プロピオニル基/ブタノイル基の少なくとも2種類からなる場合においては、その全置換度が2.70〜3.00の場合にセルロースアシレートフィルムの光学異方性が低下できることがわかった。より好ましいアシル置換度は2.78〜3.00であり、さらに望ましくは2.83〜2.97である。またその時、アセチル基以外のアシル基の好ましい置換度は0〜1.00であり、より好ましくは0.50〜1.00であり、特に好ましくは0.60〜0.90である。
(セルロースアシレートの粘度特性)
セルロースアシレートの固有粘度特性は「6%粘度値」で表される。6%粘度は、メチレンクロライドとメタノールの質量比率91対9の混合溶媒にセルロースアシレートを6質量%溶解し、オストワルド粘度計を用いて25℃における流下時間を測定し、次式により6%粘度を算出する。
6%粘度(mPa・s)=流下時間(秒)×粘度計係数
「粘度計係数」は粘度計較正用標準液を用いて、上記溶液と同様の操作で流下秒数を測定して求める。
ここに、「粘度計係数=標準液の絶対粘度(cps)×溶液の密度(1.235g/cm)/標準液の密度(g/cm)/標準液の流下時間(秒)」である。
本発明で好ましい6%粘度値は260から700である。6%粘度値が260以上において、製膜時加圧ダイの内圧を十分に高く設定でき、幅方向に均一に押し出すことができ、好ましい。6%粘度値が700以下において、セルロースアシレート溶液をろ過する際に適切な過圧力によってろ過することができ、好ましい。6%粘度値は300から500が更に好ましく、350から470が特に好ましい。
(重合度)
セルロースアシレートの粘度平均重合度(DP)は、250以上であることが好ましく、290以上であることがさらに好ましい。重合度が250未満のセルロースアシレートでは、得られるフィルムの強度が悪化する。粘度平均重合度は、オストワルド粘度計にて測定したセルロースアシレートの固有粘度[η]から、下記の式により求める。
(1) DP=[η]/Km
式中、[η]は、セルロースアシレートの固有粘度であり、Kmは、定数6×10−4である。
粘度平均重合度(DP)が290以上である場合、粘度平均重合度と落球式粘度法による濃厚溶液粘度(η)とが下記式(2)の関係を満足することが好ましい。
(2)2.814×ln(DP)−11.753≦ln(η)≦6.29×ln(DP)−31.469
式中、DPは290以上の粘度平均重合度の値であり、ηは落球式粘度法における標線間の通過時間(秒)である。
上記式(2)は、本発明者が行なった実験のデータから、粘度平均重合度と濃厚溶液粘度をプロットし、その結果から算出したものである。粘度平均重合度が290以上のセルロースアシレートにおいては、一般に重合度が高くなると濃厚溶液の粘度が指数的に増加する。これに対して、上記式を満足するセルロースアシレートでは、粘度平均重合度に対する濃厚溶液粘度の増加が直線的である。言い換えると、高い粘度平均重合度を有するセルロースアシレートの場合は、上記式(1)を満足するように濃厚溶液粘度の増加を抑制することが好ましい。
(平均分子量)
また、本発明で好ましく用いられるセルロースアシレートの分子量分布はゲルパーミエーションクロマトグラフィーによって評価される。数平均分子量Mnの好ましい範囲は5万から15万であり、より好ましくは7万から12万である。重量平均分子量Mwの好ましい範囲は13万から36万であり、より好ましくは20万から31万である。その多分散性指数Mw/Mn(Mwは質量平均分子量、Mnは数平均分子量)が小さく、分子量分布が狭いことが好ましい。具体的なMw/Mnの値としては、2.0〜4.0であることが好ましく、2.3〜3.4であることがさらに好ましい。Mw/Mnが小さすぎるとセルロースアシレート溶液の粘度が小さくなり、大きすぎると低分子成分が溶出しやすくなったり溶液粘度が大きくなったりして、いずれも好ましくない。Z平均分子量Mzの好ましい範囲は19万から80万であり、より好ましくは40万から65万である。
低分子成分を除去すると、平均分子量(重合度)が高くなる。しかし同じ平均分子量同士のセルロースアシレート同士で比較すると、低分子成分を除去したものの方が、溶液にしたときの粘度は通常のセルロースアシレートよりも低くなるため有用である。低分子成分の少ないセルロースアシレートは、通常の方法で合成したセルロースアシレートから低分子成分を除去することにより得ることができる。低分子成分の除去は、セルロースアシレートを適当な有機溶媒で洗浄することにより実施できる。
(含水率)
本発明のセルロースアシレートの製造においては、その含水率は2質量%以下であることが好ましく、さらに好ましくは1質量%以下であり、特には0.7質量%以下の含水率を有するセルロースアシレートである。一般に、セルロースアシレートは、水を含有しており2.5〜5質量%が知られている。本発明でこのセルロースアシレートの含水率にするためには、乾燥することが必要であり、その方法は目的とする含水率になれば特に限定されない。本発明のこれらのセルロースアシレートは、その原料綿や合成方法は発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)にて7頁〜12頁に詳細に記載されている。
(形状)
本発明に用いるセルロースアシレートの粉黛特性は、通常のものであれば特に問題ない。好ましい安息角は20度以上50度以下であり、25度以上45度以下が更に好ましい。好ましい嵩密度は0.3g/cm以上0.75g/cm以下であり、0.4g/cm以上0.65g/cm以下が更に好ましい。粒子サイズは0.01から10mmが好ましく、0.1から4mmが更に好ましい。このような範囲の粉黛であれば、セルロースアシレートのハンドリングに問題を生ぜず、風送、自動計量など自動仕込みができる。
(含有元素)
通常、セルロースアシレート合成過程で使用する硫酸、酢酸、水酸化カルシウム、水酸化マグネシウムなどがそのままあるいはセルロースアシレートと反応した形で残留している。また不純物として鉄イオンの混入も知られている。本発明においてセルロースアシレートに残留している上記諸物質の含有量の好ましい範囲は、硫酸量は30から150ppmであり、カルシウムは10から120ppmであり、マグネシウムは0.1から20ppmであり、鉄は3ppm以下である。また遊離酢酸は0.01から0.2%である。
本発明に用いるセルロースアシレートは置換基、置換度、重合度、分子量分布など前述した範囲であれば、単一あるいは異なる2種類以上のセルロースアシレートを混合して用いることができる。
[添加剤]
本発明では、環状ポリオレフィンフィルムあるいはセルロースアシレートフィルムに、各製造工程において用途に応じた種々の添加剤(例えば、光学的異方性を低下する化合物、波長分散調整剤、紫外線防止剤、可塑剤、劣化防止剤、微粒子、光学特性調整剤など)を加えることができる。これらについて以下に説明する。
<Rthを低下させる化合物>
本発明のセルロースアシレートフィルムは、フィルム膜厚方向のレターデーションRthを低下させる化合物(以下、Rth低下剤ともいう)の少なくとも1種を、セルロースアシレートフィルム原料ポリマーに対して0.01〜30質量%含むことが望ましい。
より望ましくは、Rth低下剤を下記数式(3)及び(4)を満たす範囲で含有することが望ましい。
数式(3):(Rth−Rth)/A≦−1.0
数式(4):0.01≦A≦30
上記数式(3)、(4)において、さらに望ましくは、
数式(3−1):(Rth−Rth)/A≦−2.0
数式(4−1):0.05≦A≦25であり、特に望ましくは、
数式(3−2):(Rth−Rth)/A≦−3.0
数式(4−2):0.1≦A≦20である。
ここで、RthはRthを低下させる化合物をA%含有したフィルムのRth(nm)、RthはRthを低下させる化合物を含有しないフィルムのRth(nm)、Aはフィルム原料ポリマーの質量を100としたときの化合物の質量(%)である。
(Rth低下剤の構造的特徴)
セルロースアシレートフィルムのRth低下剤について説明する。
光学異方性を十分に低下させ、Re、Rthがともにゼロに近くなるようにするためには、フィルム中のセルロースアシレートが、正面方向及び膜厚方向に配向するのを抑制する化合物を用いることが好ましい。また、光学異方性を低下させる化合物は、セルロースアシレートに十分に相溶し、化合物自身が棒状の構造や平面性の構造を持たないことが有利である。具体的には芳香族基のような平面性の官能基を複数持っている場合、それらの官能基を同一平面ではなく、非平面に持つような構造が有利である。
(LogP値)
本発明のセルロースアシレートフィルムを作製するに当たっては、上記のように、フィルム中のセルロースアシレートが面内及び膜厚方向に配向するのを抑制してRth低下剤のうち、オクタノール−水分配係数(logP値)が0〜7である化合物を選択することが好ましい。logP値が7以下の化合物であれば、セルロースアシレートとの相溶性に優れ、フィルムの白濁や粉吹きなどの不都合を生じない。またlogP値が0以上の化合物は、親水性が高くなりすぎることがなく、セルロースアシレートフィルムの耐水性を悪化させるなどの問題が生じないので好ましい。logP値としてさらに好ましい範囲は1〜6であり、特に好ましい範囲は1.5〜5である。
オクタノール−水分配係数(logP値)の測定は、JIS Z−7260−107(2000)に記載のフラスコ震盪法により実施することができる。また、オクタノール−水分配係数(logP値)は、実測に代わって、計算化学的手法又は経験的方法により見積もることも可能である。計算方法としては、Crippen’s fragmentation法{“J.Chem.Inf.comput.Sci.”,27巻、p.21(1987年)}、Viswanadhan’s fragmentation法{“J.Chem.Inf.comput.Sci.”,29巻、p.163(1989年)}、Broto’s fragmentation法{“Eur.J.Med.Chem.−Chim.Theor.”,19巻、p.71(1984年)}などが好ましく用いられるが、Crippen’s fragmentation法がより好ましい。ある化合物のlogPの値が、測定方法又は計算方法により異なる場合に、該化合物が前記範囲内であるかどうかは、Crippen’s fragmentation法により判断するものとする。
(Rth低下剤の物性)
Rth低下剤は、芳香族基を含有してもよいし、含有しなくてもよい。またRth低下剤は、分子量が150以上3000以下であることが好ましく、170以上2000以下であることが好ましく、200以上1000以下であることが特に好ましい。これらの分子量の範囲であれば、特定のモノマー構造であってもよいし、そのモノマーユニットが複数結合したオリゴマー構造、ポリマー構造でもよい。
Rth低下剤は、好ましくは、25℃で液体であるか、融点が25〜250℃の固体であり、さらに好ましくは、25℃で液体であるか、融点が25〜200℃の固体である。またRth低下剤は、セルロースアシレートフィルム作製のドープ流延、乾燥の過程で揮散しないことが好ましい。
Rth低下剤の添加量は、セルロースアシレートの0.01〜30質量%であることが好ましく、1〜25質量%であることがより好ましく、5〜20質量%であることが特に好ましい。
Rth低下剤は、単独で用いても、2種以上化合物を任意の比で混合して用いてもよい。Rth低下剤を添加する時期はドープ作製工程中の何れであってもよく、ドープ調製工程の最後に行ってもよい。
このようなRth低下剤としては、下記の一般式(1)で表される化合物が好ましい。
Figure 0005114591
上記一般式(1)において、R11はアルキル基又はアリール基を表し、R12及びR13は、それぞれ独立に、水素原子、アルキル基又はアリール基を表す。また、R11、R12及びR13の炭素原子数の総和は10以上であることが特に好ましく、またこれらのアルキル基及びアリール基は置換基を有していてもよい。
置換基としてはフッ素原子、アルキル基、アリール基、アルコキシ基、スルホン基及びスルホンアミド基が好ましく、アルキル基、アリール基、アルコキシ基、スルホン基及びスルホンアミド基が特に好ましい。
アルキル基は直鎖であっても、分岐であっても、環状であってもよく、炭素原子数が1〜25のものが好ましく、6〜25のものがより好ましく、6〜20のもの(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、t−ブチル、アミル、イソアミル、t−アミル、ヘキシル、シクロヘキシル、ヘプチル、オクチル、ビシクロオクチル、ノニル、アダマンチル、デシル、t−オクチル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシル、ノナデシル、ジデシルなど)が特に好ましい。
アリール基としては、炭素原子数が6〜30のものが好ましく、6〜24のもの(例えば、フェニル、ビフェニル、テルフェニル、ナフチル、ビナフチル、トリフェニルフェニルなど)が特に好ましい。一般式(1)で表される化合物の好ましい例を下記に示すが、本発明はこれらの具体例に限定されるものではない。
Figure 0005114591
Figure 0005114591
Figure 0005114591
Figure 0005114591
Rth低下剤としては、また下記の一般式(2)で表される化合物を例示することができる。
Figure 0005114591
上記一般式(2)において、R21はアルキル基又はアリール基を表し、R22及びR23は、それぞれ独立に、水素原子、アルキル基又はアリール基を表す。ここで、アルキル基は直鎖であっても、分岐であっても、環状であってもよく、炭素原子数が1〜20のものが好ましく、1〜15のものがさらに好ましく、1〜12のものが最も好ましい。環状のアルキル基としては、シクロヘキシル基が特に好ましい。アリール基は炭素原子数が6〜36のものが好ましく、6〜24のものがより好ましい。さらに、R21及びR22の炭素原子数の総和は10以上であることが好ましく、それぞれ、アルキル基及びアリール基は置換基を有していてもよい。
上記のアルキル基及びアリール基は置換基を有していてもよく、置換基としてはハロゲン原子(例えば、塩素、臭素、フッ素及びヨウ素など)、アルキル基、アリール基、アルコキシ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、スルホニルアミノ基、ヒドロキシ基、シアノ基、アミノ基及びアシルアミノ基が好ましく、より好ましくはハロゲン原子、アルキル基、アリール基、アルコキシ基、アリールオキシ基、スルホニルアミノ基及びアシルアミノ基であり、特に好ましくはアルキル基、アリール基、スルホニルアミノ基及びアシルアミノ基である。
以下に、一般式(2)で表される化合物の好ましい例を下記に示すが、本発明はこれらの具体例に限定されるものではない。
Figure 0005114591
Figure 0005114591
Figure 0005114591
Figure 0005114591
Figure 0005114591
Figure 0005114591
<波長分散調整剤>
本発明のセルロースアシレートフィルムは、そのフィルムの|Re450−Re780|及び|Rth480−Rth750|を低下させる化合物、すなわちレターデーションの波長分散を低下させる化合物(以下、波長分散調整剤ともいう)を少なくとも1種、セルロースアシレートフィルム原料ポリマーの固形分に対して0.01〜30質量%含むことが好ましい。以下、波長分散調整剤について説明する。
本発明のセルロースアシレートフィルムの、Rthの波長分散を良化させるためには、下記数式(6)で表されるRthの波長分散ΔRthを低下させる化合物(波長分散調整剤)を、下記数式(7)及び(8)を満たす範囲で少なくとも1種含有することが望ましい。
数式(6):ΔRth=|Rth480−Rth750
数式(7):(ΔRth−ΔRth)/B≦−2.0
数式(8):0.01≦B≦30
上記数式(7)及び(8)において、より望ましくは、
数式(7−2):(ΔRth−ΔRth)/B≦−3.0
数式(8−2):0.05≦B≦25であり、さらに望ましくは、
数式(7−3):(ΔRth−ΔRth)/B≦−4.0
数式(8−3):0.1≦B≦20である。
ここでΔRthは、波長分散調整剤をB質量%含有したフィルムのΔRth(nm)、Rthは波長分散調整剤を含有しないフィルムのΔRth(nm)、Bはフィルム原料ポリマーの質量を100としたときの波長分散調整剤の質量(%)である。
(波長分散調整剤の添加方法)
これら波長分散調整剤は、単独で用いても、2種以上化合物を任意の比で混合して用いてもよい。またこれら波長分散調整剤を添加する時期はドープ作製工程中の何れであってもよく、ドープ調製工程の最後に行ってもよい。
本発明に好ましく用いられる波長分散調整剤の具体例としては、例えばベンゾトリアゾール系化合物、ベンゾフェノン系化合物、シアノ基を含む化合物、オキシベンゾフェノン系化合物、サリチル酸エステル系化合物、ニッケル錯塩系化合物などが挙げられるが、本発明はこれら化合物だけに限定されるものではない。
ベンゾトリアゾール系化合物としては、下記一般式(3)で示されるものが本発明における波長分散調整剤として好ましく用いられる。
一般式(3):Q31−Q32−OH
(式中、Q31は含窒素芳香族ヘテロ環、Q32は芳香族環を表す。)
31は含窒素方向芳香族へテロ環を表し、好ましくは5〜7員の含窒素芳香族ヘテロ環であり、より好ましくは5〜6員の含窒素芳香族ヘテロ環であり、例えば、イミダゾール、ピラゾール、トリアゾール、テトラゾール、チアゾール、オキサゾール、セレナゾール、ベンゾトリアゾール、ベンゾチアゾール、ベンズオキサゾール、ベンゾセレナゾール、チアジアゾール、オキサジアゾール、ナフトチアゾール、ナフトオキサゾール、アザベンズイミダゾール、プリン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、トリアザインデン、テトラザインデン等が挙げられ、更に好ましくは、5員の含窒素芳香族ヘテロ環であり、具体的にはイミダゾール、ピラゾール、トリアゾール、テトラゾール、チアゾール、オキサゾール、ベンゾトリアゾール、ベンゾチアゾール、ベンズオキサゾール、チアジアゾール、オキサジアゾールが好ましく、特に好ましくは、ベンゾトリアゾールである。
31で表される含窒素芳香族ヘテロ環は、更に置換基を有してもよく、置換基としては後述の置換基Tが適用できる。また、置換基が複数ある場合にはそれぞれが縮環して更に環を形成してもよい。
32で表される芳香族環は、芳香族炭化水素環でも芳香族ヘテロ環でもよい。また、これらは単環であってもよいし、更に他の環と縮合環を形成してもよい。
芳香族炭化水素環として、好ましくは炭素数6〜30の単環又は二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環など)であり、より好ましくは炭素数6〜20の芳香族炭化水素環、更に好ましくは炭素数6〜12の芳香族炭化水素環である。最も好ましくはベンゼン環である。
芳香族ヘテロ環として、好ましくは窒素原子又は硫黄原子を含む芳香族ヘテロ環である。ヘテロ環の具体例としては、例えば、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族ヘテロ環として、好ましくは、ピリジン、トリアジン、キノリンである。
32で表される芳香族環として、好ましくは芳香族炭化水素環であり、より好ましくはナフタレン環、ベンゼン環であり、特に好ましくはベンゼン環である。Q32は更に置換基を有してもよく、下記の置換基Tが好ましい。
置換基Tとしては、例えばアルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル、エチル、i−プロピル、t−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばプロパルギル、3−ペンチニルなどが挙げられる)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチルなどが挙げられる)、置換又は未置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノなどが挙げられる)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメトキシ、エトキシ、ブトキシなどが挙げられる)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、2−ナフチルオキシなどが挙げられる)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えばフェニルオキシカルボニルなどが挙げられる)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる)、アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、ピペリジル、モルホリノ、ベンゾオキサゾリル、ベンズイミダゾリル、ベンズチアゾリルなどが挙げられる)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24であり、例えば、トリメチルシリル、トリフェニルシリルなどが挙げられる)などが挙げられる。これらの置換基は更に置換されてもよい。また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
一般式(3)として、好ましくは下記一般式(3−1)で表される化合物が挙げられる。
Figure 0005114591
上記一般式(3−1)において、R31、R32、R33、R34、R35、R36、R37及びR38は、それぞれ独立に水素原子又は置換基を表し、置換基としては上記の置換基Tが適用できる。またこれらの置換基は、更に別の置換基によって置換されてもよく、置換基同士が縮環して環構造を形成してもよい。
31及びR33として、好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換又は無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基又はハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基又はハロゲン原子であり、更に好ましくは水素原子又は炭素1〜12アルキル基であり、特に好ましくは炭素数1〜12のアルキル基(好ましくは炭素数4〜12)である。
32、及びR34として、好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換若しくは無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基又はハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基又はハロゲン原子であり、更に好ましくは水素原子又は炭素1〜12アルキル基であり、特に好ましくは水素原子又はメチル基であり、最も好ましくは水素原子である。
35及びR38として、好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換若しくは無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基又はハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基又はハロゲン原子であり、更に好ましくは水素原子又は炭素1〜12アルキル基であり、特に好ましくは水素原子又はメチル基であり、最も好ましくは水素原子である。
36及びR37として、好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換若しくは無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基又はハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基又はハロゲン原子であり、更に好ましくは水素原子又はハロゲン原子であり、特に好ましくは水素原子又は塩素原子である。
一般式(3)として、より好ましくは下記一般式(3−2)で表される化合物が挙げられる。
Figure 0005114591
式中、R31、R33、R36及びR37は、各々上記一般式(3−1)におけるそれらと同義であり、また好ましい範囲も同様である。
以下に一般式(3)で表される化合物の具体例を挙げるが、本発明は下記具体例に何ら限定されるものではない。
Figure 0005114591
Figure 0005114591
以上例にあげたベンゾトリアゾール系化合物の中でも、分子量が320以上のものが、本発明のセルロースアシレートフィルムを作製した場合に、保留性の点で有利であることが確認された。
また本発明に用いられる波長分散調整剤の1つであるベンゾフェノン系化合物としては一般式(4)で示されるものが好ましく用いられる。
Figure 0005114591
式中、Q41及びQ42は、それぞれ独立に芳香族環を表す。X41はNR41(R41は水素原子又は置換基を表す)、酸素原子又は硫黄原子を表す。
41及びQ42で表される芳香族環は、芳香族炭化水素環でも芳香族ヘテロ環でもよい。また、これらは単環であってもよいし、更に他の環と縮合環を形成してもよい。
41及びQ42で表される芳香族炭化水素環として、好ましくは炭素数6〜30の単環又は二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環など)であり、より好ましくは炭素数6〜20の芳香族炭化水素環、更に好ましくは炭素数6〜12の芳香族炭化水素環である。更に好ましくはベンゼン環である。
41及びQ42で表される芳香族ヘテロ環として、好ましくは酸素原子、窒素原子又は硫黄原子のどれか1つを少なくとも1つ含む芳香族ヘテロ環である。ヘテロ環の具体例としては、例えば、フラン、ピロール、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族ヘテロ環として好ましくは、ピリジン、トリアジン、キノリンである。
41及びQ42で表される芳香族環として好ましくは芳香族炭化水素環であり、より好ましくは炭素数6〜10の芳香族炭化水素環であり、更に好ましくは置換又は無置換のベンゼン環である。
41及びQ42は更に置換基を有してもよく、前記の置換基Tが好ましいが、置換基にカルボン酸、スルホン酸、4級アンモニウム塩を含むことはない。また、可能な場合には置換基同士が連結して環構造を形成してもよい。
41は、NR42(R42は水素原子又は置換基を表す。置換基としては前記の置換基Tが適用できる)、酸素原子又は硫黄原子を表し、X41として好ましくは、NR42
(R42として好ましくはアシル基、スルホニル基であり、これらの置換基は更に置換してもよい)、又は酸素であり、特に好ましくは酸素である。
一般式(4)として、好ましくは下記一般式(4−1)で表される化合物が挙げられる。
Figure 0005114591
式中、R411、R412、R413、R414、R415、R416、R417、R418及びR419は、それぞれ独立に、水素原子又は置換基を表し、置換基としては前記の置換基Tが適用できる。またこれらの置換基は、更に別の置換基によって置換されてもよく、置換基同士が縮環して環構造を形成してもよい。
411、R413、R414、R415、R416、R418及びR419として、好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換又は無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは水素原子、メチル基であり、最も好ましくは水素原子である。
412として、好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換又は無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子、より好ましくは水素原子、炭素数1〜20のアルキル基、炭素数0〜20のアミノ基、炭素数1〜12のアルコキシ基、炭素数6〜12アリールオキシ基、ヒドロキシ基であり、更に好ましくは炭素数1〜20のアルコキシ基であり、特に好ましくは炭素数1〜12のアルコキシ基である。
417として、好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換又は無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子、より好ましくは水素原子、炭素数1〜20のアルキル基、炭素数0〜20のアミノ基、炭素数1〜12のアルコキシ基、炭素数6〜12アリールオキシ基、ヒドロキシ基であり、更に好ましくは水素原子、炭素数1〜20のアルキル基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくはメチル基)であり、特に好ましくはメチル基、水素原子である。
一般式(4)として、より好ましくは下記一般式(4−2)で表される化合物が挙げられる。
Figure 0005114591
式中、R420は水素原子、置換又は無置換のアルキル基、置換又は無置換のアルケニル基、置換又は無置換のアルキニル基、置換又は無置換のアリール基を表し、置換基としては前記の置換基Tが適用できる。R420として、好ましくは置換又は無置換のアルキル基であり、より好ましくは炭素数5〜20の置換又は無置換のアルキル基であり、更に好ましくは炭素数5〜12の置換又は無置換のアルキル基(n−ヘキシル基、2−エチルヘキシル基、n−オクチル基、n−デシル基、n−ドデシル基、ベンジル基、などが挙げられる。)であり、特に好ましくは、炭素数6〜12の置換又は無置換のアルキル基(2−エチルヘキシル基、n−オクチル基、n−デシル基、n−ドデシル基、ベンジル基)である。
一般式(4)で表される化合物は特開平11−12219号公報記載の公知の方法により合成できる。
以下に一般式(4)で表される化合物の具体例を挙げるが、本発明は下記具体例に何ら限定されるものではない。
Figure 0005114591
Figure 0005114591
また本発明に用いられる波長分散調整剤の1つであるシアノ基を含む化合物としては一般式(5)で示されるものが好ましく用いられる。
Figure 0005114591
式中、Q51及びQ52は、それぞれ独立に芳香族環を表す。X51及びX52は水素原子又は置換基を表し、少なくともどちらか1つはシアノ基、カルボニル基、スルホニル基、芳香族ヘテロ環を表す。Q51及びQ52で表される芳香族環は芳香族炭化水素環でも芳香族ヘテロ環でもよい。また、これらは単環であってもよいし、更に他の環と縮合環を形成してもよい。
芳香族炭化水素環として、好ましくは炭素数6〜30の単環又は二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環など)であり、より好ましくは炭素数6〜20の芳香族炭化水素環、更に好ましくは炭素数6〜12の芳香族炭化水素環である。更に好ましくはベンゼン環である。
芳香族ヘテロ環として、好ましくは窒素原子又は硫黄原子を含む芳香族ヘテロ環である。ヘテロ環の具体例としては、例えば、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族ヘテロ環として好ましくは、ピリジン、トリアジン、キノリンである。
51及びQ52で表される芳香族環として、好ましくは芳香族炭化水素環であり、より好ましくはベンゼン環である。Q51及びQ52は更に置換基を有してもよく、前記の置換基Tが好ましい。
51及びX52は、水素原子又は置換基を表し、少なくともどちらか1つは、シアノ基、カルボニル基、スルホニル基、芳香族ヘテロ環を表す。X51及びX52で表される置換基は、前記の置換基Tを適用することができる。また、X51及びX52はで表される置換基は更に他の置換基によって置換されてもよく、X51及びX52は、それぞれが縮環して環構造を形成してもよい。
51及びX52として、好ましくは水素原子、アルキル基、アリール基、シアノ基、ニトロ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、より好ましくは、シアノ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、更に好ましくはシアノ基、カルボニル基であり、特に好ましくはシアノ基、アルコキシカルボニル基{−C(=O)OR51(R51は、炭素数1〜20アルキル基、炭素数6〜12のアリール基及びこれらを組み合せたもの)}である。
一般式(5)として、好ましくは下記一般式(5−1)で表される化合物が挙げられる。
Figure 0005114591
式中、R511、R512、R513、R514、R515、R516、R517、R518、R519及びR520は、それぞれ独立に、水素原子又は置換基を表し、置換基としては前記の置換基Tが適用できる。またこれらの置換基は更に別の置換基によって置換されてもよく、置換基同士が縮環して環構造を形成してもよい。X511及びX512は、それぞれ前記一般式(5)におけるX51及びX52と同義である。
511、R512、R514、R515、R516、R517、R519及びR520として好ましくは、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換又は無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは水素原子、メチル基であり、最も好ましくは水素原子である。
513及びR518として、好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換又は無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子、より好ましくは水素原子、炭素数1〜20のアルキル基、炭素数0〜20のアミノ基、炭素数1〜12のアルコキシ基、炭素数6〜12アリールオキシ基、ヒドロキシ基であり、更に好ましくは水素原子、炭素数1〜12のアルキル基、炭素数1〜12アルコキシ基であり、特に好ましくは水素原子である。
一般式(5)として、より好ましくは下記一般式(5−2)で表される化合物が挙げられる。
Figure 0005114591
式中、R513及びR518は一般式(5−1)におけるそれらと同義であり、また、好ましい範囲も同様である。X513は水素原子又は置換基を表し、置換基としては、前記の置換基Tが適用でき、また、可能な場合は更に他の置換基で置換されてもよい。
513として、好ましくは水素原子、アルキル基、アリール基、シアノ基、ニトロ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、より好ましくは、シアノ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、更に好ましくはシアノ基、カルボニル基であり、特に好ましくはシアノ基、アルコキシカルボニル基{−C(=O)OR52
(R52は、炭素数1〜20アルキル基、炭素数6〜12のアリール基及びこれらを組み合せたもの)}である。
一般式(5)として、更に好ましくは一般式(5−3)で表される化合物が挙げられる。
Figure 0005114591
式中、R513及びR518は、一般式(5−1)におけるそれらと同義であり、また、好ましい範囲も同様である。R52は炭素数1〜20のアルキル基を表す。R52として、好ましくは、R513及びR518が両方水素の場合には、炭素数2〜12のアルキル基であり、より好ましくは炭素数4〜12のアルキル基であり、更に好ましくは、炭素数6〜12のアルキル基であり、特に好ましくは、n−オクチル基、t−オクチル基、2−エチルへキシル基、n−デシル基、n−ドデシル基であり、最も好ましくは2−エチルへキシル基である。
52として、R513及びR518が水素以外の場合には、好ましくは一般式(5−3)で表される化合物の分子量が300以上になり、且つ炭素数20以下の炭素数のアルキル基が好ましい。
本発明において、一般式(5)で表される化合物は、“J.Am.Chem.Soc.”,63巻、3452頁(1941年)記載の方法によって合成できる。
以下に一般式(5)で表される化合物の具体例を挙げるが、本発明は下記具体例に何ら限定されるものではない。
Figure 0005114591
Figure 0005114591
Figure 0005114591
<マット剤微粒子>
本発明の光学フィルムには、マット剤として微粒子を加えることが好ましい。本発明に使用される微粒子としては、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。微粒子はケイ素を含むものが濁度が低くなる点で好ましく、特に二酸化珪素が好ましい。二酸化珪素の微粒子は、1次平均粒子径が20nm以下であり、かつ見かけ比重が70g/リットル以上であるものが好ましい。1次粒子の平均径が5〜16nmと小さいものがフィルムのヘイズを下げることができより好ましい。見かけ比重は90〜200g/リットル以上が好ましく、100〜200g/リットル以上がさらに好ましい。見かけ比重が大きい程、高濃度の分散液を作ることが可能になり、ヘイズ、凝集物が良化するため好ましい。
これらの微粒子は、通常平均粒子径が0.1〜3.0μmの2次粒子を形成し、これらの微粒子はフィルム中では、1次粒子の凝集体として存在し、フィルム表面に0.1〜3.0μmの凹凸を形成させる。2次平均粒子径は0.2μm以上1.5μm以下が好ましく、0.4μm以上1.2μm以下がさらに好ましく、0.6μm以上1.1μm以下が最も好ましい。1次、2次粒子径はフィルム中の粒子を走査型電子顕微鏡で観察し、粒子に外接する円の直径をもって粒径とした。また、場所を変えて粒子200個を観察し、その平均値をもって平均粒子径とした。
二酸化珪素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)などの市販品を使用することができる。酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。
これらの中でアエロジル200V、アエロジルR972Vが1次平均粒子径が20nm以下であり、かつ見かけ比重が70g/リットル以上である二酸化珪素の微粒子であり、光学フィルムの濁度を低く保ちながら、摩擦係数をさげる効果が大きいため特に好ましい。
本発明において2次平均粒子径の小さな粒子を有する光学フィルムを得るために、微粒子の分散液を調製する際にいくつかの手法が考えられる。熱溶融製膜の場合は、あらかじめ微粒子が分散されたポリマーペレットを作成しておき、製膜時に微粒子含有ペレットと通常のペレットを適宜混合する方法が行われる。
溶液製膜の場合は、溶剤と微粒子を撹拌混合した微粒子分散液をあらかじめ作成し、この微粒子分散液を別途用意した少量のポリマー溶液に加えて撹拌溶解し、さらにメインのポリマードープ液と混合する方法がある。この方法は二酸化珪素微粒子の分散性がよく、二酸化珪素微粒子が更に再凝集しにくい点で好ましい調製方法である。ほかにも、溶剤に少量のポリマーを加え、撹拌溶解した後、これに微粒子を加えて分散機で分散を行いこれを微粒子添加液とし、この微粒子添加液をインラインミキサーでドープ液と十分混合する方法もある。本発明はこれらの方法に限定されないが、二酸化珪素微粒子を溶剤などと混合して分散するときの二酸化珪素の濃度は5〜30質量%が好ましく、10〜25質量%が更に好ましく、15〜20質量%が最も好ましい。分散濃度が高い方が添加量に対する液濁度は低くなり、ヘイズ、凝集物が良化するため好ましい。最終的なポリマードープ溶液中でのマット剤の添加量は1mあたり0.01〜1.0gが好ましく、0.03〜0.3gが更に好ましく、0.08〜0.16gが最も好ましい。
使用される溶剤は低級アルコール類としては、好ましくはメチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール等が挙げられる。低級アルコール以外の溶媒としては特に限定されないが、光学フィルムの製膜時に用いられる溶剤を用いることが好ましい。
<可塑剤、劣化防止剤、剥離剤>
上記の光学的に異方性を低下する化合物、波長分散調整剤の他に、セルロースアシレートを用いる本発明の光学フィルムには、各調製工程において用途に応じた種々の添加剤(例えば、可塑剤、紫外線防止剤、劣化防止剤、剥離剤、赤外吸収剤、など)を加えることができ、それらは固体でもよく油状物でもよい。すなわち、その融点や沸点において特に限定されるものではない。例えば20℃以下と20℃以上の紫外線吸収材料の混合や、同様に可塑剤の混合などであり、例えば特開2001−151901号などに記載されている。各素材の添加量は機能が発現する限りにおいて特に限定されない。また、本発明の光学フィルムが多層から形成される場合、各層の添加物の種類や添加量が異なってもよい。
[化合物添加の比率]
本発明の光学フィルムにおいては、分子量が3000以下の化合物の総量は、ポリマー重量に対して2〜45%であることが望ましい。より好ましくは4〜30%であり、さらに望ましくは8〜20%である。これらの化合物としては上述したように、光学異方性を低下する化合物、波長分散調整剤、紫外線防止剤、可塑剤、劣化防止剤、微粒子、剥離剤などであり、分子量としては3000以下が望ましく、2000以下がより望ましく、1000以下がさらに望ましい。これら化合物の総量が45%以上であると、光学フィルム中に化合物が相溶する限界を超え、フィルム表面に析出してフィルムが白濁する(フィルムからの泣き出し)などの問題が生じやすくなる。
[溶液製膜用有機溶媒]
本発明では、ソルベントキャスト法により光学フィルムを好ましく製造できる。この場いいポリマーを有機溶媒に溶解した溶液(ドープ)を用いてフィルムは製造される。本発明の主溶媒として好ましく用いられる有機溶媒は、炭素原子数が5〜12の線状炭化水素、環状炭化水素あるいは芳香族炭化水素及びそれらの誘導体、炭素原子数が3〜12のエステル、ケトン、エーテル、および炭素原子数が1〜7のハロゲン化炭化水素から選ばれる溶媒が好ましい。エステル、ケトンおよび、エーテルは、環状構造を有していてもよい。エステル、ケトンおよびエーテルの官能基(すなわち、−O−、−CO−および−COO−)のいずれかを二つ以上有する化合物も、主溶媒として用いることができ、たとえばアルコール性水酸基のような他の官能基を有していてもよい。二種類以上の官能基を有する主溶媒の場合、その炭素原子数はいずれかの官能基を有する化合物の規定範囲内であればよい。
溶媒の選定においては主溶媒以外に使用する、いわゆる非溶媒あるいは貧溶媒とも称される、単独ではポリマーを溶解しない補助溶剤の選定が重要である。好ましい補助溶剤の一例はアルコール類である。特に炭素数が1から5のアルコール類が好ましい。補助溶剤の全溶剤中の割合は3から30質量%が好ましく、8から20質量%が更に好ましい。補助溶剤の添加により、金属支持体からの剥離性の改善やフィルム厚さの均一化及び平滑化などの効果が得られる。
[溶液製膜法による光学フィルムの製造工程]
(溶解工程)
本発明のポリマーの溶解は、室温撹拌だけでなく、冷却溶解法あるいは高温溶解方法、さらにはこれらの組み合わせで実施することが好ましい。本発明におけるポリマー溶液の調製、さらには溶解工程に伴う溶液濃縮、ろ過の各工程に関しては、発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)にて22頁〜25頁に詳細に記載されている製造工程が使用可能である。
本発明で好ましい溶解方法の一例である加圧高温溶解について簡単に記す。ポリマーを溶剤中に投入し、常圧10〜35℃で20〜180分間撹拌した後、この溶液をギアポンプで熱交換器に送り60℃以上に加熱加圧し完全溶液化し、更に冷却熱交換機で室温まで冷却する方法である。加熱温度は60〜120℃が好ましく、70〜100℃が更に好ましい。その際溶解温度における溶剤の蒸気圧分の圧力がかかる。加熱時間は1分以上が必要であり、30分も加熱すれば十分である。好ましくは4分〜15分間加熱する。溶液中のポリマーの濃度は15〜35質量%が好ましく、16〜27質量%が更に好ましい。濃度を高くすると溶解が難しくなり、濃度が低いと粘度が低くて流延が難しくなったり、濃縮に負担がかかったりして好ましくない。従って17〜23質量%が特に好ましい。
高濃度溶解が難しいポリマーは、最適濃度よりも低い濃度でポリマーを溶解し、その後1.1〜1.5倍に濃縮し、ポリマー濃度を所望の範囲にすることもできる。ポリマー濃度濃縮の方法は特に限定されない。具体的な濃縮方法の一例はフラッシュ濃縮法である。米国特許公報4,504,355に記されているように、加熱したポリマー溶液を減圧容器の中に細いノズルから噴出すことにより、瞬間的に溶剤を蒸発させて濃縮液を得る方法である。
流延に先立って金網やネルなどの適当なろ材を用いて、未溶解物やゴミ、不純物などを除去しておく。ポリマー溶液のろ過は絶対ろ過精度が1から100μmのフィルターが用いられる。ろ過はろ過精度の大きなフィルターから複数段に渡って順次細かなフィルターでろ過してもよい。好ましい最終段階のろ材のろ過精度は1から50μmである。3から20μmろ材が更に好ましい。ろ過圧力は1.6MPa以下が好ましく、より好ましくは1.2MPa以下であり、1MPa以下が特に好ましい。ろ過圧が低いのは問題ないが、高すぎるとろ材の破損の恐れが高くなったり、不純物や不溶解物が漏れる可能性が大きくなり、好ましくない。ろ過は濃縮前に行ってもよい。
(ろ過閉塞係数)
ポリマー溶液はろ過により目詰まりしにくいものが好ましい。ろ過による目詰まりは液の特性だけでなく、ろ材の特性、特に平均孔径によるところが大きい。適切な溶液の調製方法の選定と適切なろ材の選定により、ろ過閉塞係数を900/m以下にすることが好ましい。500/m以下にすることが更に好ましい。
(ドープ溶液の透明度)
本発明のポリマー溶液のドープ透明度としては85%以上であることが好ましい。より好ましくは88%以上であり、さらに好ましくは90%以上である。本発明においてはポリマードープ溶液に各種の添加剤が十分に溶解していることを確認した。具体的なドープ透明度の算出方法としては、ドープ溶液を1cm角のガラスセルに注入し、分光光度計(UV−3150、島津製作所)で550nmの吸光度を測定した。溶媒のみをあらかじめブランクとして測定しておき、ブランクの吸光度との比からポリマー溶液の透明度を算出した。
(添加剤の混合)
ポリマー溶液に添加剤を添加する一方法について述べる。溶解機(釜)から調製されたドープ(ポリマー溶液)を貯蔵釜で一旦貯蔵し、ドープに含まれている泡を脱泡して最終調製をする。ドープをドープ排出口から、例えば回転数によって高精度に定量送液できる加圧型定量ギアポンプを通して送り、流延ダイの手前であらかじめ調製しておいたマット剤溶液、UV吸収剤溶液、レターデーション調整剤溶液、剥離剤溶液あるいは可塑剤溶液などをインラインで混合する。これら添加液の混合は逐次に混合してもよいし、あるいはそれらの一部あるいは全部をあらかじめ混合しておいた上でポリマー溶液と混合してもよい。
添加剤が混合されたポリマー溶液(ドープ)は加圧型ダイの口金(スリット)からエンドレスに走行している流延部の金属支持体の上に均一に流延される。
(流延)
溶液の流延方法としては、調製されたドープを加圧ダイから金属支持体上に均一に押し出す方法、一旦金属支持体上に流延されたドープをブレードで膜厚を調節するドクターブレードによる方法、或いは逆回転するロールで調節するリバースロールコーターによる方法等があるが、加圧ダイによる方法が好ましい。加圧ダイにはコートハンガータイプやTダイタイプ等があるがいずれも好ましく用いることができる。また、ここで挙げた方法以外にも従来知られているセルローストリアセテート溶液を流延製膜する種々の方法で実施でき、用いる溶媒の沸点等の違いを考慮して各条件を設定することによりそれぞれの公報に記載の内容と同様の効果が得られる。本発明の光学フィルムを製造するのに使用されるエンドレスに走行する金属支持体としては、表面がクロムメッキによって鏡面仕上げされたり、あるいは研磨によって表面粗さが0.05μm以下に仕上げされたステンレス板やドラムが用いられる。金属支持体の表面温度は一般的には10〜35℃が使用される。冷却ゲル化流延法では−50〜0℃であり、−35〜−3℃が好ましく、−25〜−5℃であることが更に好ましい。本発明の光学フィルムの製造に用いられる加圧ダイは、金属支持体の上方に1基或いは2基以上の設置でもよい。好ましくは1基又は2基である。
2基以上設置する場合には流延するドープ量をそれぞれのダイに種々な割合にわけてもよく、複数の精密定量ギヤアポンプからそれぞれの割合でダイにドープを送液してもよい。流延に用いられるポリマー溶液の温度は−10〜55℃が好ましく、より好ましくは25〜50℃である。使用する溶剤の沸点よりも5ないし15℃低い温度が好ましい。工程のすべての場所でポリマー溶液の温度が同一でもよく、あるいは工程の各所で異なっていてもよい。異なる場合は、流延直前で前記範囲の温度であればよい。
エンドレス金属支持体の幅は0.8から2.5m、長さは5から120m、厚さは0.8から3.5mmのものが好ましく使用できる。流延幅は40cmから2.3m、金属支持体の移動速度(すなわち流延速度)はドープの固形分濃度や出来上がりのフィルム厚さ、エンドレス金属支持体の長さ、支持体温度などにもよるが、0.5から300m/分が使用できる。
さらに特開2001−129838号、特開2000−317960号、特開2000−301555号、特開2000−301558号、特開平11−221833号、特開平07−032391号、特開平05−185445号、特開平05−086212号、特開平03−193316号、特開平02−276607号、特開平02−111511号、特開平02−208650号特開昭62−037113号、特開昭62−115035号、特開昭55−014201号および特開昭52−10362号の各公報に記載の技術を本発明では応用できる。
(重層流延)
ポリマー溶液を、金属支持体としての平滑なバンド上或いはドラム上に単層液として流延してもよいし、2層以上の複数のポリマー液を流延してもよい。複数のポリマー溶液を流延する場合、金属支持体の進行方向に間隔を置いて設けた複数の流延口からポリマーを含む溶液をそれぞれ流延させて積層させながらフィルムを作製してもよく、例えば特開昭61−158414号、特開平1−122419号、および特開平11−198285号の各公報などに記載の方法が適応できる。また、2つの流延口からポリマー溶液を流延することによってもフィルム化することでもよく、例えば特公昭60−27562号、特開昭61−94724号、特開昭61−947245号、特開昭61−104813号、特開昭61−158413号、および特開平6−134933号の各公報に記載の方法で実施できる。また、特開昭56−162617号公報に記載の高粘度ポリマー溶液の流れを低粘度のポリマー溶液で包み込み、その高,低粘度のポリマー溶液を同時に押出すポリマーフィルム流延方法でもよく、特にこの方法は高粘度溶液を用いる冷却ゲル化流延法においては好ましい流延方法である。更に又、特開昭61−94724号および特開昭61−94725号の各公報に記載の外側の溶液が内側の溶液よりも貧溶媒であるアルコール成分を多く含有させることも好ましい態様である。或いはまた2個の流延口を用いて、第一の流延口により金属支持体に成型したフィルムを剥離し、金属支持体面に接していた側に第二の流延を行なうことでより、フィルムを作製することでもよく、例えば特公昭44−20235号公報に記載されている方法である。流延するポリマー溶液は同一の溶液でもよいし、異なるポリマー溶液でもよく特に限定されない。複数のポリマー層に機能を持たせるために、その機能に応じたポリマー溶液を、それぞれの流延口から押出せばよい。さらにポリマー溶液は、他の機能層(例えば、接着層、染料層、帯電防止層、アンチハレーション層、UV吸収層、偏光層など)を同時に流延することも実施しうる。
従来の単層液では、必要なフィルム厚さにするためには高濃度で高粘度のポリマー溶液を押出すことが必要であり、その場合ポリマー溶液の安定性が悪くて固形物が発生し、ブツ故障となったり、平面性が不良であったりして問題となることが多かった。この解決として、複数のポリマー溶液を流延口から流延することにより、高粘度の溶液を同時に金属支持体上に押出すことができ、平面性も良化し優れた面状のフィルムが作製できるばかりでなく、濃厚なポリマー溶液を用いることで乾燥負荷の低減化が達成でき、フィルムの生産スピードを高めることができた。共流延の場合、内側と外側の厚さは特に限定されないが、好ましくは外側が全膜厚の1〜50%であることが好ましく、より好ましくは2〜30%の厚さである。ここで、3層以上の共流延の場合は金属支持体に接した層と空気側に接した層のトータル膜厚を外側の厚さと定義する。共流延の場合、前述の可塑剤、紫外線吸収剤、マット剤、剥離剤等の添加物濃度が異なるポリマー溶液を共流延して、積層構造のポリマーフィルムを作製することもできる。例えば、スキン層/コア層/スキン層といった構成のポリマーフィルムを作ることができる。例えば、マット剤は、スキン層に多く、又はスキン層のみに入れることができる。可塑剤、紫外線吸収剤はスキン層よりもコア層に多くいれることができ、コア層のみにいれてもよい。又、コア層とスキン層で可塑剤、紫外線吸収剤の種類を変更することもでき、例えばスキン層に低揮発性の可塑剤及び/又は紫外線吸収剤を含ませ、コア層に可塑性に優れた可塑剤、或いは紫外線吸収性に優れた紫外線吸収剤を添加することもできる。また、剥離剤を金属支持体側のスキン層のみ含有させることも好ましい態様である。また、冷却ゲル化流延法で金属支持体を冷却して溶液をゲル化させるために、スキン層に貧溶媒であるアルコールをコア層より多く添加することも好ましい。スキン層とコア層のTgが異なっていても良く、スキン層のTgよりコア層のTgが低いことが好ましい。
(冷却ゲル化流延)
冷却ゲル化流延は、特開昭62−115035号公報に記されている如き、冷却ゲル化流延法の使用が、乾燥が速く生産性に優れるため好ましい。該方法では金属支持体は0℃以下に冷却され、支持体表面温度が上昇しない程度の温度と風量の乾燥風を、2秒以上あてて乾燥することが好ましい。この方法ではフィルムは主に冷却による粘度上昇あるいは冷却ゲル化により自己保持性が付与されるため、高残留溶剤分でも剥離可能になる。剥離時の好ましい残留溶剤分は80から300%であり、更に好ましくは150から280%である。剥離時の好ましいフィルム温度は0から−50℃であり、更に好ましくは−5から−25℃である。本方法では支持体上における片面乾燥の時間を短くできるので、トータルの乾燥時間を大幅に短縮でき、コスト及び環境負荷の削減効果が大きい。冷却ゲル化流延では金属支持体としてドラムを使用することが多い。ドラム中に冷却液を封入することにより、流延液膜を効果的に冷却ゲル化できる。ドラムの好ましい外周長さは2から20mである。好ましい流延速度は毎分0.5から300mである。ドラム外周長1mあたりの更に好ましい流延速度は毎分2から20mであり、特に好ましくは5から15mである。冷却ゲル化流延は特にセルロースアシレートフィルムの高速製造に対して効果がある。
(テンター乾燥)
フィルムを支持体から剥離する時、フィルムは支持体速度の1.01倍から1.4倍の速度で引っ張られる。引張速度比が大きくなるほど、フィルムの流延方向弾性率を大きく出来る。剥離されたフィルムは例えば特開昭62−115035号公報に記されている如き、幅規制装置(例えばテンター装置)によりフィルム両端を保持されて、フィルムの収縮を規制しながらあるいは幅方向に延伸しながら乾燥される。幅規制装置の入り口と出口におけるフィルム幅の比は、0.75から1.4が好ましい。幅方向に延伸するとフィルムの幅方向弾性率を大きく出来るので好ましい。乾燥は40〜150℃の熱風を吹き込むことによって行われる。幅規制装置の中を複数に区切り、順次乾燥風の温度を低い方から高いほうに変化させることが好ましい。
(巻取り)
フィルム中の残留溶剤分が20%以下になった後、フィルムを幅規制装置からはずし、更に100から150℃の温度で乾燥する。幅規制装置によって変形している両耳部を切り落とし、両端部にナーリングを付与して巻き取る。ナーリングの幅は3mm〜50mm、より好ましくは5mm〜30mm、高さは0.5〜500μmであり、より好ましくは1〜200μmである。これは片押しであっても両押しであってもよい。巻き取る長さは1ロールあたり100〜10000mが好ましく、より好ましくは500〜6000mであり、さらに好ましくは1000〜4000mである。
[熱溶融製膜法による光学フィルムの製造工程]
次にセルロースアシレート類あるいは環状ポリオレフィン類の熱溶融製膜方法について記述する。溶融したポリマーを押出機のダイからシート状に押し出し、冷却ロール上で冷却してポリマーの基体フィルムを形成する工程を有する。
この製造方法において、ポリマーを溶融させる場合、ポリマーペレットを予熱しておくことができる。予熱温度は、Tg−90℃〜Tg+15℃、好ましくはTg−75℃〜Tg−5℃、さらに好ましくはTg−70℃〜Tg−5℃である。Tg−90℃〜Tg+15℃の範囲で予熱しておけば、この後の樹脂の溶融混練を均一に行うことができ、所望のH−V散乱光強度およびV−V散乱光強度を得ることができる。
前記製造方法は、前記予熱の後、押出機を用いて200〜300℃の温度まで昇温し、ポリマーを溶融させる。この際、押出機の出口側の温度を入口側の温度より5〜100℃、好ましくは20〜90℃、さらに好ましくは30〜80℃高くしておくことが好ましい。押出機の出口側の温度を入口側の温度より高くしておくことにより、溶融した樹脂を均一に混練することができ、所望のH−V散乱強度およびV−V散乱強度の値を得ることができる。
前記製造方法は、次いで溶融したポリマーをギアポンプに通し、押出機の脈動を除去した後、金属メッシュフィルター等で濾過し、押出機に取り付けられたT型のダイから冷却ロール上にシート状に押し出し、前記冷却ロール上で押出されたポリマーフィルムのフィルム幅方向1〜50%、好ましくは2〜40%、さらに好ましくは3〜30%を押圧する。好ましくは、フィルム幅方向の両端側から均等に押圧を行ってフィルム幅方向1〜50%を押圧する。
従来の方法のように押し出されたフィルムを冷却ロールの全面で押圧すると、押し付けむらや冷却ロールの温度むらに起因する局部的な冷却むらが発生し、これらの不均一な収縮応力はフィルムが全面で押圧されているためフィルム外に逃がすことはできない。また、押し出されたフィルムの全面を冷却ロールに押し付けた場合には、フィルムの温度が急激に低下し、ReむらおよびRthむら、特にRthむらが発生しやすい。これに対し、本発明における上記の押圧であれば、ポリマーの基体フィルムの不均一な収縮応力を回避することができ、ReむらおよびRthむらの発生を良好に抑えることができる。
本発明の製造方法における押圧方法は特に制限されず、例えば、エアーチャンバー、バキュームノズル、静電ピニング、タッチロール等の方法を用いることができる。その際の圧力については特に制限はないが、0.001〜20kg/cm(98Pa〜1.96MPa)が好ましく、0.01〜1kg/cm(980Pa〜98kPa)がさらに好ましい。
前記製造方法において、前記押圧は冷却ロール上で冷却しながら行うことができる。この際、冷却はできるだけゆっくり行うことが好ましい。一般に行われている製膜法では50℃/秒以上の冷却速度で冷却されるが、前記製造方法では、冷却速度は0.2〜20℃/秒であることが適当であり、0.5〜15℃/秒であることが好ましく、1〜10℃/秒であることがさらに好ましい。この冷却速度で冷却することにより、局所的な冷却むらの発生を防ぎ、急激な収縮による収縮応力の発現を防止し、ReむらおよびRthむらの発現を抑制することができる。
上記の冷却(徐冷)は、冷却ロールのケージング内における保温と、冷却ロールの温度調整により達成される。好ましい効果が得られるのは前者である。
冷却ロールのケージング内における保温は、冷却ロールの少なくとも1本をTg−100℃〜Tg+30℃、より好ましくはTg−80℃〜Tg+10℃、さらに好ましくはTg−70℃〜Tgに温調されたケーシング内に配置することにより達成される。冷却ロール上では製膜したシートは摩擦力で拘束され自由に収縮できないため、これに起因した収縮応力によりReむらおよびRthむらが発生しやすいが、この方法を用いれば、幅方向における均一な徐冷が可能となり、冷却ロール上での温度むらを小さくすることができ、その結果、ReむらおよびRthむらを小さくすることができる。
これに対し、特開2003−131006号公報に記載された方法では、T型ダイから冷却ドラム間(エアギャップ)を温調するが、この方法ではReむらおよびRthむらを充分小さくすることはできない。これは、エアギャップではフィルムを拘束する手段が存在せず、ReむらおよびRthむらの低減効果が少ないためである。
さらに、ReむらおよびRthむらを小さくするために、以下の方法を併用することができる。
(1)押出機に取り付けられたダイからシート状に押し出されたポリマーを、一定の間隔で配置された少なくとも2〜10本、好ましくは2〜6本、さらに好ましくは3〜4本の冷却ロール(密間ロール)上にキャストする。このように複数の冷却ロールを用いて冷却温度を制御することにより、容易に冷却速度を調整することができる。また、冷却ロールを一定間隔に配置することにより冷却ロール間における温度変化を小さくすることができる。
冷却ロールどうしの間隔(隣接するロール外周の最も近接した箇所の間隔)は0.1〜15cmであることが好ましく、0.3〜10cmであることがより好ましく、0.5〜5cmであることがさらに好ましい。
(2)前記2〜10本の冷却ロールのうち、少なくとも第1の冷却ロールの温度をポリマーのTg−40℃〜Tg(より好ましくはTg−35℃〜Tg−3℃、さらに好ましくはTg−30℃〜Tg、最も好ましくはTg−30℃〜Tg−5℃)にする。さらに第2の冷却ロールの温度を第1の冷却ロールより1〜30℃高く(好ましくは1〜20℃高く、さらに好ましくは1〜10℃高く)することが好ましい。第1の冷却ロールよりも第2の冷却ロールの温度を高めることによりポリマーフィルムの粘性をより高め、第2の冷却ロールとの密着性を高めることができる。これにより冷却ロール上のスリップを抑制し、搬送張力むらを抑制することができるため、ReおよびRthむらを小さくすることができる。
(3)第2の冷却ロールの搬送速度を第1の冷却ロールの搬送速度より0.1〜5%(好ましくは0.2〜4%、さらに好ましくは0.3〜3%)速くする。これにより第1の冷却ロールおよび第2冷却ロール間のスリップを抑え、搬送張力むらを低減することができるため、ReおよびRthむらを小さくすることができる。
(4)第2の冷却ロール通過後、第2の冷却ロールより1〜30℃(好ましくは1.5〜20℃、さらに好ましくは2〜10℃)低い温度の第3の冷却ロールを通過させる。これによりこの後、冷却ロールからポリマーフィルムを剥ぎ取る工程における冷却速度を小さくできるため、ReおよびRthむらを小さくすることができる。さらに、第3の冷却ロールの搬送速度を第2の冷却ロールの搬送速度より0.1〜5%(好ましくは0.2〜4%、さらに好ましくは0.3〜3%)遅くすることが好ましい。これにより第2の冷却ロールと第3の冷却ロール間の搬送張力むらを緩衝できるため、ReおよびRthむらを小さくできる。
前記製造方法は、上述の方法によりポリマーフィルムを冷却速度0.2〜20℃/秒で冷却した後、さらに冷却ロールからポリマーフィルムを剥離する工程を有することができる。
剥離されたポリマーフィルムは、0.2〜10mの間隔、好ましくは0.3〜8mの間隔、さらに好ましくは0.4〜6mの間隔で配置された複数の搬送ロールを用いて搬送することができる。このような長いスパン間を冷却しながら搬送することで、搬送ロールとの摩擦に起因する搬送張力むらを抑制できる。冷却時に収縮量の左右不均一に伴う搬送張力のアンバランスが発生するが、これを緩和させるために、フィルムが自由に動いて緩衝できるだけの広いロール間隔が必要である。搬送ロールの間隔が0.2〜10mであれば、ポリマーフィルムと搬送ロールとの摩擦が生じることなく、ポリマーフィルムが自由に動け、張力むらによる光軸のズレを小さくすることができる。
冷却ロールから剥離したポリマーフィルムは、0.1〜3℃/秒、好ましくは0.2〜2.5℃/秒、さらに好ましくは0.3〜2℃/秒で50℃まで冷却することが好ましい。0.1〜3℃/秒の範囲内で冷却すれば、急激な収縮応力による左右の張力不均一による光軸ズレの発生を防ぐことができる。このような冷却速度の制御は、ケーシング内にポリマーフィルムを通過させ、ケージング中に吹き込む温度を上流側より下流側の温度を下げることによっても達成でき、さらに上流側および下流側の搬送ロールの温度を調整することによっても達成できる。
前記製造方法では、製膜速度を40〜150m/分とすることが適当であり、50〜100m/分とすることが好ましく、60〜80m/分とすることがさらに好ましい。製膜速度40〜150m/分で製膜することにより、第1の冷却ロールとポリマーフィルムとの間に空気を巻き込み、全面に亘る押圧を抑制することができ、その結果、ReおよびRthむらを抑制できる。
[光学フィルム特性]
(フィルム厚さ)
本発明の出来上がり(乾燥後)の光学ポリマーフィルムの厚さは、30から180μmの範囲が好ましい。更に38〜100μmの範囲が好ましく、特に38〜82μmの範囲が最も好ましい。
フィルム厚さの調整は、所望の厚さになるように、ドープ中に含まれる固形分濃度、ダイの口金のスリット間隙、ダイからの押し出し圧力、金属支持体速度等を調節すればよい。
(フィルムの輝点異物数)
吸収軸が互いに直交するように重ねた二枚の偏光板の間に光学フィルムを挟んで観察したとき、白い点状に光が漏れてくることがある。原料のポリマーの中に溶剤に溶解しがたい成分が多く含まれている場合や、溶解条件が適切でない場合に、このような光漏れを生じる異物(輝点異物)が多くなる。本発明においては、溶解性のよいポリマーの選定、適切な溶媒組成の選定、適切な溶解条件、特に溶解温度の設定によって輝点異物の量を減少できる。フィルムを観察して2.16mm×1.72mmの範囲を50倍に拡大し、1mm以上の大きさの輝点を数える。そのような測定を1試料に対して60視野測定し、全ての輝点数を合計したとき、好ましい輝点数は80以下である。40以下であると更に好ましく、20以下が最も好ましい。
(フィルムの透湿率)
透湿率はJIS Z 0208に記載の方法に則り面積1mあたり24時間で蒸発する水分量(g)を測定し、各試料の透湿率を算出する。
40℃90%RH24時間における透湿率はフィルム厚さが80μmのとき350から700g/mが好ましい。400から550g/mがさらに好ましい。光学フィルムの透湿率は小さすぎると、偏光板加工の作業効率を損なう。一方透湿率が大きすぎると、偏光板の耐久性が悪くなって好ましくない。
(フィルムの弾性率)
冷却ゲル化流延による本発明の光学フィルムの好ましい弾性率は3GPaから5GPaである。更に好ましい弾性率は3.5Gから4.5GPaである。
(フィルムの寸法変化率)
ポリマーの寸法変化率は小さいことが好ましい。60℃、90%RHの条件下に24時間静置した場合の寸度変化および90℃、3%RHの条件下に24時間静置した場合の寸度変化が、いずれも±2%以内であることが望ましい。寸法変化率が大きいと液晶表示装置に装填したときにフィルムに応力を生じ、その結果応力によるレターデーションが発生し、液晶表示装置の光漏れの原因となる。また寸法変化が大きいと、液晶表示装置に反りを生じる可能性が高くなり、好ましくない。
[偏光板]
偏光板は、偏光子およびその両側に配置された二枚の透明保護膜からなっている。この透明保護膜として、本発明の光学フィルムを用いることができる。本発明の光学フィルムを偏光子の両側に使用してもよいし、片側だけに使用してもよい。透湿率が150g/m以下のポリマーフィルムの使用は偏光子の片側だけに制限される。その場合は反対側には透湿率が400g/m以上の光学フィルムの使用が好ましい。
偏光子には、ヨウ素系偏光子、二色性染料を用いる染料系偏光子やポリエン系偏光子がある。ヨウ素系偏光子および染料系偏光子は、一般にポリビニルアルコール系フィルムを用いて製造する。本発明のセルロースアシレートフィルムを偏光板保護膜として用いる場合、偏光板の作製方法は特に限定されず、一般的な方法で作製することができる。得られたセルロースアシレートフィルムをアルカリ処理し、ポリビニルアルコールフィルムを沃素溶液中に浸漬延伸して作製した偏光子の両面に完全ケン化ポリビニルアルコール水溶液を用いて貼り合わせる方法がある。アルカリ処理の代わりに特開平6−94915号公報、特開平6−118232号公報に記載されているような易接着加工を施してもよい。保護膜処理面と偏光子を貼り合わせるのに使用される接着剤としては、例えば、ポリビニルアルコール、ポリビニルブチラール等のポリビニルアルコール系接着剤や、ブチルアクリレート等のビニル系ラテックス等が挙げられる。偏光板は偏光子及びその両面を保護する保護膜で構成されており、更に該偏光板の一方の面にプロテクトフィルムを、反対面にセパレートフィルムを貼合して構成される。プロテクトフィルム及びセパレートフィルムは偏光板出荷時、製品検査時等において偏光板を保護する目的で用いられる。この場合、プロテクトフィルムは、偏光板の表面を保護する目的で貼合され、偏光板を液晶板へ貼合する面の反対面側に用いられる。又、セパレートフィルムは液晶板へ貼合する接着層をカバーする目的で用いられ、偏光板を液晶板へ貼合する面側に用いられる。
(環状ポリオレフィンフィルムの表面処理)
本発明において、環状ポリオレフィンフィルムを用いて偏光板を作成する際の、ポリオレフィンフィルムの表面処理について述べる。偏光子と環状ポリオレフィンとの接着性を改良するため接着剤(例えばポリビニルアルコール水溶液)を塗布する前に、環状ポリオレフィン保護フィルムを表面処理する。表面処理については、接着性を改善できる限りいなかる方法を利用してもよいが、好ましい表面処理としては、例えばグロー放電処理、紫外線照射処理、コロナ処理及び火炎処理が挙げられる。ここでいうグロー放電処理とは、低圧ガス下でおこる、いわゆる低温プラズマのことである。本発明では大気圧下でのプラズマ処理も好ましい。その他、グロー放電処理の詳細については、米国特許第3462335号、米国特許第3761299号、米国特許第4072769号及び英国特許第891469号明細書に記載されている。放電雰囲気ガス組成を放電開始後にポリエステル支持体自身が放電処理を受けることにより容器内に発生する気体種のみにした特表昭59−556430号公報に記載された方法も用いられる。また真空グロー放電処理する際に、フィルムの表面温度を80℃以上180℃以下にして放電処理を行う特公昭60−16614号公報に記載された方法も適用できる。
グロー放電処理時の真空度は0.5〜3000Paが好ましく、より好ましくは2〜300Paである。また、電圧は500〜5000Vの間が好ましく、より好ましくは500〜3000Vである。使用する放電周波数は、直流から数千MHz、より好ましくは50Hz〜20MHz、さらに好ましくは1KHz〜1MHzである。放電処理強度は、0.01KV・A・分/m〜5KV・A・分/mが好ましく、より好ましくは0.15KV・A・分/m〜1KV・A・分/mである。
本発明では、表面処理として紫外線照射法を行うことも好ましい。例えば、特公昭43−2603号、特公昭43−2604号、特公昭45−3828号の各公報に記載の処理方法によって行うことができる。水銀灯は石英管からなる高圧水銀灯で、紫外線の波長が180〜380nmの間であるものが好ましい。紫外線照射の方法については、光源は保護フィルムの表面温度が150℃前後にまで上昇することが支持体の性能上問題なければ、主波長が365nmの高圧水銀灯ランプを使用することができる。低温処理が必要とされる場合には主波長が254nmの低圧水銀灯が好ましい。またオゾンレスタイプの高圧水銀ランプ、及び低圧水銀ランプを使用する事も可能である。処理光量に関しては処理光量が多いほど熱可塑性飽和脂環式構造含有重合体樹脂フィルムと偏光子との接着力は向上するが、光量の増加に伴い該フィルムが着色し、また脆くなるという問題が発生する。従って、365nmを主波長とする高圧水銀ランプで、照射光量20〜10000(mJ/cm)がよく、より好ましくは50〜2000(mJ/cm)である。254nmを主波長とする低圧水銀ランプの場合には、照射光量100〜10000(mJ/cm)がよく、より好ましくは300〜1500(mJ/cm)である。
さらに、本発明では表面処理としてコロナ放電処理を行うことも好ましい。例えば、特公昭39−12838号、特開昭47−19824号、特開昭48−28067号、特開昭52−42114号の各公報に記載等の処理方法によって行うことができる。コロナ放電処理装置は、Pillar社製ソリッドステートコロナ処理機、LEPEL型表面処理機、VETAPHON型処理機等を用いることができる。処理は空気中での常圧にて行うことができる。処理時の放電周波数は、5〜40KV、より好ましくは10〜30KVであり、波形は交流正弦波が好ましい。電極と誘電体ロールのギャップ透明ランスは0.1〜10mm、より好ましくは1.0〜2.0mmである。放電は、放電帯域に設けられた誘電サポートローラーの上方で処理し、処理量は、0.3〜0.4KV・A・分/m、より好ましくは0.34〜0.38KV・A・分/mである。
本発明では、表面処理として火炎処理を行うことも好ましい。用いるガスは天然ガス、液化プロパンガス、都市ガスのいずれでもかまわないが、空気との混合比が重要である。なぜなら、火炎処理による表面処理の効果は活性な酸素を含むプラズマによってもたらされると考えられるからであり、火炎の重要な性質であるプラズマの活性(温度)と酸素がどれだけ多くあるかがポイントである。このポイントの支配因子はガス/酸素比であり、過不足なく反応する場合にエネルギー密度が最も高くなりプラズマの活性が高くなる。具体的には、天然ガス/空気の好ましい混合比は容積比で1/6〜1/10、好ましくは1/7〜1/9である。また、液化プロパンガス/空気の場合は1/14〜1/22、好ましくは1/16〜1/19、都市ガス/空気の場合は1/2〜1/8、好ましくは1/3〜1/7である。また、火炎処理量は1〜50Kcal/m、より好ましくは3〜20Kcal/mの範囲で行うとよい。またバーナーの内炎の先端とフィルムの距離は3〜7cm、より好ましくは4〜6cmにするとよい。バーナーのノズル形状は、フリンバーナー社(米国)のリボン式、ワイズ社(米国)の多穴式、エアロジェン(英国)のリボン式、春日電機(日本)の千鳥型多穴式、小池酸素(日本)の千鳥型多穴式が好ましい。火炎処理にフィルムを支えるバックアップロールは中空型ロールであり、冷却水を通して水冷し、常に20〜50℃の一定温度で処理するのがよい。
表面処理の程度については、表面処理の種類、環状ポリオレフィンの種類によって好ましい範囲も異なるが、表面処理の結果、表面処理を施された保護フィルムの表面の純水との接触角が、50°未満となるのが好ましい。前記接触角は、25°以上45°未満であるのがより好ましい。保護フィルム表面の純水との接触角が上記範囲にあると、保護フィルムと偏光膜との接着強度が良好となる。
本発明の光学フィルムの偏光子への貼り合せ方は、偏光子の光軸との貼りあわせ角度には特に制限はない。光学フィルムの遅相軸と偏光子の透過軸とを平行にしてもよいし、直交させてもよいし、あるいはその中間の適当な角度にしてもよい。
本発明の偏光板は、25℃60%RHにおける単板透過率TT、平行透過率PT、直交透過率CT、偏光度Pが下記式(a)〜(d)の少なくとも1つを満たすことが好ましい。
(a)40.0≦TT≦45.0
(b)30.0≦PT≦40.0
(c)CT≦2.0
(d)95.0≦P
単板透過率TT、平行透過率PT、直交透過率CTはこの順でそれぞれ、より好ましくは、40.5≦TT≦45、32≦PT≦39.5、CT≦1.5であり、さらに好ましくは41.0≦TT≦44.5、34≦PT≦39.0、CT≦1.3である。偏光度Pは95.0%以上であることが好ましく、より好ましくは96.0%以上、さらに好ましくは97.0%以上である。
本発明の偏光板は、波長λにおける直交透過率をCT(λ)としたときに、CT(380)、CT(410)、CT(700)が下記式(e)〜(g)の少なくとも1つ以上を満たすことが好ましい。
(e)CT(380)≦2.0
(f)CT(410)≦1.0
(g)CT(700)≦0.5
より好ましくはCT(380)≦1.95、CT(410)≦0.9、CT(700)≦0.49であり、さらに好ましくはCT(380)≦1.90、CT(410)≦0.8、CT(700)≦0.48である。
本発明の偏光板は、60℃95%RHの条件下に500時間静置した場合の直交透過率の変化量ΔCT、偏光度変化量ΔPが下記式(j)、(k)の少なくとも1つ以上を満たすことが好ましい。
(j)−6.0≦ΔCT≦6.0
(k)−10.0≦ΔP≦0.0
(ただし、変化量とは試験後測定値から試験前測定値を差し引いた値を示す)
より好ましくは−5.8≦ΔCT≦5.8、−9.5≦ΔP≦0.0、更に好ましくは、−5.6≦ΔCT≦5.6、−9.0≦ΔP≦0.0である。
本発明の偏光板は、60℃90%RHの条件下に500時間静置した場合の直交透過率の変化量ΔCT、偏光度変化量ΔPが下記式(h)、(i)の少なくとも1つ以上を満たすことが好ましい。
(h)−3.0≦ΔCT≦3.0
(i)−5.0≦ΔP≦0.0
本発明の偏光板は、80℃の条件下に500時間静置した場合の直交透過率の変化量ΔCT、偏光度変化量ΔPが下記式(l)、(m)の少なくとも1つ以上を満たすことが好ましい。
(l)−3.0≦ΔCT≦3.0
(m)−2.0≦ΔP≦0.0
偏光板の単板透過率TT、平行透過率PT、直交透過率CTは、UV3100PC(島津製作所社製)を用い、380nm〜780nmの範囲で測定し、TT、PT、CTともに、10回測定の平均値(400nm〜700nmでの平均値)を用いる。偏光度Pは、偏光度(%)=100×{(平行透過率−直交透過率)/(平行透過率+直交透過率)}1/2で求めることができる。偏光板耐久性試験は(1)偏光板のみと(2)偏光板をガラスに粘着剤を介して貼り付けた、2種類の形態で次のように行う。偏光板のみの測定は、2つの偏光子の間に本発明の光学フィルムが挟まれるように組み合せて直交、同じものを2つ用意し測定する。ガラス貼り付け状態のものはガラスの上に偏光板を本発明の光学フィルムがガラス側にくるように貼り付けたサンプル(約5cm×5cm)を2つ作成する。単板透過率測定ではこのサンプルのフィルムの側を光源に向けてセットして測定する。2つのサンプルをそれぞれ測定し、その平均値を単板の透過率とする。
[用途(光学補償フィルム)]
本発明の光学フィルムは、様々な用途で用いることができ、液晶表示装置の光学補償フィルムとして用いると特に効果がある。なお、光学補償フィルムとは、一般に液晶表示装置に用いられ、位相差を補償する光学材料のことを指し、位相差板、光学補償シートなどと同義である。光学補償フィルムは複屈折性を有し、液晶表示装置の表示画面の着色を取り除いたり、視野角特性を改善したりする目的で用いられる。本発明の光学フィルムは光学的異方性が小さく、また波長分散が小さいため、余計な異方性を生じず、複屈折を持つ光学異方性層を併用すると光学異方性層の光学性能のみを発現することができる。
したがって本発明の光学フィルムを液晶表示装置の光学補償フィルムとして用いる場合、併用する光学異方性層のReおよびRthはRe=0〜200nmかつ|Rth|=0〜400nmであることが好ましく、この範囲であればどのような光学異方性層でも良い。本発明の光学フィルムが使用される液晶表示装置の液晶セルの光学性能や駆動方式に制限されず、光学補償フィルムとして要求される、どのような光学異方性層も併用することができる。併用される光学異方性層としては、液晶性化合物を含有する組成物から形成しても良いし、複屈折を持つ光学フィルムから形成しても良い。
前記液晶性化合物としては、ディスコティック液晶性化合物または棒状液晶性化合物が好ましい。
(ディスコティック液晶性化合物)
本発明に使用可能なディスコティック液晶性化合物の例には、様々な文献(C.Destrade et al.,Mol.Crysr.Liq.Cryst.,vol.71,p.111(1981);日本化学会編、季刊化学総説、No.22、液晶の化学、第5章、第10章第2節(1994);B.Kohne et al.,Angew.Chem.Soc.Chem.Comm.,p.1794(1985);J.Zhang et al.,J.Am.Chem.Soc.,vol.116,p.2655(1994))に記載の化合物が含まれる。
光学異方性層において、ディスコティック液晶性分子は配向状態で固定されているのが好ましく、重合反応により固定されているのが最も好ましい。ディスコティック液晶性分子の重合については、特開平8−27284号公報に記載がある。ディスコティック液晶性分子を重合により固定するためには、ディスコティック液晶性分子の円盤状コアに、置換基として重合性基を結合させる必要がある。ただし、円盤状コアに重合性基を直結させると、重合反応において配向状態を保つことが困難になる。そこで、円盤状コアと重合性基との間に、連結基を導入する。重合性基を有するディスコティック液晶性分子について、特開2001−4387号公報に開示されている。
(棒状液晶性化合物)
本発明において、使用可能な棒状液晶性化合物の例には、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が含まれる。以上のような低分子液晶性化合物だけではなく、高分子液晶性化合物も用いることができる。
光学異方性層において、棒状液晶性分子は配向状態で固定されているのが好ましく、重合反応により固定されているのが最も好ましい。本発明に使用可能な重合性棒状液晶性化合物の例には、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許4683327号、同5622648号、同5770107号、世界特許(WO)95/22586号、同95/24455号、同97/00600号、同98/23580号、同98/52905号、特開平1−272551号、同6−16616号、同7−110469号、同11−80081号、および特開2001−328973号などに記載の化合物が含まれる。
(ポリマーフィルムからなる光学異方性層)
上記した様に、光学異方性層は本発明の光学フィルムから形成してもよい。光学異方性フィルムは、光学異方性を発現し得るポリマーから形成する。そのようなポリマーの例には、ポリオレフィン(例、ポリエチレン、ポリプロピレン、ノルボルネン系ポリマー)、ポリカーボネート、ポリアリレート、ポリスルホン、ポリビニルアルコール、ポリメタクリル酸エステル、ポリアクリル酸エステルおよびセルロースエステル(例、セルローストリアセテート、セルロースジアセテート)が含まれる。また、これらのポリマーの共重合体あるいはポリマー混合物を用いてもよい。
ポリマーフィルムの光学異方性は、延伸により得ることが好ましい。延伸は一軸延伸または二軸延伸であることが好ましい。具体的には、2つ以上のロールの周速差を利用した縦一軸延伸、またはポリマーフィルムの両サイドを掴んで幅方向に延伸するテンター延伸、これらを組み合せての二軸延伸が好ましい。なお、二枚以上のポリマーフィルムを用いて、二枚以上のフィルム全体の光学的性質が前記の条件を満足してもよい。ポリマーフィルムは、複屈折のムラを少なくするためにソルベントキャスト法により製造することが好ましい。ポリマーフィルムの厚さは、20〜500μmであることが好ましく、40〜100μmであることが最も好ましい。
(液晶表示装置の構成例)
本発明の光学フィルムを光学補償フィルムとして用いる場合は、偏光素子の透過軸と、本発明の光学フィルムからなる光学補償フィルムの遅相軸とをどのような角度で配置しても構わない。液晶表示装置は、二枚の電極基板の間に液晶を担持してなる液晶セル、その両側に配置された二枚の偏光素子、および該液晶セルと該偏光素子との間に少なくとも一枚の光学補償フィルムを配置した構成を有している。
液晶セルの液晶層は、通常は、二枚の基板の間にスペーサーを挟み込んで形成した空間に液晶を封入して形成する。透明電極層は、導電性物質を含む透明な膜として基板上に形成する。液晶セルには、さらにガスバリアー層、ハードコート層あるいは(透明電極層の接着に用いる)アンダーコート層(下塗り層)を設けてもよい。これらの層は、通常、基板上に設けられる。液晶セルの基板は、一般に50μm〜2mmの厚さを有する。
(液晶表示装置の種類)
本発明のポリマーフィルムは、様々な表示モードの液晶セルに用いることができる。TN(Twisted Nematic)、IPS(In−Plane Switching)、FLC(Ferroelectric Liquid Crystal)、AFLC(Anti−ferroelectric Liquid Crystal)、OCB
(Optically Compensatory Bend)、STN(Supper
Twisted Nematic)、VA(Vertically Aligned)、ECB(Electrically Controlled Birefringence)、およびHAN(Hybrid Aligned Nematic)のような様々な表示モードが提案されている。また、上記表示モードを配向分割した表示モードも提案されている。本発明のポリマーフィルムは、いずれの表示モードの液晶表示装置においても有効であるが、特にIPSモードの液晶表示装置に使用する場合に有効である。また、透過型、反射型、半透過型のいずれの液晶表示装置においても有効である。
(IPS型液晶表示装置およびECB型液晶表示装置)
図2はIPSモード液晶セルを示す模式側断面図である。通常はマトリクス状の電極により複数の画素を有するが、その一画素の一部分を示している。透明な一対の基板5、8の内側に線状の電極14が形成され、その上に配向制御膜(図示せず)が形成されている。基板5、8間に挟持されている棒状の液晶性分子7は電界無印加時には線状電極14の長手方向に対して若干の角度を持つように配向されている。なお、この場合の液晶の誘電異方性は正を想定している。電界17を印加すると電界方向に液晶性分子7はその向きを変える。偏光板1、12を所定角度に配置することで光透過率を変えることが可能となる。なお、基板8の表面に対する電界方向17のなす角は、好ましくは20度以下で、より好ましくは10度以下で、すなわち、実質的に平行であることが望ましい。以下、本発明では20度以下のものを総称して平行電界と表現する。また、電極14を上下基板に分けて形成しても、一方の基板にのみ形成してもその効果は変わらない。
このようにIPSモードは電圧無印加,あるいは低電圧印加時に基板面に平行配向している。配向制御は配向膜塗布後にラビング処理を行うのが一般的であるが,この配向処理により配向ムラが発生しやすい。IPSは前述のように基板面に平行配向しているため,この配向ムラが大きなリターデーションムラとなり,特に黒表示時の光漏れの不均一な輝度ムラ発生につながる。一方,VA,TN,OCBの各モードでは黒表示時は液晶分子は基板面に垂直に配向しているため,配向ムラが大きくてもリターデーションムラは小さく,輝度ムラは小さい。
図3はIPSモードをより高速応答,高透過率化する場合の液晶セル模式断面図である。図2と異なり電極が絶縁層15を介した2層構造となっている。最下層の電極はパターニングされていない電極でも,線状などの電極でもよい。上層の電極は線状が好ましいが,下層電極16からの電界が通過できる形状であれば,網目状,スパイラル状,点状などいずれでもよく,電位が中立なフローティング電極をさらに追加してもよい。また絶縁層15はSiOや窒化膜などの無機材料でも,アクリルやエポキシ系等の有機材料のいずれでもよい。
この方式では高透過率からコントラスト比が向上するため,黒表示時の面内配向ムラ起因の輝度ムラが観察されやすい。また電界強度が大きいため,低電圧印加時の輝度ムラも発生しやすい。
液晶材料LCとしては、誘電率異方性△εが正のネマチック液晶を用いる。液晶層の厚み(ギャップ)は、2.8μm超4.5μm未満とした。このように、レターデーション
(Δn・d)を0.25μm超0.32μm未満とすると、可視光の範囲内で波長依存性が殆どない透過率特性がより容易に得られる。後述の配向膜と偏光板の組み合わせにより、液晶性分子がラビング方向から電界方向に45度回転したとき最大透過率を得ることができる。なお、液晶層の厚み(ギャップ)はポリマビーズで制御している。もちろんガラスビーズヤファイバー、樹脂製の柱状スペーサーでも同様のギャップを得ることができる。また液晶材料LCは、ネマチック液晶であれば、特に限定したものではない。誘電率異方性△εは、その値が大きいほうが、駆動電圧が低減でき、屈折率異方性△nは小さいほうが液晶層の厚み(ギャップ)を厚くでき、液晶の封入時間が短縮され、かつギャップばらつきを少なくすることができる。
本発明で用いられる液晶表示装置の表示モードは特に限定されないが、ECBモード、IPSモードが好適に用いられる。本発明では、液晶層の厚さd(μm)と屈折率異方性Δnとの積Δn・dは、0.2〜1.2μmとする。Δn・dの最適値は0.2〜0.5μmが最適値となる。こられの範囲では白表示輝度が高く、黒表示輝度が小さいことから、明るくコントラストの高い表示装置が得られる。なお、これらの最適値は透過モードの値であり、反射モードでは液晶セル内の光路が2倍になることから、最適Δndの値は上記の1/2程度の値になる。本発明で用いられる液晶表示装置は、上記表示モードのだけでなく、VAモード、OCBモード、TNモード、HANモード、STNモードに適用した態様も有効である。
本発明の液晶表示装置は、図1に示す構成に限定されず、他の部材を含んでいてもよい。例えば、液晶セルと偏光フィルムとの間にカラーフィルターを配置してもよい。また、後述する様に、液晶セルと偏光板との間に、さらに、別の光学補償膜を配置することもできる。また、透過型として使用する場合は、冷陰極あるいは熱陰極蛍光管、あるいは発光ダイオード、フィールドエミッション素子、エレクトロルミネッセント素子を光源とするバックライトを背面に配置することができる。また、本発明の液晶表示装置は、反射型であってもよく、かかる場合は、本発明の偏光板は観察側に1枚配置したのみでよく、液晶セル背面あるいは液晶セルの下側基板の内面に反射膜を設置する。もちろん前記光源を用いたフロントライトを液晶セル観察側に設けることも可能である。
本発明の液晶表示装置には、画像直視型、画像投影型や光変調型が含まれる。本発明は、TFTやMIMのような3端子または2端子半導体素子を用いたアクティブマトリックス液晶表示装置に適用した態様が特に有効である。勿論、時分割駆動と呼ばれるSTN型に代表されるパッシブマトリックス液晶表示装置に適用した態様も有効である。
(反射型液晶表示装置)
本発明の光学フィルムは、TN型、STN型、HAN型、GH(Guest−Host)型の反射型液晶表示装置の光学補償シートの支持体または偏光板保護フィルムとしても有利に用いられる。これらの表示モードは古くから良く知られている。TN型反射型液晶表示装置については、特開平10−123478号、WO9848320号、特許第3022477号の各公報に記載がある。反射型液晶表示装置に用いる光学補償シートについては、WO00−65384号に記載がある。
(ハードコートフィルム、防眩フィルム、反射防止フィルム)
本発明の光学フィルムは、またハードコートフィルム、防眩フィルム、反射防止フィルムへの適用が好ましく実施できる。LCD、PDP、CRT、EL等のフラットパネルディスプレイの視認性を向上する目的で、本発明の光学フィルムの片面または両面にハードコート層、防眩層、反射防止層の何れかあるいは全てを付与することができる。このような防眩フィルム、反射防止フィルムとしての望ましい実施態様は、発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)の54頁〜57頁に詳細に記載されており、本発明の光学フィルムも好ましく用いることができる。
まず、本発明の実施例で用いている測定方法について記す。
<透湿率>
透湿率はJIS Z 0208に記載の方法に則り、各試料の透湿率を測定し、面積1mあたり24時間でフィルムを透過する水分量(g)として算出する。本実施例では温度は40℃、相対湿度は90%の条件で測定し、厚さ80μmのフィルムの透湿率に換算した。
<重合度の測定方法>
オストワルド粘度計にて測定したセルロースアシレートの固有粘度[η]から、次式により求める。
DP=[η]/Km
式中、[η]は、セルロースアシレートの固有粘度であり、Kmは、定数6×10−4である。
<セルロースアシレートの6%粘度の測定方法>
メチレンクロライドとメタノールの質量比率91対9の混合溶媒にセルロースアシレートを6質量%溶解し、オストワルド粘度計を用いて25℃における流下時間を測定し、次式により6%粘度を算出する。
6%粘度(mPa・s)=流下時間(秒)×粘度計係数
粘度計係数は粘度計較正用標準液を用いて、上記溶液と同様の操作で流下秒数を測定して求める。
ここに、粘度計係数=標準液の絶対粘度(cps)×溶液の密度(1.235g/cm)/標準液の密度(g/cm)/標準液の流下時間(秒)である。
以降、実施例1、2、4は、それぞれ、参考例1、2、4に読み替えるものとする。
[実施例1:冷却ゲル化法によるセルロースアシレートフィルムの製膜]
<セルロースアシレート溶液の調製>
メチレンクロライドを433質量部、メタノールを75質量部、1−ブタノールを5質量部、表1に示したセルロースアシレートを106質量部及び、表1に示したレターデーション低下剤をミキシングタンクに投入し、攪拌して各成分を溶解した。この溶液をギアポンプで熱交換器に送り、90ないし95℃の温度に10分間保った後、冷却熱交換器にて30℃に冷却した。この溶液を平均孔径47μmのろ紙でろ過し、更に孔径10μmの金属メッシュフィルターでろ過して、セルロースアシレート溶液を調製した。この液を再びギアポンプで熱交換器に送り出し、溶液の温度を82から86℃に加温した後フラッシュ濃縮装置に導入して濃縮した。できたセルロースアシレート溶液の固形分濃度は23.0から24.0質量%の間であった。
<マット剤溶液の調製>
平均粒径16nmのシリカ粒子(AEROSIL R972、日本アエロジル(株)製)20質量部及びメタノール80質量部を30分間よく攪拌混合してシリカ粒子分散液とした。この分散液を下記の組成物とともに分散機に投入し、さらに30分以上攪拌して各成分を溶解し、平均孔径20μmの不織布フィルターでろ過し、マット剤溶液を調製した。
(マット剤溶液組成)
平均粒径16nmのシリカ粒子分散液 12.0質量部
メチレンクロライド 68.5質量部
メタノール 11.8質量部
1−ブタノール 0.7質量部
セルロースアシレート溶液 11.3質量部
<波長分散調整剤溶液の調製>
表1に示した量の波長分散調整剤(UV−102)を使用して下記組成の液を作成し、平均孔径47μmのろ紙でろ過した。
(波長分散調整剤溶液組成)
波長分散調整剤 UV−102 7.3質量部
メチレンクロライド 55.3質量部
メタノール 9.5質量部
1−ブタノール 0.6質量部
セルロースアシレート溶液 12.8質量部
<希釈用混合溶剤液の調製>
下記組成の液を作成し、平均孔径14μmのろ紙でろ過し、希釈用混合溶剤液を調製した。
(希釈用混合溶剤液組成)
メチレンクロライド 82質量部
メタノール 15質量部
1−ブタノール 3質量部
<参考例のセルロースアシレートフィルムの作製>
上記セルロースアシレート溶液76.2質量部及び波長分散調整剤溶液(表1記載の量)をそれぞれスタチックミキサーで混合した。この混合液を乾燥後のフィルム厚さが目標厚さより6μm薄くなるように、3層重層流延用加圧ダイの中央部のスリットに送液した。一方同時に、セルロースアシレート溶液76.2質量部、マット剤溶液(LC4)1.8質量部、波長分散調整剤溶液(表1記載の量)及び稀釈用混合溶剤液5質量部の割合で送液し、スタチックミキサーで混合した。この混合液を乾燥後のフィルム厚さが3μmになるように、3層重層流延用加圧ダイの両端部のスリットにそれぞれ送液した。−10℃に冷却したステンレスドラム上に均一に流延した。ゲル化したフィルムをドラムから剥離しテンター装置に固定した。この際、ドラム速度に比べてテンターの搬送速度を1.06倍にした。テンター装置における乾燥温度は70℃から段階的に125℃まで変化させた。テンター装置入口のフィルム幅に対して一旦1.06倍にした後、乾燥進行に従って徐々に収縮させ、テンター出口のフィルム幅が入口幅よりも2%狭くなるようにした。テンター出口のフィルム揮発分は3から8%であった。テンター装置を出た後更に表1に示した乾燥温度で乾燥し巻き取った。このようにして参考例のフィルムF1及びF4を製膜した。巻き取り時の残留溶媒量は0.4%以下であった。フィルムの外観は鏡面のように滑らかで、異物はほとんど認められなかった。できたフィルムの厚さ、レターデーション、透湿率及び弾性率を表2に示した。
Figure 0005114591

Figure 0005114591
[実施例2:バンド流延法によるセルロースアシレートフィルムの製膜]
<セルロースアシレート溶液の調製>
メチレンクロライドを445質量部、メタノールを70質量部、表1に示したセルロースアシレートを106質量部及び、表1に示したレターデーション低下剤をミキシングタンクに投入し、攪拌して各成分を溶解した。この溶液をギアポンプで熱交換器に送り、90ないし95℃の温度に10分間保った後、冷却熱交換器にて30℃に冷却した。この溶液を平均孔径47μmのろ紙でろ過し、更に孔径10μmの金属メッシュフィルターでろ過して、セルロースアシレート溶液を調製した。
<マット剤溶液の調製>
分散液組成を下記に変更したほかは実施例1と同様にして、マット剤溶液を調製した。
(マット剤溶液組成)
平均粒径16nmのシリカ粒子分散液 12.0質量部
メチレンクロライド 76.6質量部
メタノール 11.4質量部
セルロースアシレート溶液 11.3質量部
<波長分散調整剤溶液の調製>
波長分散調整剤(UV−102)を使用して下記組成の液を作成し、平均孔径47μmのろ紙でろ過した。
(波長分散調整剤溶液組成)
波長分散調整剤 UV−102 7.3質量部
メチレンクロライド 55.3質量部
メタノール 8.3質量部
セルロースアシレート溶液 12.8質量部
<参考例のセルロースアシレートフィルムの作製>
セルロースアシレート溶液76.2質量部、マット剤溶液1.8及び波長分散調整剤溶液(表1記載の量)をそれぞれギアポンプでスタチックミキサーに送り、インライン混合した。この混合溶液を無端ステンレスバンド上に流延した。100℃から140℃の風をあてて乾燥し、揮発分が45から65%の範囲で剥離してテンターでフィルム幅を固定した。テンターでは140℃の風邪を吹き込んで乾燥し、フィルム揮発分を15から20%にした。テンター装置を出た後更に120℃で、次いで表1に示した乾燥温度で乾燥し巻き取った。このようにして参考例のフィルムF2、F3、F5、F6及び比較例のフィルムF7を製膜した。巻き取り時の残留溶媒量は0.2%以下であった。フィルムの外観は鏡面のように滑らかで、異物はほとんど認められなかった。できたフィルムの厚さ、レターデーション、透湿率及び弾性率を表2に示した。
[実施例3:(熱溶融押し出し法による環状ポリオレフィンフィルムの製膜)]
ジェイエスアール製アートンD4532を90℃で予熱したまま、内径50mm、L/D=28の単軸押出機を用いて溶融した。なお、入口側温度は200℃、出口側温度は140℃であった。押出機の出口に焼結フィルター、ギアポンプを経てTダイから押し出した。
冷却工程では3本の冷却ロールを用いた。これらの冷却ロールは、いずれも間隔が3cmとなるように配置した。最もダイに近い第1冷却ロールの温度(130℃)、および第2冷却ロールの温度から第1冷却ロールの温度を引いた値は3℃、第2冷却ロールの温度から第3冷却ロールの温度を引いた値は13℃であった。
また、これらのロールの搬送速度(第1冷却ロールの搬送速度(Sr=50m/分)に対する、第2冷却ロールの搬送速度(Sr)と第1冷却ロールの搬送速度(Sr)との差の比(ΔSr21(%)=100×(Sr−Sr)/Sr)は1%、第2冷却ロールの搬送速度
(Sr)に対する、第3冷却ロール(Sr)と第2冷却ロールの搬送速度(Sr)との差の比(ΔSr23(%)=100×(Sr−Sr)/Sr)は1%であった。これらの冷却ロールは、すべて120℃のケーシング内に配置した。また、第1冷却ロールには、静電印加法を用い、第1冷却ロール上のシート幅1.7mに対し、0.17m幅だけ押圧した。
上記のようにして密に配置した冷却ロール間の冷却速度は2℃/秒であった。なお、冷却速度は、第1冷却ロールに設置したフィルム温度と、最終冷却ロールから剥ぎ取られる直前のシート温度との差を、この間を通過するのに要した時間で除した値で示した。
最終冷却ロールの後、ロール間隔0.5mで配置した間を冷却速度2℃/秒で搬送した。得られたフィルムの厚みは79μmであった。この後、片面にラミフィルムを付けた後、両端を10%ずつトリミング(スリット)し巻き取った。このようにして実施例のフィルムF8を製膜した。
[実施例4:(セルロースアシレートフィルムを用いた偏光板の作製)]
実施例1及び2で得た参考例及び比較例のセルロースアシレートフィルム(F1〜F7)を、1.5規定の水酸化ナトリウム水溶液に、55℃で2分間浸漬した。室温の水洗浴槽中で洗浄し、30℃で0.1規定の硫酸を用いて中和した。再度、室温の水洗浴槽中で洗浄し、さらに100℃の温風で乾燥した。このようにして、表面をケン化したセルロースアシレートフィルム(F11〜F17)を得た。市販のセルロースアセテートフィルムTD80UF(富士写真フィルム(株)製)にも同様の表面ケン化処理を行い、フィルム(F10)を作成した。
続いて、厚さ80μmのロール状ポリビニルアルコールフィルムをヨウ素水溶液中で連続して5倍に延伸し、乾燥して偏光膜を得た。ポリビニルアルコール(クラレ製PVA−117H)3%水溶液を接着剤として、偏光膜の片面にフィルム(F11〜F17)を、反対面にフィルム(F10)を貼り合わせ、偏光板(P1〜P7)を得た。この際フィルム(F10)及び比較例のフィルム(F17)の遅相軸が偏光膜の透過軸と平行になるように貼り付けた。一方参考例のフィルム(F11〜F16)についてはReが非常に小さいので、それらの遅相軸は明確にならなかった。
[実施例5:(環状ポリオレフィンフィルムを用いた偏光板の作製)]
<環状ポリオレフィンフィルムの表面処理>
実施例3で製膜した環状ポリオレフィンフィルム(F8)を、真鍮製の上下電極間(アルゴンガス雰囲気)で、グロー放電処理(周波数3000Hz、4200Vの高周波数電圧を上下電極間に引加、20秒処理)した。グロー放電処理した環状ポリオレフィンフィルム(F18)表面の純水の接触角は36°から41°の間であった。接触角は協和界面科学株式会社製の接触角計CA−X型により測定した。
続いて、厚さ80μmのロール状ポリビニルアルコールフィルムをヨウ素水溶液中で連続して5倍に延伸し、乾燥して偏光膜を得た。ポリビニルアルコール(クラレ製PVA−117H)3%水溶液を接着剤として、偏光膜の片面にグロー処理したフィルム(F18)を、反対面にフィルム(F10)を貼り合わせ、偏光板(P8)を得た。この際フィルム(F10)及び(F8)の遅相軸が偏光膜の吸収軸と平行になるように貼り付けた。
[実施例6:(液晶表示装置への組込み)]
<対向偏光板の作製>
偏光膜の両面に貼りあわせるフィルムを両方共に(F10)(市販のセルロースアセテートフィルムをケン化したもの)にしたほかは、実施例5と同じようにして偏光板(P0)を作製した。
<光学異方性フィルムフィルムの作製 R1>
ポリカーボネートフィルムを延伸することにより、厚さ60μm、面内位相差Reが210nm、Nz=0.48の光学異方性フィルムを得た。
<IPSモード液晶セルの作製>
一枚のガラス基板上に、隣接する電極間の距離が20μmとなるように電極を配設し、その上にポリイミド膜を配向膜として設け、ラビング処理を行なった。別に用意した一枚のガラス基板の一方の表面にポリイミド膜を設け、ラビング処理を行なって配向膜とした。二枚のガラス基板を、配向膜同士を対向させて、基板の間隔(ギャップ;d)を3.9μmとし、二枚のガラス基板のラビング方向が平行となるようにして重ねて貼り合わせ、次いで屈折率異方性(Δn)が0.0769及び誘電率異方性(Δε)が正の4.5であるネマチック液晶組成物を封入した。液晶層のd・Δnの値は300nmであった。
<IPSモード液晶表示装置1の組み立て>
作製したIPSモード液晶セルのバックライト側に、実施例4及び5で作成した参考例及び本発明の偏光板を、参考例、本発明あるいは比較例のフィルム(F11〜F18)が液晶セル側になるようにアクリル接着剤を用いて貼り付けた。IPSモード液晶セルの視認側には光学異方性フィルムR1をその上に偏光板P0を同様に貼り付けた。この際、電圧無印加時に液晶セル内の液晶組成物の異常光屈折率方向と偏光板の吸収軸が直交するように偏光板P0を積層した。また偏光板P0の吸収軸と光学異方性フィルムR1の吸収軸は直交するように配置した。
このようにして作成した液晶表示装置の黒の色味を極角60度における全方位角方向で観察したところ、実施例のフィルムを使用した液晶表示装置は色味変化が殆ど感じられなかった。一方比較例のフィルムを使用した液晶表示装置は実施例のものよりも色味変化が大きかった。また極角60度における全方位角方向で測定した黒表示時の輝度が、比較例のフィルムを使用した液晶表示装置ほうが実施例のフィルムを使用した液晶表示装置よりも大きかった。
<IPSモード液晶表示装置2の組み立て>
作製したIPSモード液晶セルのバックライト側及び視認側に、実施例4及び5で作成した参考例及び本発明の偏光板を、参考例、本発明あるいは比較例のフィルム(F11〜F18)が液晶セル側になるように、アクリル系接着剤を用いて貼り付けた。
このようにして作成した液晶表示装置の黒の色味を極角60度における全方位角方向で観察したところ、実施例のフィルムを使用した液晶表示装置は色味変化が殆ど感じられなかった。一方比較例のフィルムを使用した液晶表示装置は実施例のものよりも色味変化が大きかった。また極角60度における全方位角方向で測定した黒表示時の輝度が、比較例のフィルムを使用した液晶表示装置ほうが実施例のフィルムを使用した液晶表示装置よりも大きかった。
1 上側偏光板偏光フィルム
2 上側偏光板偏光フィルム吸収軸
3 上側偏光板液晶セル側保護フィルム
4 上側偏光板液晶セル側保護フィルム遅相軸
5 液晶セル上側基板
6 上側基板液晶配向用ラビング方向
7 液晶分子(液晶層)
8 下側基板液晶配向用ラビング方向
9 液晶セル下側基板
10 下側偏光板液晶セル側保護フィルム
11 下側偏光板液晶セル側保護フィルム遅相軸
12 下側偏光板偏光フィルム
13 下側偏光板偏光フィルムの吸収軸
14 線状電極
15 絶縁層
16 電極
17 電界方向

Claims (4)

  1. ポリマーとしての環状ポリオレフィンを熱溶融製膜法により製膜してなり、
    0≦Re(630)≦10であり、9≦Rth(630)≦17であり、且つ
    480から750nmの全光波長領域において−10≦Rth(λ)≦20であることを特徴とする光学ポリマーフィルム[式中、Re(λ)は波長λnmにおける正面レターデーション値(単位:nm)、Rth(λ)は波長λnmにおける膜厚方向のレターデーション値(単位:nm)である。]。
  2. グロー放電表面処理後における純水との接触角が50°未満であることを特徴とする請求項1に記載の光学ポリマーフィルム。
  3. 請求項1又は2に記載の光学ポリマーフィルムを少なくとも1枚、偏光子の保護膜として用いたことを特徴とする偏光板。
  4. 請求項1又は2に記載の光学ポリマーフィルム、または請求項3に記載の偏光板を少なくとも1枚用いたことを特徴とするIPSモード液晶表示装置。
JP2011263667A 2011-12-01 2011-12-01 光学ポリマーフィルム、並びにそれを用いた偏光板及び液晶表示装置 Active JP5114591B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011263667A JP5114591B2 (ja) 2011-12-01 2011-12-01 光学ポリマーフィルム、並びにそれを用いた偏光板及び液晶表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011263667A JP5114591B2 (ja) 2011-12-01 2011-12-01 光学ポリマーフィルム、並びにそれを用いた偏光板及び液晶表示装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006079190A Division JP5114012B2 (ja) 2006-03-22 2006-03-22 光学ポリマーフィルム、並びにそれを用いた偏光板及び液晶表示装置

Publications (2)

Publication Number Publication Date
JP2012053490A JP2012053490A (ja) 2012-03-15
JP5114591B2 true JP5114591B2 (ja) 2013-01-09

Family

ID=45906781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011263667A Active JP5114591B2 (ja) 2011-12-01 2011-12-01 光学ポリマーフィルム、並びにそれを用いた偏光板及び液晶表示装置

Country Status (1)

Country Link
JP (1) JP5114591B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016092709A1 (ja) * 2014-12-12 2016-06-16 住友化学株式会社 シクロオレフィン系樹脂フィルム及びそれを用いた偏光板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139955A (ja) * 2001-11-07 2003-05-14 Sekisui Chem Co Ltd 位相差フィルムの製造方法
JP2004004641A (ja) * 2002-04-01 2004-01-08 Nitto Denko Corp 光学フィルムおよび画像表示装置
JP4225042B2 (ja) * 2002-12-02 2009-02-18 住友化学株式会社 半透過半反射性偏光フィルム並びにそれを用いた偏光光源装置及び液晶表示装置
TWI353461B (en) * 2004-05-18 2011-12-01 Fujifilm Corp Optical film, optical compensation film, polarizin

Also Published As

Publication number Publication date
JP2012053490A (ja) 2012-03-15

Similar Documents

Publication Publication Date Title
JP5401569B2 (ja) 光学フィルム並びにそれを用いた光学補償フィルム、偏光板及び液晶表示装置
CN100573201C (zh) 偏振片和液晶显示器
JP2007261052A (ja) 多層構造環状オレフィン系樹脂フィルム、偏光板、及び液晶表示装置
KR20060051547A (ko) 편광판 및 액정 표시 장치
JP2007079533A (ja) 光学樹脂フィルム、これを用いた偏光板および液晶表示装置
JP2009179651A (ja) フィルム
KR101249641B1 (ko) 액정 디스플레이
JP2007099824A (ja) 環状オレフィン系樹脂フィルム、偏光板および液晶表示装置
JP4596927B2 (ja) 液晶表示装置
JP2006257380A (ja) セルロースエステルフィルムの製造方法、セルロースエステルフィルム、偏光板及び液晶表示装置
JP4142691B2 (ja) 液晶表示装置
JP4860333B2 (ja) 液晶表示装置
JP2006243132A (ja) 偏光板及び液晶表示装置
JP4909698B2 (ja) 偏光板一体型光学補償フィルム及び液晶表示装置
JP2008001893A (ja) セルロースアシレートフィルム、セルロースアシレートフィルムの製造方法、光学補償フィルム、偏光板および液晶表示装置
JP2005338815A (ja) 偏光板一体型光学補償フィルム、その製造方法、及び液晶表示装置
JP2007277523A (ja) 環状ポリオレフィンフィルム及びその製造方法、並びにそれを用いた偏光板、液晶表示装置
JP4832210B2 (ja) 光学樹脂フィルム、これを用いた偏光板および液晶表示装置
JP2007098643A (ja) 環状オレフィン系樹脂フィルム製造方法、環状オレフィン系樹脂フィルム、偏光板および液晶表示装置
JP2007015366A (ja) セルロースアシレートフィルムの製造方法、セルロースアシレートフィルム、光学補償フィルム、偏光板及び液晶表示装置。
JP2007272177A (ja) 光学フィルム並びにそれを用いた光学補償フィルム、偏光板及び液晶表示装置。
JP4637698B2 (ja) 偏光板一体型光学補償フィルムおよび液晶表示装置
JP2006249328A (ja) セルロースアシレートフィルム、位相差フィルム、偏光板、および液晶表示装置
JP5114591B2 (ja) 光学ポリマーフィルム、並びにそれを用いた偏光板及び液晶表示装置
JP5114012B2 (ja) 光学ポリマーフィルム、並びにそれを用いた偏光板及び液晶表示装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111222

TRDD Decision of grant or rejection written
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5114591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250