JP2007101252A - 磁気センサおよびその製造方法ならびに電流センサ - Google Patents

磁気センサおよびその製造方法ならびに電流センサ Download PDF

Info

Publication number
JP2007101252A
JP2007101252A JP2005288822A JP2005288822A JP2007101252A JP 2007101252 A JP2007101252 A JP 2007101252A JP 2005288822 A JP2005288822 A JP 2005288822A JP 2005288822 A JP2005288822 A JP 2005288822A JP 2007101252 A JP2007101252 A JP 2007101252A
Authority
JP
Japan
Prior art keywords
magnetic field
current
substrate
magnetoresistive
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005288822A
Other languages
English (en)
Other versions
JP4298691B2 (ja
Inventor
Shigeru Shoji
茂 庄司
Masato Takahashi
正人 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2005288822A priority Critical patent/JP4298691B2/ja
Priority to US11/526,747 priority patent/US7723984B2/en
Publication of JP2007101252A publication Critical patent/JP2007101252A/ja
Application granted granted Critical
Publication of JP4298691B2 publication Critical patent/JP4298691B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3281Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn only by use of asymmetry of the magnetic film pair itself, i.e. so-called pseudospin valve [PSV] structure, e.g. NiFe/Cu/Co
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Hall/Mr Elements (AREA)

Abstract

【課題】測定対象とする電流を高精度に安定して測定可能であると共に、より小さく簡素な構成の電流センサを提供する。
【解決手段】電流センサ10は、MR素子3A,3Bを有する素子基板5A,5Bと磁性基板6A,6Bとを貼り合わせて一体化したものを検出対象電流Imの流路となる導体2に沿って配置したものである。磁性基板6A,6BによってMR素子3A,3Bに対してバイアス磁界Hb1,Hb2をそれぞれ印加することができるので、外部からの不要な擾乱磁界の影響を十分に回避しつつ、検出対象電流Imに基づく電流磁界Hmを正確に、かつ安定して検知することができる。そのうえ、永久磁石やコイルをMR素子3A,3Bの両側に配置するなどした場合と比べ、スペースを有効に利用して、より小さく簡素な全体構成とすることができる。
【選択図】図1

Description

本発明は、磁界の変化を高感度に検出可能な磁気センサおよびその製造方法、ならびに導体を流れる電流の変化を高感度に検出可能な電流センサに関する。
一般に、制御機器の回路に流れる制御電流を正確に測定するにあたっては、その回路内に抵抗を直列接続し、この抵抗の電圧降下を測定する方法を用いる。しかし、この場合には、制御系とは異なる負荷が加わることとなり制御系に対して何らかの悪影響を与える可能性が生じてしまう。このため、制御電流によって発生する電流磁界の勾配を検出することによって間接的に測定する方法が用いられている。具体的には、U字状の湾曲導体に制御電流を供給し、その湾曲導体の周囲に生じる電流磁界の変化をホール素子によって検出するする方法である(例えば、特許文献1参照)。
特公平7−123090号公報
しかし、上記のような電流センサでは、小型化が困難であることに加え、磁界変化に対する検出感度の直線性あるいは高周波応答性の面で不十分であるなどの問題点が指摘されるようになった。このため、ホール素子の替わりに巨大磁気抵抗効果(Giant Magneto-Resistive effect)を発現する巨大磁気抵抗効果素子(以下、GMR素子)を制御電流による電流磁界中に配置し、その勾配を検出するようにした電流センサが提案されている。このようなGMR素子を用いた電流センサであれば、検出感度や応答性が向上するうえ、温度変化に対しても安定した検出特性が得られる。
ところで、最近では、より精密な電流測定を可能とする電流センサが強く求められるようになっている。したがって、電流磁界の変化に対するGMR素子の抵抗変化の直線性をより厳密に、かつ安定して確保する必要がある。その一方で、いっそうコンパクトな全体構成であることも望まれている。
本発明はかかる問題に鑑みてなされたもので、その目的は、測定対象とする電流を高精度に安定して測定可能であると共に、より小さく簡素な構成の電流センサを提供することにある。
本発明の磁気センサは、一定方向に固着された磁化方向を有する固着層と中間層と外部磁界に応じて磁化方向が変化する自由層とを順に含む磁気抵抗効果素子が支持基板上に設けられた素子基板と、この素子基板の一方の面と貼り合わされて磁気抵抗効果素子に対してバイアス磁界を印加する磁性基板とを備えるようにしたものである。ここで、磁性基板は、素子基板における支持基板側と貼り合わされてもよいし、その反対側と貼り合わされるようになっていてもよい。また、素子基板と磁性基板との貼り合わせは、直接であっても間接であってもよい。
本発明の磁気センサでは、磁性基板が、磁気抵抗効果素子を有する素子基板と直接的または間接的に貼り合わされ、この磁性基板によって磁気抵抗効果素子に対するバイアス磁界が印加されるように構成されているので、外部からの不要な擾乱磁界の影響が低減される。このため磁気抵抗効果素子が、検出対象とする磁界に基づき、直線性に優れ、正確かつ安定した抵抗変化を示すこととなる。さらに、バイアス磁界を印加するために永久磁石やコイルを磁気抵抗効果素子の両側に配置するなどした場合と比べ、磁性基板はスペースを有効に利用した配置となる。
本発明の第1の電流センサは、検出対象電流が供給されることにより電流磁界を発生する導体と、その電流磁界に応じて自らの抵抗値が変化するように導体に沿って配置された磁気抵抗効果素子を有する素子基板と、この素子基板の一方の面と貼り合わされて磁気抵抗効果素子に対してバイアス磁界を印加する磁性基板とを備えるようにしたものである。
本発明の第2の電流センサは、検出対象電流が供給されることにより電流磁界を発生する導体と、磁気抵抗効果素子をそれぞれ含んで導体に沿って配置された一対の素子基板と、この素子基板における一方の面とそれぞれ貼り合わされて磁気抵抗効果素子に対してバイアス磁界をそれぞれ印加する一対の磁性基板と、磁気抵抗効果素子の各々に対し、互いに等しい値の定電流を供給する一対の定電流源と、定電流によって磁気抵抗効果素子の各々に生ずる電圧降下の差分を検出する差分検出器とを備えるようにしたものである。ここで、磁気抵抗効果素子は、電流磁界に応じて抵抗値が互いに逆向きの変化を示すようになっており、電圧降下の差分に基づいて検出対象電流が検出されることとなる。
本発明の第3の電流センサは、検出対象電流が供給されることにより電流磁界を発生する導体と、電流磁界に応じて自らの抵抗値が変化する磁気抵抗効果素子をそれぞれ含んで導体に沿って配置された第1から第4の素子基板と、第1から第4の素子基板における一方の面とそれぞれ貼り合わされて磁気抵抗効果素子の各々に対してバイアス磁界を印加する第1から第4の磁性基板とを備えるようにしたものである。ここで、第1および第2の素子基板における各磁気抵抗効果素子の一端同士が第1の接続点において接続され、第3および第4の素子基板における各磁気抵抗効果素子の一端同士が第2の接続点において接続され、第1の素子基板における磁気抵抗効果素子の他端と第4の素子基板における磁気抵抗効果素子の他端とが第3の接続点において接続され、第2の素子基板における磁気抵抗効果素子の他端と第3の素子基板における磁気抵抗効果素子の他端とが第4の接続点において接続されることによりブリッジ回路が形成されている。
本発明の第1から第3の電流センサでは、磁性基板(第1から第4の磁性基板)が、検出対象電流の流路となる導体に沿って配置された磁気抵抗効果素子を含む素子基板(第1から第4の素子基板)と直接的または間接的に貼り合わされ、この磁性基板によって磁気抵抗効果素子に対するバイアス磁界が印加されるように構成されているので、外部からの不要な擾乱磁界の影響が低減される。このため磁気抵抗効果素子が、検出対象とする磁界に基づき、直線性に優れ、正確かつ安定した抵抗変化を示すこととなる。さらに、バイアス磁界を印加するために永久磁石やコイルを磁気抵抗効果素子の両側に配置するなどした場合と比べ、磁性基板はスペースを有効に利用した配置となる。
本発明の第1から第3の電流センサでは、磁気抵抗効果素子が、一定方向に固着された磁化方向を有する固着層と、中間層と、外部磁界に応じて磁化方向が変化し、かつ、その外部磁界が零のときの磁化方向が検出対象電流の流れる方向と平行または逆平行となる自由層とを順に含むものであることが望ましい。ここで、固着層の磁化方向が、外部磁界が零のときの自由層の磁化方向と直交するか、または平行をなすようにするとよい。互いに直交するようにした場合には、磁性基板によって、外部磁界が零のときの自由層の磁化方向に沿ったバイアス磁界を印加することが望ましい。一方、互いに平行をなすようにした場合には、磁性基板を利用することにより、固着層の磁化方向に平行な平行成分と、この平行成分に直交する直交成分とを有するバイアス磁界を印加することが望ましい。なお、ここでいう外部磁界とは、検出対象電流による電流磁界のほか、磁性基板によるバイアス磁界、あるいは外部ノイズを含む意である。
また、本発明の第3の電流センサでは、第1の接続点と第2の接続点との間に電圧が印加されたときの第3の接続点と第4の接続点の間の電位差を検出する差分検出器をさらに備えるようにすることが望ましい。また、第1および第3の素子基板における各磁気抵抗効果素子の抵抗値が電流磁界に応じて互いに同じ向きに変化すると共に、第2および第4の素子基板における各磁気抵抗効果素子の抵抗値が、いずれも、電流磁界に応じて第1および第3の素子基板における磁気抵抗効果素子とは反対向きに変化するように構成することが望ましい。
本発明の磁気センサの製造方法は、支持基板の表面に磁気抵抗効果素子を複数形成したのち、支持基板の裏面に接着剤を塗布して磁性基板を貼り付けることにより積層体を形成する工程と、磁性基板の磁化方向の設定を行う工程と、積層体を磁気抵抗効果素子ごとに切り分ける工程とを含むようにしたものである。
本発明の磁気センサの製造方法によれば、複数の磁気抵抗効果素子が形成された支持基板の裏面に磁性基板を貼り付け、さらに、磁性基板の磁化方向の設定を行ったのちに磁気抵抗効果素子ごとに切り分けるようにしたので、所定方向にバイアス磁界が印加された磁気抵抗効果素子を有する複数の磁気センサが一括して、かつ簡便に形成される。
本発明の磁気センサによれば、磁気抵抗効果素子を有する素子基板と磁性基板とを直接的または間接的に貼り合わせることにより一体化し、その磁性基板によって磁気抵抗効果素子に対してバイアス磁界を印加するようにしたので、外部からの不要な擾乱磁界の影響を十分に回避しつつ、検出対象とする磁界を正確に、かつ安定して検知することができる。そのうえ、バイアス磁界を印加するために永久磁石やコイルを磁気抵抗効果素子の両側に配置するなどした場合と比べ、スペースを有効に利用して、より小さく簡素な全体構成とすることができる。
本発明の第1から第3の電流センサによれば、磁気抵抗効果素子を有する素子基板(第1から第4の素子基板)と磁性基板(第1から第4の磁性基板)とを貼り合わせて一体化したものを検出対象電流の流路となる導体に沿って配置し、その磁性基板によって磁気抵抗効果素子に対してバイアス磁界を印加するようにしたので、外部からの不要な擾乱磁界の影響を十分に回避しつつ、検出対象電流に基づく電流磁界を正確に、かつ安定して検知することができる。そのうえ、バイアス磁界を印加するために永久磁石やコイルを磁気抵抗効果素子の両側に配置するなどした場合と比べ、スペースを有効に利用して、より小さく簡素な全体構成とすることができる。したがって、小型化を達成しつつ、検出対象電流を高精度に、かつ安定して測定することができる。
本発明の磁気センサの製造方法によれば、複数の磁気抵抗効果素子が形成された支持基板の裏面を研磨したのち、その裏面に磁性基板を貼り付け、さらに、磁性基板の磁化方向の設定を行ったのちに磁気抵抗効果素子ごとに切り分けるようにしたので、所定方向にバイアス磁界が印加された磁気抵抗効果素子を有すると共に比較的コンパクトな全体構成の複数の磁気センサを一括して、かつ簡便に形成することができる。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
[第1の実施の形態]
最初に、図1,図2を参照して、本発明における第1の実施の形態としての電流センサの構成について説明する。図1は、本実施の形態における電流センサ10の斜視構成を表す概略図であり、図2は、図1の電流センサ10における回路構成を表したものである。なお、図2における検出対象電流Im、補償電流Id、電流磁界Hm、補償電流磁界Hd、バイアス磁界Hb1,Hb2および電流I0のすべての矢印の方向は、第1および第2の磁気抵抗効果素子3A,3B(後出)との相対的な方向を示している。
電流センサ10は、基体1上に形成された導体2に供給される検出対象電流Imを測定する電流計であり、第1および第2の磁気抵抗効果素子3A,3B(以下、単にMR素子3A,3Bと記す。)を含む磁気センサ7A,7Bを備えている。MR素子3A,3Bは、第1の接続点P1において互いに接続されており、互いを結ぶ仮想直線上の中間点を通る中心線CLを対称軸として線対称に配置されている(図2参照)。
導体2は、一対の直線部分2A,2Bと、これらを繋ぐ折り返し部分2Cとを有するV字形状をなしている。導体2の両端はパッド2D,2Eと接続されている。直線部分2A,2Bは、MR素子3A,3Bを含む面と平行な面において中心線CLを対称軸として線対称に配置されると共に、中心線CL(図2)に対して例えば45°をなすように(すなわち、互いに直交するように)X軸方向およびY軸方向へそれぞれ延在している。直線部分2A,2Bの上には磁気センサ7A,7Bがそれぞれ設けられている。磁気センサ7A,7Bについては後に詳述する。
直線部分2A,2Bにおいては、延在方向に直交する断面の面積が互いに等しく、かつ均一である。これにより、例えばパッド2Dからパッド2Eへ向かって導体2に検出対象電流Imが流れることにより発生する電流磁界HmAおよび電流磁界HmBの合成磁界Hm1,Hm2が、MR素子3A,3Bに対して図2に矢印で示した方向に各々印加されることとなる。ここで、電流磁界HmAは直線部分2Aにおいて+Y方向に発生し、電流磁界HmBは直線部分2Bにおいて+X方向に発生する。電流磁界HmA,HmBは互いに向きが異なるものの、どちらも同じ検出対象電流Imに起因するものであるうえ、直線部分2A,2Bの断面積が互いに等しく均一であることから、それら電流磁界HmA,HmBの大きさ(絶対値)は互いに等しい。但し、MR素子3Aは直線部分2Aに近接配置されているので、電流磁界HmBの影響は電流磁界HmAの影響よりも小さい。このため、MR素子3Aに印加される合成磁界Hm1の向きは、+Y方向から僅かに+X方向へ傾いた(回転した)Y2方向となる。同様に、MR素子3Bは直線部分2Bに近接配置されているので電流磁界HmAの影響は小さい。このため、MR素子3Bに印加される合成磁界Hm2の向きは、+X方向から僅かに+Y方向へ傾いた(回転した)X2方向となる。さらに、直線部分2AからMR素子3Aまでの距離と直線部分2BからMR素子3Bまでの距離とが互いに等しく、かつ、直線部分2AからMR素子3Bまでの距離と直線部分2BからMR素子3Aまでの距離とが互いに等しいことにより、MR素子3Aに印加される合成磁界Hm1の大きさ(絶対値)およびMR素子3Bに印加される合成磁界Hm2の大きさ(絶対値)は互いに等しくなっている。また、MR素子3A,3Bは、電流センサ10の駆動時において合成磁界Hm1,Hm2により各々の抵抗値R1,R2(後出)が互いに逆方向の変化を示すように構成されている。
磁気センサ7A,7Bは、直線部分2A,2Bの上に、例えば5μm〜10μmの厚みの接着層(図示せず)を介してそれぞれ貼り付けられている。具体的には、図1に示したように直線部分2A,2Bの上に磁性基板6A,6Bと素子基板5A,5Bとがそれぞれ順に積層されることにより、磁気センサ7A,7Bが構成されている。磁性基板6A,6Bと素子基板5A,5Bとの間には例えば5μm〜10μmの厚みの接着層(図示せず)が介在している。素子基板5A,5Bは、それぞれ100μm程度の厚みを有するシリコンウェハなどの支持基板4A,4Bの上にMR素子3A,3Bが設けられた構成をなしている。磁性基板6A,6Bは、MR素子3A,3Bに対してバイアス磁界Hb1,Hb2(図2参照)をそれぞれ印加するものである。ここで、バイアス磁界Hb1の向きはY2方向と直交するX3方向(+X方向から−Y方向へ僅かに傾いた方向)であり、バイアス磁界Hb2の向きはX2方向と直交するY3方向(+Y方向から−X方向へ僅かに傾いた方向)となっている。なお、バイアス磁界Hb1,Hb2の向きは、合成磁界Hm1,Hm2のほか、MR素子3A,3Bにおける各々の固着層13(後出)の磁化方向と関連して決まるものである。磁性基板6A,6Bは、例えばバリウム−ストロンチウムフェライト[(Ba−Sr)Fe24]からなり75μm〜95μmの厚みを有している。なお、磁性基板6A,6Bの構成材料としてはこれに限定されず、永久磁石となり得る他の強磁性材料を用いることもできる。また、磁性基板6A,6Bは、安定したバイアス磁界Hb1,Hb2を印加するため、MR素子3A,3Bよりも大きな面積を有していることが望ましい。
電流センサ10は、さらに、互いの一端同士が第2の接続点P2において接続された、定電流源CG1(第1の定電流源)および定電流源CG2(第2の定電流源)を備えている(図2)。定電流源CG1は、第3の接続点P3において、MR素子3Aにおける第1の接続点P1とは反対側の端部と接続されており、一方の定電流源CG2は、第4の接続点P4において、MR素子3Bにおける第1の接続点P1とは反対側の端部と接続されている。すなわち、MR素子3Aと定電流源CG1とが直列接続されていると共に、MR素子3Bと定電流源CG2とが直列接続されており、それらが中心線CLを対称軸として線対称となるように互いに並列接続された状態となっている。ここで、定電流源CG1および定電流源CG2は、互いに等しい値の定電流I0をMR素子3AおよびMR素子3Bにそれぞれ供給するように構成されている。なお、定電流源CG1,CG2は、基体1の上に設けられた回路基板9の内部に形成されている(図1では図示せず)。
さらに、電流センサ10は補償電流ラインCを備えている。第1の接続点P1と第2の接続点P2との間に電圧が印加されると、第3の接続点P3と第4の接続点P4との間の電位差に基づく補償電流Idが補償電流ラインCに供給されるようになっている(図2)。補償電流ラインCは、入力側が第3および第4の接続点P3,P4と接続された差分検出器としての差動増幅器AMPの出力側と接続されており、それと反対側の端部は抵抗体RLを介して接地されている。抵抗体RLにおける差動増幅器AMPの側には、補償電流検出手段Sが接続点T1において接続されている。ここで、補償電流ラインCは、補償電流Idが流れることにより、電流磁界Hm1,Hm2とそれぞれ逆方向の補償電流磁界Hd1,Hd2を発生するように配置されている。すなわち、補償電流磁界Hd1が−Y方向に発生すると共に補償電流磁界Hd2が−X方向に発生することで、電流磁界Hm1,Hm2をそれぞれ打ち消す方向に作用する。
MR素子3A,3Bは、支持基板4A,4Bの上に、絶縁膜、巨大磁気抵抗効果を発現する巨大磁気抵抗効果(GMR)膜、絶縁膜、およびパッドが順に積層されたものである。ここで、絶縁膜は、例えば酸化アルミニウム(Al23)などによって構成されている。また、パッドは、GMR膜の抵抗変化を読み出す際にセンス電流を供給するための電極である。GMR膜については、図3を参照して、より詳しく説明する。図3は、MR素子3A,3BにおけるGMR膜の構成を分解して示す分解斜視図である。
図3に示したように、MR素子3A,3BにおけるGMR膜は、磁性層を含む複数の機能膜が積層されたスピンバルブ構造をなしており、具体的には一定方向に固着された磁化方向J11を有する固着層11と、特定の磁化方向を示さない中間層12と、合成磁界Hm1,Hm2をはじめとする外部磁界Hに応じて磁化方向J13が変化する自由層13とを順に含んでいる。なお、図3は、合成磁界Hm1,Hm2が零(Hm1,Hm2=0)であり、かつ、磁性基板6A,6Bによるバイアス磁界Hb1,Hb2を印加しない無負荷状態(すなわち、外部磁界Hが零の状態)を示している。この場合には、自由層13の磁化方向J13は、自らの磁化容易軸方向AE13と平行をなし、かつ、固着層11の磁化方向J11と直交した状態となっている。
自由層13は、ニッケル鉄合金(NiFe)などの軟磁性材料により構成されている。中間層12は、銅(Cu)により構成され、上面が固着層11と接すると共に下面が自由層13と接している。中間層12は、銅のほか、金(Au)などの導電率の高い非磁性金属により構成することができる。なお、固着層11の上面(中間層12と反対側の面)および自由層13の下面(中間層12と反対側の面)は、それぞれ図示しない保護膜によって保護されている。また、固着層11と自由層13との間には磁化方向J11における交換バイアス磁界Hinが生じており、中間層12を介して互いに作用し合っている。交換バイアス磁界Hinの強度は、固着層11と自由層13との相互間隔(すなわち中間層12の厚み)に応じて自由層13のスピン方向が回転することにより変化する。なお、図3では、下から自由層13、中間層12、固着層11の順に積層された場合の構成例を示しているが、これに限定されず、反対の順序で構成するようにしてもよい。
以上のような構造を有するMR素子3A,3BのGMR膜では、合成磁界Hm1,Hm2が印加されることにより自由層13の磁化方向J13が回転し、それによって磁化方向J13と磁化方向J11との相対角度が変化する。その相対角度は、合成磁界Hm1,Hm2の大きさや向きによって決まるものである。
図4(A),(B)を参照して、GMR膜の磁化方向J11,J13と、バイアス磁界Hb1,Hb2と、合成磁界Hm1,Hm2との関係について説明する。図4(A),(B)は、電流センサ10における電流方向、磁界方向および磁化方向の関係を表す概念図である。例えば導体2の延在方向に沿って矢印で示したように検出対象電流Imが流れるとすると、直線部分2Aの周囲に電流磁界HmAが発生し、直線部分2Bの周辺に電流磁界HmBが発生する。この場合、MR素子3Aに及ぶ合成磁界Hm1は、ベクトル表示したように、電流磁界HmAに起因する+Y方向の磁界成分HmA1と電流磁界HmBに起因する+X方向の磁界成分HmB2との合力となる。一方、MR素子3Bに及ぶ合成磁界Hm2は、ベクトル表示したように、電流磁界HmAに起因する+Y方向の磁界成分HmA2と電流磁界HmBに起因する+X方向の磁界成分HmB1との合力となる。ここでMR素子3A,3Bにおいては、固着層11の磁化方向J11A,J11Bがそれぞれ合成磁界Hm1,Hm2と平行または逆平行をなすように固着されている。外部磁界Hが零である場合、自由層13の磁化方向J13A,J13Bは、それぞれ合成磁界Hm1,Hm2と直交した状態となる。すなわち外部磁界Hが零のとき、磁化方向J13A,J13Bは、磁化方向J11A,J13Bと直交した状態となる。したがって、導体2に検出対象電流Imが供給されて合成磁界Hm1,Hm2が発生すると、磁化方向J13A,J13Bは、磁化方向J11A,J11Bと平行(低抵抗)または逆平行(高抵抗)となる状態へ近づくこととなる。MR素子3AおよびMR素子3Bは、合成磁界Hm1,Hm2に応じて自らの抵抗値R1,R2が互いに逆向きの変化を示すように設定されている。具体的には、例えば、図4(A)に示したように、MR素子3Aでは、磁化方向J11Aが+Y2方向であり、外部磁界Hが零のときの磁化方向J13Aが+X3方向となっている。一方、MR素子3Bでは、磁化方向J11Bが−X2方向であり、外部磁界Hが零のときの磁化方向J13Bが+Y3方向となっている。この場合、矢印の方向へ検出対象電流Imが流れて合成磁界Hm1,Hm2が発生すると、磁化方向J13Aは(紙面上において)左回転することにより磁化方向J11Aと平行となる状態へ向かい、一方で、磁化方向J13Bは(紙面上において)右回転することにより磁化方向J11Bと逆平行となる状態へ向かう。この結果、MR素子3Aの抵抗値R1は減少し、MR素子3Bの抵抗値R2は増加することとなる。あるいは、図4(B)に示したように、MR素子3Aにおいて、磁化方向J11Aを+Y2方向とすると共に外部磁界Hが零のときの磁化方向J13Aを−X3方向とする一方、MR素子3Bにおいて、磁化方向J11Bを−X2方向とすると共に外部磁界Hが零のときの磁化方向J13Bを+Y3方向としてもよい。この場合、矢印の方向へ検出対象電流Imが流れて合成磁界Hm1,Hm2が発生すると、磁化方向J13Aは左回転することにより磁化方向J11Aと平行となる状態へ向かい、一方で、磁化方向J13Bは左回転することにより磁化方向J11Bと逆平行となる状態へ向かう。この結果、やはりMR素子3Aの抵抗値R1は減少し、MR素子3Bの抵抗値R2は増加することとなる。なお、図4(A)および図4(B)では、どちらの場合もMR素子3Aの抵抗値R1が減少し、かつ、MR素子3Bの抵抗値R1が増加するような構成となっているが、これに限定されず、抵抗値R1が増加し、かつ、抵抗値R2が減少するような構成とすることも可能である。
なお、図4(A)の状態または図4(B)の状態のいずれの場合であっても、磁性基板5A,5Bは、外部磁界Hが零のときの磁化方向J13A,J13Bと同方向のバイアス磁界Hb1,Hb2を印加するように設定される。したがって、このバイアス磁界Hb1,Hb2は、異方性磁界に相当するものとして自由層13の一軸異方性を強め、MR素子3A,3Bにおける磁界検出動作の安定化に寄与することとなる。従来、MR素子そのものの形状を細長く伸ばすことで形状異方性を高め、さらに、それを複数本、所定の間隔を空けて並列配置するなどして抵抗変化率を高めるようにしていたが、その場合には比較的大きなスペースを必要とする上、補償電流線も大型化することとなる。ところが、本実施の形態の電流センサ10によれば、形状異方性を利用しないのでMR素子3A,3Bの形状の自由度が高いうえ、それぞれを複数に分割する必要もないのでコンパクトな構成を実現している。
さらに、電流センサ10では、導体2が、互いに直交する直線部分2Aおよび直線部分2Bを含んでV字形状をなすようにしたので、例えば図21に示したような従来の電流センサのように互いに平行な直線部分102A,102Bを含むU字形状の導体102を用いた場合と比べて、より精密な電流測定が可能であるうえ、よりコンパクトな全体構成とすることができる。すなわち、U字形状の導体102の場合には、検出対象電流Imの方向が直線部分102Aと直線部分102Bとでは必然的に反対方向となってしまうことから、直線部分102Aと直線部分102Bとを接近させると電流磁界Hm101と電流磁界Hm102とが相互干渉を生じ、互いに打ち消し合うこととなる。このような相互干渉を低減するためにはMR素子103A,103Bの間隔W103を一定距離以上に保つ必要がある。また、導体102においては折り返し部分102Cのサイズも大きくなりがちである。ところが、本実施の形態の電流センサ10では、直線部分2Aおよび直線部分2Bの各々に流れる検出対象電流Imの方向が互いに完全な逆平行ではない(この場合は45°をなしている)ので、直線部分2Aから生ずる電流磁界Hm1と直線部分2Bから生ずる電流磁界Hm2との相互干渉が比較的弱い。このため、MR素子3A,3Bの間隔W3を小さくした場合においても各MR素子3A,3Bに対して検出動作に十分な大きさの電流磁界Hm1,Hm2を印加することができ、より精密な電流測定が可能となる。さらに、折り返し部分2Cのサイズも比較的小さくすることができるので、導体2の全体の高さ2Lを導体102の高さ102Lよりも小さくすることができる。すなわち、MR素子3A,3Bのサイズを維持しつつ、よりコンパクトな全体構成の電流センサ10を実現することができる。したがって、MR素子3A,3B間の温度差による測定誤差をも低減することができ、よりいっそう精密かつ安定した電流測定が可能となる。
このような構成の電流センサ10では、第1の接続点P1と第2の接続点P2との間に電圧が印加されたときの第3の接続点P3と第4の接続点P4との間の電位差V0(MR素子3A,3Bのそれぞれに生ずる電圧降下の差分)に基づく補償電流Idが差分検出器としての差動増幅器AMPを介して補償電流ラインCを流れ、その補償電流Idが補償電流検出手段Sによって検出されるようになっている。差動増幅器AMPは、差分V0が零となるように補償電流Idを調整するものである。
以下、図2を参照して、検出対象電流Imによって形成される電流磁界Hmを測定する方法について説明する。
図2において、第1の接続点P1と第2の接続点P2との間に所定の電圧を印加した際の定電流源CG1,CG2からの定電流をI0とし、MR素子3A,3Bの抵抗値をそれぞれR1,R2とする。電流磁界Hmが印加されていない場合、第3の接続点P3における電位V1は、
V1=I0・R1
であり、第4の接続点P4における電位V2は、
V2=I0・R2
となる。よって、第3の接続点P3と第4の接続点P4との間の電位差は、
V0=V1−V2
=I0・R1−I0・R2
=I0・(R1−R2) …(1)
この回路では、電流磁界Hmが印加されたときに、電位差V0を測定することにより抵抗変化量が得られる。例えば電流磁界Hmが印加されたときに、抵抗値R1,R2がそれぞれ変化量ΔR1,ΔR2だけ増加したとすると、式(1)は、
V0=V1−V2
=I0・(R1−R2)
=I0・{(R1+ΔR1)−(R2+ΔR2)} …(2)
となる。
すでに述べたように、MR素子3A,3Bは電流磁界Hmによって各々の抵抗値R1,R2が互いに逆方向の変化を示すように配置されていることから、変化量ΔR1と変化量ΔR2とは互いの正負が逆の符号となる。したがって、式(2)において、電流磁界Hmが印加される前の抵抗値R1および抵抗値R2は互いに打ち消し合う一方で、変化量ΔR1および変化量ΔR2はそのまま維持される。
仮に、MR素子3A,3Bが全く同一の特性を有するとした場合、すなわち、
R1=R2=R
かつ
ΔR1=−ΔR2=ΔR
であると仮定した場合、式(3)は、
V0=I0・(R1+ΔR1−R2−ΔR2)
=I0・(R+ΔR−R+ΔR)
=I0・(2ΔR) …(4)
となる。したがって、予め外部磁界と抵抗変化量との関係を把握したMR素子3A,3Bを用いるようにすれば、電流磁界Hmの大きさを測定することができ、その電流磁界Hmを発生する検出対象電流Imの大きさを推定することができる。この場合、2つのMR素子3A,3Bを用いてセンシングを行っているので、MR素子3AまたはMR素子3Bを単独で用いてセンシングを行う場合と比べて2倍の抵抗変化量を取り出すことができ、測定値の高精度化に有利となる。また、4つのMR素子を用いてブリッジ回路を構成してセンシングを行う場合と比べ、MR素子同士の特性のばらつきや接続抵抗のばらつき等を小さく抑えることができるので、感度が高いMR素子を用いた場合であってもバランス調整が容易である。また、MR素子自体の個数を減らすことができ、それに伴い端子の数も減るので、省スペース化に有利となる。
さらに、電流センサ10では、第3の接続点P3において検出される電位V1と第4の接続点P4において検出される電位V2とが差動増幅器AMPに供給されて、その差分(電位差V0)が零となるような補償電流Idが出力される。差動増幅器AMPからの補償電流Idは、MR素子3A,3Bの近傍を検出対象電流Imとは正反対の方向へ流れることにより電流磁界Hmとは逆方向の補償電流磁界Hdを生じ、回路中の接続抵抗のばらつきやMR素子3A,3Bの相互間における特性のばらつき、温度分布の偏り、あるいは外部からの妨害磁界などに起因する誤差分をキャンセルするように作用するので、結果として電流磁界Hmのみに比例した大きさに近づくこととなる。したがって、補償電流検出手段Sにおいて、出力電圧Voutを測定し、既知の抵抗体RLとの関係から補償電流Idを算出することにより、電流磁界Hmをより正確に求めることができ、ひいては検出対象電流Imの大きさを高精度に推定することができる。
次に、電流センサ10の製造方法について図5〜図8を参照して説明する。
ここでは、まず、図5に示したように、2mm程度の厚みを有するシリコンウェハなどの支持基板4Zの表面4SにMR素子3を複数形成する。そののち、図6に示したように、例えば100μmの厚みとなるまで支持基板4Zの裏面を研磨する。さらに、支持基板4Zの裏面に接着剤を塗布して磁性基板5Zを貼り付けることで積層体20を形成する(図7)。こののち、常温下にて磁性基板5Zの磁化方向の設定(着磁)を行い、さらに必要に応じて磁性基板5Zの裏面を研磨することにより、MR素子3に及ぶ磁界強度を調整する。次いで、図8に示したように、積層体20をMR素子3ごとに切り分けることで磁気センサ7を複数形成する。最後に、2つの磁気センサ7を回路基板8上に設けたのち、導体2の直線部分2A,2Bに対応した位置に配置するなど所定の工程を経ることにより、電流センサ10が完成する。
以上説明したように、本実施の形態の電流センサ10によれば、検出対象電流Imの流路となる導体2に沿って配置したMR素子3A,3Bと磁性基板6A,6Bとを支持基板4A,4Bを介して貼り合わせ、この磁性基板6A,6Bによってバイアス磁界Hb1,Hb2を印加するようにしたので、永久磁石やコイルをMR素子の両側に配置するなどした場合と比べ、スペースを有効に利用しつつ、検出動作の十分な安定化を図ることができる。すなわち、MR素子3A,3Bの各々に対して、より近い位置に配置することができるので、同じ構成材料であっても比較的小さな寸法としつつも、安定した検出動作に要するバイアス磁界Hb1,Hb2を十分に確保することができる。さらに、簡素な構成であることから一括形成が容易であることに加え、MR素子3A,3Bにおける磁化方向J11A,J11Bの向きが互いに異なっていても、それぞれに対応して適切な方向のバイアス磁界Hb1,Hb2を印加することが容易である。
また、磁性基板6A,6Bによって、外部磁界Hが零のときの磁化方向J13A,J13Bと同方向のバイアス磁界Hb1,Hb2をMR素子3A,3Bに対して印加するように設定したので、自由層13の一軸異方性が強め、MR素子3A,3Bにおける磁界検出動作の安定化を十分に図ることができる。ここでは形状異方性を利用しないことから、MR素子3A,3Bの形状の自由度を高くすることができ、かつ、それぞれを複数に分割する必要もないのでコンパクトな構成とすることができる。
さらに、互いに直交する直線部分2Aおよび直線部分2Bを含むV字形状の導体2を採用するようにしたので、互いに平行な直線部分を含むU字形状の導体を用いた場合と比べて、よりコンパクトな全体構成とすることができる。
このように、本実施の形態の電流センサ10によれば、よりコンパクトな構成を実現しつつ、検出対象電流Imの測定を高精度に、かつ十分に安定して行うことができる。
また、導体2を流れる検出対象電流Imが発生する電流磁界Hmにより抵抗値R1,R2が互いに逆方向の変化を示すこととなるように導体2に沿って配置され、互いに並列接続されたMR素子3A,3Bと、第3の接続点P3においてMR素子3Aと直列接続された定電流源CG1と、第4の接続点P4においてMR素子3Bと直列接続された定電流源CG2とを備え、定電流源CG1と定電流源CG2とを第2の接続点P2において接続し、第1の接続点P1と第2の接続点P2との間に電圧が印加されたときの第3の接続点P3と第4の接続点P4との間の電位差V0に基づいて検出対象電流Imが検出されるように構成したので、4つの磁気抵抗効果素子を用いた場合よりも零磁界でのオフセット値の調整を簡便におこなうことができ、MR素子3A,3Bとして、より高感度なものを用いることができる。さらに、MR素子3A,3Bに対して互いに等しく安定した電流を供給することができる。したがって、微弱な検出対象電流Imであっても、その電流磁界Hmを高感度、かつ、高精度に検出することができる。なお、定電流源CG1,CG2を設けることによりMR素子3A,3Bを含めたバランス調整は必要となるが、電気的に制御が可能であるので、4つの磁気抵抗効果素子を用いた場合よりもそのバランス調整は容易である。
特に、第3の接続点P3において検出される電位V1と第4の接続点P4において検出される電位V2との差分(MR素子3A,3Bのそれぞれに生ずる電圧降下の差分)V0に基づいた補償電流Idが供給される補償電流ラインCをさらに備え、補償電流Idが電流磁界Hmとは逆方向の補償電流磁界HdをMR素子3A,3Bに対してそれぞれ付与するように構成したので、MR素子3A,3B同士の特性のばらつきや回路中の接続抵抗のばらつき、あるいは温度分布などに起因した出力電圧Voutの変化をキャンセルすることができ、電流磁界Hmを、より高感度かつ、より高精度に検出可能となる。
さらに、電流センサ10では、中心線CLを対称軸として線対称をなすようにMR素子3A,3B、定電流源CG1,CG2および補償電流ラインCを設けると共に、導体4における一対の直線部分2A,2Bを、MR素子3A,3Bを含む面と平行な面において中心線CLを対称軸として線対称に配置するようにしたので、中心線CLに対して対称な温度分布となるようにすることができる。したがって、温度分布に依存した零点ドリフトを抑制することができる。
<変形例1>
ここで、図9を参照して、本実施の形態の電流センサにおける変形例について説明する。
上記第1の実施の形態では、図4(A),(B)に示したように、外部磁界Hが零のとき、自由層13の磁化方向J13A,J13Bが固着層11の磁化方向J11A,J11Bと直交するように構成している。しかしながら、本発明では、図9(A),(B)に示した変形例のように、外部磁界Hが零のとき、自由層13の磁化方向J13A0,J13B0と固着層11の磁化方向J11A,J11Bとが互いに平行をなすように構成してもよい。具体的には、図9(A)では、MR素子3Aの磁化方向J11Aおよび磁化方向J13A0が共に合成磁界Hm1と直交する+X3方向となっており、MR素子3Bの磁化方向J11Bおよび磁化方向J13B0が共に合成磁界Hm2と直交する+Y3方向となっている。また、図9(B)では、MR素子3Aの磁化方向J11Aおよび磁化方向J13A0が共に合成磁界Hm1と直交する+X3方向となっており、MR素子3Bの磁化方向J11Bおよび磁化方向J13B0が共に合成磁界Hm2と直交する−Y3方向となっている。ただし、これらの場合には、バイアス磁界Hb1,Hb2を磁化方向J11A,J11Bに対して斜め方向に印加することが望ましい。すなわち、磁化方向J11A,J11Bに平行な平行成分と、この平行成分に直交する直交成分とを有するバイアス磁界Hb1,Hb2を印加することが望ましい。具体的には、図9(A)では、MR素子3Aに対して−Y3方向のバイアス磁界Hb1を印加すると共にMR素子3Bに対して+Y2方向のバイアス磁界Hb2を印加するとよい。また、図9(B)では、MR素子3Aに対して−Y3方向のバイアス磁界Hb1を印加すると共にMR素子3Bに対して+X3方向のバイアス磁界Hb2を印加するとよい。ここで、バイアス磁界Hb1,Hb2の平行成分は、上記第1の実施の形態で述べたように、異方性磁界に相当するものとして自由層13の一軸異方性を強め、MR素子3A,3Bにおける磁界検出動作の安定化に寄与する成分である。一方、この平行成分と直交する直交成分は以下の理由により必要となるものである。
無負荷状態において磁化方向J13A0,J13B0と磁化方向J11A,J11Bとが互いに平行をなすように設定した磁気抵抗効果素子3A,3Bに対して、磁化方向J11A,J11Bと直交する方向へ外部磁界Hを印加すると、図10に示したような特性が得られる。図10は、+Y方向への外部磁界Hを正として外部磁界Hと抵抗変化率ΔR/Rとの関係を示したものであるが、両者の関係は、外部磁界H=0において極小(ΔR/R=0)となり、ヒステリシスをほとんど示すことのない1本の曲線C1で表される。この場合、ヒステリシスに起因する1/fノイズが極めて小さくなるので、高感度かつ安定したセンシングが可能となる。ところが、図10から明らかなように、外部磁界Hが零(H=0)の近傍においては直線的な変化が得られない。このため、実際に電流磁界Hmを測定する場合には磁化方向J11A,J11Bと直交する直交成分を有するバイアス磁界Hb1,Hb2をMR素子3A,3Bに対して印加し、磁化方向J13A0,J13B0を回転させて例えば45°傾いた磁化方向J13A1,J13B1とするようにする(図9(A),(B))。こうすることにより、図10に示したバイアスポイントBP1,BP2を中心とする線形領域L1,L2において電流磁界Hmの変化を精度良く検出することができる。
なお、本変形例においても、適切な方向へバイアス磁界Hb1,Hb2を印加することにより、電流磁界Hmが生じた場合にMR素子3Aの抵抗値R1とMR素子3Bの抵抗値R2とが互いに逆の変化を生じることとなる。したがって、MR素子3A,3Bに対して互いに等しい値の定電流を供給し、その定電流によってMR素子3A,3Bに生ずる電圧降下の差分を検出するようにすれば、検出対象電流Imを測定することが可能である。
[第2の実施の形態]
次に、本発明における第2の実施の形態としての電流センサについて説明する。上記第1の実施の形態では、V字状の平面形状をなす導体2を用いるようにした例について説明したが、本実施の形態では、直線状の導体21を採用した例について説明する。
本実施の形態の電流センサは、導体21以外の部分については実質的に上記第1の実施の形態と同様であるので、ここでは、図11(A),(B)を参照して、MR素子3A,3BにおけるGMR膜の磁化方向J11,J13と、バイアス磁界Hbと、電流磁界Hmとの関係について説明する。図11(A),(B)は、本実施の形態における電流センサの電流方向、磁界方向および磁化方向の関係を表す概念図である。ここでは、導体21の延在方向に沿って検出対象電流Imが流れており、これと直交する方向に固着層11の磁化方向J11が固着されている。一方、自由層13の磁化方向J13は、外部磁界Hが零のとき、検出対象電流Imの流れる方向と平行または逆平行となっている。すなわち、外部磁界Hが零のとき、自由層13の磁化方向J13は、固着層11の磁化方向J11と直交している。したがって、電流磁界Hmが発生すると、磁化方向J13は、磁化方向J11と平行(低抵抗)または逆平行(高抵抗)となる状態へ近づくこととなる。ここで、MR素子3AおよびMR素子3Bは、電流磁界Hmに応じて自らの抵抗値R1,R2が互いに逆向きの変化を示すように設定されている。具体的には、例えば、図11(A)に示したように、MR素子3Aでは、磁化方向J11Aが−y方向であり、外部磁界Hが零のときの磁化方向J13Aが−x方向となっている。一方、MR素子3Bでは、磁化方向J11Bが+y方向であり、外部磁界Hが零のときの磁化方向J13Bが+x方向となっている。この場合、矢印の方向へ検出対象電流Imが流れて電流磁界Hmが発生すると、磁化方向J13Aは(紙面上において)左回転することにより磁化方向J11Aと平行となる状態へ向かい、一方で、磁化方向J13Bは(紙面上において)右回転することにより磁化方向J11Bと逆平行となる状態へ向かう。あるいは、図11(B)に示したように、MR素子3Aにおいて、磁化方向J11Aを−y方向とし、外部磁界Hが零のときの磁化方向J13Aを+x方向とする一方、MR素子3Bにおいて、磁化方向J11Bを+y方向とし、外部磁界Hが零のときの磁化方向J13Bを+x方向としてもよい。この場合、矢印の方向へ検出対象電流Imが流れて電流磁界Hmが発生すると、磁化方向J13Aは右回転することにより磁化方向J11Aと平行となる状態へ向かい、一方で、磁化方向J13Bは右回転することにより磁化方向J11Bと逆平行となる状態へ向かう。
なお、いずれの場合であっても、バイアス磁界Hb1,Hb2は、外部磁界Hが零のときの磁化方向J13A,J13Bと同方向となるように設定される。したがって、このバイアス磁界Hb1,Hb2は、異方性磁界に相当するものとして自由層13の一軸異方性が強め、MR素子3A,3Bにおける磁界検出動作の安定化に寄与することとなる。特に、本実施の形態の電流センサでは直線状をなす導体21を用いるようにしたので、U字形状やV字形状の場合のような相互干渉を生ずることなく、全体に亘って均質な電流磁界Hmを発生させることができる。このため、MR素子3A,3Bに対して効率よく電流磁界Hmが及ぶこととなり、より精度の高い電流測定が可能となる。また、磁化方向J11A,J11Bを検出対象電流Imの流れる方向(すなわち、導体21の延在方向)と直交するように配置すれば最も高感度な測定が可能となる。したがって、V字形状の導体2を用いた場合(第1の実施の形態)には磁気センサ7A,7Bを導体2の延在方向に対して傾けるようにしたが、本実施の形態ではその必要がなく、磁気センサ7A,7Bの設置を簡便に行うことができる。
さらに、本実施の形態の電流センサでは、導体21が直線状をなすようにしたので、V字形状の導体2を採用した上記第1の実施の形態と比べて二次元な広がりを抑制することができ、よりコンパクトな全体構成となる。但し、図11(A),(B)から明らかなように、磁化方向J11Aと磁化方向J11Bとが互いに逆平行をなすこととなるので、MR素子3AとMR素子3Bとの間隔は、バイアス磁界Hb1とバイアス磁界Hb2との相互干渉を避けるため、図4(A),(B)に示した間隔W3よりも大きくする必要がある。
以上説明したように、本実施の形態によれば、直線状の導体21を採用し、この導体21に沿ってMR素子3A,3Bを含む素子基板5A,5Bを配置するようにしたので、MR素子3A,3Bのサイズを維持しつつ、導体がU字状をなす場合よりもMR素子3A,3B同士の間隔を小さくすることができる。さらに、U字状の導体とは異なり折り返し部分が存在しないので、導体21のサイズをより小さくすることができる。したがって、MR素子3A,3Bのサイズを維持しつつ、よりコンパクトな全体構成を実現することができるうえ、MR素子3A,3B間の温度差による測定誤差を低減し、精度良く安定した電流測定が可能となる。
<変形例2>
続いて、図12を参照して、本実施の形態の電流センサにおける変形例について説明する。上記第2の実施の形態では、図11(A),(B)に示したように、外部磁界Hが零のとき、自由層13の磁化方向J13A,J13Bが固着層11の磁化方向J11A,J11Bと直交するように構成している。しかしながら、図12(A),(B)に示した変形例のように、外部磁界Hが零のとき、自由層13の磁化方向J13A0,J13B0と固着層11の磁化方向J11A,J11Bとが互いに平行をなすように構成してもよい。具体的には、図12(A)では、MR素子3Aの磁化方向J11Aおよび磁化方向J13A0が共に電流磁界Hmと直交する−x方向となっており、MR素子3Bの磁化方向J11Bおよび磁化方向J13B0が共に電流磁界Hmと直交する+x方向となっている。また、図12(B)では、MR素子3Aの磁化方向J11Aおよび磁化方向J13A0ならびにMR素子3Bの磁化方向J11Bおよび磁化方向J13B0の全てが+x方向となっている。ただし、これらの場合には、バイアス磁界Hb1,Hb2を磁化方向J11A,J11Bに対して斜め方向に印加することが望ましい。すなわち、磁化方向J11A,J11Bに平行な平行成分と、この平行成分に直交する直交成分とを有するバイアス磁界Hb1,Hb2を印加することが望ましい。こうすることにより、自由層13が、例えば、磁化方向J11A,J11Bに対して45°傾いた磁化方向J13A1,J13B1を発現するようになり、図10に示したバイアスポイントBP1,BP2を中心とする線形領域L1,L2において電流磁界Hmの変化を精度良く検出することができる。
[第3の実施の形態]
次に、本発明における第3の実施の形態としての電流センサについて説明する。上記第1の実施の形態では、導体2の直線部分2A,2Bに対して2つのMR素子3A,3Bを配置するようにした例について説明した。これに対し本実施の形態では、1つの導体2に対して4つのMR素子3A〜3Dを配置するようにした。以下、図13を参照して説明する。なお、4つのMR素子3A〜3Dを配置するようにした点以外の部分については実質的に上記第1の実施の形態と同様であるので、適宜説明を省略する。
図13は、本実施の形態における電流センサの電流方向、磁界方向および磁化方向の関係を表す概念図である。図13に示したように、本実施の形態の電流センサでは、直線部分2Aに、その延在方向(X軸方向)に沿ってMR素子3AおよびMR素子3Cを備えている。その一方で、直線部分2Bに、その延在方向(Y軸方向)に沿ってMR素子3BおよびMR素子3Dを備えている。なお、MR素子3A〜3Dは、いずれも図示しない支持基板の上に設けられ、各々が素子基板を構成している。さらに、各支持基板と導体2との間にはそれぞれ磁性基板(図示せず)が設けられており、MR素子3A〜3Dに対してそれぞれバイアス磁界Hb1〜Hb4を印加するようになっている。
例えば導体2の延在方向に沿って矢印で示したように検出対象電流Imが流れるとすると、直線部分2Aの周囲に電流磁界HmAが発生し、直線部分2Bの周辺に電流磁界HmBが発生する。この場合、MR素子3Aには、ベクトル表示したように、電流磁界HmAに起因する+Y方向の磁界成分HmA1と電流磁界HmBに起因する+X方向の磁界成分HmB2との合力である合成磁界Hm1が印加される。同様に、MR素子3Bには、電流磁界HmAに起因する+Y方向の磁界成分HmA2と電流磁界HmBに起因する+X方向の磁界成分HmB1との合力である合成磁界Hm2が印加される。MR素子3Cに対しては、電流磁界HmAに起因する+Y方向の磁界成分HmA1と電流磁界HmBに起因する+X方向の磁界成分HmB3との合力である合成磁界Hm3が印加される。さらに、MR素子3Dには、電流磁界HmAに起因する+Y方向の磁界成分HmA3と電流磁界HmBに起因する+X方向の磁界成分HmB1との合力である合成磁界Hm4が印加される。ここで、MR素子3C,3Dは、MR素子3A,3Bよりも中心位置CLから離れた位置にあるので、電流磁界HmAと電流磁界HmBとの相互干渉の影響を受けにくい。すなわち、磁界成分HmB3は磁界成分HmB2よりも小さく(HmB3<HmB2)、磁界成分HmA3は磁界成分HmA2よりも小さい(HmB3<HmB2)。したがって、合成磁界Hm3は合成磁界Hm1よりも+Y方向に近い方向となり、合成磁界Hm4は合成磁界Hm2よりも+X方向に近い方向となっている。
MR素子3A,3Cは、固着層11の磁化方向J11A,J11Cが合成磁界Hm1,Hm3とそれぞれ平行をなすように固着されている。一方、MR素子3B,3Dは、固着層11の磁化方向J11B,J11Dが合成磁界Hm2,Hm4とそれぞれ逆平行をなすように固着されている。外部磁界Hが零の場合、自由層13の磁化方向J13A,J13Cは合成磁界Hm1,Hm3とそれぞれ直交するように+X方向から−Y方向へ僅かに傾いた状態となり、磁化方向J13B,J13Dは合成磁界Hm2,Hm4とそれぞれ直交するように+Y方向から−X方向へ僅かに傾いた状態となる。すなわち外部磁界Hが零のとき、磁化方向J13A〜J13Dは、磁化方向J11A〜J13Dと直交した状態となる。したがって、導体2に検出対象電流Imが供給されて合成磁界Hm1〜Hm4が発生すると、磁化方向J13A,J13Cは磁化方向J11A,J11Cと平行(低抵抗)となる状態へ近づき、磁化方向J13B,J13Dは、磁化方向J11B,J11Dと逆平行(高抵抗)となる状態へ近づくこととなる。よって、MR素子3A,3Cの抵抗値R1,R3は低下し、MR素子3B,3Dの抵抗値R2,R4は増加することとなる。
また、図14に示したように、本実施の形態の電流センサでは、MR素子3A,3Bの一端同士が第1の接続点P1において接続され、MR素子3C,3Dの一端同士が第2の接続点P2において接続され、MR素子3Aの他端とMR素子3Dの他端とが第3の接続点P3において接続され、MR素子3Bの他端とMR素子3Cの他端とが第4の接続点P4において接続されることによりブリッジ回路が形成されている。なお図14は、本実施の形態の電流センサにおける回路構成を表したものである。
以下、図14を参照して、検出対象電流Imによって形成される電流磁界Hmを測定する方法について説明する。
図14において、まず、外部磁界Hが印加されていない状態を考える。ここで読出電流i0を流したときのMR素子3A〜3Dの各抵抗値をr1〜r4とする。電源Vccからの読出電流i0は、第2の接続点P2で読出電流i1および読出電流i2の2つに分流される。そののち、MR素子3CおよびMR素子3Bを通過した読出電流i1と、MR素子3DおよびMR素子3Aを通過した読出電流i2とが第1の接続点P1において合流する。この場合、第2の接続点P2と第1の接続点P1との間の電位差Vは、
V=i1r3+i1r2=i2r4+i2r1
=i1(r3+r2)=i2(r4+r1) ……(5)
と表すことができる。
また、第4の接続点P4における電位V3および第3の接続点P3における電位V4は、それぞれ、
V3=V−i1r3
V4=V−i2r4
と表せる。よって、第4の接続点P4と第3の接続点P3との電位差V0は、
V0=V4−V3
=(V−i2r4)−(V−i1r3)
=i1r3−i2r4 ……(6)
ここで、(5)式から、
V0=r3/(r3+r2)・V−r4/(r4+r1)・V
={r3/(r3+r2)−r4/(r4+r1)}・V ……(7)
となる。このブリッジ回路では、外部磁界である電流磁界Hmが印加されたときに、上記の式(7)で表された第4の接続点P4と第3の接続点P3との電位差V0を測定することにより、抵抗変化量が得られる。ここで、電流磁界Hmが印加されたときに、抵抗値R1〜R4がそれぞれ変化量ΔR1〜ΔR4だけ変化したとすると、すなわち、電流磁界Hmを印加後の抵抗値R1〜R4が、それぞれ
R1=r1+ΔR1
R2=r2+ΔR2
R3=r3+ΔR3
R4=r4+ΔR4
であるとすると、電流磁界Hmの印加時における電位差V0は、式(7)より、
V0={(r3+ΔR3)/(r3+ΔR3+r2+ΔR2)−(r4+ΔR4)/(r4+ΔR4+r1+ΔR1)}・V ……(8)
となる。この電流センサでは、MR素子3A,3Cの抵抗値R1,R3と、MR素子3B,3Dの抵抗値R2,R4とは互いに逆方向の変化を示すように構成されているので、変化量ΔR4と変化量ΔR1とが打ち消し合うと共に、変化量ΔR3と変化量ΔR2とが打ち消し合うこととなる。このため、電流磁界Hmの印加前後を比較した場合、式(8)の各項における分母の増加はほとんど無い。一方、各項の分子については、変化量ΔR3と変化量ΔR1とが必ず反対の符号を有するので増減が現れることとなる。
仮に、MR素子3A〜3Dの全てが完全に同一の特性を有するものとした場合、すなわち、r1=r2=r3=r4=R、かつ、ΔR1=−ΔR2=ΔR3=−ΔR4=ΔRであるとした場合、式(8)は、
V0={(R+ΔR)/(2・R)−(R−ΔR)/(2・R)}・V
=(ΔR/R)・V
となる。
このように、予めΔR/R等の特性値を把握したMR素子3A〜3Dを用いるようにすれば、電流磁界Hmの大きさを測定することができ、その電流磁界Hmを発生する検出対象電流Imの大きさを推定することができる。特に、4つのMR素子3A〜3Dを用いてセンシングを行っているので、2つのMR素子3A,3Bのみを用いてセンシングを行う場合と比べ、より高精度な測定を行うことができる。
なお、本実施の形態ではV字状の平面形状をなす導体2を用いた例について説明したが、本発明はこれに限定されるものではなく、例えば第2の実施の形態で説明した直線状の導体21に沿って4つのMR素子3A〜3Dを配置するようにしてもよい。
次に、本発明の実施例について以下に説明する。
本実施例では、上記第2の実施の形態(図11(A),(B))におけるMR素子3Bに対応したサンプルを作製し、そのサンプルに関し、磁性基板によって生じるバイアス磁界の分布を調査した。ここでは、マイクロマグネティクスに基づくシミュレーションにより、固着層の磁化方向と直交するx軸方向の磁界成分としてのバイアス磁界Hxと、固着層の磁化方向に平行なy軸方向の磁界成分としてのバイアス磁界Hyとについて、磁性基板表面を基準としてそれぞれ算出した。図15〜図17にその結果を示す。なお、磁性基板はx軸方向に着磁されており、MR素子に対して(固着層の磁化方向と直交する)x軸方向のバイアス磁界を印加することによって、MR素子の動作安定性を確保するように機能するものである。また、磁性基板におけるx軸方向の寸法を0.37mmとし、y軸方向の寸法を0.26mmとしてシミュレーションを行ったが、図15〜図17では、そのうちの中心位置を含む0.2mm(x軸方向)×0.2mm(y軸方向)の領域についてのみ示す。
図15は、バイアス磁界Hxの、y軸方向における分布を示したものである。ここで、横軸は磁性基板の中心位置を通るy軸方向の位置(mm)を表しており、縦軸はバイアス磁界Hxを表している。ここでは、磁性基板の厚みを75μm、85μm、95μmの3水準とした。図15に示したように、バイアス磁界Hxの強さは、いずれの厚みにおいても中心位置0を頂点とした緩やかな凸形状の分布となった。また、厚みを大きくすることによりバイアス磁界Hxの強さを増大させ、厚みを小さくすることによりバイアス磁界Hxの強さを弱くすることが可能なことが確認された。
図16は、85μmの厚みを有する磁性基板について、y軸方向の位置(mm)およびx軸方向の位置(mm)におけるバイアス磁界Hxの分布を表した特性図である。図16では、x軸方向およびy軸方向のそれぞれにおける中心位置を原点としている。図16に示したように、バイアス磁界Hxの分布は、32×10-4[T]〜43×10-4[T]の範囲内において磁性基板のx軸方向およびy軸方向の双方における中心位置(すなわち原点)を頂点とした曲面となった。すなわち、磁性基板の中心位置において最も大きなバイアス磁界Hxが得られることがわかった。
さらに、図17は、y軸方向およびx軸方向におけるバイアス磁界Hyの分布を表すものである。ここではバイアス磁界Hxと同様に、x軸方向およびy軸方向のそれぞれにおける中心位置を原点としている。ここで、MR素子の安定動作のためにはバイアス磁界Hyが0であることが望ましい。図17に示したように、磁性基板の中心位置ではバイアス磁界Hyが0となっているが、周辺部分へ向かうほどバイアス磁界Hyの絶対値が僅かに増大することがわかった。但し、バイアス磁界Hyの絶対値は10×10-4[T]未満という極めて小さな値であり、実用上の問題は生じないレベルである。なお、図17において、x軸方向の位置が正である領域(0mm〜−0.1mm)と、x軸方向の位置が負である領域(0mm〜0.1mm)とで、バイアス磁界Hyが互いに反対の符号を示しているのは、磁性基板におけるx軸方向の中心位置を境界として、バイアス磁界Hyが互いに逆向きとなっていることを表している。同様に、y軸方向の位置が正である領域(0mm〜−0.1mm)と、y軸方向の位置が負である領域(0mm〜0.1mm)とで、バイアス磁界Hyが互いに反対の符号を示しているのは、磁性基板におけるy軸方向の中心位置を境界として、バイアス磁界Hyが互いに逆向きとなっていることを表している。
図15〜図17の結果から、磁性基板の中心位置にMR素子を配置すれば、本来必要な方向のバイアス磁界成分(バイアス磁界Hx)を最も効率的に付与することができるうえ、不要な方向のバイアス磁界成分(バイアス磁界Hy)の影響を低減可能なことがわかった。その際、磁性基板の厚みを選択することにより、所望の大きさのバイアス磁界をMR素子に対して付与することが可能であることも確認された。
以上、いくつかの実施の形態および変形例を挙げて本発明を説明したが、本発明は上記の実施の形態等に限定されず、種々の変形が可能である。例えば上記実施の形態では、V字形状をなす導体として、2つの直線部分を含み、かつそれらが互いに直交するものを例示して説明したが、これに限定されるものではない。すなわち、2つの直線部分が0°よりも大きく180°未満の角度をなすような導体であれば、本発明でいうところの「V字形状をなす導体」に該当する。また、図18に示したような半円状の導体22や、図19のような楕円の一部を含む導体23についても、本発明の「V字形状をなす導体」の概念に含まれる。さらに、図20に示した導体24のような、直線部分のみからなる形状の導体についても本発明の「V字形状をなす導体」に含まれる。
本発明における第1の実施の形態としての電流センサの構成を示す斜視図である。 図1に示した電流センサに対応する回路図である。 図1に示した電流センサの要部である磁気抵抗効果素子の構成を示す分解斜視図である。 図1に示した電流センサにおける磁化方向、電流磁界およびバイアス磁界の状態を説明するための概念図である。 図1に示した電流センサの製造方法を説明するための一工程を表す斜視図である。 図5に続く一工程を表す斜視図である。 図6に続く一工程を表す斜視図である。 図7に続く一工程を表す斜視図である。 図1に示した電流センサの変形例における磁化方向、電流磁界およびバイアス磁界の状態を説明するための概念図である。 図9に示した変形例における抵抗変化率の磁界依存性を示す特性図である。 本発明における第2の実施の形態としての電流センサにおける磁化方向、電流磁界およびバイアス磁界の状態を説明するための概念図である。 図11の変形例における磁化方向、電流磁界およびバイアス磁界の状態を説明するための概念図である。 本発明における第3の実施の形態としての電流センサにおける磁化方向、電流磁界およびバイアス磁界の状態を説明するための概念図である。 図13に示した電流センサに対応する回路図である。 図9に示した電流センサの磁性基板におけるバイアス磁界Hxの分布を表す特性図である。 図9に示した電流センサの磁性基板におけるバイアス磁界Hxの分布を表す他の特性図である。 図9に示した電流センサの磁性基板におけるバイアス磁界Hyの分布を表す特性図である。 図1に示した電流センサにおける導体の第1の変形例を示す概略図である。 図1に示した電流センサにおける導体の第2の変形例を示す概略図である。 図1に示した電流センサにおける導体の第3の変形例を示す概略図である。 従来の電流センサにおける導体の構成を示す概略図である。
符号の説明
1…基体、2,21…導体、2A,2B…直線部分、2C…折り返し部分、3A〜3D…磁気抵抗効果(MR)素子、4(4A,4B)…支持基板、5(5A,5B)…素子基板、6(6A,6B)…磁性基板、7(7A,7B)…磁気センサ、8,9…回路基板、CG1…(第1の)定電流源、CG2…(第2の)定電流源、10…電流センサ、11…固着層、12…中間層、13…自由層、20…積層体、C…補償電流ライン、CL…中心線、Im…検出対象電流、Hb1,Hb2…バイアス磁界、Hm1〜Hm4…合成磁界、HmA,HmB…電流磁界。

Claims (14)

  1. 一定方向に固着された磁化方向を有する固着層と中間層と外部磁界に応じて磁化方向が変化する自由層とを順に含む磁気抵抗効果素子が支持基板上に設けられた素子基板と、
    前記素子基板の一方の面と貼り合わされて前記磁気抵抗効果素子に対してバイアス磁界を印加する磁性基板と
    を備えたことを特徴とする磁気センサ。
  2. 検出対象電流が供給されることにより電流磁界を発生する導体と、
    前記電流磁界に応じて自らの抵抗値が変化するように前記導体に沿って配置された磁気抵抗効果素子を有する素子基板と、
    前記素子基板の一方の面と貼り合わされて前記磁気抵抗効果素子に対してバイアス磁界を印加する磁性基板と
    を備えたことを特徴とする電流センサ。
  3. 検出対象電流が供給されることにより電流磁界を発生する導体と、
    磁気抵抗効果素子をそれぞれ含んで前記導体に沿って配置された一対の素子基板と、
    前記素子基板における一方の面とそれぞれ貼り合わされて前記磁気抵抗効果素子に対してバイアス磁界をそれぞれ印加する一対の磁性基板と、
    前記磁気抵抗効果素子の各々に対し、互いに等しい値の定電流を供給する一対の定電流源と、
    前記定電流によって前記磁気抵抗効果素子の各々に生ずる電圧降下の差分を検出する差分検出器と
    を備え、
    前記素子基板における磁気抵抗効果素子は、前記電流磁界に応じて抵抗値が互いに逆向きの変化を示すものである
    ことを特徴とする電流センサ。
  4. 検出対象電流が供給されることにより電流磁界を発生する導体と、
    前記電流磁界に応じて自らの抵抗値が変化する磁気抵抗効果素子をそれぞれ含んで前記導体に沿って配置された第1から第4の素子基板と、
    前記第1から第4の素子基板における一方の面とそれぞれ貼り合わされて前記磁気抵抗効果素子の各々に対してバイアス磁界を印加する第1から第4の磁性基板と
    を備え、
    前記第1および第2の素子基板における各磁気抵抗効果素子の一端同士が第1の接続点において接続され、前記第3および第4の素子基板における各磁気抵抗効果素子の一端同士が第2の接続点において接続され、前記第1の素子基板における磁気抵抗効果素子の他端と前記第4の素子基板における磁気抵抗効果素子の他端とが第3の接続点において接続され、前記第2の素子基板における磁気抵抗効果素子の他端と前記第3の素子基板における磁気抵抗効果素子の他端とが第4の接続点において接続されることによりブリッジ回路が形成されている
    ことを特徴とする電流センサ。
  5. 前記第1の接続点と前記第2の接続点との間に電圧が印加されたときの前記第3の接続点と前記第4の接続点の間の電位差を検出する差分検出器をさらに備えた
    ことを特徴とする請求項4に記載の電流センサ。
  6. 前記第1および第3の素子基板における各磁気抵抗効果素子の抵抗値は、前記電流磁界に応じて互いに同じ向きに変化し、
    前記第2および第4の素子基板における各磁気抵抗効果素子の抵抗値は、いずれも、前記電流磁界に応じて前記第1および第3の素子基板における磁気抵抗効果素子とは反対向きに変化する
    ことを特徴とする請求項4または請求項5に記載の電流センサ。
  7. 前記磁気抵抗効果素子は、一定方向に固着された磁化方向を有する固着層と、中間層と、外部磁界に応じて磁化方向が変化し、かつ、その外部磁界が零のときの磁化方向が前記検出対象電流の流れる方向と平行または逆平行となる自由層とを順に含んでいる
    ことを特徴とする請求項2から請求項6のいずれか1項に記載の電流センサ。
  8. 前記固着層の磁化方向が、外部磁界が零のときの前記自由層の磁化方向と直交している
    ことを特徴とする請求項7に記載の電流センサ。
  9. 前記磁性基板は、外部磁界が零のときの前記自由層の磁化方向に沿ったバイアス磁界を印加するものである
    ことを特徴とする請求項8に記載の電流センサ。
  10. 前記固着層の磁化方向が、外部磁界が零のときの前記自由層の磁化方向と平行をなしている
    ことを特徴とする請求項7に記載の電流センサ。
  11. 前記磁性基板は、前記固着層の磁化方向に平行な平行成分と、前記平行成分に直交する直交成分とを有するバイアス磁界を印加するものである
    ことを特徴とする請求項10に記載の電流センサ。
  12. 支持基板の表面に磁気抵抗効果素子を複数形成したのち、前記支持基板の裏面に接着剤を塗布して磁性基板を貼り付けることにより積層体を形成する工程と、
    前記磁性基板の磁化方向の設定を行う工程と、
    前記積層体を前記磁気抵抗効果素子ごとに切り分ける工程と
    を含むことを特徴とする磁気センサの製造方法。
  13. 前記磁気抵抗効果素子を複数形成したのち、前記磁性基板を貼り付ける前に所定の厚みとなるまで前記支持基板の裏面を研磨する工程をさらに含む
    ことを特徴とする請求項12に記載の磁気センサの製造方法。
  14. 前記磁性基板を研磨することにより、前記磁気抵抗効果素子に及ぶ磁界強度を調整する工程をさらに含む
    ことを特徴とする請求項12または請求項13に記載の磁気センサの製造方法。
JP2005288822A 2005-09-30 2005-09-30 電流センサおよびその製造方法 Active JP4298691B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005288822A JP4298691B2 (ja) 2005-09-30 2005-09-30 電流センサおよびその製造方法
US11/526,747 US7723984B2 (en) 2005-09-30 2006-09-26 Magnetic sensor and current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005288822A JP4298691B2 (ja) 2005-09-30 2005-09-30 電流センサおよびその製造方法

Publications (2)

Publication Number Publication Date
JP2007101252A true JP2007101252A (ja) 2007-04-19
JP4298691B2 JP4298691B2 (ja) 2009-07-22

Family

ID=37901652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005288822A Active JP4298691B2 (ja) 2005-09-30 2005-09-30 電流センサおよびその製造方法

Country Status (2)

Country Link
US (1) US7723984B2 (ja)
JP (1) JP4298691B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002911A (ja) * 2007-06-25 2009-01-08 Tdk Corp 電流センサおよびその製造方法
WO2013172114A1 (ja) * 2012-05-18 2013-11-21 アルプス・グリーンデバイス株式会社 電流センサ
JP2014081384A (ja) * 2010-03-12 2014-05-08 Alps Green Devices Co Ltd 電流センサ
US10295578B2 (en) 2014-11-06 2019-05-21 Kabushiki Kaisha Toshiba Current sensor and smart meter
JP2019082445A (ja) * 2017-10-31 2019-05-30 Tdk株式会社 磁気センサおよび位置検出装置
WO2019111631A1 (ja) * 2017-12-05 2019-06-13 昭和電工株式会社 磁気センサの製造方法及び磁気センサ集合体
WO2020100443A1 (ja) * 2018-11-12 2020-05-22 株式会社村田製作所 電流センサ
WO2020100444A1 (ja) * 2018-11-12 2020-05-22 株式会社村田製作所 電流センサ

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7259545B2 (en) 2003-02-11 2007-08-21 Allegro Microsystems, Inc. Integrated sensor
US7709754B2 (en) * 2003-08-26 2010-05-04 Allegro Microsystems, Inc. Current sensor
US7476816B2 (en) * 2003-08-26 2009-01-13 Allegro Microsystems, Inc. Current sensor
US20060219436A1 (en) 2003-08-26 2006-10-05 Taylor William P Current sensor
JP4360998B2 (ja) * 2004-10-01 2009-11-11 Tdk株式会社 電流センサ
US7777607B2 (en) * 2004-10-12 2010-08-17 Allegro Microsystems, Inc. Resistor having a predetermined temperature coefficient
JP4224483B2 (ja) * 2005-10-14 2009-02-12 Tdk株式会社 電流センサ
US7768083B2 (en) 2006-01-20 2010-08-03 Allegro Microsystems, Inc. Arrangements for an integrated sensor
US20070279053A1 (en) * 2006-05-12 2007-12-06 Taylor William P Integrated current sensor
US7795862B2 (en) 2007-10-22 2010-09-14 Allegro Microsystems, Inc. Matching of GMR sensors in a bridge
US8269491B2 (en) * 2008-02-27 2012-09-18 Allegro Microsystems, Inc. DC offset removal for a magnetic field sensor
US7816905B2 (en) 2008-06-02 2010-10-19 Allegro Microsystems, Inc. Arrangements for a current sensing circuit and integrated current sensor
ES2591283T3 (es) * 2008-07-22 2016-11-25 Abb Research Ltd. Configuración de sensores magnetorresistivos para la medición de corriente
US8093670B2 (en) * 2008-07-24 2012-01-10 Allegro Microsystems, Inc. Methods and apparatus for integrated circuit having on chip capacitor with eddy current reductions
US8063634B2 (en) * 2008-07-31 2011-11-22 Allegro Microsystems, Inc. Electronic circuit and method for resetting a magnetoresistance element
US7973527B2 (en) 2008-07-31 2011-07-05 Allegro Microsystems, Inc. Electronic circuit configured to reset a magnetoresistance element
DE102009022992A1 (de) * 2009-03-02 2010-10-07 Micro-Epsilon Messtechnik Gmbh & Co. Kg Positionssensor
US20110133732A1 (en) * 2009-12-03 2011-06-09 Allegro Microsystems, Inc. Methods and apparatus for enhanced frequency response of magnetic sensors
US8582250B2 (en) * 2009-12-04 2013-11-12 Seagate Technology Llc Double biasing for trilayer MR sensors
JP5215370B2 (ja) * 2010-11-22 2013-06-19 三菱電機株式会社 磁気式位置検出装置
WO2012096211A1 (ja) 2011-01-11 2012-07-19 アルプス・グリーンデバイス株式会社 電流センサ
CN103415776B (zh) * 2011-03-02 2015-06-03 阿尔卑斯绿色器件株式会社 电流传感器
US8629539B2 (en) 2012-01-16 2014-01-14 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having non-conductive die paddle
US9666788B2 (en) 2012-03-20 2017-05-30 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US9494660B2 (en) 2012-03-20 2016-11-15 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US9812588B2 (en) 2012-03-20 2017-11-07 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US10234513B2 (en) 2012-03-20 2019-03-19 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US9190606B2 (en) 2013-03-15 2015-11-17 Allegro Micosystems, LLC Packaging for an electronic device
US10345343B2 (en) 2013-03-15 2019-07-09 Allegro Microsystems, Llc Current sensor isolation
US9411025B2 (en) 2013-04-26 2016-08-09 Allegro Microsystems, Llc Integrated circuit package having a split lead frame and a magnet
JP2015102513A (ja) * 2013-11-27 2015-06-04 横河電機株式会社 金属異物検出装置および渦電流探傷装置
US9529060B2 (en) 2014-01-09 2016-12-27 Allegro Microsystems, Llc Magnetoresistance element with improved response to magnetic fields
US9354284B2 (en) 2014-05-07 2016-05-31 Allegro Microsystems, Llc Magnetic field sensor configured to measure a magnetic field in a closed loop manner
US9605983B2 (en) * 2014-06-09 2017-03-28 Infineon Technologies Ag Sensor device and sensor arrangement
US9030781B1 (en) * 2014-11-01 2015-05-12 Seagate Technology Llc Detecting stray magnetic fields in a storage device
US9322887B1 (en) 2014-12-01 2016-04-26 Allegro Microsystems, Llc Magnetic field sensor with magnetoresistance elements and conductive-trace magnetic source
WO2016196157A1 (en) 2015-06-05 2016-12-08 Allegro Microsystems, Llc Spin valve magnetoresistance element with improved response to magnetic fields
US10141501B2 (en) * 2016-03-30 2018-11-27 Tdk Corporation Magnetoresistive element
JP2017188182A (ja) * 2016-03-30 2017-10-12 Tdk株式会社 磁気抵抗効果素子および磁気センサ
US10620279B2 (en) 2017-05-19 2020-04-14 Allegro Microsystems, Llc Magnetoresistance element with increased operational range
US11022661B2 (en) 2017-05-19 2021-06-01 Allegro Microsystems, Llc Magnetoresistance element with increased operational range
US10935612B2 (en) 2018-08-20 2021-03-02 Allegro Microsystems, Llc Current sensor having multiple sensitivity ranges
US11029373B2 (en) * 2019-07-16 2021-06-08 Allegro Microsystems, Llc Magnetic field sensors having a magnetic anti-aliasing filter
US10991644B2 (en) 2019-08-22 2021-04-27 Allegro Microsystems, Llc Integrated circuit package having a low profile
US11187764B2 (en) 2020-03-20 2021-11-30 Allegro Microsystems, Llc Layout of magnetoresistance element
US11567108B2 (en) 2021-03-31 2023-01-31 Allegro Microsystems, Llc Multi-gain channels for multi-range sensor
US11768230B1 (en) 2022-03-30 2023-09-26 Allegro Microsystems, Llc Current sensor integrated circuit with a dual gauge lead frame
US11719771B1 (en) 2022-06-02 2023-08-08 Allegro Microsystems, Llc Magnetoresistive sensor having seed layer hysteresis suppression

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601515A (ja) 1983-06-20 1985-01-07 Nippon Denso Co Ltd 磁気検出装置
CH670004A5 (ja) 1986-02-10 1989-04-28 Landis & Gyr Ag
JP3144051B2 (ja) 1992-05-25 2001-03-07 松下電器産業株式会社 電流検出器
JPH07123090A (ja) 1993-10-25 1995-05-12 Toshiba Corp 遠隔会議システム
US5561368A (en) 1994-11-04 1996-10-01 International Business Machines Corporation Bridge circuit magnetic field sensor having spin valve magnetoresistive elements formed on common substrate
JP3886589B2 (ja) 1997-03-07 2007-02-28 アルプス電気株式会社 巨大磁気抵抗効果素子センサ
JP3260741B1 (ja) * 2000-08-04 2002-02-25 ティーディーケイ株式会社 磁気抵抗効果装置およびその製造方法ならびに薄膜磁気ヘッドおよびその製造方法
US20030214762A1 (en) 2002-05-14 2003-11-20 Manish Sharma Magnetic field detection sensor
JP2004288666A (ja) 2003-03-19 2004-10-14 Nikkoshi Co Ltd 磁電変換素子
JP4433820B2 (ja) 2004-02-20 2010-03-17 Tdk株式会社 磁気検出素子およびその形成方法ならびに磁気センサ、電流計

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002911A (ja) * 2007-06-25 2009-01-08 Tdk Corp 電流センサおよびその製造方法
JP2014081384A (ja) * 2010-03-12 2014-05-08 Alps Green Devices Co Ltd 電流センサ
WO2013172114A1 (ja) * 2012-05-18 2013-11-21 アルプス・グリーンデバイス株式会社 電流センサ
JPWO2013172114A1 (ja) * 2012-05-18 2016-01-12 アルプス・グリーンデバイス株式会社 電流センサ
JP2016040558A (ja) * 2012-05-18 2016-03-24 アルプス・グリーンデバイス株式会社 電流センサ
US9562932B2 (en) 2012-05-18 2017-02-07 Alps Electric Co., Ltd. Current sensor
US10295578B2 (en) 2014-11-06 2019-05-21 Kabushiki Kaisha Toshiba Current sensor and smart meter
JP2019082445A (ja) * 2017-10-31 2019-05-30 Tdk株式会社 磁気センサおよび位置検出装置
WO2019111631A1 (ja) * 2017-12-05 2019-06-13 昭和電工株式会社 磁気センサの製造方法及び磁気センサ集合体
JP2019102681A (ja) * 2017-12-05 2019-06-24 昭和電工株式会社 磁気センサの製造方法及び磁気センサ集合体
WO2020100443A1 (ja) * 2018-11-12 2020-05-22 株式会社村田製作所 電流センサ
WO2020100444A1 (ja) * 2018-11-12 2020-05-22 株式会社村田製作所 電流センサ

Also Published As

Publication number Publication date
US20070076332A1 (en) 2007-04-05
JP4298691B2 (ja) 2009-07-22
US7723984B2 (en) 2010-05-25

Similar Documents

Publication Publication Date Title
JP4298691B2 (ja) 電流センサおよびその製造方法
JP4415923B2 (ja) 電流センサ
JP4360998B2 (ja) 電流センサ
JP4224483B2 (ja) 電流センサ
JP4466487B2 (ja) 磁気センサおよび電流センサ
JP2007218700A (ja) 磁気センサおよび電流センサ
US8593134B2 (en) Current sensor
JP4573736B2 (ja) 磁界検出装置
JP6420665B2 (ja) 磁場を測定する磁気抵抗センサ
JP4105147B2 (ja) 電流センサ
JP4105142B2 (ja) 電流センサ
JP5544502B2 (ja) 電流センサ
KR100800279B1 (ko) 스핀 밸브형 거대 자기 저항 효과 소자를 가진 방위계
JP2018112481A (ja) 磁気センサ
JP2012063203A (ja) 磁気センサ
JP4482866B2 (ja) 巨大磁気抵抗素子を持った方位計
JP5161055B2 (ja) 磁界検出装置
JP5631378B2 (ja) 磁界検出方法
JP2022038821A (ja) 磁気センサ、並びに磁気センサを用いた位置検出装置及び電流センサ

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090318

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090415

R150 Certificate of patent or registration of utility model

Ref document number: 4298691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5